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Abstract

IMPORTANCE To date, oncologist and model prognostic performance have been assessed
independently and mostly retrospectively; however, how model prognostic performance compares
with oncologist prognostic performance prospectively remains unknown.

OBJECTIVE To compare oncologist performance with a model in predicting 3-month mortality for
patients with metastatic solid tumors in an outpatient setting.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study evaluated prospective predictions
for a cohort of patients with metastatic solid tumors seen in outpatient oncology clinics at a National
Cancer Institute–designated cancer center and associated satellites between December 6, 2019, and
August 6, 2021. Oncologists (57 physicians and 17 advanced practice clinicians) answered a 3-month
surprise question (3MSQ) within clinical pathways. A model was trained with electronic health record
data from January 1, 2013, to April 24, 2019, to identify patients at high risk of 3-month mortality and
deployed silently in October 2019. Analysis was limited to oncologist prognostications with a model
prediction within the preceding 30 days.

EXPOSURES Three-month surprise question and gradient-boosting binary classifier.

MAIN OUTCOMES AND MEASURES The primary outcome was performance comparison between
oncologists and the model to predict 3-month mortality. The primary performance metric was the
positive predictive value (PPV) at the sensitivity achieved by the medical oncologists with their
3MSQ answers.

RESULTS A total of 74 oncologists answered 3099 3MSQs for 2041 patients with advanced cancer
(median age, 62.6 [range, 18-96] years; 1271 women [62.3%]). In this cohort with a 15% prevalence of
3-month mortality and 30% sensitivity for both oncologists and the model, the PPV of oncologists
was 34.8% (95% CI, 30.1%-39.5%) and the PPV of the model was 60.0% (95% CI, 53.6%-66.3%).
Area under the receiver operating characteristic curve for the model was 81.2% (95% CI,
79.1%-83.3%). The model significantly outperformed the oncologists in short-term mortality.

CONCLUSIONS AND RELEVANCE In this prognostic study, the model outperformed oncologists
overall and within the breast and gastrointestinal cancer cohorts in predicting 3-month mortality for
patients with advanced cancer. These findings suggest that further studies may be useful to examine
how model predictions could improve oncologists’ prognostic confidence and patient-centered
goal-concordant care at the end of life.
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Key Points
Question How do oncologists and a

machine learning model compare in

predicting 3-month mortality for

patients with advanced solid tumors?

Findings In this prognostic study, the

machine learning model significantly

outperformed 74 oncologists in

predicting 3-month mortality for 2041

patients with metastatic solid tumors

overall and in gastrointestinal and breast

cancer subpopulations. Findings were

not significant in genitourinary, lung,

and rare cancer groups.

Meaning The results of this study

suggest the potential for a machine

learning model trained with electronic

health record data to support

oncologists in prognostication and

clinical decision-making to improve

end-of-life care.
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Introduction

Patients and families rely on clinicians to provide transparent and precise prognostic information to
make informed, value-based choices about end-of-life care.1-5 Studies have shown that physicians
often overestimate survival or are reticent to discuss prognosis and end-of-life preferences owing to
perceived patient distress, rapidly progressive science, and lack of prognostic confidence.6-16 This
overestimation may result in unwanted care and overuse of health care services near the end of life
as evidenced by findings that most patients die outside the home and patient preferences are
followed completely only about half of the time.17-19 Within the oncology population, there remains
high use of intensive care and chemotherapy and underuse of hospice care near the end of life,
costing billions of dollars to the US health care system.20,21 Improving prognostic confidence and
facilitating alignment between patient values and therapeutic delivery represents an important value
proposition for patients, caregivers, clinicians, and payers.22

Reliable and consistently applied prognostic tools in oncology may enhance prognostic
confidence, increase prognostic authority, and improve the clarity and strength of medical
recommendations for and against therapies.23 Many prognostic scales have been studied in
oncology, some with more administrative burden.9,10 A widely and easily implemented prognostic
tool is the surprise question (SQ), which asks clinicians whether it would surprise them if a patient
died within a particular time frame. The SQ has been used most commonly with a 1-year time frame
but also with time frames between 1 week and 6 months with varying performance.7,9,10,24-41 The SQ
has performed better in oncology populations compared with heart failure, kidney failure, and all
diagnoses examined in other studies,7,9,10 albeit modestly, and further research in this area is needed.

