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Abstract

Despite Large Language Models’ remarkable capabilities, understanding their
internal representations remains challenging. Mechanistic interpretability tools
such as sparse autoencoders (SAEs) were developed to extract interpretable fea-
tures from LLMs but lack temporal dependency modeling, instantaneous relation
representation, and more importantly theoretical guarantees—undermining both
the theoretical foundations and the practical confidence necessary for subsequent
analyses. While causal representation learning (CRL) offers theoretically-grounded
approaches for uncovering latent concepts, existing methods cannot scale to LLMs’
rich conceptual space due to inefficient computation. To bridge the gap, we intro-
duce an identifiable temporal causal representation learning framework specifically
designed for LLMs’ high-dimensional concept space, capturing both time-delayed
and instantaneous causal relations. Our approach provides theoretical guaran-
tees and demonstrates efficacy on synthetic datasets scaled to match real-world
complexity. By extending SAE techniques with our temporal causal framework,
we successfully discover meaningful concept relationships in LLM activations.
Our findings show that modeling both temporal and instantaneous conceptual
relationships advances the interpretability of LLMs.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language tasks, from question answering to content generation. Despite these achievements, a
fundamental understanding of their internal representations remains underexplored. This gap between
performance and interpretability poses significant challenges for ensuring the reliability, safety, and
appropriate deployment of these increasingly powerful systems [48].

Mechanistic interpretability (MI) aims to bridge this gap by reverse-engineering neural networks to
understand how they process and represent information [14]. Among all MI tools, sparse autoencoders
(SAEs) have emerged as a promising approach for extracting interpretable features from LLMs
[14, 54]. By decomposing the high-dimensional activations of LLMs into sparse, monosemantic
features, SAEs help identify the basic units of computation within these complex systems. However,
SAE:s present several limitations that restrict their utility for comprehensive model understanding:

First, SAEs treat each feature as an isolated representation, failing to capture how features influence
one another. This omission disregards semantic connections and transitions within a sequence,
which are known as temporal or time-delayed relationships between feature§| Second, SAEs lack
mechanisms to represent instantaneous or logical relationships between features, such as mutual

"Equal contribution.
*Alternative approaches, such as [1}[31]], use attention scores from the LLM to infer time-delayed influence.
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exclusivity or co-occurrence constraints [33]]. These relationships complement the temporal dynamics
by encoding structural dependencies within the same time step. Third, and most critically, SAEs
offer no theoretical guarantees of the uniqueness of the recovered features. This absence undermines
confidence that the extracted features reflect meaningful and stable latent variables, rather than
arbitrary or unstable transformations [56].

Fortunately, to address these limitations, the causal representation learning (CRL) community has
proposed a range of promising frameworks with theoretical guarantees [48]]. For instance, [28] and
[32] use sparse causal influence and interventions to uncover temporal and instantaneous relationships
among latent variables. However, these methods face significant scalability challenges due to the
computational inefficiency of estimating Jacobians. As a result, they typically scale to only dozens or
hundreds of concepts [S8]], while interpretability in LLMs demands efficient modeling of thousands or
even tens of thousands of concept features [54]. In summary, although CRL offers strong theoretical
guarantees for recovering meaningful features and their causal relationships, its limited scalability in
high-dimensional settings remains a major obstacle to practical deployment in LLM analysis.

To bridge this gap, in this paper, we introduce a computationally efficient temporal causal repre-
sentation learning framework specifically designed for the high-dimensional activation space in
LLMs. Our approach builds upon recent advances in both sparse autoencoders for LLMs and causal
representation learning for sequential data. The key contributions of our work are:

(1) We propose a simple yet effective framework that jointly models time-delayed causal
relations between concepts and instantaneous constraints, providing a more comprehensive
understanding of how information flows through LLMs.

(2) Leveraging sparsity principle, we establish theoretical guarantees for our approach, making
the representations learned reliable and explainable.

(3) Grounded in the theoretical result, we design scalable and efficient algorithms tailored to
the high-dimensional concept space of LLMs, significantly extending prior work in CRL.

(4) We validate our approach on synthetic datasets scaled to match real-world complexity and
demonstrate its effectiveness when applied to activations from real LLMs.

2 Problem Setting

We begin by characterizing the generation process of LLM
activations to establish interpretability guarantees. These activa-
tions—signals produced during inference—are widely assumed
to be linearly generated from hidden concepts, consistent with
sparse autoencoder (SAE) literature 3l [18]]. However, existing
formulations typically treat these concepts as independent, over-
looking dependencies between them. In reality, earlier-token
semantics often influence later tokens, and token generation de-
pends jointly on the activation of multiple concepts. To account

for these interactions, we introduce a data generation process O" . _ - )
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with both temporal and instantaneous relations, adopting CRL —> Time-delayed
terminology. Given a token sequence s = (vy,...,v), let OObserved Variables — Instantaneous
x; = (%41, - - -, Te,m) be the n-dimensional activation vector at
token v, for a specific layer. Following the linear representation Figure 1: Graphical illustration of
hypothesis [44] and SAE formulation [3| [18]], we assume: the data generation process.

