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Abstract

While enabling large language models to im-001
plement function calling (known as APIs) can002
greatly enhance the performance of Large Lan-003
guage Models (LLMs), function calling is still004
a challenging task due to the complicated re-005
lations between different APIs, especially in006
a context-learning setting without fine-tuning.007
This paper introduces “Reverse Chain”, a con-008
trollable, target-driven approach designed to009
empower LLMs with the capability to oper-010
ate external APIs only via prompts. Recog-011
nizing that most LLMs have limited tool-use012
capabilities, Reverse Chain limits LLMs to ex-013
ecuting simple tasks, e.g., API Selection and014
Argument Completion. Furthermore, to man-015
age a controllable multi-function calling, Re-016
verse Chain adopts a generic rule based on017
a backward reasoning process. This rule de-018
termines when to do API selection or Argu-019
ment completion. To evaluate the multi-tool-020
use capability of LLMs, we have released a021
compositional multi-tool task dataset, available022
at https://anonymous.4open.science/r/023
reverse-chain-8681. Extensive numerical024
experiments validate the remarkable profi-025
ciency of Reverse Chain in managing multiple026
API calls.027

1 Introduction028

Recently, there has been an impressive wave in the029

progress made in Large Language Models (LLMs),030

due to their excellent performance in a variety031

of tasks (Chowdhery et al., 2022; Brown et al.,032

2020; Scao et al., 2022; Wei et al., 2022a; Bubeck033

et al., 2023). However, LLMs still face difficulties034

with some specialized tasks due to their fundamen-035

tal limitation on the information they stored and036

learned, which can become outdated and may not037

be suitable for all applications. A practical solution038

is to augment LLMs with external tools (known039

as APIs). In this setup, LLMs act as controllers,040

not only to understand user intents but crucially041

to select and orchestrate the appropriate tools to 042

complete tasks. 043

Unfortunately, LLMs still lack the sophistication 044

to fully understand human instructions and effec- 045

tively implement function calling. Many works are 046

dedicated to enhancing the function calling abilities 047

of LLMs through fine-tuning or in-context learning 048

methods. (Patil et al., 2023; Qin et al., 2023; Schick 049

et al., 2023; Tang et al., 2023; Parisi et al., 2022; Li 050

et al., 2023; Liang et al., 2023; Song et al., 2023; Xu 051

et al., 2023) Compared to fine-tuning, in-context 052

learning approaches offer a more straightforward 053

and scalable solution, as they eliminate the need 054

to train an entirely new model for each new API. 055

Consequently, the primary goal of this paper is to 056

enhance the API planning capabilities of LLMs 057

within the in-context learning setting. 058

Different from the aforementioned studies which 059

focus on simpler tasks, such as single-tool task 060

or independent multi-tool task (detailed in Table 061

1), this paper targets at enhancing LLMs’ ability 062

to handle more complicated compositional multi- 063

tool task (detailed in Table 1). Implementations of 064

this task requires to employ multiple, potentially 065

interdependent APIs, which is common in real- 066

world scenarios but poses a greater challenge in 067

API planning for LLMs. It’s worth noting that 068

single-tool task and independent multi-tool task can 069

be seen as subsets of compositional multi-tool task, 070

and the proposed approach can also manage them 071

with minimal modifications. The generalizability 072

of the proposed method to different task types will 073

be discussed in the Section 5. 074

In the realm of tool-use, various prompting tech- 075

niques have been explored. One-step planning al- 076

gorithms are introduced in (Shen et al., 2023; Liang 077

et al., 2023), but its accuracy is often low in com- 078

plex, ambiguous scenarios. The Chain of Thought 079

(CoT) approach (Wei et al., 2022b) counters this by 080

step-by-step planning with intermediate reasoning. 081

Known as CoT planning, this technique decom- 082
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Task Type Example API planning
Single-tool What’s the weather in New York ? getWearther(city=’New York’)

Independent multi-tool
What’s the weather in New York?

When’s my next meeting?
getWearther(city=’New York’)

showCalendar(event=’next meeting’)

Compositional multi-tool
I’m Lucas, Could you find a flight

and book it to my destination ?
BookFlight(flight_ID=FindFlight(destination
=GetUserDestination(userName=’Lucas’))

Table 1: Different task types, classified by the number of required tools and their dependencies for task execution.

Query

Goal

APIAPI

API

API

API

API

APIAPI

API

APIAPI API

Wrong Goal

(b) Reverse Chain(a) Planning (c) ReACT

API API Call  in Path
Execution Path

Potential Path 

Reverse Chain of Thought

Fail to Enter the Next Step

Figure 1: A comparison of our Reverse Chain with
the one-step/CoT Planning and ReAct for multi-API
planning.

poses tasks into several simpler sub-tasks, thereby083

boosting reasoning and accuracy. Nevertheless,084

as illustrated in Figure 1 (a), a limitation of these085

planning methods is their potential for errors in086

the intermediate stages. While the final step of087

the plan is intended to achieve the ultimate goal,088

errors in the intermediate planning steps can lead089

to execution failures. For instance, as illustrated090

in the compositional multi-tool case of Table 1, if091

the value of ‘destination’ parameter is parsed incor-092

rectly, e.g., destination = ‘None’, it is obvious that093

BookFlight could not be executed successfully. To094

bridge this gap, ReAct, as described by (Yao et al.,095

2022), refines reasoning by combining actions and096

observations for deeper insights. Expanding on097

this, tool-learning projects (Song et al., 2023; Ruan098

et al., 2023) utilize the output from each step to099

inform the next decision. However, as depicted in100

Figure 1(c), in the multi-function call scenarios,101

ReAct, despite successfully executing each step,102

may not adhere to the correct reasoning path to- 103

wards the final goal, as a result, it deviates to the 104

wrong destination and may end up early. For in- 105

stance, in the previously mentioned scenario, the 106

ReAct execution flow would be: GetUserDestina- 107

tion (userName=‘Lucas’) -> destination, flight_ID 108

= FindFlight (destination) -> Final Answer, which 109

is not completed since the last API BookFlight has 110

not been executed. 111

In summary, both one-step/CoT planning and Re- 112

Act encounter significant control challenges: each 113

step of these methods exhibit a high level of un- 114

predictability and uncertainty. Errors can prop- 115

agate from a wrong thought or action, leading to 116

incorrect solution paths or final goals. This issue 117

arises because these methods start from scratch and 118

progress forward towards the final target, with the 119

LLM bearing the entire burden of planning. 120

To address these issues, we propose a control- 121

lable yet general framework called Reverse Chain. 122

This framework consists of a generic rule and 123

two key modules: API Selection and Argument 124

Completion, both centered on prompting an LLM. 125

Specifically, the generic rule in Reverse Chain per- 126

forms a multi-API planning task in a backward 127

manner: it starts by selecting the final API for a 128

task, and then completes the required arguments, 129

drawing values from the query and context, or by 130

outputs of other APIs. When a new API is selected 131

during the argument completion stage, this process 132

repeats. The procedure continues iteratively until 133

all arguments of all APIs are filled. Reverse Chain 134

distinguishes itself from previous work with the 135

following three main advantages: 1. Backward 136

reasoning, starting from the final goal, prevent- 137

ing planning from deviating into a wrong direction 138

(commonly occurs in ReAct), thus ensuring the 139

correctness of the final goal. 2. The step-by-step 140

decomposition dominated by the rule makes the 141

process controllable, with each stage being forward- 142

executable, effectively avoiding errors common in 143

one-step/CoT planning, such as incorrect intermedi- 144
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ate stage. 3. The tasks of LLMs are simplified to145

