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Abstract

Key-Value (KV) cache eviction—which retains the KV pairs of the most important
tokens while discarding less important ones—is a critical technique for optimiz-
ing both memory usage and inference latency in large language models (LLMs).
However, existing approaches often rely on simple heuristics—such as attention
weights—to measure token importance, overlooking the spatial relationships be-
tween token value states in the vector space. This often leads to suboptimal token
selections and thus performance degradation. To tackle this problem, we propose a
novel method, namely AnDPro (Anchor Direction Projection), which introduces
a projection-based scoring function to more accurately measure token importance.
Specifically, AnDPro operates in the space of value vectors and leverages the
projections of these vectors onto an “Anchor Direction”—the direction of the
pre-eviction output—to measure token importance and guide more accurate token
selection. Experiments on 16 datasets from the LongBench benchmark demonstrate
that AnDPro can maintain 96.07% of the full cache accuracy using only 3.44% KV
cache budget, reducing KV cache budget size by 46.0% without compromising
quality compared to previous state-of-the-arts.

1 Introduction

Large language models (LLMs) have revolutionized human society by reshaping the way we process
information [1–5]. Modern LLMs are primarily built upon the Transformer architecture, with self-
attention as their core mechanism [6]. However, the self-attention mechanism inherently involves
quadratic computational complexity, which grows dramatically as the sequence length increases [7].
To address this bottleneck, the Key-Value (KV) cache mechanism has been introduced to store
and reuse intermediate results—i.e., the KV pairs in the self-attention mechanism—to reduce the
computational complexity from quadratic to linear [8].As the demand for processing longer sequences
grows, however, the KV cache size expands proportionally, leading to substantial increases in both
GPU memory consumption and I/O latency [9]. Therefore, effective KV cache management is critical
for practical LLM scaling and deployment.

Recent studies have revealed that LLM self-attention exhibits inherent sparsity, with only a small
subset of tokens making a substantial contribution to the model’s output [10–12]. This insight has
sparked the development of a series of KV cache eviction strategies, which identify and retain the KV
pairs of the most important tokens while discarding less important ones [13–15]. For instance, H2O [9]
greedily eliminates KV pairs based on their cumulative attention weights during the generation phase.
SnapKV [16] employs an observation window to generate queries and uses the obtained attention
weights to measure the importance of prompt tokens during the prefilling phase. Ada-KV [17] further
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refines this paradigm by jointly identifying important tokens across attention heads within each
Transformer layer. By selectively removing less critical tokens, these approaches can effectively
optimize both memory and time efficiency without significantly compromising the performance.
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Figure 1: A diagram of the projection-based KV cache
eviction. (a) Consider three tokens with value states v1,
v2,v3, and attention weights a1, a2, a3. The pre-eviction
output is denoted as y. Our approach computes the pro-
jections of aivi onto the “anchor direction” (i.e., the
direction of y). (b) With a budget of 2, the attention-based
eviction approach selects v1 and v2, resulting in a post-
eviction output ŷattn and an error of ∥y−ŷattn∥2 =1.14.
Our projection-based approach selects v1 and v3, resulting
in a post-eviction output ŷproj, with a smaller error of
∥y− ŷproj∥2 =0.82.

The aforementioned approaches es-
sentially rely on an importance
criterion—which we refer to as a
“scoring function”—to determine to-
ken retention priority. Most of them
use attention weights as the scoring
function, assuming that tokens with
higher attention weights should be re-
tained preferentially. Although this
assumption is intuitive, they overlook
the spatial relationships between to-
ken value states in the vector space,
which play a critical role in how these
states interact to influence the model’s
output. This often leads to subop-
timal token selection decisions and
thus performance degradation. There-
fore, effective KV cache management
requires advancing beyond attention-
only heuristics by developing scoring
functions that explicitly account for
the vector space geometry.

To tackle this problem, we propose a novel method, namely AnDPro (Anchor Direction Projection),
which introduces a projection-based scoring function to more accurately measure token importance.
Specifically, we formulate KV cache eviction as a combinatorial optimization problem and then
transform it into a sparse optimization formulation through mild relaxations. The theoretical and
intuitive analysis of this problem motivates us to introduce an “anchor direction” in the vector space,
i.e., the direction of the pre-eviction output. Intuitively, this anchor direction guides the retention
of the most important semantic information, leading us to use the projections of token value states
onto this direction to measure token importance (see Figure 1). Experiments on 16 datasets from
the LongBench benchmark demonstrate that AnDPro maintains 96.07% of the full cache accuracy
using only 3.44% KV cache budget, reducing KV cache size by 46.0% without compromising model
quality compared to previous state-of-the-arts.

2 Related Work

LLMs have been widely applied across various domains and tasks [18, 19]. Among the numerous
research directions related to LLMs, our work is most closely aligned with LLM inference accelera-
tion [20–25], particularly in the areas of KV cache management, eviction, and budget allocation.

KV Cache Management plays a crucial role in optimizing both memory and time efficiency in LLM
inference. In a recent survey by Li et al. [13], KV cache management techniques are categorized into
three levels: token-level, model-level, and system-level strategies. Our work is primarily related to
token-level KV cache optimization, specifically KV cache eviction and KV cache budget allocation.
Other token-level methods include KV cache merging [26–30], KV cache quantization [31–37], and
KV cache low-rank decomposition [38–41].

KV Cache Eviction approaches selectively retain the most important KV pairs and discard the less
critical ones. Some methods, such as StreamingLLM [14], FastGen [11], and recent studies [20, 21],
are designed based on certain patterns and fixed rules, such as the sliding windows, for KV cache
eviction. Other approaches, such as H2O [9], Scissorhands [10], and recent studies [42, 43, 22, 44],
leverage attention scores as a criterion for selecting the most important KV pairs from the cache.
SnapKV [16] introduces an observation window to generate queries, using accumulated attention
scores to evaluate token importance in prefilling. Ada-KV [17] refines this framework by adaptively
allocating the cache budget across attention heads based on the attention scores. More recently,
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CriticalKV [45] combines attention scores with the norm of value vectors as a better scoring function.
Our work builds upon this line of research, and draws inspiration from SnapKV and Ada-KV.

KV Cache Budget Allocation focuses on allocating the budget across different components of the
model, such as layers and attention heads. Layer-wise allocation techniques include PyramidInfer [46]
and DynamicKV [47]. Head-wise budget allocation methods include Ada-KV [17], HeadKV [48],
and DuoAttention [49]. These methods are orthogonal to our work, as we focus on retaining important
KV pairs for any layer- or head-level budget allocation. In this work, we implement our approach to
achieve an adaptive budget allocation across attention heads.

3 Our Approach

In this section, we introduce our proposed method, AnDPro (Anchor Direction Projection). Sec-
tion 3.1 begins by formalizing the KV cache eviction problem to provide a theoretical foundation
for deeper analysis. In Section 3.2, we present a theoretical exploration of the optimization problem,
which motivates the general form of projection-based scoring function. Section 3.3 further derives
a practical form of the scoring function through an intuitive analysis. Finally, in Section 3.4, we
provide the implementation details of AnDPro. All the proofs can be found in Appendix A.

3.1 Problem Formulation

This section aims to answer the following question:

Q1: How to formulate the KV cache eviction problem in a manner that enables in-depth analysis on
the design of an appropriate scoring function for KV cache eviction?

Our objective is to select a subset of tokens from the input prompt to retain, discarding the others,
while approximating the original outputs as accurately as possible. In this section we consider one
single attention head. Consider an input sequence X = [x1, · · · , xn], where n represents the context
length, i.e., the number of tokens in the prompt. 1 Let xi ∈ Rd denote the embedding vector of the
ith token, where d denotes the embedding dimension. Let WQ,WK ,WV ∈ Rd×d be the parameter
matrices for the query, key, and value projections, respectively. For the ith token, its query qi, key ki,
and value states vi are given by:

qi = WQxi, ki = WKxi, vi = WV xi. (1)

Let q be a query given from an observation window, which will be further detailed in Section 3.4.
The pre-eviction output of the attention head is given by:

y =

n∑
i=1

aivi, where ai = Softmax
1≤i≤n

(q⊤ki). (2)

Let S ⊂ [n] be the set of tokens selected to retain. The post-eviction output, i.e., the output derived
when only retaining KV pairs corresponding to tokens i ∈ S, is then given by:

ŷ =
∑
i∈S

âivi, where âi = Softmax
i∈S

(q⊤ki). (3)

Our objective is that the post-eviction output approximates the pre-eviction output as accurately as
possible. It is intuitive to use the squared error as a metric to quantify the eviction loss:

L(y, ŷ) ≜ 1

2
∥y − ŷ∥22. (4)

Additionally, we impose a sparsity constraint |S| ≤ k on the number of retained tokens. The
following proposition provides a more convenient expression of the post-eviction output to aid the
further analysis.
Proposition 1. Let S ⊂ [n] be the set of retained tokens, and define the indicator function

zi ≜

{
1, i ∈ S,

0, i /∈ S
(5)

1Throughout this paper, all vectors are presented as column vectors. We use the index i and its corresponding
token xi interchangeably, given that no ambiguity arises.
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to represent whether the ith token is retained. Then, the post-eviction output can be expressed as:

ŷ =

∑n
i=1 ziaivi∑n
i=1 ziai

. (6)

Based on Proposition 1, we can formulate the KV cache eviction problem as follows:

min
z∈{0,1}n

1

2

∥∥∥∥y − ∑n
i=1 ziaivi∑n
i=1 ziai

∥∥∥∥2
2

, s.t.
n∑

i=1

zi ≤ k. (P0-C)

In the realm of sparse optimization, a prevalent approach for dealing with the sparsity constraint
is to introduce an l1-norm regularization [50]. When dealing with binary variables, the l1-norm
is equivalent to l0 norm, which counts the number of non-zero elements. The regularized form of
Problem (P0-C) is then expressed as:

min
z∈{0,1}n

1

2

∥∥∥∥y − ∑n
i=1 ziaivi∑n
i=1 ziai

∥∥∥∥2
2

+ λ

n∑
i=1

zi. (P0-R)

Although Problem (P0-R) is in a concise form, it remains NP-hard, making exact solution com-
putationally infeasible. Given the context of LLM inference, where a solution needs to be found
within milliseconds, we seek to identify high-quality solutions quickly and approximate the problem’s
optimal solution. To this end, we explore mild relaxations of (P0-R) to derive a scoring function that
can facilitate fast filtering for efficient KV cache eviction. Notice that directly relaxing the binary
variables zi in (P0-R) to continuous values would lead to problem degeneration and results in trivial
solutions. Specifically, when zi are relaxed, they can be scaled arbitrarily without affecting the first
term in the objective function. If the values of zi are scaled sufficiently small, the second term in the
objective function will diminish to zero, yielding trivial solutions.

We introduce new variables s and βi, defined by

s ≜
n∑

i=1

ziai and βi ≜
zi
s
. (7)

Then, we obtain: ∑n
i=1 ziaivi∑n
i=1 ziai

=

∑n
i=1 βiaivi∑n
i=1 βiai

and
n∑

i=1

βiai = 1. (8)

Consequently, Problem (P0-R) can be reformulated as:

min
z∈{0,1}n

1

2

∥∥∥∥∥y −
n∑

i=1

βiaivi

∥∥∥∥∥
2

2

+ λs

n∑
i=1

βi,

s.t.
n∑

i=1

βiai = 1, sβi = zi, i = 1, . · · · , n.
(9)

In this reformulation, we can select an arbitrarily small s, which would lead to extremely small zi.
As a result, the regularization term would approach zero, and smaller values of s would always yield
better objective function values. Moreover, if we impose a lower bound on s, the optimal solutions
will always set s take to this lower bound. Therefore, we fix s as a constant satisfying 0 < s ≤ 1,
and perform a convex relaxation of the binary variables zi. This leads to the following optimization
problem:

min
β∈[0, 1s ]

n

1

2

∥∥∥∥∥y −
n∑

i=1

βiaivi

∥∥∥∥∥
2

2

+ λs

n∑
i=1

βi, s.t.
n∑

i=1

βiai = 1. (P1)

A1: Through mild relaxations, we derive Problem (P1), based on which we further work on the
design of the scoring function in the subsequent sections.
Remark 1. We would like to re-emphasize that our goal is not to achieve an exact solution to the
original problem, which is complex enough so that an exact solution is intractable. Instead, we aim
to leverage this analysis to provide insightful motivations for the design of scoring functions.
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3.2 Projection-Based Scoring Function: General Form

Although Problem (P1) offers a concise formulation, solving it directly during the LLM inference
process remains infeasible. Inspired by the “screening rules” in sparse optimization [51], we now
investigate the design of a closed-form scoring function that can identify the active variables in
Problem (P1), i.e., those with non-zero coefficients in the optimal solution. In this way, we can retain
the active variables without explicitly solving the entire optimization problem. Thus, this section
aims to answer the following question:

Q2: Is it possible to find a closed-form scoring function that identifies the active variables for
Problem (P1)? If so, what is the ideal mathematical form of such a scoring function?

Let β∗ denote an optimal solution to Problem (P1). In this section, we will show that under certain
conditions, it is possible to determine that β∗

i = 0 for some i ∈ [n], implying that the corresponding
tokens can be removed from the cache. To further investigate the problem, we introduce a new set of
variables, u ≜ y −∑n

i=1 βiaivi. We can then reformulate Problem (P1) as:

min
β∈[0, 1s ]

n

1

2
∥u∥22 + λs

n∑
i=1

βi,

s.t. u = y −
n∑

i=1

βiaivi,

n∑
i=1

βiai = 1

(P-Primal)

We can now derive the dual problem of (P-Primal), as presented in the following theorem.
Theorem 1. The dual problem to Problem (P-Primal) is given by:

sup
η,ζ
−1

2
∥η∥2 + η⊤y − ζ +

1

s

n∑
i=1

ρi(η, ζ), (P-Dual)

where η∗ ∈ Rn and ζ ∈ R are dual variables, and

ρi(η, ζ) ≜ min
(
0, λs− ai

(
η⊤vi − ζ

))
. (10)

Problem (P-Primal) is convex, and its constraints are affine. According to Slater’s condition [52], as
long as (P-Primal) is feasible, strong duality holds. The reason why we care about (P-Dual) lies in the
utilization of the optimal conditions, which can provide valuable insights into the optimal solution
β∗. Specifically, by applying the Karush-Kuhn-Tucker (KKT) optimal conditions, we can derive the
following theorem:
Theorem 2. Let β∗ be an optimal solution to Problem (P-Primal), and (η∗, ζ∗) be an optimal
solution to Problem (P-Dual). Then we have:

ai
(
η∗⊤vi − ζ∗

)
< λs ⇒ β∗

i = 0,

ai
(
η∗⊤vi − ζ∗

)
> λs ⇒ β∗

i =
1

s
.

(11)

𝒗
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(a) Scoring function
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Figure 2: Illustration of the scoring function.
(a) The scoring function si, as a function of both
vi and ai, can distinguish between activate (green
plots) and inactivate (red plots) samples. (b) The
computation of si = ai(θ

⊤vi + b), which repre-
sents the signed distance of vi to the hyperplane
H, scaled by ai.

The following corollary concludes this section.
Corollary 1. There exist θ ∈ Rn and b ∈ R
such that:

ai
(
θ⊤vi + b

)
< 1 ⇒ β∗

i = 0,

ai
(
θ⊤vi + b

)
> 1 ⇒ β∗

i =
1

s
.

(12)

Corollary 1 reveals the existence of a scoring
function of the form:

si ≜ ai
(
θ⊤vi + b

)
. (13)

As illustrated in Figure 2(a), this scoring func-
tion can precisely identify the active and inacti-
vate variables in (P1). Tokens with low scores
will be inactivate in (P1). Therefore, these to-
kens can be safely evicted from the cache.

A2: We can define a scoring function in the form of Equation (13).
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Remark 2. In Theorem 2, we have shown that η∗ and ζ∗ correspond to the parameters θ and b that
we are interested in. However, it is infeasible to directly derive η∗ and ζ∗ without explicitly solving
Problem (P-Dual). Therefore, we turn to an intuitive analysis on θ and b to derive a more practical
form in the subsequent section.

3.3 Anchor Direction Projection: Practical Form

The theoretical analysis in Section 3.2 motivates us to define a scoring function in the form of
Equation 13. Despite the theoretical soundness, the determination of the parameters θ and b remains
challenging, because the dual variables η∗ and ζ∗ are inaccessible before solving Problem (P-Dual).
Therefore, this section aims to answer:

Q3: How can we determine generally good parameters θ and b in practice?

We begin by analyzing a special case when θ = 0. In this case, the scoring function is simplified
to si = aib, where b is a constant. Setting b = 1 gives us the most commonly used score, i.e., the
attention weights. From this perspective, existing methods that relied solely on attention weights can
be viewed as a special instance of our framework.