x; = g(241), (H

where g : R™ — R™ is the linear mixing function, and x; and z; are observed and latent variables,
respectively. Besides, each latent variable z; ; is governed by a structural equation model (SEM)
capturing both time-delayed and instantaneous dependencies:

Zti = Z Z Bijrzi—rj+ Z M; iz 5 + €, 2)
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where B; ; . represents the coefficient for the time-delayed effect from z;_- ; to z; ;5 J;  is the set
of indices of latent variables that have a time-delayed effect on z; ; with lag 7; M, ; represents the



coefficient for the instantaneous effect from z; ; to z; ;5 K; is the set of indices of latent variables that
have an instantaneous effect on z; ;; and ¢; ; denotes the temporally and spatially independent noise
extracted from a distribution p.,. The graphical model for this process is illustrated in Figure[I}

To better understand this data generation process in the context of LLLM activations, X; represents
activations in a specific layer [ for token v;, and the latent variables z; can be considered as the
underlying causal factors that generate these activations. In this case, the instantaneous effects
(coefficients M; ;) reflect semantic or syntactic relationships between different latent factors within
the same token, while time-delayed effects (coefficients B; ; -) represent dependencies on previous
tokens. Putting them together, the underlying data generating process can be written as

Xt = g(2t), 2ti= Z Z B jrzt—rj+ Z M;jze 5+ e, i=1,...,m. 3)

Linear mixing 7>0j€i,- JjeEK;

Linear latent temporal SEM
The linear latent temporal SEM in Eq. (3)) induces two types of causal relationships:

* A time-delayed causal graph G, with vertices {2 ;}"_, across different token positions and edges
Zt—7j — z; if and only if B; ; » # 0.

* An instantaneous causal graph G. with vertices {z;;}7 ; at each token position ¢ and edges
zt.; — #; if and only if M; ; # 0.

We assume that G, is acyclic, i.e., a directed acyclic graph (DAG). This implies that the matrix
M can be permuted to be strictly lower triangular, and the conditional distribution of variables
z; given their past values satisfy the Markov property w.r.t. DAG G, [46], i.e., p(z¢|z<t) =

H?:1 P(Zt,z‘ | Pad(zt,i); Pa, (th))

Remark on the Linearity of the Model We acknowledge that the internal mechanisms of LLMs
are inherently nonlinear due to activation functions and attention mechanisms. However, our linear
approach is justified by several considerations. First, many successful mechanistic interpretability
techniques [15, 143} |10, (1} 31] rely on linear representation hypotheses as approximations of localized
network behavior. Second, linear models provide an interpretable bridge between the complexity of
neural networks and human understanding—they serve as simplified yet informative projections of
the underlying causal mechanisms. Third, empirical evidence suggests that linear approximations can
capture significant portions of variance in activations within specific contexts [38, [19]], particularly
when examining feature-to-feature relationships within a layer.

More importantly, existing causal representation learning (CRL) methods cannot efficiently handle
hundreds of latent variables, often encountering out-of-memory issues and prohibitively long compu-
tation times. A detailed discussion of these limitations is presented in Section[5.1] While nonlinear
interactions certainly exist, our linear framework offers a tractable foundation for identifying causal
relationships that can later be extended to incorporate more complex dependencies. This approach
follows the scientific principle of starting with simpler models that capture essential phenomena
before introducing additional complexity.

3 Theoretical Guarantees

Recent work in causal representation learning, especially for time-series data, has advanced to
handle both time-delayed and instantaneous causal relations. Under general assumptions about the
data generation process, strong identifiability results can be established. These include recovering
latent variables up to component-wise transformations and estimating the Markov network up to
isomorphic equivalence. In this section, we first introduce the definition of observational equivalence
and identifiability. Then, we present the identifiability result from [28]], which is established in a
general non-linear setting. We then introduce a stronger identifiability result for the linear data
generation process described in Eq. (3).

Definition 1 (Linear Modification from [59[38]). Ler X = {x1,...,X7} be a sequence of observed
variables generated by the true latent causal processes specified by (A, B,pe) given in Eq. (3).

A learned generative model (A, B, De) is observationally equivalent to (A, B, pe) if the model
distribution p ; B_ﬁe({x}thl) matches the data distribution pa g e)({x}{—,) for any value of



{x}E_,. We say latent causal processes are identifiable if observational equivalence can lead
to a version of the generative process up to a permutation and scaling (linear component-wise
transformation):

Paps. (M) = pasp ({x}o) = A= APD, @
where P is a permutation matrix and D is a diagonal invertible matrix.

Definition 2 (Intimate Neighbor Set [60]]). Consider a Markov network M z over variables set Z,
and the intimate neighbor set of variable Z; is

U, (Z:) 2 {Z; | Z; is adjacent to Z; and is also adjacent to all other neighbors of Z;, Z; € Z\ {Z:}}

Based on the aforementioned definitions, [28]] showed that the latent variables can be identified under
mild assumptions:

Theorem 1 ([28, Theorem 2]). Suppose that the observations are generated by an instantaneous
latent process, and M, is the Markov network over ¢ = {z1_1,24,%2141} € R3". Assume:

* Al (Smooth and Positive Density). The conditional density p(c; | Z;—2) is third-order differentiable
and strictly positive on R3".