just selecting APIs and filling arguments, avoiding146

complex planning. This strategy effectively utilizes147

the strengths and capabilities of the existing LLMs148

without depending on extensive reasoning abilities.149

In summary, the contributions of this paper are:150

1. This paper presents Reverse Chain, a straight-151

forward framework to improve the API plan-152

ning capabilities of LLMs in an in-context-153

learning setting. By employing a backward154

reasoning scheme and a step-by-step problem-155

solving methodology, the process becomes156

more manageable and controllable.157

2. To the best of our knowledge, this paper is158

the first to focus on API planning for composi-159

tional multi-tool task.To assess the capabilities160

of LLMs in handling such tasks, We collect161

a high-quality dataset containing 825 APIs162

and 1550 instances for that task, constructed163

automatically using GPT-4 (OpenAI, 2023).164

Additionally, an automatic evaluator powered165

by GPT-4 is also developed for the efficient166

evaluation purpose.167

3. Extensive experiments are conducted to168

demonstrate the superiority of the Reverse169

Chain approach in multi-API calling tasks,170

surpassing the state-of-the-art in-context learn-171

ing approaches, e.g., CoT and ReAct.172

2 Related Work173

Tool Learning The discussion of tool usage in174

LLMs has grown significantly, with models like175

Toolformer leading the way (Schick et al., 2023;176

Nakano et al., 2021). Current approaches can be177

divided into two categories. The first category fo-178

cuses on enhancing the tool-specific capabilities of179

language models through fine-tuning with special-180

ized datasets (Patil et al., 2023; Qin et al., 2023;181

Schick et al., 2023; Tang et al., 2023; Parisi et al.,182

2022; Yang et al., 2023; Qian et al., 2023). The183

second category directly leverages the capabilities184

of LLMs, prompting them to interact with various185

tools, ranging from AI models (Shen et al., 2023;186

Wu et al., 2023) to more versatile tool sets (Li et al.,187

2023; Liang et al., 2023; Song et al., 2023; Xu et al.,188

2023). Generally, the prompting approach is sim-189

pler and more scalable, but it still has a significant190

gap compared to fine-tuning method, so this work191

is proposed to enhance the API planning capability192

of prompting methods. It is notable that while the193

previously mentioned studies introduced numerous 194

tool-learning datasets, they primarily encompass 195

relatively simple tasks, focusing on single-tool task 196

or independent multi-tool task. In contrast, this 197

paper targets a more complex task called compo- 198

sitional task, where multiple dependent APIs are 199

needed. 200

Prompting LLMs Various methods, like CoT 201

(Wei et al., 2022b) for task decomposition and 202

ReAct (Yao et al., 2022) for melding reasoning 203

with action, enhance general prompting capabil- 204

ities. Additionally, numerous planning methods 205

are tailored for tool-use. (Shen et al., 2023; Liang 206

et al., 2023) start by generating a direct solution 207

outline, followed by selecting and executing rele- 208

vant APIs. DFSDT (Qin et al., 2023) can be seen 209

as an improved version of ReAct, enables LLMs 210

to evaluate different reasoning paths and select the 211

most promising one. RestGPT’s (Song et al., 2023) 212

workflow involves an iterative “plan and execute” 213

cycle. Meanwhile, (Ruan et al., 2023) employs a 214

sequential planning approach, feeding the outcome 215

of each step into the subsequent one. All these 216

works require an LLM to perform either full or 217

step-by-step planning based on the task. However, 218

the Reverse Chain proposed in this work simplifies 219

this by having the LLM focus on just two tasks: 220

API selection and argument completion, thereby 221

greatly simplifying the task complexity. Further- 222

more, Unlike previous methods that progress from 223

scratch to the final goal, Reverse Chain starts from 224

the end goal and reasons backwards, enhancing 225

controllability. 226

3 Reverse Chain: A Multi-API Planning 227

Approach 228

The objective of this work is to generate effective 229

API planning based on user queries and API can- 230

didates. Figure 2 provides a detailed example: A 231

user query could be a natural language request like 232

“Please help Jack book a meeting room from 9:00 233

am to 10:00 am”. Each API in the API pool is 234

characterized by its description, arguments, and 235

output. e.g., the API RecommendRoom has a func- 236

tionality description of “Recommend the ID of an 237

available meeting room”, arguments “start_time” 238

and “end_time”, and an output of “room_ID”. A 239

successful API planning consists of two parts: se- 240

lecting the proper API and filling in all the argu- 241

ments correctly, where the argument values can 242

come from the query or context, or from the output 243
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API Description Arguments Output
Name2ID Convert user name to user ID person_name person_ID

RecommendRoom Recommend the ID of
an available meeting room

start_time, end_time room_ID

BookRoom Book a meeting room person_ID, room_ID
start_time, end_time

room_Info

API
BookRoom

person_ID room_ID start_time end_time

API 
RecommendRoom

API 
Name2ID

API Selection  

Argument
Completion

person_name

Value: Jack

start_time end_time

Value: 9am Value: 10am

Value: 9am Value: 10am1213 005

Reverse Chain of Thought

Forward Execution

Filled Argument

Unfilled Argument

⍉ ⍉

⍉

Argument
Completion

Reverse Chain

BookRoom (person ID = Name2ID(person name=‘Jack’),
           room ID = RecommendRoom (start time=‘9am’, end time=‘10am’),
           start time = ‘9am’, end time=‘10am’

API Planning

API Pool
User Query Please help Jack book a meeting room for 9am-10am

Figure 2: Workflow of Reverse Chain on an example.