For the more general case when θ ̸= 0, without loss of generality, we can assume that ∥θ∥2 = 1.
With this assumption, the equationH : θ⊤x+ b = 0 represents a hyperplane in Rn, and θ⊤vi + b
represents the signed distance (a distance metric that can assume negative values) of the point vi

fromH. The factor ai scales these signed distances. This computation is illustrated in Figure 2(b).

When applying this scoring function for top-k token selection, the tokens with relatively larger signed
distances from H, scaled by ai, are retained, while the other tokens are discarded. This procedure
essentially preserves the projection of the output ŷ onto the direction of θ. We refer to the direction
of θ as an “anchor direction”, as it acts as a reference to guide the selection of retained tokens.
A natural and intuitive way is to set the direction of y as the anchor direction. This choice helps
strengthen the semantic information along the direction of the pre-eviction output, ensuring that the
most significant semantic features are preserved.

In this case, the proposed scoring function is defined as si = ai(y
⊤vi + b), where b acts as a bias

term to balance the relative importance of projections and attention weights. As b→∞, the scoring
function gradually converges to the traditional attention-based score. The results suggest that a
carefully chosen b leads to a slight performance gain, while setting b = 0 also results in stable
performance. Therefore, we set b = 0 and thus si = aiy

⊤vi in the main experiments. We conduct
experiments on the choices of θ and b in Section 4.5.

A3: We can simply set θ = y and b = 0.

3.4 Implementation Details

In this section, we supplement some implementation details of AnDPro. Following SnapKV [16], we
retain an observation windowW to accumulate attention weights from the last several prompt tokens,
which generates queries {qt}t∈W . Specifically, We retain the tokens within this window as well as
the first token. At each time step in the observation window, the attention for the ith token and the
corresponding pre-eviction output are computed as:

ati = Softmax
1≤i≤t

(qt⊤ki) and yt =

n∑
i=1

ativi. (14)

The scoring function for each token is then computed as:

si ≜
∑
t∈W

sti =
∑
t∈W

atiy
t⊤vi. (15)

We perform top-k selection across all attention heads within each layer, based on their scores.
This allows for flexible budget allocation among heads, significantly enhancing generation quality.
Additionally, we introduce a useful technique of merging tokens into chunks. Notice that both
SnapKV and Ada-KV employ max/mean pooling operations, ensuring that adjacent tokens have
similar scores. This leads to a successive selection of tokens, significantly improving the performance.
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Table 1: Comparison based on Mistral-7B-Instruct-v0.2 among 16 datasets from LongBench [53].
The results for H2O, Streaming, SnapKV, and Pyramid are from Feng et al. [17], and the results for
Ada-KV and CriticalKV are reproduced based on their papers [17, 45]. We mark the best results in
bold red, and the second best results in underlined blue.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Ave.
Score

Full Cache 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 55.33 52.87 42.51
Budget=128

H2O 21.19 21.66 38.60 30.63 20.65 12.19 20.65 22.42 21.81 39.00 82.52 40.68 2.98 79.56 49.13 46.76 34.40
Streaming 16.61 14.74 31.40 28.05 21.36 12.08 18.44 18.91 19.26 43.50 74.22 29.00 2.75 31.65 41.27 38.84 27.63
Snapkv 19.17 21.40 42.93 36.76 22.44 15.86 19.16 21.84 21.55 47.50 84.15 40.24 2.30 68.26 50.69 47.13 35.09
Pyramid 20.16 21.77 43.55 36.78 23.12 14.39 19.53 22.03 21.47 51.00 84.62 40.24 2.79 70.77 50.57 46.53 35.58
Ada-KV 21.79 23.03 47.07 38.70 22.85 15.92 19.94 23.05 21.84 63.00 85.36 40.01 3.20 72.13 51.36 49.29 37.41
CriticalKV 21.55 23.27 46.67 38.95 24.95 16.85 20.83 23.14 22.16 65.00 85.53 40.02 3.48 77.81 53.58 50.98 38.42
AnDPro 24.84 25.14 47.33 39.79 23.99 17.34 20.40 23.45 21.94 67.50 85.59 40.62 3.19 76.94 53.77 51.55 38.96

Budget=256
H2O 21.54 22.92 42.56 31.07 22.53 13.76 22.52 22.40 23.09 40.50 84.20 40.77 3.41 86.10 50.98 48.17 36.03
Streaming 17.93 16.01 33.36 30.71 21.30 10.08 20.66 19.47 22.89 53.50 73.59 29.22 3.00 27.77 42.30 39.87 28.85
SnapKV 22.37 23.74 48.13 38.56 22.43 15.66 21.91 23.13 23.15 61.50 85.45 41.42 3.09 84.54 53.22 50.24 38.66
Pyramid 20.09 24.00 47.33 38.24 22.48 16.02 21.40 22.45 22.63 63.00 84.93 40.98 3.40 82.48 52.78 49.36 38.22
Ada-KV 23.02 25.70 49.23 40.18 24.76 17.43 22.17 23.21 23.48 67.50 85.58 41.67 2.99 84.65 55.07 52.17 39.93
CriticalKV 23.70 26.66 49.00 40.05 25.12 17.86 21.99 23.35 23.45 68.00 86.19 42.07 2.92 85.81 53.81 50.42 40.03
AnDPro 25.71 28.17 49.31 40.04 25.81 18.68 21.66 23.64 23.63 70.50 86.59 42.60 2.86 85.62 55.74 52.87 40.84

Budget=512
H2O 21.72 26.03 44.81 32.33 23.16 14.86 23.65 22.84 24.70 42.00 85.22 41.57 3.40 86.45 53.04 49.68 37.22
Streaming 18.76 17.17 37.09 30.21 21.64 9.93 24.44 20.00 25.57 62.00 72.36 29.95 2.48 18.17 43.70 40.13 29.60
SnapKV 24.60 27.81 48.98 39.46 25.25 16.98 23.70 22.96 24.37 67.00 85.88 41.26 2.78 86.56 54.81 51.71 40.26
Pyramid 23.23 27.94 48.87 40.50 24.36 16.74 23.22 23.16 24.37 67.00 85.73 41.74 3.16 85.67 54.16 50.34 40.01
Ada-KV 23.88 29.05 48.79 40.44 25.30 17.66 23.47 23.47 24.48 69.50 86.39 41.38 2.94 87.56 56.58 52.88 40.86
CriticalKV 23.83 28.67 49.13 40.18 26.18 18.19 23.52 23.57 24.28 70.00 86.39 42.16 2.82 87.55 56.51 52.64 40.98
AnDPro 24.87 30.99 49.58 41.34 27.01 18.44 23.40 23.76 25.01 71.00 86.74 43.65 2.83 86.23 57.46 53.61 41.62

Budget=1024
H2O 23.90 28.62 46.46 37.03 24.74 15.04 25.30 23.11 25.92 46.00 85.93 41.80 3.24 86.57 54.46 51.01 38.70
Streaming 19.42 21.69 41.75 32.40 22.18 11.18 27.13 21.09 26.59 67.00 71.79 30.11 2.88 16.57 44.82 39.76 31.02
SnapKV 25.47 29.57 49.33 40.90 25.53 19.01 25.94 23.89 26.21 69.50 86.48 42.10 2.98 88.56 55.57 51.92 41.44
Pyramid 24.21 29.86 48.93 40.75 25.05 18.77 25.73 24.06 25.65 68.50 86.31 42.25 2.97 87.17 54.75 52.10 41.07
Ada-KV 25.60 31.15 49.02 41.47 27.07 18.77 25.40 23.84 25.92 70.50 86.55 43.07 2.54 87.14 57.27 53.85 41.82
CriticalKV 26.03 31.50 48.39 41.73 27.10 18.84 25.30 24.10 25.99 71.00 86.30 43.16 2.66 87.23 56.69 53.20 41.83
AnDPro 25.78 32.54 49.35 42.20 26.94 18.63 25.33 24.01 26.29 71.00 86.30 43.46 2.68 86.98 57.18 53.77 42.03

Inspired by this, we merge tokens into chunks, each containing a predefined number of tokens, to
maintain semantic coherence. The chunk size is treated as a hyperparameter. The value state of
a merged chunk is the weighted sum of the original tokens’ values, and its attention score is the
sum of the individual attention weights. The pseudocode of AnDPro is provided in Appendix B.1.
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(a) Mistral-7B-Instruct-v0.2
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Figure 3: Average scores on the LongBench dataset. The
numbers annotated on the gray lines represent the proportion
of budget saved by our method compared to the current
SOTA to achieve the same accuracy.