* A2 (Sufficient Variability). With | M., | denoting the number of edges in M.,, define

_ [ 9%logp(cilzi—2) 9% log p(ct|z:—2)
w(m) - < 603182,5,2,”1 Y 8c§‘2nazt,2,m

&)

D 2? log p(ce|ze—2) 2? log p(ce|ze—2) fan) 9° log p(ce|zi—2)
0ct,10zt—2,m """ Oct2n0%t—2,m 0cy,i0cy,j0Z4—2,m (i,§)€EE(Me,)
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where @ denotes concatenation operation and (i, j) € E(Me,) denotes all pairwise indice such
that ¢y, ¢y ; are adjacent in Mc,. For every m € {1,...,n} there exist 4n + | M, | distinct
values of zi_a,m such that the resulting w(m) vectors are linearly independent.

* A3 (Sparse Latent Process). For any z;; € 2z, the intimate neighbor set of z; ; is an empty set.

When the observational equivalence is achieved with the minimal number of edges of the estimated
Markov network of Mg,, then we have the following two statements:

(i) The estimated Markov network M, is isomorphic to the ground-truth Markov network Mc,.

(ii) There exists a permutation T of the estimated latent variables and a component-wise transforma-
tion T, such that z;; = T (2 (i) ), L., Zit is component-wise identifiable.

Implication When the underlying structure of latent variables exhibits sparsity (Assumption
A3), the theorem guarantees that these variables can be uniquely identified up to permutation
and component-wise transformation. This theoretical foundation aligns with and validates a key
assumption in the LLM interpretability community: that meaningful concepts in large language
models are characterized by sparse relations and influences.

When we identify latent concepts, the causal relations among them can also be ensured uniquely.

Theorem 2 ([28| Theorem 3]). Suppose that the observations are generated following Theorem![l]
and that M is the Markov network over two consecutive latent variables {z;_1,2;} € R2™. Suppose
that all assumptions for Theorem[I| hold. We further make the following assumption:

» A4 (Non-identical Parents) For any pair of adjacent latent variables z ;, z; j at time step t, their
time-delayed parents are not identical, i.e., Paq(z: ;) # Paq(2, ;).

Then, the causal graph of the latent causal process is identifiable.

Implication: This theorem tells us as long as temporal patterns are unique for different concepts,
such pattern can also be recovered.

Now we already have the theoretical guarantee to recover both latent variables together with their
causal relations, further take the data generation process described in Eq. (3)), we introduce a stronger
version of identifiability in linear case bellow:



Proposition 1 (Identifiability of Latent Variables with Linear Temporal and Instantaneous Relations).
Suppose that the observations are generated with temporal and instantaneous latent process as
described in Eq. (3) with 7 = 1, and M., is the Markov network over ¢; = {24_1,%¢,%¢4+1} € R3™.
Assume the (Al) Smooth and positive density, (A2) Sufficient variability and (A3) Sparse Latent
Process assumptions in Theorem[I|hold true, and the observational equivalence is achieved with the
minimal number of edges of the estimated Markov network of Mg,, then

(i) The estimated Markov network M, is isomorphic to the ground-truth Markov network M, .

(ii) There exists a permutation matrix P and a scaling matrix D of the estimated latent variables,
such that z; is identifiable up to permutation and scaling, i.e., z; = PD 7.

Further assume the (A4) Non-identical time-delayed parents condition in Theorem|2} then the causal
graph of the latent causal process is identifiable.

Time-delayed BE, — I_ndeper_lden.t NP
Proof Sketch  The proof is straightforward by leveraging  Instantaneous )/~ Noise Estimation I c
the result from Theorem T} [2 and applying the linearity of l T "
€

the data generation process. In particular, given the linear
mixing function A, the component-wise transformation — E——
must be linear, which leads to the final results. And the A

multi-lag setting (7 > 1) can also be handled with exten- {x1,%X9,..., X7} +——{%X1,%X9,..., %7}
sions described in Appendix B.2 in [28]. We defer the ) o
complete proof and detailed extensions to the multi-lag  Figure 2: Illustration of estimation pro-
setting to Appendix [A.T] cess. B, represents the learned time-
delayed causal relation and M is the in-
stantaneous causal relation.
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4 Implementation

Based on the data generation process in Eq. (3) together with the identifiability result presented in
Theorem[I] we derive the following estimation process based on the standard sparse autoencoder.
Ilustrated in Figure[2] the whole estimation process can be partitioned into three parts, namely (1)
observation reconstruction, (2) independent noise estimation, and (3) sparsity regularization.

4.1 Observation Reconstruction

First, we use a linear autoencoder to enforce the invertible linear transformation between observations
X; and latent variables z;, and the reconstruction loss £, is defined as

T
L, =By, [Z(xt - fct)ﬂ : (6)
t=1

where the reconstructed observation is calculated via a linear encoder and decoder:

%; = Decoder(z;) and Z; = Encoder(x:). @)

4.2 Independent Noise Estimation

In prior works [58 150, 28]}, this terms refers to the independent prior estimation, in which they
essentially utilize the independence of noise to enforce the independence of latent variables z; ;,
conditioning on parent Pa(z; ;). In our case, since the whole process is linear, we can directly estimate
and enforce the independent noise condition by learning a residual network by reversing the data
generation process described in Eq. [3}

=2~ M~y Bra -, ®)
T>0

where the estimated latent variables are given by Eq. (7). Following the prior works, to enforce the
independence of noise terms, we model the noise distribution p(é; ;) with isomorphic Laplacialﬂ
distribution, and we minimize its KL-divergence with the estimated noise term.