of another API.244

Section 3.1 outlines the Reverse Chain process,245

while Section 3.2 specifically discusses the two246

modules that interact with LLM: API Selection247

and Argument Completion.248

3.1 Reverse Chaining249

Different from CoT and ReAct, Reverse Chain per-250

forms a task decomposition in a reverse manner,251

and its step-by-step problem-solving path is pre-252

defined by a generic rule. It is notable that this253

generic rule is not restricted with a certain type of254

tasks.255

Figure 2 shows an example of Reverse Chain ap-256

plied to API planning for a query. Initially, Reverse257

Chain selects the final API for a given task, this step258

is referred to as API Selection. In this example,259

LLM selects an API named BookRoom to match260

the task “booking a meeting room”. Next, the re-261

quired arguments of the selected API are identified262

through engineering guidance, e.g. API BookRoom263

has four required arguments, that is, person_ID,264

room_ID, start_time, and end_time. There are three265

possible approaches for arguments filling, and we266

define this process as Argument Completion:267

Case 1. The argument value extracted directly from268

the context and user query, e.g., start_time = 9:00269

am; 270

Case 2. When the argument value could not be ob- 271

tained directly, Reverse Chain searches for another 272

possible API whose output could complete the 273

missing argument, e.g., the argument person_ID 274

could be obtained from API Name2ID; 275

Case 3. If it is unable to obtain the argument value 276

from the above two cases, the generic rule will 277

request the argument value directly from the user. 278

For the selected internal APIs in Case 2, Re- 279

verse Chain makes recursive calls to complete the 280

required arguments of these APIs, e.g., the required 281

argument of Name2ID is person_name, and the 282

value ‘Jack’ could be obtained through Case 1 in 283

Argument Completion. The algorithm continues 284

until the termination condition is met, i.e., all of the 285

required arguments are completed. Finally, when 286

all required arguments of an API are filled, the API 287

is ready to be executed forward to complete the 288

given task. 289

3.2 LLM Modules in Reverse Chain 290

3.2.1 API Selection 291

In this module, the LLM effectively determines the 292

relevant API by analyzing the task descriptions and 293

API candidates. The specific prompt used in this 294

module is depicted in Figure 3.(a). Within the Re- 295
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verse Chain, the API Selection module is employed296

in two different scenarios, separated with regard to297

different task description and API candidates. The298

first scenario occurs when selecting the ultimate299

API. In this case, the task descriptions correspond300

to the user query and the API candidates refers301

to all APIs in the API Pool. The second scenario302

occurs as a sub-module of Argument Completion.303

When the value of an argument cannot be obtained304

from the user query or context, the Reverse Chain305

selects an appropriate API whose output can fulfill306

the missing argument. In such cases, the task de-307

scriptions refers to the description of the unfilled308

argument. The scope of API candidates can be nar-309

rowed down through variable type matching, which310

encompasses Time, Date, String, etc. This capa-311

bility facilitates a more refined selection process,312

leading to a improved accuracy.313

3.2.2 Argument Completion314

After API Selection, the required arguments for315

the selected API are determined with the help of316

engineering guidance. In this module, the LLM is317

leveraged to complete these arguments using infor-318

mation from the query, context and API candidates.319

The execution follows three possible outcomes:320

Case 1 The argument value is directly extracted321

from the context or user query.322

Case 2 Another API is used to complete the miss-323

ing argument value, indicating that the LLM is324

unable to obtain the argument value directly. It325

should be noted that the arguments of this new in-326

ternal API must be completed before execution.327

Case 3 None, indicating the inability to obtain the328

argument value from the context, user query, and329

potential API output. In this case, the generic rule330

will request the argument value directly from the331

user.332

Specific optimizations have been applied to the333

aforementioned approach, which are further ex-334

plored in Section 4.2.2. The optimized prompt335

used in this module is illustrated in Figure 3.(b).336

4 Experiments337

In this section, extensive experiments are con-338

ducted to investigate the performance of Reverse339

Chain. We start with generating an evaluation340

dataset automatically, benchmarking different in-341

context learning methods on function calling and342

defining the evaluation metrics. In Section 4.1, to343

benchmark Reverse Chain, we compare its API344

planning capabilities with the current state-of-the-345

We have N APIs:
=====
{"name": BookRoom, "description": Book a meeting room}
......
{"name": Weather, "description": Query weather}
=====
If someone is saying: "Please help Jack book a meeting room for 9:00-
10:00"
Which final API should we use for this instruction? Only return API code. 
Only return one word!

(a) API Selection

You are an argument extractor. For each argument, you need to determine
whether you can extract the value from user input directly or you need to
use an API to get the value. The output should be in Json format, key is the
argument, and value is the value of argument or the API name, return None
if you cannot get value or API name.

The Arguments to be extracted are:
person_ID: {"description": person's employee ID, "type": Integer}
room_ID: {"description": person's employee ID, "type": Integer}
start_time: {"description": start time of meeting, "type": Time}
end_time: {"description": end time of meeting, "type": Time}

The API you can use includes:
{"name": RecommendRoom, "description": Recommend the ID of an
available meeting room}
......
Now, Let's start.
=>
If someone is saying: "Please help Jack book a meeting room for 9am-
10am"
Arguments :

(b) Argument Completion

Figure 3: The details of prompts used in Reverse Chain
for API Selection and Argument Completion (when
LLM is chatgpt).

art in-context learning solutions on ChatGPT. Sec- 346

tion 4.2, details a set of ablation experiments de- 347

signed to elucidate the underlying principles of 348

Reverse Chain. Finally, Section 4.3 analyzes the 349

factors contributing to the effectiveness of Reverse 350

Chain. 351

Dataset We construct a dataset for evaluating 352

compositional multi-tool tasks. Guided by the self- 353

instruc paradigm (Wang et al., 2022), this dataset 354

is generated automatically based on GPT-4 and 355

ChatGPT (gpt-3.5-turbo), involving the following 356

steps: 357

1. Initially, APIs are selected from public repos- 358

itories, including API-Bank (Li et al., 2023) 359

and public-apis1. We then manually create 360

20 diverse seed examples for compositional 361

multi-tool task, each comprising three compo- 362

nents: {API and its description, User query, 363

System response}. A specific seed example is 364

detailed in Figure 4 in Appendix A.1 . 365

2. These seed instances serve as in-context ex- 366

amples for GPT-4, so as to generating more 367

complex new samples. The prompts for GPT- 368

4 are detailed in Figure 6 in Appendix A.2, 369

1https://github.com/public-apis/public-apis
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include a general description of the task, a370