4 Experiments

4.1 Experimental Setup

Datasets We conduct comprehen-
sive experiments to demonstrate
the effectiveness of our approach
on two commonly-used benchmarks,
Longbench [53] and Needle-in-a-
Haystack [54]. Specifically, Long-
Bench is a long-sequence bench-
mark containing 16 datasets covering
multi-task domains. The Needle-in-
a-Haystack dataset was specifically
used to assess the context retrieval capabilities of different budget strategies, particularly in tasks
involving long-context retrieval. More detailed information about these datasets are in Appendix B.2.
Code is available at https://github.com/MIRALab-USTC/LLM-AnDPro.

Baselines We evaluate our approach using two open-source large language models: Mistral-7B-
Instruct-v0.2 [55] and Llama-3.1-8B-Instruct [56]. We compare AnDPro against several strong
baselines. These include representative prior works such as H2O [9], StreamingLLM [14], and
SnapKV [16], as well as latest SOTA methods, including Ada-KV [17] and CriticalKV [45].
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(b) Ada-KV
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(c) CriticalKV

40
0

12
00

20
00

28
00

36
00

44
00

52
00

60
00

68
00

76
00

84
00

92
00

10
00

0

10
80

0

11
60

0

12
40

0

13
20

0

14
00

0

14
80

0

15
60

0

16
40

0

17
20

0

18
00

0

18
80

0

19
60

0

20
40

0

21
20

0

22
00

0

22
80

0

23
60

0

24
40

0

25
20

0

26
00

0

26
80

0

27
60

0

28
40

0

29
20

0

30
00

0

30
80

0

31
60

0

Context Length

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
P

er
ce

n
t

Average Score: 97.37

2

4

6

8

10

S
co

re

(d) AnDPro

Figure 4: Results of Mistral-7b-Instruct-v0.2 on the Needle-in-a-Haystack test. The x-axis
represents the document’s context length, and the y-axis indicates the depth of the needle insertion.
Each square in the heatmap demonstrates the correctness of retrieving a proper sentence inserted
in the context for a given context length and insertion depth. The Average Score is calculated by
averaging the sum of score with different insert depth across various context lengths.

HyperParameters and Experimental Environment In our main experiments, we evaluate the
performance of different methods across a range of budget sizes, specifically setting budgets to
B ∈ {128, 256, 512, 1024} to test their effectiveness under different memory constraints. All
experiments are run on a single A800− 80G GPU. In the main experiments, we set the observation
window size to 32 and the chunk size to 4. Our implementation is built upon the Ada-KV framework,
and the hyperparameters are aligned with those used in the baseline. More details can be found in
Appendix B.3. We will release our code once the paper is accepted for publication.

4.2 Evaluations on LongBench Test

Table 1 presents the performance scores of various methods under different budget allocations for the
Mistral model. Due to space limitations, results for the Llama model are provided in Appendix C.1.
Results on the Chinese datasets in LongBench are in Appendix C.2. Overall, AnDPro consistently
delivers state-of-the-art (SOTA) performance across both models and a range of budget configurations.

We further visualize the performance scores in Figure 3. Notably, for the Mistral model with a
budget of 256 (k = 256), AnDPro achieves an average score of 40.84, which is 96.07% of the full
cache accuracy, while utilizing only 3.44% (256/7425) of the total KV cache budget. In comparison,
the previous SOTA method, CriticalKV, requires a budget of 474 to achieve similar performance.
AnDPro achieves a 46.0% reduction in budget size compared with CriticalKV. Moreover, on multiple
datasets, such as MF-en, SAMSum, and Lcc, AnDPro achieves comparable or even better results
compared with full cache.

4.3 Evaluations on Needle-in-a-Haystack Test

We evaluate the long-context retrieval capability of different KV methods using the Needle-in-a-
Haystack test. This test involves retrieving a specific statement (the “needle”) placed within a long
context window (the “haystack”). In our experiment, we set the budget size to k = 128 and compare
AnDPro against Ada-KV and CriticalKV. As shown in Figure 4, AnDPro significantly outperforms
the baselines, achieving a score of 97.37, which is very close to the performance of the full cache.
Additional results of other baselines are in Appendix C.3.

4.4 Memory & Latency

We evaluate the computational efficiency of various KV eviction strategies by measuring the peak
memory usage and decoding latency across different context lengths, ranging from 8K to 256K.
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Figure 5: Memory and latency of different methods.

We conduct the experiments on the
Mistral-7b-Instruct-v0.2 model with a
fixed budget size k = 128. To mea-
sure decoding latency, we use differ-
ent methods to generate 1K tokens
and compute the per-token decoding
latency. The results are in Figure 5.
The peak memory usage and decoding
latency are roughly the same for these
eviction methods, significantly opti-
mized compared with the full cache
model. This demonstrates that AnD-
Pro achieves a similar memory and
time efficiency with much better accuracy compared with previous SOTA eviction methods. Further
analysis of the inference time composition of different methods is in Appendix C.4, demonstrating
that the additional computation introduced by AnDPro—specifically the Update KV Phase—incurs
negligible time overhead.

4.5 Analysis

Ablation Study We conduct ablation studies in Appendix C.5 to isolate the impact of our core
contribution, i.e., the projection-based scoring function compared to attention-based scores. We
then analyze the effects of three design choices in our algorithm: (1) merging tokens into chunks,
(2) preserving the first token, and (3) cross-head budget allocation. The results confirm that the
projection-based scoring function consistently outperforms its attention-based counterparts, and that
each component contributes positively to performance in our framework.

Different Choices of θ and b We explore different choices of anchor direction θ and the bias term
b. The results are in Appendix C.6, demonstrating that our setting θ = y and b = 0 achieves a
superior and robust performance.

Eviction Loss and Score Visualization We analyze the eviction loss between pre- and post-
eviction outputs. Results in Appendix C.7 demonstrate that our method can effectively reduce this
loss. Furthermore, we visualize the distribution of token scores in Appendix C.8.

Value Vector Analysis We investigate the role of value vectors in the eviction process. Using
PCA, we project value vectors and model outputs into two-dimensional space. The results are in
Appendix C.9. We also provide statistical histograms of value vector magnitudes in Figure 15 in
Appendix C.9. These results help understand the reason why projection-based score works intuitively.

Case Study We provide some case studies in Appendix C.10, showing that AnDPro can more
accurately preserve important tokens compared to attention-based scoring functions.

Longer context we evaluate performance on extremely long contexts ranging from 64k to 384k
tokens. The results are in Appendix C.11, demonstrating that AnDPro achieves the best performance
even on much longer contexts.

5 Conclusion

In this work, we model KV cache eviction as a combinatorial optimization problem, and relaxes it
to a sparse optimization problem. Motivated by the theoretical and intuitive analysis, we proposes
AnDPro (Anchor Direction Projection), which leverages projection-based scoring functions for
more accurate KV cache eviction. Extensive experiments on LongBench and Needle-in-a-Haystack
benchmarks demonstrate the effectiveness of our approach.
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A Proofs

Proposition 1. Let S ⊂ [n] be the set of retained tokens, and define the indicator function

zi ≜

{
1, i ∈ S,

0, i /∈ S
(5)

to represent whether the ith token is retained. Then, the post-eviction output can be expressed as:

ŷ =

∑n
i=1 ziaivi∑n
i=1 ziai

. (6)

Proof. We have

ŷ =
∑
i∈S

Softmax
i∈S

(q⊤
n ki)vi =

∑
i∈S

exp(q⊤
n ki)∑

j∈S exp(q⊤
n kj)

vi

=

∑n
i=1 zi

exp(q⊤
n ki)∑n

k=1 exp(q⊤
n kk)

vi∑n
j=1 zi

exp(q⊤
n kj)∑n

k=1 exp(q⊤
n kk)

=

∑n
i=1 ziaivi∑n
i=1 ziai

.

(16)

Theorem 1. The dual problem to Problem (P-Primal) is given by:

sup
η,ζ
−1

2
∥η∥2 + η⊤y − ζ +

1

s

n∑
i=1

ρi(η, ζ), (P-Dual)

where η∗ ∈ Rn and ζ ∈ R are dual variables, and

ρi(η, ζ) ≜ min
(
0, λs− ai

(
η⊤vi − ζ

))
. (10)

Proof. Recall that Problem (P-Primal) takes the form of:

min
β∈[0, 1s ]

n

1

2
∥u∥22 + λs

n∑
i=1

βi

s.t. u = y −
n∑

i=1

βiaivi

n∑
i=1

βiai = 1

By introducing the new variables η ∈ Rn and ζ ∈ R, we get its Lagragian:

L(β,u,η, ζ) =
1

2
∥u∥22 + λs

n∑
i=1

βi + η⊤

(
y −

n∑
i=1

βiaivi − u

)
+ ζ

(
n∑

i=1

βiai − 1

)
. (17)

The primal variables are β ∈ [0, 1
s ]

n and u ∈ Rn. The dual function g(η, ζ) is then:

g(η, ζ) = inf
β,u

L(β,u,η, ζ)

=η⊤y − ζ + inf
u

(
1

2
∥u∥2 − η⊤u

)
+ inf

β∈[0, 1s ]
n

(
λs

n∑
i=1

βi −
n∑

i=1

βiaiη
⊤vi + ζ

n∑
i=1

βiai

)

=η⊤y − ζ + inf
u

(
1

2
∥u∥2 − η⊤u

)
+

n∑
i=1

inf
βi∈[0, 1s ]

βi

(
λs− ai

(
η⊤vi − ζ

))
.