Ly =Ee, [|l&]1]. &)
In prior works, the distribution is Gaussian, however, we can see that in linear case as is well discussed in

linear ICA literature, the density function of an isomorphic Gaussian distribution is rotation invariant, hence we
utilize the Laplacian distribution in our estimation.




4.3 Sparsity Regularization

Without any further constraint, the noise estimation module may bring redundant causal edges from
Zi—1, %, [m)\i 1O Z,i, leading to the incorrect estimation. As mentioned in Sec. {B:} and M
intuitively denote the time-delayed and instantaneous causal structures, since they describe how the
Zi—1,%¢,[m)\i contribute to Z; ;, which motivate us to remove these redundant causal edges with a

sparsity regularization term £, by using the L1 penalty on {ET} and M. Formally, we have

Lo= (Y _IB: I ) +[1M]]s, (10)

where || * ||; denotes the L1 Norm of a matrix. By employing the gradient-based sparsity penalty on
the estimated latent causal processes, we can indirectly restrict the sparsity of Markov networks to
satisfy the sparse latent process. Finally, the total loss of the model can be formalized as:

Etotal = Er + aﬁn + Bcsa (] D
where «, 8 denote the hyper-parameters.

5 Experiments

Our experimental evaluation addresses five key claims regarding our proposed method: (1) our
estimation approach aligns with identifiability theory, accurately recovering latent structures; (2)
existing CRL methods fail to handle high-dimensional data at scale; (3) our method is able to recover
target relations between concepts from semi-synthetic data; (4) compared with common SAEs, our
proposal achieves satisfactory results on quantitative evaluation metrics (SAEBench [25]); and (5)
our method effectively learns both time-delayed and instantaneous causal relations among concepts
elicited from LLM activations.

5.1 Synthetic Data Experiments

First, using synthetic data, we demonstrate that our method can recover both the latent variables z;
and the causal structure including time-delayed relations B, and instantaneous relations M.

Identifiability Verification To establish the effectiveness of our approach, we generate simulated
time series data with a latent causal process as introduced in Eq. (3). We apply our method to single
time lag synthetic data generated with a randomly initialized matrix A and fixed transition matrices
B and M visualized in Figure[3aland [3c] Further details can be found in Appendix

We visualize the estimated parameters by plotting the recovered matrices Band M alongside the
correlation coefficient matrix used for calculating the mean correlation coefficient (MCC) score.

As shown in Figure[3] comparing with the ground truth transition matrices B and M, we observe that
both time-delayed and instantaneous causal relations have been precisely recovered. Furthermore,
Figure [3e| demonstrates that the latent variables z; are also accurately recovered, confirming the
identifiability properties of our method.

Ground Truth B Estimated B Ground Truth M Estimated M Correlation Coefficient Matryig{

Zt1 0.40 FLEAUY 0.00 N - | 0.40 0.05 I, 21 000 0.00 000 W :, 000 0.00 0.00 [ =<1 U 0.39
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Figure 3: Visualization of recovered causal graphs of latent variables. (a) and (b) show the ground
truth and estimated time-delayed matrix, respectively. (c) and (d) show the ground truth and the
estimated instantaneous causal relations, respectively. (e) displays the correlation between the ground
truth and recovered latent variables.

Second, we scale the synthetic experiments to dimensions matching LLM activations, illustrating
why existing CRL methods fail in these high-dimensional settings.



Challenges on Scaling to Large Language Model Activation Dimensions Before presenting
results on expanded synthetic data, we investigate the computation bottleneck: Jacobian calculation
and explain why existing CRL methods do not extend efficiently to high-dimensional settings, thereby
further motivating our use of a linear dynamical model.
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Figure 5: Computation time and memory usage for a single-step Figure 6: MCC and total compute
Jacobian as a function of input dimensionality. Both metrics time in hours required to train the
grow superlinearly and exceed the capacity of modern GPUs linear model as a function of input
when the input dimension is greater than 1000. dimension.

Computation cost of Jacobian evaluation. We take IDOL [28] as a representative method and
measure both the wall-clock time and memory requirements for computing the Jacobian in prior
network. Figure [5] demonstrates that both time and memory complexity grow polynomial with
dimensionality. At dimensions of several thousand—which are common for Large Language Model
activations—a single Jacobian evaluation will require approximately ten seconds on a modern GPU,
such computation cannot fit into current generation hardware infrastructure. Since CRL training
invokes this operation millions of times during the training process, the cumulative computational
cost becomes prohibitive. As other CRL algorithms involve comparable Jacobian computations or
more complex algorithms, this fundamental limitation applies broadly across the field.