randomly chosen seed example, and a pre-371

scribed response format. Then we conduct372

manual quality checks to filter out erroneous373

samples, achieving a 50% filtration rate. The374

high-quality samples produced are used as375

new seed examples for further data collection,376

repeating the process multiple times. To en-377

hance dataset diversity, GPT-4’s temperature378

is set at 0.8.379

3. Additionally, we employ ChatGPT to enhance380

API information and uniformly standardize381

the samples into a JSON format. A detailed382

example is in the Figure 5 in Appendix A.1.383

Each sample includes fields: {APIs, Query,384

Label}, with each API in APIs represented385

as a JSON object with fields: {name, descrip-386

tion, arguments, output, format}. Notably,387

the fields {arguments, output, and format} are388

generated by leveraging existing information.389

The prompt for this is outlined in Figure 7390

Appendix A.2.391

It’s worth mentioning that the dataset comprises392

825 unique APIs across 20 categories, totaling393

1550 labeled instances, with the categories detailed394

in Table 7 in Appendix A.1. Focused on composi-395

tional multi-tool tasks, the samples are classified396

into three levels based on API nesting complex-397

ity: Level-1, two levels of API nesting, containing398

798 instances; Level-2, three levels of API nesting,399

containing 693 instances; and Level-3, more than400

four levels of API nesting, containing 59 instances.401

Each Instance has an average of 2.93 function calls.402

It is clear that this synthetic dataset is suitable403

for evaluation since: 1. Automated data generation404

guarantees unbiased data; 2. The APIs are spread405

across diverse domains, accurately reflecting real-406

world situations; 3. The inclusion of various nest-407

ing levels in compositional multi-tool tasks ensures408

a rich diversity.409

Baseline To benchmark Reverse Chain, we mea-410

sure its performance against five other in-context411

learning methods: Zero-Shot, Few-Shot, Zero-412

Shot-CoT, Few-Shot-CoT, and ReAct, using413

ChatGPT as the underlying LLM. Each method414

integrates API data into the prompt, utilizing the415

LLM’s in-context learning for API planning. The416

Zero-Shot approach uses API information and user417

queries in the prompt, Few-Shot adds extra exam-418

ples to prompt. Zero-Shot-CoT includes step-by-419

step instructions, while Few-Shot-CoT adds ex-420

planations to these steps in the examples. ReAct, 421

implemented via the langchain framework, uses a 422

(thought, action, observation) format for task exe- 423

cution. Examples of prompts for these methods can 424

be found in the Appendix A.3. Experiments are 425

conducted on two LLMs: GPT-3.5-turbo at the gpt- 426

3.5-turbo-0301 checkpoint with the temperature set 427

to 0.1. 428

Metrics We use accuracy as a metric to evalu- 429

ate API planning, which consists of two aspects: 430

API name and API arguments. The value of argu- 431

ment consists of direct value filling or another API 432

calling. 433

Given the diversity of output formats across so- 434

lutions, we rule out simple string matching due 435

to its inefficiency and manual annotation for its 436

time-consuming nature. Instead, we craft an effi- 437

cient automated evaluator using GPT-4. Tailored 438

prompts are designed for each baseline method 439

to match its output characteristics. The prompts 440

are presented in Appendix A.4. We manually test 441

200 samples, comparing human annotations with 442

GPT-4 evaluations, and discover that the GPT-4 443

evaluator exhibits a strong 89% correlation with 444

human assessments. 445

4.1 Main Results 446

Throughout the experiments, the given API candi- 447

dates set in prompt only includes the needed APIs 448

for a given task since the focus of this paper is pri- 449

marily on evaluating the capability of LLMs on gen- 450

erating a proper API calling rather than the retrieval 451

of API. Table 2 compares the accuracy of different 452

in-context learning methods. Under a Zero-Shot 453

setting, the LLM’s API planning accuracy stands at 454

approximately 68.97%. Although Few-Shot meth- 455

ods raises this to 81.87%, the addition of Chains 456

of Thought (CoT) further elevates performance to 457

87.16% in Few-Shot-CoT, which indicates the ben- 458

efit of decomposing complex tasks. The ReAct 459

strategy, with its reasoning-action-observation ap- 460

proach, also improves upon the zero-shot method. 461

However, the standout performer is the Reverse 462

Chain method, which surpasses all others by sim- 463

plifying the multi-API calling problem into two eas- 464

ier tasks (API Selection and Argument Completion) 465

and adopting a target-driven approach, thereby min- 466

imizing uncertainty. Impressively, Reverse Chain 467

achieves superior results even in a zero-shot con- 468

text surpassing both the Few-Shot-CoT and Few- 469

Shot methods. Additionally, Table 2 displays re- 470

sults across different levels of API planning where 471
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Method level 1 level 2 level 3 Overall
Zero-Shot 72.06 67.68 42.37 68.97
Few-Shot 86.46 77.48 71.18 81.87

Zero-Shot-CoT 82.45 81.38 57.62 81.29
Few-Shot-CoT 89.72 85.71 66.10 87.16

ReAct 72.68 69.11 45.76 70.06
Reverse Chain 93.99 90.33 86.44 92.06

Table 2: Evaluation results on various in-context learn-
ing methods. We can observe that the proposed Reverse
Chain outperforms all other approaches.

higher levels indicates greater difficulty. As ex-472

pected, all methods exhibit increased error rates as473

the complexity of API planning escalates. In these474

more challenging scenarios, the Reverse Chain ap-475

proach demonstrates a more pronounced improve-476

ment compared to other methods. This significant477

gap underscores its robustness and effectiveness in478

handling complex multi-API calling tasks.479

4.2 Ablation Study480

In this section, we mainly focus on exploring the481

impact of creativity of LLMs and different argu-482

ment completion strategies on the performance of483

Reverse Chain. The experiments are conducted on484

GPT-3.5-turbo.485

4.2.1 Creativity and imagination of LLMs on486

Reverse Chain487

We first investigate the impact of LLM’s tempera-488

ture on Reverse Chain. Temperature controls the489

randomness of the LLM’s output. A lower tem-490

perature results in more focused and deterministic491

responses, while a higher temperature generates492

more diverse and creative answers. Table 3 shows493

that Reverse Chain performs better at lower tem-494

peratures, with accuracy decreasing when it seeks495

more creative responses. It makes sense as we re-496

quire LLM to make rational and accurate decisions.497

Method level 1 level 2 level 3 Overall
T=0.1 93.99 90.33 86.44 92.06
T=0.5 78.45 59.88 59.32 69.42
T=1 69.80 50.50 49.15 60.39

Table 3: The impact of different temperatures of LLMs
on the performance of Reverse Chain. T represents the
temperature of ChatGPT

4.2.2 Argument Completion Optimization498

In this part, a series of ablation studies are per-499

formed to examine various optimizations during500

Reverse Chain 92.06
Reverse Chain_one-by-one 74.19
Reverse Chain_three-step 38.71

Table 4: Ablation study for the design of Argument
Completion in Reverse Chain.