(18)

It is easy to derive that

inf
u

(
1

2
∥u∥2 − η⊤u

)
= −1

2
∥η∥2 , (19)
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with the optimal solution u∗ = η, and

inf
βi∈[0, 1s ]

βi

(
λs− ai

(
η⊤vi − ζ

))
=

1

s
min

(
0, λs− ai

(
η⊤vi − ζ

))
. (20)

with the optimal solutions

β∗
i =


0, λs− ai

(
η⊤vi − ζ

)
> 0,

∈
[
0,

1

s

]
, λs− ai

(
η⊤vi − ζ

)
= 0,

1

s
, λs− ai

(
η⊤vi − ζ

)
< 0.

(21)

Therefore, we have:

g(η, ζ) = −1

2
∥η∥2 + η⊤y − ζ +

1

s

n∑
i=1

min
(
0, λ− ai

(
η⊤vi − ζ

))
. (22)

Combining the above, we get the dual problem:

sup
η,ζ

g(η, ζ) = −1

2
∥η∥2 + η⊤y − ζ +

1

s

n∑
i=1

min
(
0, λs− ai

(
η⊤vi − ζ

))
. (23)

Theorem 2. Let β∗ be an optimal solution to Problem (P-Primal), and (η∗, ζ∗) be an optimal
solution to Problem (P-Dual). Then we have:

ai
(
η∗⊤vi − ζ∗

)
< λs ⇒ β∗

i = 0,

ai
(
η∗⊤vi − ζ∗

)
> λs ⇒ β∗

i =
1

s
.

(11)

Proof. By the strong duality, it is easy to show that (η∗, ζ∗) is a geometric multiplier. Therefore,
from the optimal condition, we have

(β∗,u∗) ∈ inf
β,u

L(β,u,η∗, ζ∗). (24)

We then complete the proof according to Equation 21.

Corollary 1. There exist θ ∈ Rn and b ∈ R such that:

ai
(
θ⊤vi + b

)
< 1 ⇒ β∗

i = 0,

ai
(
θ⊤vi + b

)
> 1 ⇒ β∗

i =
1

s
.

(12)

Proof. We can take

θ ≜
η∗

λs
, b ≜ − ζ∗

λs
, (25)

where η∗ and ζ∗ are the optimal solution to Problem (P-Dual). This completes the proof.
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B Implementation Details

B.1 Algorithm

A simplified pseudocode of AnDPro is provided in Algorithm 1. We omit some unimportant details
(such as preserving the first token) for simplicity.

Algorithm 1 AnDPro Algorithm in One Layer

Require: A set H of all heads, A setW of the observation window, Number of tokens L outside
the observation window, Queries {qh,t}h∈H,t∈W , Keys {kh

i }h∈H,i∈[L], Values {vh
i }h∈H,i∈[L],

Chunk size C, Budget size B for each head
Ensure: Retained KV cache {Sh}h∈H

1: ah,t
i |h∈H,t∈W,i∈[L]← Softmaxi∈[L](q

h,tvh
i )

2: v̂h,t
i |h∈H,t∈W,i∈[L/C]←

∑
j∈Chunki a

h,t
j vh

j

3: âh,ti |h∈H,t∈W,i∈[L/C]←
∑

j∈Chunki a
h,t
j

4: Ŵ ← observation window of chunks
5: yh,t |h∈H,t∈Ŵ←

∑
i∈[L/C] v̂

h,t
i

6: sh,ti |h∈H,t∈Ŵ,i∈[L/C]← ⟨yh,t, v̂h,t
i ⟩

7: shi |h∈H,i∈[L/C]←
∑

t∈Ŵ sh,ti

8: s← Concath∈H,i∈[L/C](s
h
i )

9: {Sh}h∈H ← TopK(s, k = |H| ×B)
10: Sh |h∈H← Sh ∪W
11: return {Sh}h∈H

B.2 Datasets

Longbench is a comprehensive benchmark that consists of 16 datasets and serves as a robust evaluation
tool due to its wide variety of prompts with different domains, types, and lengths. It is designed for
long-sequence tasks spanning multiple domains, including single-document QA, multi-document QA,
summarization, few-shot learning, synthetic tasks, and code generation. Table 2 provides detailed
information of the 16 datasets in LongBench. These datasets have average input lengths ranging from
1, 235 to 18, 409 tokens, with an average token length of 7, 425. For our evaluation, we followed the
recommended evaluation procedures for each dataset, with scores ranging from 0 to 100.

Table 2: Details of 16 datasets from the LongBench benchmark.
Task Task Type Eval Metric Avg Len Language Sample Num

NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200

MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200

2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200

GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200

MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200

TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200

PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200

LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500
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B.3 Code and Hyperparameter

Our code framework is adapted from Ada-KV [17], specifically leveraging its concise and user-
friendly custom classes to facilitate more efficient and convenient budget filtering and allocation. The
primary updates include a cross-head filtering strategy. We employ max pooling with a kernel size
of 7 and set the size of observation window to 32. The code is released at https://github.com/
MIRALab-USTC/LLM-AnDPro.
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C Additional Results

C.1 Main results of Llama on LongBench

Table 3 shows the scores of different methods based on the Llama model in 16 datasets. Overall, the
results are consistent with those of Mistral, and AnDPro also leads to improved quality after cache
eviction.

Table 3: Comparison based on Llama-3.1-8B-Instruct among 16 datasets from LongBench. We
run all the baselines to derive the results based on their released code. We mark the best results in
bold red, and we mark the second best results in underlined blue.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Ave.
Score

Full Cache 30.12 46.60 56.41 58.10 49.01 32.52 34.04 25.37 27.06 73.00 91.90 43.46 7.06 100.00 62.13 51.80 49.29
Budget=128

SnapKV 25.54 31.40 50.99 55.17 45.50 27.88 20.77 23.41 21.05 47.50 90.46 40.76 8.00 99.50 56.88 46.50 43.21
PyramidKV 27.83 32.98 51.45 56.72 44.67 30.54 21.89 22.90 21.67 63.00 90.45 40.06 8.00 100.00 55.37 43.79 44.46
Ada-KV 25.06 34.50 52.27 56.29 47.57 29.06 21.17 23.36 21.51 62.00 92.17 40.84 8.00 99.50 58.45 48.72 45.03
CriticalKV 26.56 35.71 52.90 57.21 47.53 29.57 21.77 23.64 21.79 63.50 91.44 41.62 7.75 100.00 59.09 49.32 45.59
AnDPro 26.66 38.22 54.54 57.47 47.57 29.42 22.09 23.67 21.81 67.00 92.35 40.90 7.70 100.00 59.15 50.06 46.13

Budget=256
SnapKV 26.92 38.19 52.62 57.03 46.75 29.63 23.07 23.92 22.82 58.50 91.83 40.81 7.75 99.50 59.95 48.63 45.50
PyramidKV 28.46 39.36 54.30 56.77 45.50 30.74 23.84 23.88 22.91 69.00 91.09 40.74 7.88 99.50 56.94 45.18 46.01
Ada-KV 27.04 39.24 54.41 57.36 47.53 31.35 23.06 23.81 23.43 69.00 92.50 41.23 7.67 100.00 61.45 49.52 46.79
CriticalKV 26.09 40.60 54.23 57.12 47.21 30.72 23.68 24.37 23.34 70.00 92.75 42.11 7.67 100.00 61.70 49.46 46.94
AnDPro 27.28 42.09 54.72 57.98 47.52 31.98 23.57 24.27 23.58 72.00 92.54 41.55 7.67 100.00 62.57 51.77 47.57