Institutions have increasingly used machine learning (ML) to identify patients at high risk of
mortality at different points from 30 days to 5 years for activating care teams to conduct goals-of-
care discussions and engage palliative care.42-49 Although there are multiple retrospective
evaluations of ML models, there remain few prospective evaluations and even fewer prospective
comparisons of clinician and ML predictions.42,43,46,47,50,51

We compared the prognostic performance of medical oncologists using an SQ with a supervised
model trained to predict the risk of 3-month mortality. A motivator for this analysis was to improve
the acceptability of ML for broader scale use in the electronic health record (EHR) and lay the
groundwork to potentially increase prognostic confidence, improving discussions on goals of care
between patients, families, and clinicians. This pilot study and the consequent evaluation were steps
taken to validate the mortality prediction model and facilitate its acceptability among oncologists
before integration in our EHR at the City of Hope National Medical Center.

Methods

Setting
This study was a comparison between predictions made by medical oncologists (57 physicians and 17
advanced practice clinicians) and their advanced practice clinicians at the City of Hope academic
center and limited community sites and by a custom model running silently (ie, invisible to clinicians)
for 20 months. Institutional review board approval was provided, along with a waiver of consent, by
the City of Hope. The research needed a waiver of consent because the investigator does not have a
reasonable opportunity to obtain consent and the risk inflicting psychological, social, or other harm
by contacting participants is greater than the risk of the study procedures. The Standards for
Reporting of Diagnostic Accuracy (STARD) reporting guideline was followed.52

Background
3-Month Surprise Question
Medical oncologists at City of Hope, a National Cancer Institute–designated cancer center, are
adherent in use of a software decision support pathway tool capturing each episode of a patient’s
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systemic therapy.53 In a quaternary, highly specialized center for cancer care seeing many patients
with advanced cancer, the oncologists believed a 3-month prognostic SQ would be meaningful to
introduce in pathways as a trigger for goals-of-care discussions with patients regarding the benefits
and burdens of additional therapy. We incorporated a mandatory 3-month surprise question (3MSQ)
within the pathway tool for all patients with metastatic solid tumors in December 2019, worded
“Would you be surprised if this patient were to die within the next 3 months?” The answer choices are
yes or no.

The Machine Learning Model
We trained a gradient-boosted trees binary classifier (via the XGBoost library)54 with observations
from 28 484 deceased and alive patients and 493 features from demographic characteristics,
laboratory test results, flowsheets, and diagnoses collected from the EHR between January 1, 2013,
and April 24, 2019. In training and retrospective evaluation, we considered 1 observation per patient.
For inclusion in training and evaluation sets, patients needed to have at least 2 encounters as a
minimal amount of data; living patients needed a completed visit documented in the EHR at least 1
year postprediction date to avoid observations with potential missing death information. To limit the
risk of data leakage, we picked dates of prediction to exclude encounters within 7 days of death. We
also avoided overrepresenting observations with prediction dates within 30 days of death to not
train the model with a disproportionate number of near-term deceased patients. We extracted hand-
crafted features from time series of laboratory test results and flowsheet data in the 180-day
temporal window preceding each prediction. We imputed missing values for features only in obvious
cases because tree-based classifiers can handle missing data. Clinical variables used by the model,
including age, sex, race, and body mass index, and other features extracted from laboratory test and
flowsheet time series, are listed in eTable 1 in the Supplement. The features associated with the
diagnoses consisted of aggregations of publicly available word2vec embeddings55 of the
International Classification of Diseases, Ninth Revision codes. A portion of the observations was used
for retrospective evaluation based on a temporal split at a single time point to mimic deployment in
the real world, in which past observations are used to train a model to predict in the present.

After hyperparameter tuning via cross-validation and retrospective evaluation, we retrained a
version of the 90-day mortality model including the evaluation set and deployed it in a silent
prospective pilot, inclusive of all City of Hope patients with accessible EHR data. The resulting model
consisted of an ensemble of 357 decision trees with a maximum depth of 6. Since October 2019, the
model made batches of predictions from observations automatically queried once a day from our
enterprise data warehouse. The presence of new results from laboratory tests noted in eTable 2 in
the Supplement triggered a prediction.