Advantages of linear models. When a linear model provides an adequate approximation of
the transition dynamics of the hidden concepts, the Jacobian calculation can be derived directly
from model parameters such as B and M, which significantly reduces the computational burden.
Furthermore, such a linear model can scale efficiently with current-generation compute resources.
To support this claim, we conducted a scaling experiment using the linear model on synthetic data
with dimensionalities ranging from 128 to 1024. In each setting, the model was trained on 50 million
samples, simulating the typical training load in real LLM SAEs with 50 million tokens. As shown in
Figure[6] the proposed method scales to substantially higher dimensions while maintaining a high
MCQC of approximately 0.9. Additionally, it remains computationally efficient, with total computation
time scaling linearly. In contrast, IDOL [28] exhausts memory when the dimensionality exceeds 200,
and iCITRIS [32] fails to scale beyond 16 dimensions.

5.2 Semi-synthetic Experiments

Given the previous experiments on synthetic data, our proposal has been shown to recover ground-
truth relationships even when the hidden dimensionality reaches one thousand, which would be
challenging for existing non-parametric CRL approaches. We now proceed to evaluate real-world
LLM activations, beginning with investigation (3). The experimental settings are briefly introduced
below. Full details can be found in Appendix

Table 1: Relation recovery scores (1) for concept—relation extraction on semi-synthetic data.

Method Legal XML Email
SAE+regression  0.54 0.94 0.74
Ours 19.95  8.63 2.66

Data preparation: We first examine three types of text, each exhibiting an obvious syntactic pattern.
For example, in legal text, sequences often begin with “APPEALS” and end with “AFFIRMED”.
For illustration, we focus on the legal text contrastive corpus group. We constructed two contrastive
subsets from the Pile dataset [17]: one containing legal documents with highly structured syntax and
stable temporal patterns, and the other containing unstructured non-legal text. We hypothesized that



Instantaneous Relation

Time-delayed Relation

ID: 2579

>

ID: 1594

ID: 2592

ID: 2623

A legal process where a
party who is not satisfied
with a court’s decision
asks a higher court to
review the case.

The higher court has
reviewed the lower
court’s decision and
agrees with it. The
original decision stands.

The geographical
location associated
with the court or
the party handling
the case.

The location of the
court along with
partial information
from the case
identifier.

Example Text: | United States Court of |APPEALS| ... E. D. | Mich. | |AFFIRMED

Figure 7: Case study illustrates two relation types identified in a United States legal text. The blue
elements show a time-delayed relation: the term “appeals” is typically followed by “affirmed” when
a higher court confirms the lower court decision. The red elements show an instantaneous relation:
two geographical location concepts (2592, 2623), are activated together in the same passage.

only texts containing these structured relations would yield meaningful temporal concept patterns and
tested whether the model could recover them. Baseline: Since no directly applicable baseline exists,
we used the standard SAEs trained above. As SAEs cannot capture concept-to-concept relations, we
fitted a regression model to estimate temporal relation matrices B via Z; = ZT Bth_T. Evaluation:
We compute the concept recovery score by first identifying the top concept pair (4, j) in legal contexts

(ensuring that the two corresponding concepts do not fire in the non-legal text), then taking the
corresponding coefficient B; ; and normalizing it by the standard deviation o (B). The ratio %

serves as a relation recovery score, indicating how strongly the relation stands out from noise. As
shown in Table[I] our method achieves a significantly higher score, demonstrating successful recovery
of the relation. Finally, as concept recovery is already achievable by standard SAEs, we additionally
conducted steering vector semi-synthetic experiments to verify that our proposal can also recover
concepts, following the approach of [24]]. Further details are provided in Appendix [A.3.2]

5.3 Real LLM Activation Analysis

Experiment Setup We train our linear model on activations from the pretrained LLM
pythia-160m-deduped [35], using SAELens [6]] and dictionary-learning [36] for activation
extraction. The model is trained on 50 million tokens from the Pile dataset [17]. To capture
time-delayed influences, we set 7 < 20 in Eq. [3|and aggregate the B, matrices using max-pooling,
preserving any causal link that appears at any time step. We evaluate three feature dimensionalities:
768 (matching the LLM’s hidden size and aligned with Section E]) 3072, and 6144—the latter two
following common SAE training setups. Unless specified, main text examples use 3072-dimensional
features with 7 = 20. Full training details and additional results (sensitivity and ablation studies are
included) are in Appendix[A.4]

Table 2: Comparison of our method against ReLU and TopK SAEs on SAEBench metrics.

Model Recon. Loss | Sparse Prob. T Absorp. | Autointerp 1
ReLU SAE 0.0110 0.6555 0.0141 0.6791
TopK SAE 0.0097 0.7141 0.0280 0.6822
Ours 0.0108 0.6736 0.0139 0.6883

Quantitative Evaluation on SAEBench Before we dive into the details of concept relation recovery,
we first present a quantitative comparison between our method and existing SAE approaches. Since
our main contribution lies in recovering temporal and instantaneous concept-to-concept relations,
which are not reflected in current SAE benchmarks, we expect our model to perform on par with
established SAEs on SAEBench tasks. This expectation is confirmed by the results in Table [2]
Additional experiment results on larger latent size and model size can be found in Appendix

Case Studies We start with an illustrative case in Figure [/ demonstrating how our model uncovers
interpretable concept features with both time-delayed and instantaneous causal relationships from
real-world LLM activations. This example provides an integrated view of how concepts are structured
over time and interact within a single time step. Note that feature interpretations may vary beyond
this case; additional examples and discussions appear in Appendix



Table 3: Representative time-delayed and instantaneous concept relations discovered.