Budget=512
SnapKV 28.40 41.52 55.40 57.66 47.48 30.95 24.92 24.46 24.54 68.50 92.33 41.98 7.33 99.50 61.25 50.39 47.29
PyramidKV 29.15 43.04 55.55 57.71 47.67 31.27 26.05 24.08 24.54 70.50 92.67 41.52 7.33 100.00 59.96 47.51 47.41
Ada-KV 26.92 42.68 55.20 57.47 48.06 31.27 24.95 24.17 24.40 71.00 92.14 42.35 7.33 100.00 62.26 50.62 47.55
CriticalKV 26.75 43.75 55.45 58.25 48.11 32.03 24.96 24.44 24.50 72.50 92.14 41.92 7.12 100.00 62.25 51.17 47.83
AnDPro 28.03 44.25 55.61 58.29 48.30 31.99 24.86 24.55 24.83 73.00 91.97 42.08 7.33 100.00 62.68 52.12 48.12

Budget=1024
SnapKV 28.32 45.37 56.81 58.16 48.28 31.89 26.91 24.58 25.82 70.50 92.22 43.08 6.96 100.00 62.46 51.50 48.30
PyramidKV 29.32 44.57 56.14 58.39 48.36 31.93 28.20 23.78 26.00 70.50 92.41 42.46 6.88 100.00 61.33 49.12 48.09
Ada-KV 28.52 46.01 55.72 57.85 48.10 32.02 26.98 24.72 25.96 72.00 91.97 42.55 6.96 100.00 61.98 51.52 48.30
CriticalKV 28.15 46.19 56.00 57.99 48.47 32.68 27.20 24.69 25.74 72.50 91.97 42.33 6.92 100.00 61.79 51.36 48.37
AnDPro 29.40 46.83 56.72 58.01 48.68 32.64 26.69 24.96 25.92 73.00 91.97 43.55 7.38 100.00 62.43 52.39 48.79

C.2 Results on the Chinese Datasets in LongBench

Table 4 shows the scores of different methods based on the Llama model on 5 Chinese datasets fron
LongBench. Although Llama model don’t support Chinese language, AnDPro leads to improved
quality after cache eviction.

Table 4: Comparison based on Llama-3.1-8B-Instruct on 5 Chinese datasets from LongBench. The
results demonstrate that AnDPro still achieves the best overall performance on Chinese datasets.

MF-zh dureader vcsum lsht PRe-zh Avg.
Full Cache 58.69 33.78 17.32 46.00 97.67 50.69

Budget=128
CriticalKV 42.57 24.32 12.51 29.50 93.75 40.53
Ada-KV 52.32 24.33 12.15 25.75 97.25 42.36
AnDPro 55.40 24.77 13.04 39.50 97.75 46.09

Budget=256
CriticalKV 48.12 24.74 13.52 24.00 94.00 40.88
Ada-KV 54.86 24.88 13.40 23.52 98.00 42.93
AnDPro 56.84 25.71 13.92 42.50 98.50 47.49

Budget=512
CriticalKV 55.51 26.21 14.47 29.25 79.66 41.02
Ada-KV 57.83 25.75 14.82 22.50 97.67 43.71
AnDPro 57.99 27.63 14.65 45.00 98.50 48.75

Budget=1024
CriticalKV 57.07 27.40 15.47 23.00 91.50 42.89
Ada-KV 58.54 27.19 15.47 22.00 98.00 44.24
AnDPro 58.57 29.07 15.85 45.50 98.17 49.43
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C.3 Results of Needle-in-a-Haystack test

Figure 6 presents the Needle-in-a-Haystack (NIAH) scores across all methods. AnDPro significantly
outperforms all baselines, achieving a high score of 97.37, which is very close to the performance of
the full cache.
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(e) SnapKV
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(f) Ada-KV
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(g) CriticalKV
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(h) AnDPro

Figure 6: Results of Mistral-7b-Instruct-v0.2 on the Needle-in-a-Haystack test. The x-axis
represents the document’s context length, and the y-axis indicates the depth of the needle insertion.
Each square in the heatmap demonstrates the correctness of retrieving a proper sentence inserted
in the context for a given context length and insertion depth. The Average Score is calculated by
averaging the sum of score with different insert depth across various context lengths.

C.4 Runtime Analysis

We visualize The detailed comparison of time consumption across different phases in the infer-
ence process in Figure 7. The results demonstrate that the additional computation introduced by
AnDPro—specifically the Update KV Phase—incurs negligible time overhead.
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Figure 7: The detailed comparison of time consumption across different phases in the inference
process under varying input lengths. The figure demonstrates the time costs of three key phases when
processing input sequences of 64,000 and 128,000 tokens with an output length of 1,000 tokens.

To provide a more detailed quantitative breakdown, the specific runtime measurements are presented
below (unit: seconds/milliseconds):
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Table 5: Runtime analysis of different methods on sequences of length 64K and 128K.
64K Prefilling (s) KV update (s) Layer-wise KV update (ms)
Full 9.45 - -

SnapKV 9.50 0.10 3.05
Ada-KV 9.88 0.43 13.28
AnDPro 10.04 0.58 18.13

128K Prefilling (s) KV update (s) Layer-wise KV update (ms)
Full 28.78 - -

SnapKV 29.00 0.11 3.42
Ada-KV 29.47 0.59 18.31
AnDPro 29.78 0.88 27.41

Although AnDPro introduces slightly higher update latency compared to SnapKV and AdaKV, the
additional overhead is negligible relative to the total prefilling time.

We further conduct experiments using the Mistral-7B-Instruct-v0.2 model on the Needle-in-a-
Haystack (NIAH) benchmark. We measure the decoding latency (in seconds) for an output length of
1K under various input lengths (from 8K to 256K tokens) with a budget size of 128. The results are
in Table 6.

Table 6: AnDPro maintains comparable runtime efficiency to AdaKV and remains close to SnapKV
across all input lengths.

Input Length 8K 16K 32K 64K 128K 256K
SnapKV 35.10 34.72 37.15 40.49 39.40 53.69
AdaKV 39.22 38.99 39.64 43.39 44.23 55.30
AnDPro 39.23 38.67 40.44 42.98 44.20 55.51

C.5 Ablation Study

C.5.1 Ablation Study on Projection-Based Scoring Function

We conduct comprehensive ablation studies to isolate the effectiveness of the projection-based scoring
function—which is the core contribution of this paper—and distinguish it from the other components
in our method. Specifically, we conduct 5 sets of experiments to compare the projection-based
scoring function (ProjScore) with the attention-based scoring function (AttnScore) with different
combinations of other components. Specifically, we consider five experimental groups A–E:

• A: CrossHead + Chunk + FirstToken with ProjScore vs. AttenScore
• B: Chunk + FirstToken with ProjScore vs. Pooling + FirstToken with AttenScore
• C: CrossHead + FirstToken with ProjScore vs. AttenScore
• D: CrossHead + Chunk with ProjScore vs. CrossHead + Pooling with AttenScore
• E: Isolated ProjScore vs. AttenScore comparison

We conduct these ablation studies on the three datasets from the Single-Document QA task with the
Mistral model. The results are in Table 7 and visualized in Figure 8. The results demonstrate that
the projection-based scoring function consistently outperforms the attention-based scoring function,
across all different configurations of other components.

We further validate this conclusion on two other based models Qwen and Llama. Table 8 and Table 9
show that AnDPro has good performance on other models, confirming both its effectiveness and
robustness.

C.5.2 Ablation Study on Other Adopted Techniques

We further conduct ablation studies to investigate the contributions of three different components
in our algorithm: (1) merging tokens into chunks, (2) preserving the first token, and (3) cross-head
budget allocation. The results are in Figure 9. It visually compares the performance improvements
contributed by each component to the project-based method, demonstrating that all components are
indispensable for achieving the final high-performance results.
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Table 7: Ablation results of Mistral-7b-Instruct-v0.2 on LongBench (single QA Doc). The com-
parisons demonstrate that ProjScore consistently outperforms AttnScore across different settings of
adopted techniques, isolating the novel contribution of AnDPro.