the development of the Reverse Chain Algorithm. 501

The optimizations discussed there primarily con- 502

centrate on the stage Argument Completion. 503

Reverse Chain_one-by-one In the existing Re- 504

verse Chain method, LLMs simultaneously extracts 505

all argument results. An alternative strategy in- 506

volves processing each argument completion se- 507

quentially, a method we term Reverse Chain_one- 508

by-one. For instance, the API FlightBooking has 509

two arguments: departure_point and destination. 510

While the standard Reverse Chain completes both 511

departure_point and destination arguments concur- 512

rently, Reverse Chain_one-by-one first fills the ar- 513

gument departure_point, followed by the destina- 514

tion. 515

Table 4 shows that Reverse Chain achieves a 516

92.06% accuracy, surpassing Reverse Chain_one- 517

by-one’s 74.19%. The performance disparity arises 518

because the LLM in Reverse Chain can access to 519

all information about unfilled arguments during the 520

argument completion process. This comprehensive 521

insight enables more precise and accurate argument 522

filling. Consider the API example FlightBooking 523

with the user query: “help me book a flight from 524

London to Los Angeles”, Table 5 demonstrates that 525

in Reverse Chain_one-by-one, both arguments mis- 526

takenly extract the value ‘London’, as the LLM 527

interprets the query’s location as the destination. 528

Conversely, Reverse Chain, recognizing two sepa- 529

rate arguments for departure_point and destination, 530

accurately distinguishes between the two locations 531

in the query. 532

In addition to its superior performance, Reverse 533

Chain is also more efficient in terms of time and 534

computational resources since it only requires one 535

interaction with the LLM. 536

departure destination
One-by-one London London (wrong)

Reverse Chain London Los Angeles

Table 5: Examples of Reverse Chain_one-by-one and
Reverse Chain
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Wrong Final Tool Wrong Argument
Zero-Shot 33 132
Few-Shot 29 75

Zero-Shot-CoT 36 68
Few-Shot-CoT 22 58

ReAct 91 70
Reverse Chain 20 40

Table 6: Error cause statistics all methods.

Reverse Chain_three-step Here is an example:537

user query is “help Jack book a meeting room”,538

requiring the filling of the person_ID argument for539

the API BookRoom. In the Argument Completion540

step of standard Reverse Chain, both the query and541

API candidate sets are available to the LLM, en-542

abling direct value extraction from the query or API543

selection. However, in the Reverse Chain_three-544

step setting, argument completion is further split545

into two steps: initially, the LLM is given only the546

query for value extraction, potentially returning the547

extracted value or ‘None’. If ‘None’ is returned,548

then it will move to API selection, choosing from549

the API candidate set.550

Table 4 reveals that Reverse Chain_three-step551

attains just a 38.71% accuracy rate. This is mainly552

due to the absence of API information during the553

value extraction step, often leading to forced ex-554

traction of incorrect values even when certainty555

is low. In the given example, the LLM mistak-556

enly identifies ‘Jack’ as the person_ID value. This557

confusion is not surprising given the vague nature558

of the person_id concept. However, with API in-559

formation, the LLM can discern between using560

APIs or forcibly extracting values, thus enhanc-561

ing accuracy. For instance, the LLM might find562

that person_ID is retrievable through the API Per-563

sonName2ID, and consequently, it disregards the564

erroneously extracted ‘Jack’.565

4.3 Why Reverse Chain works?566

In this section, we dissect common errors in API567

planning and illustrate how the Reverse Chain568

method mitigates them for improved results. We569

categorize the errors, identify through manual re-570

view, into two primary types, Wrong Final Tool571

and Wrong Argument, detailed in Table 6. This572

statistics is done on 500 randomly sampled in-573

stances.574

Wrong Final Tool arises when the final API575

is missing, leading to incorrect API termination576

and incomplete instructions. This error is preva-577

lent across all comparison methods due to their578

tendency to plan from the scratch, increases the579

likelihood of deviating from the final goal. Partic-580

ularly, ReAct is more susceptible to this mistake 581

because of its thought-action-observation approach 582

that lacks global planning. Reverse Chain, by plan- 583

ning based on the final goal, minimizes this error, 584

except when the query’s ultimate intention is am- 585

biguous. 586

The second error, Wrong Argument, predom- 587

inates in planning methods, can be further cate- 588

gorized into Wrong Argument_API and Wrong 589

Argument_Value. Wrong Argument_API error 590

occurs when a required argument is the output 591

of another API, but the predicted result bypasses 592

this API, filling in an incorrect value. For in- 593

stance, the correct argument is person_ID = Per- 594

sonName2ID (name=‘Jack’), but the prediction in- 595

accurately inputs person_ID=‘Jack’. This error of- 596

ten results from mistakes in the intermediate plan- 597

ning steps. In Reverse Chain’s argument comple- 598

tion phase, using the optimization approach from 599

Section 4.2.2, these errors can be greatly reduced, 600

which allows the LLM to choose between using 601

the API or extracting the argument value. Wrong 602

Argument_Value involves extracting incorrect val- 603

ues for the argument. Specific cases and optimiza- 604

tion strategies for Reverse Chain are discussed dis- 605

cussed in Section 4.2.2. 606

5 Conclusion 607

This paper proposed Reverse Chain, a concise, 608

target-driven approach developed to empower 609

LLMs with the capability to interact with exter- 610

nal APIs in an in-context learning setting. By im- 611

plementing a backward reasoning strategy and a 612

generic rule, Reverse Chain effectively broke down 613

complex function-calling challenges into two fun- 614

damental tasks for LLMs: API selection and ar- 615

gument completion. Additionally, we collected a 616

compositional multi-tool dataset for evaluation. Ex- 617

tensive experiments revealed that Reverse Chain 618

markably enhances the tool-use proficiency of the 619

existing LLM ChatGPT, achieving superior perfor- 620

mance compared to methods like CoT and ReAct. 621

Although the current work concentrates on com- 622

positional multi-tool tasks, it can also be easily ex- 623

tended to other types of tasks. For instance, in the 624

case of independent multi-tool tasks, after identify- 625

ing sub-intents at the beginning of the task (known 626

as Intent Detection, a well-established problem in 627

NLP with numerous robust solutions), we could 628

employ the reverse chain process for each identi- 629

fied sub-task separately. 630
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6 Limitations631

We identify some limitations with our current work632

that can be addressed in future work.633

• The in-context learning approach generally634

struggles with handling a large number of API635

candidates due to length limitations. A solu-636

tion similar to the one in (Qin et al., 2023),637

which involves adding a retrieval module at638

the beginning of the pipeline, can be adopted.639

• While our demonstration shows that Reverse640

Chain surpasses other in-context learning641

methods in performance, it does require more642

calls to the LLM. This highlights a trade-off643

between performance enhancement and in-644

creased computational resource use.645
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A Appendix762

A.1 Sample in dataset763

In this section, we show the details of the dataset.764

Figure 4 is an example among the 20 diverse seed765

examples designed by human. Figure 5 is an exam-766

ple in the dataset of final version. The category and767

examples of APIs are listed Table 7.768

A.2 Prompts for dataset construction769

In this section, we show the details of prompt tem-770

plates in data construction. Figure 6 is the prompt771

of new sample generation for GPT-4. Figure 7 is772

the prompt of format conversion for ChatGPT.773

A.3 Prompts for baseline methods774

The prompt for baseline methods are listed in Fig-775

ure 8, Figure 9, Figure 10 and Figure 11.776

A.4 Prompts for evaluation777

Following the evaluation method used by (Tang778

et al., 2023), We use GPT-4 as our evaluator. The779

evaluation prompts for different methods are shown780

in Figure 12, 13, 14, 15,16,17. It should be noted781

that prior to conducting the ReAct evaluation, it is782

necessary to preprocess the answer to extract the783

function callings.784
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Dataset - Seed example

[API and API description]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name 
to user ID.
CampusName2ID(campus_name) -> campus_ID. This API is to convert campus 
name to campus_name ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting 
rooms. This API is to book a meeting room.