Study Population
We identified all medical oncologist and advanced practice clinician (oncologist) 3MSQ answers
entered into our pathway decision support tool when any new regimen was ordered for metastatic
disease between December 6, 2019, and August 6, 2021, from our enterprise data warehouse. After
excluding prognostications not associated with outpatient visits and those entered on or after a
death date, we defined a cohort inclusive of oncologist prognostications with a model prediction for
the same patient within the preceding 30 days. The cohort consisted of 3099 predictions from both
the model and oncologists for 2041 patients with advanced cancer. The EHR data in the community
network were not yet fully accessible to the model, which limited predictions for the comparison
period. Most 3MSQs were associated with encounters at the academic center (2972 [95.9%]) vs
community satellites (127 [4.1%]) (Table 1). Patient race and ethnicity information was self-reported
as part of routine intake and collected from the enterprise data warehouse.
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Study Design
This prognostic study compared performance of 3-month mortality predictions made by oncologists
and a model for patients with metastatic solid tumors. Oncologists’ predictions were made from
December 6, 2019, to August 6, 2021, as answers to a 3MSQ. The predictions were paired with the
closest model prediction within the preceding 30 days. For the entire study, oncologists and the
model were blinded to the predictions of the other. The primary outcome was an in-depth
comparison between the performance of oncologists and our model in predicting 3-month mortality
for a population of patients with metastatic solid tumors seen in outpatient clinics.

Statistical Analysis
The cohort included 3099 pairs of predictions for 2041 unique patients (Table 1). A prediction from
the model comprises a score between 0 and 1 (a value close to 1 indicates high mortality risk). In
contrast, oncologist predictions are binary: yes or no. To compare predictions among the model and
oncologists, we set a threshold to convert risk scores into decisions (eg, flag patients scoring >0.5
as at risk of 3-month mortality). We set the decision threshold to match model sensitivity to that of
the oncologists. Therefore, we compared oncologists and the model on positive predictive value
(PPV or precision), which is the ratio of correct predictions over the total number of predictions
made. The PPV depends on prevalence; thus, we also included the PPV-to-prevalence ratio to
facilitate understanding of the results. In a scenario of pure random guessing, the PPV-to-prevalence
ratio asymptotically converges to 1. We computed 95% CIs of the metrics via bootstrapping. For
comparisons within disease groups, we computed 95% CIs of the difference between the PPV of the
model and clinicians because 95% CIs of the PPV overlapped. A 95% CI of the difference above 0
means the model outperforms oncologists with statistical significance. Moreover, we characterized

Table 1. Patients With Metastatic Solid Tumors Subject to the 3-Month Surprise Question Prognostications
and Model Predictions

Variable Cohort, No. (%)
Encounters/prognostications 3099

Patients 2041

Medical oncologists and advanced practice clinicians 74

Prognostication count per oncologist, mean (range) 41.9 (1-245)

Days between appointment and prognostication, median (SD) 2 (15.5)

Sex

Male 770 (37.7)

Female 1271 (62.3)

Age, median (range), ya 62.6 (18-96)

Disease group

Breast 482 (23.6)

Gastrointestinal 629 (30.8)

Genitourinary 280 (13.7)

Lung 378 (18.5)

Rare 272 (13.3)

Race

American Indian/Alaska Native 12 (0.6)

Asian 479 (23.5)

Black/African American 102 (5.0)

White 1322 (64.8)

Other/unknownb 126 (6.2)

Ethnicity

Hispanic or Latino 488 (23.9)

Not Hispanic or Latino 1498 (73.4)

Unknown/declined to answer 55 (2.7)

a Age is reported at the encounter level.
b Other includes Native Hawaiian and other Pacific

Islander (9 [0.4%]), as well as other races not
discretely captured within the electronic
health record.
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performance through sensitivity (or recall), specificity, and median lead days. We defined lead days
as the number of days between a correct mortality prediction and the date of death. For the model,
we also computed the area under the receiver operating characteristic curve (AUROC) and area
under the precision-recall curve. The results for oncologists and the model are summarized in Table 2
with stratified evaluations over disease groups and changes in systemic therapy in Table 3. We also
evaluated performance over a larger cohort of 3MSQs including answers without a model prediction
(eMethods and eTable 3 in the Supplement).