1D From | ID To | Coeft.
Time-delayed relations
Keywords for formal and official Verbs for official/formal usage (e.g.,
1657 . 1664 ; 0.99
content (e.g., senate, state, military) deny, press, order, sign)
2641 Adjectives of natlona!lty 2674 Nouns that follow nationality 0.81
(e.g. Japanese, Italians) (e.g. brands, name)
Keywords for formal and official Objective adjectives in formal usage
1657 L 1124 . . 0.74
content (e.g., senate, state, military) (e.g., fast, continuous, incomplete)
Instantaneous relations
2208 Partial appellate citation with 297 Partial appellate citation Wlth 0.3
volume number volume number and series index
1714 Coding-format signals 30 Coding-format content (e.g. 0.16
(e.g. localization tags, HTML tags) key—value pairs, HTML elements) ’
1582 Month (e.g. March) | 363 Full date (e.g. March 23, 2000) | 0.02

Figure [7 highlights two key observations: First, a time-delayed causal link between concepts related
to “appeals” and “affirmed” in legal texts (features 2579 and 1594), capturing how the model reflects
the procedural flow of legal judgments. Second, an instantaneous relation between two geographical
location concepts (features 2592 and 2623) that are activated together in legal passages, suggesting that
the model represents related spatial information simultaneously rather than sequentially. This example
effectively demonstrates that both time-delayed and instantaneous relations exist among concept
features, and that these are interpretable alongside the semantic meanings of the features—both of
which are essential for LLM interpretability.

To further demonstrate our model’s capacity to uncover both types of causal relationships, we present
a broader set of examples in Table[3] which showcases representative cases of both time-delayed and
instantaneous interactions among concept features.

Time-delayed causal relations. We first observe a strong causal relation from nationality adjectives
(feature 2641, “Japanese,” “Italians”) to the nouns they commonly modify (feature 2674, “brands,”
“literature”), with a coefficient of 0.81. Moreover, the coefficients across the 20-token temporal
window (i.e., different B;) contribute consistently to the aggregated score. This suggests that such
temporal relations can occur across a broad and uncertain time span, aligning with the semantic
dynamics of real-world text generation. In formal contexts, official content words (feature 1657,
“senate,” “judge”) influence both formal verbs (feature 1664, “deny,” “order”) with a coefficient of
0.99, and objective adjectives (feature 1124, “fast,” “continuous”) with a coefficient of 0.74. These
relationships reflect how formal language constrains both action and descriptive style over time.

Instantaneous causal relations. Table [3| presents three distinct categories of instantaneous relations.
First, we observe a relationship between two partially overlapping appellate citation features—feature
2208 (volume numbers only) and feature 227 (volume number and series index)—with a normalized
coefficient of 0.23. This illustrates how the model captures structured elements that commonly
co-occur in legal documents, forming a cohesive representational unit. Second, we find that coding-
format signals (feature 1714, e.g., localization tags, HTML tags) have an instantaneous causal
relationship with coding-format content (feature 80, e.g., key-value pairs, HTML elements), with
a coefficient of 0.16. This reveals how the model processes structured syntax and its associated
content as co-occurring elements. Finally, our method identifies a clear relationship between two
features that both represent dates: feature 1582 (month only) and feature 363 (full date), suggesting
complementary representations within the model’s internal structure.

These findings demonstrate our method’s ability to uncover both temporal and instantaneous causal
structures in the concept space of LLM activations, offering insights into how models organize and
process information. The identified relationships align with expected patterns in natural language
across domains such as legal texts, temporal expressions, and structured formats, validating the
effectiveness of our approach for analyzing information flow in large language models.



6 Related Work

LLM Interpretability Understanding the internal representations of LLMs remains challenging
despite significant progress [27]]. Interpretability research on LLMs has explored multiple directions
including: probing for linguistic knowledge [[19], evaluating interpretability methods through con-
trolled experiments [23]], benchmarking SAEs’ capacity to disentangle factual knowledge [12], and
developing ground-truth evaluation frameworks [55| [26]]. Recent work suggests that LLM repre-
sentations may follow a linear organization [44], though this hypothesis has been challenged [16].
Our approach extends these efforts by focusing specifically on causal interpretability of temporal
relationships in LLMs, providing a principled framework for understanding how information flows
through model representations during sequential text generation. Additionally sparse autoencoders
(SAEs) decompose neural activations into interpretable features [14, (7} |54]]. Initial work demon-
strated that SAEs can recover meaningful features from language model activations [42]], leading
to numerous architectural innovations including alternative activation functions [52, 47], training
optimizations [8, 20], and efficient dictionary allocation mechanisms [4} 40]]. Recent work has
successfully scaled SAEs to larger models [[18, 30, 2], enabling automated interpretation of millions
of features [45]]. Despite these advances, most SAE approaches treat features as isolated units without
modeling temporal relationships [11}19], lack explicit causal structure [35]], and offer no identifiability
guarantees [S6, 34]—limitations our work directly addresses.