[User query]: 
Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this 
morning

[System response]: 
BookRoom(person_ID=PersonName2ID(person_name='Jack’),
campus_ID=CampusName2ID(campus_name='TowerCenter'),
start_time='9am',end_time='10am')

Figure 4: An example of seed example.

Category example APIs
Geocoding GetDirections,GetUserDietaryRestrictions, DistanceCalculator

Weather GPS2Weather,WeatherVerification
Book AddBookToReadingList,BooksByAuthor

Transportation FlightBooking,FindFlightByDestination
Music AddSongToPlaylist,MusicConcert

Food & Drink SearchRestaurant,TableReservation,RestaurantReviews
Entertainment CinemaShowtimes,MovieReview, TheatrePlay

Shopping FindProductId,NearestStore, ComparePrices
Health GetExerciseRoutine,NearbyHospitalQuery,GetHealthInformation
Travel SearchHotel,CheckBaggageAllowance,PlanTrip

Database CheckInventory,DateConversion
Calculator TaxCostCalculator,CalculateCalorie

Email UserEmail2UserId,SendReview
Finance InvestmentSuggestion,CountryTaxRate,

Convertor User2Age,HotelName2ID
Clothes SelectOutfit,OutfitSuggestion,FindClothingType
Time ConvertTime,GetEventCalendar

Activity ActivityBook,PlanDayOut
Currency Exchange CurrencyConversion,GetExchangeRate

Search GetCurrentFuelPrice,ProductSearch

Table 7: Domain distribution and examples of APIs in our dataset.
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Dataset – Sample

{
"APIs": [

{
"name": "CheckWeather",
"Description": "This API checks the weather of a specific location.",
"input_params": {

"location": {
"description": "the specific location",
"type": "String"

}
},
"output_params": {

"weather": {
"description": "the weather at the specific location",
"type": "String"

}
},
"format": "CheckWeather(location) -> weather"

},
{

"name": "SelectOutfit",
"Description": "This API selects an appropriate outfit based on the weather and 

occasion.",
"input_params": {

"weather": {
"description": "the weather condition",
"type": "String"

},
"occasion": {

"description": "the occasion",
"type": "String"

}
},
"output_params": {

"outfit": {
"description": "the recommended outfit",
"type": "String"

}
},
"format": "SelectOutfit(weather, occasion) -> outfit"

}
],
"Query": "I'm attending a birthday party in San Francisco tomorrow, what should I 

wear?",
"Label": "SelectOutfit(weather=CheckWeather(location='San Francisco'), 

occasion='birthday party’)”,
},

Figure 5: An example of sample in dataset.13



Dataset Construction –
Sample Generation Prompt 

Your task is to first generate multiple APIs with their descriptions, and then generate a pair of
user query and the corresponding label only using the predefined APIs in a nested manner,
which means the output of one API is the input of another API. Note that for each user query,
system response had better employ at least three APIs. Here is an example:

Example:
[API and API descriptions]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name to user ID.
CampusName2ID(campus_name) -> campus_ID. This API is to convert campus name to
campus_name ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting rooms. This API is to
book a meeting room.
[User query]:
Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this morning
[System response]:
BookRoom(person_ID=PersonName2ID(person_name='Jack'),
campus_ID=CampusName2ID(campus_name='TowerCenter'),
start_time='9am',end_time='10am')

Given above example, please assume you are a professional assistant who generate multiple
reasonable APIs with their descriptions (not limited to above mentioned ones), User query
and system response using at least three APIs in a nested manner. Let's take a deep breadth
and start generating APIs with their descriptions, user query and the corresponding system
response using APIs in a nested manner. please give 2 different answers.
your answer should strictly follow the format:
answer1:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxx

answer2:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxx

your answer:

Figure 6: Prompt for new sample generation.
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Dataset Construction –
Format Conversion Prompt 

There are some APIs, related query and system response below. Please follow the format in the
example, add the detailed infomation of "input_params" and "output_params" to the APIs, the
detailed information includes the description and the type of the parameter. please return in a Json
format.

Example:
[input]:
[API and API descriptions]:
PersonName2ID(person_name) -> person_ID. This API is to convert user name to user ID.
RoomName2ID(room_name) -> room_ID. This API is to convert room name to room ID.
BookRoom(person_ID,room_ID,start_time,end_time) -> a list of meeting rooms. This API is to book a
meeting room.
[User query]:
Please help Jack book a meeting room at TowerCenter room from 9:00 to 10:00 this morning
[System response]:
BookRoom(person_ID=PersonName2ID(person_name='Jack'),
room_ID=RoomName2ID(room_name='TowerCenter'), start_time='9am',end_time='10am')

[output]:
{ "APIs": [

{"name": "PersonName2ID", "Description": "This API is to convert user name to user ID.",
"input_params": {"person_name": {"description": "the name of the person", "type": "String"}},
"output_params": {"person_ID": {"description": "the ID of the person","type": "Integer"}},
"format": "PersonName2ID(person_name) -> person_ID"},
{"name": "RoomName2ID","Description": "This API is to convert room name to room ID.",
"input_params": {"room_name": {"description": "the name of the room","type": "String"}},
"output_params": {"room_ID": {"description": "the ID of the room","type": "Integer"}},
"format": "RoomName2ID(room_name) -> room_ID"},
{"name": "BookRoom","Description": "This API is to book a meeting room.",
"input_params": {"person_ID": {"description": "the ID of the person","type": "Integer"},

"room_ID": {"description": "the ID of the room","type": "Integer"},
"start_time": {"description": "the start time of the meet","type": "Time"},
"end_time": {"description": "the end time of the meet","type": "Time"}},

"output_params": {"booking status": {"description": "the status of the booking","type":
"String"}},

"format": "BookRoom(person_ID,room_ID,start_time,end_time)-> booking status."}
],
"Query": "Please help Jack book a meeting room at TowerCenter from 9:00 to 10:00 this morning",
"Label":"BookRoom(person_ID=PersonName2ID(person_name='Jack'),room_ID=RoomName2ID

(room_name='TowerCenter'), start_time='9am',end_time='10am')"
}

Please note that parameter types include Strings, Integer, Floats, Time, Dates, etc., and can be
determined based on actual meanings. If the output of API 1 is the input of API 2, the type of the
output parameter of your API 1 and the type of the corresponding input parameter in API 2 are the
same.

now let's start with new case:
[API and API descriptions]:
xxx
[User query]:
xxx
[System response]:
xxxx

your answer, only return json format, don't generate any other content:

Figure 7: Prompt for Json format conversion.15



We have the following functions. Please return function calling according to user instruction with the following
format.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling:

Zero-Shot Prompt

Figure 8: Prompt for Zero-Shot method.