Table 2. Performance of Oncologists Answering a 3-Month Surprise Question Compared With the 90-Day
Mortality Prediction Model

Variable Oncologists ML model
Oncologist-ML model
concordant decisions

No. 3099 3099 3099

Prevalence (90-d mortality), % 15.2 14.4 15.2

Area under the receiver operating
characteristic curve, %

59.8 (57.7-62.0) 81.2 (79.1-83.3) 55.7 (54.2-57.3)

Area under the precision-recall curve, % NA 46.2 (41.4-51.3) NA

PPV (precision) 34.8 (30.1-39.5) 60.0 (53.6-66.3) 68.6 (58.2-78.4)

Sensitivity (recall), % 29.7 (25.6-33.8) 29.5 (25.4-34.0) 12.5 (9.6-15.6)

Specificity, % 90.0 (88.9-91.2) 96.7 (96.0-97.3) 99.0 (98.6-99.4)

PPV-to-prevalence ratio 2.3 (2.0-2.6) 4.2 (3.7-4.7) 4.5 (3.8-5.2)

Negative predictive value, % 87.7 (86.4-88.9) 89.1 (87.9-90.2) 86.3 (85.1-87.5)

Median lead days 37.5 (31.5-45.0) 28.5 (25.0-36.0) 30.0 (20.5-32.5)
Abbreviations: ML, machine learning; NA, not
applicable; PPV, positive predictive value.

Table 3. Performance of Medical Oncologists With a 3-Month Surprise Question Compared With an ML Model With Stratification by Disease Groups and Presence
of Systemic Therapy Changes

Disease group No. 90-d Mortality, % AUROC PPV to prevalence Sensitivity, % PPV, % PPV difference, 95% CI, %a

All disease groups

Oncologists 3099 15.2 NC 2.3 (2.0 to 2.6) 29.7 34.8
18.5 to 31.9

ML model 14.4 81.2 (79.1 to 83.3) NC 29.5 60.0

Breast

Oncologists 697 10.3 NC 3.5 (2.7 to 4.6) 37.5 36.5
1.7 to 32.5

Model 9.9 87.3 (83.0 to 91.1) NC 36.2 53.2

Gastrointestinal

Oncologists 937 15.4 NC 2.1 (1.8 to 2.4) 52.1 32.5
4.1 to 18.5

ML model 14.4 81 (76.8 to 85.0) NC 52.6 43.8

Genitourinary (including gynecologic)

Oncologists 376 12 NC 2.7 (1.4 to 4.2) 20 32.1
−15.7 to 35.6

ML model 11.2 85 (78.8 to 90.5) NC 19 42.1

Lung

Oncologists 639 22.8 NC 2 (1.2 to 2.9) 9.6 46.7
−10.6 to 43.4

ML model 21.6 77.7 (73.2 to 82.2) NC 10.1 63.6

Rare

Oncologists 450 14.4 NC 2.7 (1.7 to 3.8) 23.1 38.5
−1.3 to 45.3

ML model 14 76.4 (69.3 to 82.8) NC 22.2 60.9

Patients with no change in therapy

Oncologists 1333 13.4 NC 2.5 (2.0 to 3.0) 26.8 33.1
5.9 to 26.0

ML model 13.2 80.1 (76.6 to 83.6) NC 27.3 49

Patients with changes in therapy

Oncologists 1766 16.6 NC 2.2 (1.8 to 2.5) 31.4 35.8
19.7 to 37.2

ML model 15.4 82.4 (79.7 to 85.0) NC 31.7 64.2

Abbreviations: AUROC, area under the receiving operator characteristic curve; ML,
machine learning; NC, not calculated; PPV, positive predictive value.

a If the 95% CI of the precision difference does not include 0, the precision of the model
is statistically significantly better than that of the oncologists.
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Results

We evaluated 3099 pairs of 3-month mortality predictions by oncologists and the model for 2041
patients (1271 [62.3%] women; 770 [37.7%] men) with a median age of 62.6 (range, 18-96) years at
the time of oncologist prediction. The median lag between a 3MSQ answer and a model prediction
was 3 days, with 75% of model predictions made within 8 days from the corresponding answer. We
compared model and oncologist performance by setting a decision threshold so that model
sensitivity matched the 30% sensitivity of the oncologists. Results showed that the model
outperformed oncologists in aggregate (PPV, 60.0%; 95% CI, 53.6%-66.3% vs 34.8%; 95% CI,
30.1%-39.5%; P < .001) (Table 2) and within breast (PPV difference, 16.7%; 95% CI, 1.7%-32.5%;
P = .03) and gastrointestinal (PPV difference, 11.3%; 95% CI, 4.1%-18.5%; P = .002) disease
subgroups (ie, 95% CI PPV difference >0) (Table 3). The PPV difference was not statistically
significant within genitourinary (including gynecologic), lung, and rare cancer groups. For concordant
oncologist-model predictions, the PPV of the oncologists increased from 34.8% (95% CI,
30.1%-39.5%) to 68.6% (95% CI, 58.2%-78.4%), with a decrease in sensitivity to 12.5% (Table 2).