Feature-based Causal Circuits Recent methods like Sparse Feature Circuits [37] and attribution
graphs [}, 31] identify causal subnetworks explaining model behavior. These build on earlier
circuit analysis methods exploring component functionalities in vision and language models [43|
10, [15]]. Targeted interventional studies have revealed specific functional circuits, such as indirect
object identification [57]] and factual associations [38]]. While these methods enable mechanistic
understanding of model computations [19,41]], they primarily rely on correlational measures rather
than structured causal inference [16} 44]]. But they focus on stationary relationships [21]] instead of
modeling evolving token-to-token dependencies critical for understanding sequential reasoning.

Causal Representation Learning Causal representation learning provides identifiability guarantees
for latent variables [38), 28| 48]]. Temporal extensions model dynamics in sequential data [S9,
32, 150], with recent advances addressing non-stationarity [49} [13]] and instantaneous effects [33]].
Multiple distribution methods [60} [39]] can recover causal structure under specific interventions
or group structures. These approaches provide theoretical foundations for disentangling latent
variables and identifying causal graphs [56]. However, existing CRL algorithms cannot scale
to LLM dimensions due to computational bottlenecks in calculating Jacobians. Our linearized
formulation maintains identifiability guarantees while enabling application to high-dimensional LLM
representations—bridging theoretical CRL advances with practical LLM interpretability challenges.

7 Conclusion

We introduced a causal representation learning framework for LLMs that jointly models time-
delayed relationships and instantaneous constraints between latent concepts. Our approach provides
theoretical identifiability guarantees while solving the scalability limitations of existing CRL methods
through a computationally efficient linear formulation. Synthetic experiments validated our method’s
ability to recover latent causal structures from toy scale to real LLM scales. When applied to real
LLM activations, our approach uncovered interpretable semantic patterns, revealing information flow
pathways during text generation. Future work could leverage these causal structures for targeted
alignment interventions, explore cross-layer concept transformations, and integrate with mechanistic
interpretability techniques.
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A Technical Appendices and Supplementary Material
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A.1 Proof for Theorem 3

Proof. We start from the result in Theorem ] in particular (ii) There exists a permutation 7 of the
estimated latent variables and a component-wise transformation ’Tﬂ such that

Zit = T(é'fr(i)t)a

i.e., z;; is component-wise identifiable. Then consider the assumption that the mapping from latent
concept z to observations x is linear, and the fact that in estimations, the estimated encoder is also
assumed to be a linear function, that is saying the component-wise transformation mentioned in the
result of Theorem [I]is restricted to linear transformation

Zy = T(it),

where 7' is a square matrix we show in the following lemma to decompose the 7" into a permutation
and a diaginal matrix.

Lemma 1. Let T be a component-wise linear transformation, meaning that for every standard basis
vector e; the image T'(e;) has at most one non-zero coordinate. Then there exist a permutation matrix
P and a diagonal matrix D such that'T = PD.

#Note that for the case when the dimension of x matches the dimension of z, then the bijection assumption
in [28] can be easily adapted into the linear case. Even if the dimension doesn’t match, we can still use this
framework because under the condition that the latent variables are sparse, in which is exactly the sparse
autoencoder setting, it can still be viewed as an invertible transformation, such claimed has already been
extensively studied in overcomplete sparse dictionary learning literature [51].
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Proof. Linearity ensures that T is determined by its action on the basis {ey, ..., e, }. For each index
i there is a scalar «; € F and an index o (i) € {1,...,n} satisfying

T(e;) = i eo(iy;
this follows from the component-wise assumption.
Define the permutation ¢ by the rule above and form the permutation matrix
P = [60(1) eg(n)].
Set D = diag(a, ..., ).
For every basis vector e; we have
PDe; = P(aiei) = a; Pe; = ajeq ;) = T(e;).
Since PD and T coincide on the basis, they coincide on all of F™; hence T' = PD.

To see uniqueness, suppose 7' = Py D1 = P»Ds with permutation matrices P;, P, and diagonal
matrices Dy, Dy. Then P2_1P1 =D, Dl_1 is simultaneously permutation and diagonal, forcing it to
be the identity. Consequently P, = P, and D1 = D». O

Then for a component-wise linear transformation, the only possible solution is a permutation and a
diaginal matrix i.e.