We have a list of APIs. Please return function calling according to user instruction.

Here is an example :

APIs:
{"Name": "MakeAppointment", "Description": "This API is to make an appointment.", "input_params":
{"hospital_name": {"description": "hospital name", "type": "String"}, "department_name": {"description":
"department name", "type": "String"}}, "output_params": {"appointment_status": {"description": "the status of
the appointment", "type": "String"}}, "format": "MakeAppointment(hospital_name, department_name) ->
appointment status"}
{"Name": "GetDepartment", "Description": "This API is to find the corresponding department given user
symptom.", "input_params": {"symptom": {"description": "patient's symptom", "type": "String"}},
"output_params": {"department_name": {"description": "department name", "type": "String"}}, "format":
"GetDepartment(symptom) -> department_name"}

user instruction: I'm in zheyi hospital, I have a stomachache and want to make an appointment to see a doctor.
function calling: MakeAppointment (hospital_name='zheyi', department_name= GetDepartment (symptom =
'stomachache')) "

Given above example, Please generate function calling according to user instruction and the given apis.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling,the format must be the same as example:

Few-Shot Prompt

Figure 9: Prompt for Few-Shot method.

We have the following functions. Please return function calling according to user instruction with the following
format.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling, let's think step by step:

Zero-Shot-CoT Prompt

Figure 10: Prompt for Zero-Shot-CoT method.
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We have a list of APIs. Please return function calling according to user instruction.

Here is an example :

APIs:
{"Name": "MakeAppointment", "Description": "This API is to make an appointment.", "input_params":
{"hospital_name": {"description": "hospital name", "type": "String"}, "department_name": {"description":
"department name", "type": "String"}}, "output_params": {"appointment_status": {"description": "the status of
the appointment", "type": "String"}}, "format": "MakeAppointment(hospital_name, department_name) ->
appointment status"}
{"Name": "GetDepartment", "Description": "This API is to find the corresponding department given user
symptom.", "input_params": {"symptom": {"description": "patient's symptom", "type": "String"}},
"output_params": {"department_name": {"description": "department name", "type": "String"}}, "format":
"GetDepartment(symptom) -> department_name"}

user instruction: I'm in zheyi hospital, I have a stomachache and want to make an appointment to see a doctor.
thought:
1. you choose the API named 'GetDepartment', the value for reqiured parameter 'symptom' is 'stomachache',

then you will get the output parameter department_name.
2. then you get hospital_name='zheyi'.
3. Finally, you choose the API named 'MakeAppointment'.

so the function calling:
MakeAppointment (hospital_name='zheyi', department_name= GetDepartment (symptom = 'stomachache')) "

Given above example, Please generate function calling according to user instruction and the given apis.
APIs: {api info}
user instruction: {user instruction}
please generate the function calling,the format must be the same as example:

Few-Shot-CoT Prompt

Figure 11: Prompt for Few-Shot-CoT method.
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Evaluation–
Prompt for Reverse Chain 

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
When comparing, pay attention to the relationships between APIs and the values of parameters. If
they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**. Please follow these rules specifically:
1. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
2. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
3. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00,etc. can be
ignored.

Query:
Xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 12: Prompt for evaluation for Reverse Chain.
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Evaluation–
Prompt for Zero-Shot

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, so when comparing, only pay
attention to the relationships between APIs and the values of parameters. If they are the same as the
Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct
[Label]
AddSongToPlaylist(playlist_ID=PlaylistName2ID(playlist_name='Best Songs'),

song_ID=SongName2ID(song_name='Imagine'))
[Answer]
PlaylistName2ID("Best Songs") -> playlist_ID
SongName2ID("Imagine") -> song_ID
AddSongToPlaylist(playlist_ID, song_ID) -> song_status

First, execute API PlaylistName2ID to obtain playlist_ID, then execute API SongName2ID to obtain
song_ID, and finally execute API AddSongToPlaylist. Since the parameter values of each API are
correct, it is considered correct.

2. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, etc. can be ignored.

Query:
xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 13: Prompt for evaluation for Zero-Shot.
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Evaluation–
Prompt for Few-Shot

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, so when comparing, only pay
attention to the relationships between APIs and the values of parameters. If they are the same as the
Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct
[Label]
BuyMovieTickets(show_time=MovieShowtimes(movie_name=FindMovie(genre='romantic'),

city='San Francisco'), movie_name=FindMovie(genre='romantic'), seats=2)
[Answer]
FindMovie(genre='romantic'), MovieShowtimes(movie_name=FindMovie(genre='romantic'),

city='San Francisco') -> show_time,
BuyMovieTickets(show_time=MovieShowtimes(movie_name=FindMovie(genre='romantic'),
city='San Francisco'), movie_name=FindMovie(genre='romantic'), seats=2) -> booking_status
First, execute API FindMovie to obtain movie_name, then execute API MovieShowtimes to obtain

show_time, and finally execute API BuyMovieTickets. Since the parameter values of each API are
correct, it is considered correct.

2. Check if Answer contains all the APIs that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00, etc. can be
ignored.

Query:
xxx
Label:
xxx
Answer:
Xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 14: Prompt for evaluation for Few-Shot.
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Evaluation–
Prompt for Zero-Shot-CoT

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with reference to
the Label.
Please note that the format of answer is not fixed as that of label, answer may include step-by-step thoughts and
final function calling, so when comparing, only pay attention to the relationships between APIs and the values of
parameters. If they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations are considered
correct:

1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") -> playlist_songs
In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the parameter values

are correct, thus it is considered correct.
1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct, such as:
[Label] SetAlarm(timezone=GeoLocation2TimeZone(geolocation=GetUserGeolocation(user_name='Daniel')),

time='5:30am')
[Answer]
Step 1: Get the user's geolocation
Function calling: GetUserGeolocation("Daniel") -> user_geolocation
Step 2: Convert the geolocation to timezone

Function calling: GeoLocation2TimeZone(user_geolocation) -> timezone
Step 3: Set the alarm in the specified timezone
Function calling: SetAlarm(timezone, "5:30am") -> alarm_status
In this case, first, execute API GetUserGeolocation to obtain user_geolocation, then execute API

GeoLocation2TimeZone to obtain timezone, and finally execute API SetAlarm. Since the parameter values of each
API are correct, it is considered correct.

2. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is incorrect.
3. Function calling must include explicit API names and must match those in the label to be considered correct.
answer in the following example lacks explicit API names, so it is considered incorrect：
    [Label]

AddSongToPlaylist(user_ID=UserName2ID(user_name='Olivia'), playlist_ID=PlaylistName2ID(playlist_name='90s
Nostalgia'), song_name='Smooth Criminal')

[Answer]:
1. Get the user ID of Olivia
2. Get the ID of the '90s Nostalgia' playlist
3. Add 'smooth Criminal' to the playlist
Please generate the function calling according to the user instruction.
Please note that the input and output parameters of the functions are just examples, and the actual parameters

may vary depending on the specific implementation of the API.