Budget Nrtvqa Qasper MF-en Avg. Nrtvqa Qasper MF-en Avg.
CrossHead + Chunk + FirstToken + ProjScore CrossHead + Chunk + FirstToken +AttenScore

A
128 24.84 25.14 47.33 32.44 22.19 23.67 48.33 31.40
256 25.71 28.17 49.31 34.40 23.85 28.12 49.29 33.75
512 24.87 30.99 49.58 35.15 25.25 30.21 48.94 34.80
1024 25.87 32.54 49.35 35.92 25.94 32.45 49.02 35.80

Chunk + FirstToken +ProjScore Pooling + FirstToken + AttenScore

B
128 20.25 20.92 46.89 29.35 19.17 21.40 42.93 27.83
256 22.81 25.25 48.30 32.12 22.37 23.74 48.13 31.41
512 24.72 27.61 49.38 33.90 24.60 27.81 48.98 33.80
1024 26.09 30.75 49.20 35.35 25.47 29.57 49.33 34.79

CrossHead + FirstToken +ProjScore CrossHead + FirstToken +AttenScore

C
128 22.78 24.98 47.39 31.72 21.12 21.16 38.46 26.91
256 24.32 27.41 48.49 33.41 21.50 23.50 40.38 28.46
512 25.64 29.03 49.09 34.59 23.93 24.67 43.08 30.56
1024 26.30 30.90 49.08 35.43 24.94 27.82 46.60 33.12

CrossHead + Chunk +ProjScore CrossHead + Pooling +AttnScore

D
128 24.90 24.47 48.57 32.65 21.64 23.77 46.48 30.63
256 24.92 28.25 49.21 34.13 23.29 26.32 48.99 32.87
512 26.18 30.20 49.41 35.26 24.73 28.59 48.84 34.05
1024 26.14 31.57 49.60 35.77 25.60 31.27 48.49 35.12

ProjScore AttnScore

E
128 20.27 22.02 43.67 28.65 21.50 20.85 39.11 27.15
256 22.33 24.95 48.51 31.93 22.48 22.65 43.64 29.59
512 24.91 26.80 49.01 33.57 23.07 25.91 44.84 31.27
1024 25.20 30.02 49.25 34.82 25.02 29.48 47.25 33.92
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Figure 8: Ablation results of Mistral-7b-Instruct-v0.2 on LongBench (single QA Doc). The
comparisons demonstrate that ProjScore consistently outperforms AttnScore across different settings
of adopted techniques, isolating the novel contribution of AnDPro.

Our discoveries are as follows. (1) To achieve a better semantic succession, we merge a certain
number of adjacent tokens as one chunk. We test different chunk sizes C ∈ {1, 2, 4, 8, 16} on the
three datasets from the Single-Doc. QA task. The experiments are conducted on Mistral-7b-Instruct-
v0.2. Results are in Figure 10. As a hyperparameter directly related to contextual semantics, we
found that when the budget is small, smaller chunks will lead to better performance, and vice versa.
In the main experiments, we set the chunk size to 4. (2) Following SnapKV and Ada-KV, we retain
the first token by default. Results show that this leads to a very slight performance gain. (3) We
follow Ada-KV to allocate budget across all heads within each layer according to their scores. The
results show that this operator is critical to the overall performance gain. The integration of the
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Table 8: Ablation results of Qwen2-7B-Instruct on LongBench (single QA Doc). The comparisons
demonstrate that ProjScore consistently outperforms AttnScore across different settings of adopted
techniques, isolating the novel contribution of AnDPro.

Budget Nrtvqa Qasper MF-en Avg. Nrtvqa Qasper MF-en Avg.
CrossHead + Chunk + FirstToken + ProjScore CrossHead + Chunk + FirstToken +AttenScore

A
128 23.95 35.67 44.72 34.78 21.69 35.07 45.74 34.17
256 22.52 39.90 46.20 36.21 24.25 39.16 46.87 36.76
512 21.52 43.93 46.74 37.40 22.96 43.32 46.02 37.43
1024 22.07 44.95 46.69 37.90 23.44 44.38 47.37 38.40

Chunk + FirstToken +ProjScore Pooling + FirstToken + AttenScore

B
128 20.49 33.72 42.26 32.16 20.43 31.45 42.80 31.56
256 21.25 37.88 43.43 34.19 22.28 36.70 43.95 34.31
512 23.88 40.25 46.89 37.01 22.80 41.12 44.38 36.10
1024 23.40 42.24 46.51 37.38 24.58 43.55 46.95 38.36

CrossHead + FirstToken +ProjScore CrossHead + FirstToken +AttenScore

C
128 21.84 35.04 44.64 33.84 17.07 32.11 39.11 29.43
256 22.30 38.72 44.31 35.11 23.36 36.89 43.24 34.50
512 25.02 43.50 47.55 38.69 22.43 40.82 42.02 35.09
1024 23.93 43.18 46.78 37.96 23.19 40.62 46.28 36.70

CrossHead + Chunk +ProjScore CrossHead + Pooling +AttnScore

D
128 22.16 34.32 47.45 34.64 20.54 32.82 40.26 31.21
256 25.12 39.42 45.01 36.52 22.86 35.62 43.93 34.14
512 24.30 42.95 46.68 37.98 23.44 41.50 44.64 36.53
1024 24.56 45.52 45.71 38.60 23.75 42.82 47.91 38.16

ProjScore AttnScore

E
128 21.32 33.44 41.42 32.06 19.40 30.84 34.30 28.18
256 21.67 36.45 45.76 34.63 21.34 31.67 38.96 30.66
512 24.02 41.40 44.30 36.57 21.68 34.55 39.60 31.94
1024 23.37 43.13 47.61 38.04 23.31 39.16 42.60 35.02
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Figure 9: Ablation Study on the adopted techniques.

aforementioned techniques results in the high performance of AnDPro. Notably, AnDPro outperforms
full cache with a budget size k = 2048.
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Table 9: Ablation results of Meta-Llama-3.1-8B-Instruct on LongBench (single QA Doc). The
comparisons demonstrate that ProjScore consistently outperforms AttnScore across different settings
of adopted techniques, isolating the novel contribution of AnDPro.

Budget Nrtvqa Qasper MF-en Avg. Nrtvqa Qasper MF-en Avg.
CrossHead + Chunk + FirstToken + ProjScore CrossHead + Chunk + FirstToken +AttenScore

A
128 26.66 38.22 54.54 39.81 27.19 38.01 53.13 39.44
256 27.28 42.09 54.72 41.36 26.36 41.94 54.77 41.02
512 28.03 44.25 55.61 42.63 29.12 44.86 54.86 42.95
1024 29.40 46.83 56.72 44.32 28.14 46.77 55.81 43.57

Chunk + FirstToken +ProjScore Pooling + FirstToken + AttenScore

B
128 24.87 32.33 52.51 36.57 25.54 31.40 50.99 35.98
256 27.04 38.52 54.21 39.92 26.92 38.19 52.62 39.24
512 27.24 42.18 54.25 41.22 28.40 41.52 55.40 41.77
1024 28.57 45.80 54.89 43.09 28.32 45.37 56.81 43.50

CrossHead + FirstToken +ProjScore CrossHead + FirstToken +AttenScore

C
128 28.51 38.05 52.92 39.83 26.78 34.67 52.32 37.92
256 26.72 41.48 55.23 41.14 27.05 40.23 54.29 40.52
512 29.79 43.50 55.11 42.80 28.96 43.11 54.61 42.23
1024 31.48 45.54 56.75 44.59 29.98 46.06 55.32 43.79

CrossHead + Chunk +ProjScore CrossHead + Pooling +AttnScore

D
128 30.13 37.46 54.01 40.53 25.06 34.50 52.27 37.28
256 29.70 42.56 55.59 42.62 27.04 39.24 54.41 40.23
512 31.08 44.48 55.62 43.73 26.92 42.68 55.20 41.60
1024 31.11 46.05 56.39 44.52 28.52 46.01 55.72 43.42

ProjScore AttnScore

E
128 25.19 32.36 51.41 36.32 28.10 28.56 42.69 33.12
256 26.07 37.74 52.05 38.62 29.56 31.00 44.19 34.92
512 28.51 41.88 55.28 41.89 28.91 36.00 51.55 38.82
1024 27.75 45.54 56.22 43.17 29.51 40.70 54.31 41.51
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Figure 10: Comparison of experimental results with different chunk sizes on Single-Doc. QA

23



C.6 Different Choices of θ and b

Recall that our projection-based scoring function is defined in the form si = ai(y
⊤vi + b). In this

section, we investigate the effect of different choices of θ and b. We conduct these experiments using
Mistral-7B-Instruct-v2.0 on the datasets from the Single-Document QA task with the Mistral model.

To investigate the effect of the anchor direction θ, we parameterize the anchor direction as θ =∑n
i=1 ãivi where ãi = Softmax(qT ki/α) with a temperature coefficient α. This generalization

covers several cases: α = 1 corresponds exactly to our proposed anchor direction θ = y ; α→∞
corresponds to the average of all value vectors; an α→ 0 corresponds to the value vector with the
highest attention weight. The results are in Table 10, demonstrating that setting the anchor direction
as θ = y achieves a robust performance.

Table 10: Results of different choices of the anchor direction θ =
∑n

i=1 ãivi, where ãi =
Softmax(q⊤ki/α) with a temperature coefficient α. The used model is Mistral-7B-Instruct-v0.2 and
the dataset is LongBench (single QA Doc). The results demonstrate that setting the anchor direction
as θ = y achieves a robust performance.