Figure 1A and B display ROC and PPV sensitivity curves for the model compared with sensitivity,
false-positive rates, and PPV sensitivity for the oncologists. The model AUROC was 81.2% (95% CI,
79.1%-83.3%). The AUROC for the oncologists was 59.8% (95% CI, 57.7%-62.0%). The model
operating at the same sensitivity level of the oncologists achieved lower false-positive rates and
higher PPVs. Survival curves for oncologists (Figure 1C) and the model (Figure 1D) further show the
better discriminative ability of the latter. Scatterplots show PPV and sensitivity for individual

Figure 1. Receiver Operating Characteristic Curve (ROC), Precision Recall Curve (PRC), and Survival Curves for the Model and Oncologists
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oncologists with at least 20 prognostications (Figure 2A) and associated model predictions
(Figure 2B). Dots in the origin indicate instances of exclusively incorrect predictions. The plots show
higher consistency of the model predictions (ie, the points are less scattered).

Figure 2C displays how the PPV for the model and oncologists varies with progressive exclusion
of near-death encounters. For instance, with no encounter within 36 days from death, PPVs of the
model and oncologists would be comparable. eFigure 1 in the Supplement shows the most predictive
model features over the cohort. eFigure 2 in the Supplement shows that most oncologists predicted
risk of death for their patients (ie, answered surprised for a fraction of instances smaller than the
related prevalence). This finding could be interpreted as a conservative approach to privilege PPV
rather than sensitivity.

Stratification by Changes in Therapy
Because of changes in therapy, 708 patients had multiple (up to 6) SQs answered by clinicians,
encompassing 1766 predictions (57.0%). We split the cohort between patients with 1 SQ and patients
with multiple SQs and included all SQ answers in our analysis. The difference between the PPV of the
model and oncologists was larger for the subpopulation with changes in therapy (PPV difference,
28.4%; 95% CI, 19.7%-37.2%; P < .001 vs PPV difference, 15.9%; 95% CI, 5.9%-26.0%; P = .002)

Figure 2. Positive Predictive Value (PPV) and Sensitivity Scatterplots in PPV Plots With Exclusion of Near-Death Encounters
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(Table 3). We also observed that, for this subpopulation, the oncologists changed predictions for only
31 patients, but the correct prognosis should have changed for 155 patients.

COVID-19
COVID-19 was associated with population shifts in our organization, especially between March and
August 2020 when visits were deferred or switched to telehealth if clinically appropriate. The
AUROC of the model over the entire patient population (beyond the metastatic solid tumor cohort in
this study) decreased during late spring 2020 but then increased in the following summer months.
However, in this metastatic cohort, we observed fluctuations in the monthly performance of the
model and oncologists without clear temporal patterns, perhaps owing to the homogeneity of the
cohort over time. eFigure 3 in the Supplement shows a quarterly comparison of PPV and prevalence
between the model and oncologists.

Discussion

In this prognostic study, we compared the performance of medical oncologists and their advanced
practice clinicians with an ML model to predict 3-month mortality for a cohort of patients with
metastatic solid tumors at City of Hope. At a sensitivity of 30% (matching the oncologists’
performance), the model outperformed the oncologists in PPV (60.0% vs 34.8%; P < .001) to
predict 3-month mortality with 15% prevalence. Stated differently, the model matched the sensitivity
of the oncologists but flagged nearly half of the instances (7.7% vs 14.1%). Looking forward, we
anticipate tuning the model threshold to increase sensitivity or PPV depending on the clinical
application but, more importantly, augmenting oncologists’ prognostic capability while tempering
overestimation of prognosis.

The model outperformed oncologists across each disease group, with a statistically significant
margin for the 2 largest groups: breast (P = .03) and gastrointestinal (P = .002) cancer. The model
AUROC was consistent across all groups (Table 3). To facilitate performance comparison across
subpopulations with different prevalence, we evaluated the PPV-to-prevalence ratio. The 95% CIs for
the oncologist PPV-to-prevalence ratio were above 1 across all disease groups (Table 3), indicating
that oncologist performance was significantly better than random guessing.