4. Verify if the relationships between APIs in answer are the same as in the label. If different, the result is incorrect.
5. Verify whether each input parameter for API in answer has a value, if there is no value, consider it incorrect.
6. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the same, the result
is incorrect. However, Please note that some minor differences, such as spaces, capitalization, different format but
the same meaning, such as time 7am and 7:00:00, etc. can be ignored.

Query:
XXX
Label:
XXX
Answer:
XXX

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and 'correctness' fields,
respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 15: Prompt for evaluation for Zero-Shot-CoT.21



Evaluation–
Prompt for Few-Shot-CoT

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with
reference to the Label.
Please note that the format of answer is not fixed as that of label, In general, answer consists of two
components: thought and function calling. You only need to focus on whether the function calling
part is correct.
when comparing, only pay attention to the relationships between APIs and the values of parameters.
If they are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for
correct, 0 for incorrect)**.
Please follow these rules specifically:
1. The format of the answer is not a criterion for correctness. For instance, the following situations
are considered correct:
1.1 Missing the names of parameters, but not missing the parameter values, such as:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Emily'),

playlist_ID=PlaylistName2ID(playlist_name='Classic Disco Hits'), song_name='Billie Jean')
[Answer]
AddSongToPlaylist(UserName2ID("Emily"), PlaylistName2ID("Classic Disco Hits"), "Billie Jean") ->

playlist_songs

In the Answer, it lacks the input parameter names user_ID, playlist_ID, playlist_name, but the
parameter values are correct, thus it is considered correct.

1.2 Splitting the execution of APIs, and the calling relationships between the APIs are correct, such
as:
[Label]

SetAlarm(timezone=GeoLocation2TimeZone(geolocation=GetUserGeolocation(user_name='Daniel')),
time='5:30am')
[Answer]
GetUserGeolocation(user_name='Daniel') ->geolocation
GeoLocation2TimeZone(geolocation) ->timezone
SetAlarm(timezone,time='5:30am') -> alarm_status
In this case, first, execute API GetUserGeolocation to obtain geolocation, then execute API

GeoLocation2TimeZone to obtain timezone, and finally execute API SetAlarm. Since the parameter
values of each API are correct, it is considered correct.

2. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is
incorrect.
3. Verify if the relationships between APIs in answer are the same as in the label. If different, the
result is incorrect.
4. Verify whether each input parameter for API in answer has a value, if there is no value, consider it
incorrect.
5. Confirm if the input parameter values for APIs in answer are the same as in the label. If not the
same, the result is incorrect. However, Please note that some minor differences, such as spaces,
capitalization, different format but the same meaning, such as time 7am and 7:00:00, etc. can be
ignored.

Query:
xxx
Label:
xxx
Answer:
xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and
'correctness' fields, respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 16: Prompt for evaluation for Few-Shot-CoT.22



Evaluation–
Prompt for ReAct

Given the Query,Label and Answer, please check the correctness of the API planning in Answer with reference to the
Label.
Please note that the format of answer is not fixed as that of label, and the format of the answer is not a criterion for
correctness.when comparing, only pay attention to the relationships between APIs and the values of parameters. If they
are the same as the Label, consider it correct; if different, consider it incorrect **(return 1 for correct, 0 for incorrect)**.
Typically, the format of the answer follows the execution of the split API, following is a correct case:
[Label]
AddSongToPlaylist(user_ID=UserName2ID(user_name='Jack'), playlist_ID=PlaylistName2ID(playlist_name='Party Mix'),

song_name='Havana')
[Answer]
UserName2ID( "user_name": "Jack" )
PlaylistName2ID( "playlist_name": "Party Mix" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Havana")

In this case, first, execute API UserName2ID to obtain user_ID, then execute API PlaylistName2ID to obtain playlist_ID,
and finally execute API AddSongToPlaylist. Since the parameter values of each API are correct(from the other previous API
or obatined directly), it is considered correct.

Please follow these rules specifically:

1. Check if Answer contains all the API that appear in the Label. If any API is missing, the result is incorrect.
2. Verify if the relationships between APIs in answer are the same as in the label. If different, the result is incorrect.
3. Check whether each input parameter for API in answer are mentioned, if some parameters is missed, consider it
incorrect.
4. There are two possibilities for value of input parameter, both of them are considered as correct: one is a valid value
directly extracted from the query (this case is judged according to rule 3.1), and the other is a placeholder or descriptive
text (this case is judged according to rule 3.2).
4.1 For the former, confirm if the input parameter values for APIs in answer are the same as in the label. If not the

same, the result is incorrect. However, Please note that some minor differences, such as spaces, capitalization, different
format but the same meaning, such as time 7am and 7:00:00, etc. can be ignored.
4.2 For the latter case for placeholder, the answer is also correct. For example:
[Label]:
AddSongToPlaylist(user_ID=UserName2ID(user_name='Olivia'), playlist_ID=PlaylistName2ID(playlist_name='90s

Nostalgia'), song_name='Smooth Criminal')
[Answer]:
UserName2ID( "user_name": "Olivia" )
PlaylistName2ID( "playlist_name": "90s Nostalgia" )
AddSongToPlaylist( "user_ID": "Olivia's user ID", "playlist_ID": "90s Nostalgia playlist ID", "song_name": "smooth

Criminal" )

In this case, the values 'Olivia's user ID' and '90s Nostalgia playlist ID' in the AddSongToPlaylist API call are placeholders
or descriptive texts, however, the value of these two placeholders can be obtained from the previously executed APIs,
UserName2ID and PlaylistName2ID, therefore, it is considered correct.

5. When an API is repeatedly mentioned in the answer, it is considered correct as long as it is executed correctly at least
once. For example:

[label]:
AddSongToPlaylist(user_ID=UserName2ID(user_name='Sophia'), playlist_ID=PlaylistName2ID(playlist_name='Jazz

Legends'), song_name='Let It Be')

[answer]:
UserName2ID( "user_name": "Sophia" )
PlaylistName2ID( "playlist_name": "Jazz Legends" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Let It Be" )
AddSongToPlaylist( "user_ID": "user_ID", "playlist_ID": "playlist_ID", "song_name": "Let It Be" )

in this case, the API AddSongToPlaylist is executed twice, and it is recognized as correct since this API is executed
correctly.

Query:
xxx
Label:
xxx
Answer:
xxx

Now give your reason and your answer in JSON format. Correspond them to the 'reason' and 'correctness' fields,
respectively. If the answer is incorrect, then write the violated rule in the reason.

Figure 17: Prompt for evaluation for ReAct.23
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