Nrtvqa Qasper MF-en Avg. Nrtvqa Qasper MF-en Avg.
Budget=128 Budget=256

α = 0 (highest attention) 15.79 14.67 26.22 18.89 16.01 15.05 28.52 19.86
α = 0.5 23.10 25.68 47.69 32.16 23.15 27.12 48.82 33.03

α = 1 (θ = y) 24.84 25.14 47.33 32.44 25.71 28.17 49.31 34.40
α = 1.5 22.81 23.47 47.99 31.42 24.62 28.08 48.35 33.68

α =∞ (average) 15.83 15.75 27.96 19.85 16.62 16.06 28.96 20.55
Budget=512 Budget=1024

α = 0 (highest attention) 16.24 14.56 29.83 20.21 16.96 15.57 34.68 22.40
α = 0.5 24.87 29.80 49.33 34.67 25.89 30.57 48.93 35.13

α = 1 (θ = y) 24.87 30.99 49.58 35.15 25.87 32.54 49.35 35.92
α = 1.5 25.13 30.34 48.14 34.54 25.81 31.57 49.64 35.67

α =∞ (average) 16.81 17.62 33.50 22.64 17.11 21.56 38.68 25.78

We then investigate the impact of b, and the results are in Figure 11. We find that though a careful
choice of b promise lead to a better results, simply setting b = 0 is enough to derive a stable
performance. Therefore, we set b = 0 in our main experiments, without the need for labor-intensive
hyperparameter tuning. Moreover, when b approaches infinity (e.g., b = 1000), the scoring function
converges to attention-based ones, and the performance approaches the performance of Ada-KV.
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C.7 Eviction Losses and Cosine Similarity

Figure 12 illustrates the eviction loss and cosine similarity derived from 2 methods under different
budget allocations, with the eviction loss quantified as ||y−ŷ||2

||y||2 . The results show that AnDPro
consistently yields a lower eviction loss, and a larger cosine similarity, which can to some extend
explain the high performance of AnDPro.
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Figure 12: Comparison of eviction loss and cosine similarity. Experiments are conducted using
Mistral7B-instruct-v0.2 on 200 samples from the Qasper dataset.
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C.8 Token Visualization

Figure 13 illustrates the distribution of our defined scoring functions across various layers (using
Mistral7B-instruct-v0.2 on a sample from the Qasper Dataset), demonstrating that the distribution
exhibits a sparsity feature like that of attention weights.
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Figure 13: Visualization of Token Scores for Different Layers.
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C.9 Value Vectors Visualization & Magnitude Histogram

We conduct two experiments to intuitively explain why projection-based methods outperform
attention-based approaches. First, we provide the PCA visualization of value vectors in Figure 14.
It reveals that projection methods preserve geometrically critical tokens along the original output
direction, minimizing post-eviction semantic drift. In contrast, attention-based selection disrupts the
latent spatial distribution, causing divergent outputs. Second, complementary analysis in Figure 15
demonstrates significant variance of the vector vector magnitude. This indicates that the value vectors
contain rich semantic information, which is ignored in attention-based approaches. This further
underscores the necessity of projection-based strategies.
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Figure 14: The visualization of token value vectors and outputs of different approaches using PCA
dimensionality reduction. We use an easy case with 23 tokens. Each dot represents a token value
vector, with color intensity (red hues) indicating attention scores. Tokens selected by different
methods are highlighted by colored outer rings. Arrow vectors depict output directions. We visualize
the results from the Head 0 across several layers. The results demonstrate that the projection-based
approach can achieve smaller distances between the pre- can post-eviction outputs by maintaining the
semantical directions of the original outputs.
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Figure 15: The distribution of the value vector magnitudes from several different layers in a test
example. This reveals the significant variability and underscores the important semantic information
captured by projection but overlooked by pure attention methods.
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C.10 Case Study

We conduct case study on some simple test cases. We calculate the total scores of each token in the
prefilling Phase based on the AnDPro and attention weights. Some results are presented in Figure 16.
These token-level scores are scaled to the range of 0 to 1 and sorted in descending order. Specifically,
a higher score indicates that the token is considered more important.

By observing the key tokens marked in red (identified by humans), AnDPro places better emphasis
on the key tokens compared to the attention-based approach, thereby intuitively demonstrating the
effectiveness of our method.
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Prompt 1: There will be scattered showers this afternoon, clearing up by evening. What’s the weather this
afternoon?
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Prompt 3: The train is delayed due to maintenance work, but there will still be buses running regularly. How is
the train service?

Figure 16: Case study. We visualize the importance orders given by different approaches, AnDPro,
and attention-based approach. Red tokens are key tokens identified by humans.
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C.11 Long Context

We have conducted additional experiments on very long sequences using the Needle-in-a-Haystack
benchmark, extending the test sequence length from the original 32K tokens up to 384K tokens.
Specifically, we use the Llama-3.1-8B-Instruct model (pretrain context length 128K) under a budget
size of 128. Results are in Figure 17.

The results demonstrate that AnDPro consistently achieves superior performance even on long
sequences. Notably, when sequence length exceeds 256K tokens, Full cache fails due to memory
constraints, while AnDPro remains effective. Although all methods fail beyond 512K tokens, AnDPro
maintains top performance within feasible length ranges.
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Figure 17: Results of Llama-3.1-8B-instruct on the Needle-in-a-Haystack test with extremely long
sequences (up to 384K). The x-axis represents the document’s context length, and the y-axis indicates
the depth of the needle insertion. Each square in the heatmap demonstrates the correctness of
retrieving a proper sentence inserted in the context for a given context length and insertion depth. The
Average Score is calculated by averaging the sum of score with different insert depth across various
context lengths. Gray squares indicate out-of-memory errors due to excessive context length.

C.12 Large-Sized LLMs

To evaluate the generalization and applicability of AnDPro on larger models, we conduct addi-
tional experiments using the Qwen2.5-32B-Instruct model on the LongBench single-document QA
benchmark. The results are in Table 11.

Table 11: Results of Qwen2.5-32B-Instruct on the LongBench single-document QA benchmark.
Budget= 128 Budget= 256 Budget= 512 Budget= 1024

Ada-KV 34.66 38.02 41.57 43.82
AnDPro 38.63 40.91 43.62 45.81

C.13 Long Decoding Tasks

To further demonstrate the broader applicability of our method, we conduct additional experiments
on long decoding tasks, particularly in LLM reasoning settings. For a better comparison with the
baselines, we additionally implemented the decoding versions of AnDPro and SnapKV, while Ada-
KV does not have a decoding version. Specifically, we evaluated our approach on the AIME24
dataset using DeepSeek-R1-Distill-Qwen-14B.

Table 12 reports the reasoning performance (accuracy, %) under different KV cache budget settings.
Table 13 reports the throughput (tokens/s) and maximum supported batch size (OOM threshold)
during 10K-token generation.
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Table 12: Performance (accuracy, %) of different methods on the AIME24 dataset under two KV
cache budget settings (2K and 4K).

Budget= 2K Budget= 4K
SnapKV 50.00 53.33
AnDPro 60.00 63.33

Table 13: Throughput (tokens/s) and maximum supported batch size (before out-of-memory occurs)
for different methods during 10K-token generation on a single GPU with 80GB of VRAM.

Generation Length Max Batch Size (OOM Threshold) Throughput (token/s)
Full 10K 28 181.09

SnapKV 10K 80 415.48
AnDPro 10K 80 413.15

D Limitation and Broader Impact

Limitation We have limited this work to the setting of uniform budget allocation across layers. It
remains to be investigated how to perform fine-grained budget allocation between layers, building
upon existing studies that have demonstrated the varying importance of different layers.

Broader Impact Our methodology pioneers a novel paradigm for KV Cache Compression by
incorporating directional characteristics of value vectors (beyond attention weight exclusivity), which
we believe will catalyze transformative breakthroughs in this field. Crucially, the proposed technique
achieves substantial inference acceleration with only marginal performance degradation, establishing
its deployment potential for edge computing scenarios and long-context sequence processing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution is to propose AnDPro, which is clearly described in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix D
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proofs of all theorems can be found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide necessary details to reproduce the results. We release our code at
https://github.com/MIRALab-USTC/LLM-AnDPro.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use open-sources datasets and will release our code once the paper is
accepted for publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We follow the standard benchmarks and provide necessary details for all
experiemnts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We follow previous relevant works in the field to report experimental statistical
information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information in Appendix 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have included broader impacts in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited.
The license and terms of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have provided a detailed description of the use of LLMs in our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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