In an SQ systematic review by White et al,7 clinicians with 12-month and 7-day (1 study) SQs in
oncology populations achieved an AUROC in the 66% to 82% range, with a 75% mean.40,50,56 None
of the studies limited the population to patients with metastatic solid tumors, and few had
oncologists prognosticating. The study most similar to ours was by Vick et al,40 wherein 81
oncologists answered 4617 twelve-month SQs for a mixed population of patients with metastatic and
nonmetastatic cancer, achieving a 74% AUROC. The oncologists in our study achieved a 59.8% (95%
CI, 57.7%-62.0%) AUROC, but for a population of patients exclusively with metastatic disease. We
believe that for a mixed population, oncologists would have achieved a higher AUROC. The AUROC
for evaluation of binary (yes vs no) decisions has limitations because the ROC curve is defined only by
3 points (Figure 1A). After computing the PPV-to-prevalence ratio for the aforementioned oncologic
studies,7,28,31,32,40 we observed that the performance of our clinicians was within range (eTable 4 in
the Supplement).

In addition, we compared the model and oncologists’ PPVs after progressively excluding
predictions associated with near-death encounters. Figure 2C shows that PPVs for the model and
oncologists become similar after excluding predictions that are 35 days from the death date. In other
words, the model gains in performance over oncologists on near-death cases, which is supported in
a study in which higher performance of mortality prediction models occurred in near-death
encounters.57 The consequent higher fraction of correctly predicted near-term deaths results in a
lower median of lead days for the model compared with the oncologists.
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Contributions
To our knowledge, ours is the first reported prospective comparison of a model with oncology
clinician prognostications for patients with metastatic cancer.42 The most similar prospective study,
conducted by Manz et al,46 reported that a model trained on EHR data from a population of patients
with hematologic and oncologic disease could be clinically useful and outperformed Eastern
Cooperative Oncology Group and Elixhauser prognostic indices.

We provided insights on how our model outperformed oncologists by stratifying the cohort
according to 3 criteria: (1) exclusion of patients near death, (2) different disease group
subpopulations, and (3) presence and absence of therapy changes. Besides improved performance
in predicting near-term mortality, the model was more consistent in predicting 3-month mortality
compared with the widely varying performance seen for individual oncologists (Figure 2B), which is
not readily apparent when looking at the oncologists in aggregate (Figure 1B).

We show the PPV-to-prevalence ratio as a potentially helpful metric for comparing the
performance of binary predictions (surprised or not surprised) across subpopulations with different
prevalence. In a situation of random guessing, the PPV-to-prevalence ratio would tend to 1. Several
publications evaluating SQs and even clinical ML did not report prevalence with PPV by omitting it,
leaving its extrapolation to the reader or presenting results close to random guessing (ie, with PPV
close to prevalence) as instances of good performance.27-29,49

Limitations
This study had limitations. The cohort (n = 3099) excluded most prognostications made at clinical
network sites because the model was designed to work with laboratory tests performed at the
academic cancer center but ordered infrequently at clinical network sites. Model upgrades will
enhance coverage of patients receiving care at clinical network sites.

Communication of external deaths may be delayed by up to 6 months, with consequent
underestimated prevalence and adjustments of performance results. For instance, the 3-month
mortality rate for the cohort increased almost 1% in the span of 1 month. We observed a slow
widening of the PPV difference between model and oncologists as death information was updated.

This blinded study evaluated the performance of the model and clinicians separately. To
estimate the impact of model predictions in clinical practice, we need to evaluate how clinicians
prognosticate once given the model predictions. Even a perfect model would have no benefit if it
were not trusted by clinicians.

Conclusions

In this prognostic study, we noted that an ML model trained with EHR data outperformed clinicians
in predicting 3-month mortality for a cohort of patients with metastatic solid tumors, with a 95% CI
of 18.5%-31.9% for the difference in PPVs at 30% sensitivity. The model was trained on a relatively
small population (n = 28 484) and yet achieved an 81.2% AUROC on the cohort. This finding could
encourage other centers to develop custom models based on internally available patient data. This
study was a step to validate the model before integration in the EHR of our organization.58 Further
evaluation is ongoing to study the performance of oncologists given model prognostications and
whether use of the model improves prognostic confidence, patient engagement, and use of
resources at the end of life.
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