T=PD,
where P is the permutation matrix and D is the diagnal matrix. Then the latent variables are
identifiable up to permutation and scaling, i.e., z; = PD ;. O

We also include the discussion for higher order generalization which is originally given by [28] as
follows: For any given 7, and subsequence which is centered at z; with previous lo and following
hi steps, i.e., €; = {Zt_10,- - 2Bt - Zeynit € RECTRHXR Ty this case, the vector function
w(%, j,m) in Sufficient Variability Assumption should be modified as

03 log p(Ct|Zt—to—1,** s Bt—to—r) 23 logp(ci|zs_10-1, ,zt,lo,T))69

w(i, j,m) :( 5 AR 2
8Ct7182t_10_1,m aCt72nazt—lo—1,m

2 2

0 1ng(ct|zt—lo—17 e aZt—lo—T) 0 10gp(Ct|Zt—lo—1a e azt—lo—‘r)

S, @
aCt,laztflofl,rn act,2nazt71071,m

(33 log p(ct|zt—10-1, - 7Zt—lo—7—)>
0ct,i0¢t ;02— 10—1,m (1)) EE(Me,)
(12)

Besides, 2 x n X (lo+ hi + 1) + | M., | values of linearly independent vector functions in 2, ,,, for
tet—lo—1,---,t—lo—7]andm € [1,--- ,n] are required as well. Since such modification
doesn’t require the non-linear property of the function then the rest part of the theorem remains the
same, and the proof can be easily extended in such a setting.

A.2 Synthetic Experiments

We conduct two synthetic verification experiments to validate our linear temporal instantaneous ICA
method. Instruction is provided in the synthetic/README.md file in our code repository.

A.2.1 Fixed Structure Experiment

For the first synthetic verification experiment, we generate data using fixed time-delayed influence
functions and instantaneous relations with the following ground truth matrices:

04 06 0 0 0 0
0 1 o0, M=]02 0 o0. (13)
0 0 1 0 02 0

B =

The data generation process follows a structured temporal model. We initialize the first hidden state
2o by sampling from a uniform distribution ¢/(0, 1). For subsequent time steps, we compute the
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historical influence as zyiy = B z;_; and then construct z; iteratively: the first dimension receives
only historical influence plus noise, while remaining dimensions ¢ > 2 incorporate both historical
and instantaneous dependencies:

o) =z e (14)

2D =2 g AT D, i 2 (15)
where ¢; is Laplace noise with scale 1.0, and w;,g = 0.2. The observations are generated as x; = Az
where A is a 3 x 3 randomly initialized mixing matrix .

We train the model for 50,000 steps with batch size 1024 (approximately 51 million total samples)
using the Adam optimizer with learning rate 8 x 10~3 and weight decay 6 x 10~%. The loss function
includes reconstruction error, KL divergence term, and L1 regularization penalties: 1 x 1072 for
matrix M and 1 x 10~8 for matrix B. We enforce the lower-triangular constraint on M to ensure
identifiability.

A.2.2 Scalability Experiment

For the second synthetic experiment, we evaluate scalability across different dimensions ranging
from 64 to 1024. We randomly sample a sparse time-delayed transition matrix B where only 10% of
the entries are non-zero, generated using a randomly initialized matrix with 10% masking.

For the instantaneous mixing matrix M, we use a chain structure where M; ;_; = 0.5 for¢ > 2 and
all other entries are zero:

0 0 0 - 0
05 0 0 - 0

M |0 05 0 - 0 a16)
0 -~ 0 05 0

The training hyperparameters are modified from the first experiment: learning rate increased to
1x 1073 and the sparsity coefficient for B increased to 1 x 10~° to account for the higher dimensional
setting, while maintaining 1 x 1073,

Both experiments use identical noise characteristics (Laplace distribution with unit scale), sequence
length of 1 (two time steps total), and Mean Correlation Coefficient (MCC) as the primary evaluation
metric to measure the quality of source recovery while accounting for permutation ambiguity inherent
in ICA methods.

A.3 Semi-synthetic Experiments

A.3.1 Target Concept Relation Recovery

Before attempting to recover concept relationships from real-world LLM activations, and based on
the proven and verified identifiability of our model, we first present a semi-synthetic setting to verify
that our proposal can reveal obvious concept relations from contrastive corpus pairs.

Data Preparation We constructed two contrastive collections of texts drawn from the Pile dataset
[L7]. We considered three types of text: legal documents, emails, and XML files. For each type, we
constructed two contrastive corpora: one containing the relation of interest, and the other lacking
it. Specifically, for legal text, the relation is defined by sequences beginning with “APPEALS” and
ending with “AFFIRMED”’; for emails, sequences start with forwarding or reply markers (e.g., dashes)
and end with common words like “Subject” or “Thanks”’; and for XML, sequences start with a UTF
encoding label followed by tags such as “UTF-8” or “/DOCTYPE”. We hypothesized that only texts
containing these structured relations would yield meaningful temporal concept patterns, and we
directly tested whether the model can successfully recover such patterns.

Baseline Construction Although there is no directly applicable baseline, we leveraged standard
SAEs we had trained above to serve as our baseline method. Since SAEs themselves cannot capture
the concept-to-concept relations, we train a regression model to find temporal relation coefficient
matrices Bs by solving the following regression task: z; = > B,z ..
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Evaluation Metric We calculate the concept recovery score by first obtaining the top fired feature
index pair (i, 7) related to the legal context (restricted to positions where the concepts of interest
ought to fire but do not fire in the contrastive non-legal text), and then taking the corresponding
entry B; ; in the aggregated temporal relation coefficient matrices. We then calculate the relation

.. . . . . . _ Bij
recovery score, similar to a signal-to-noise ratio, by: relation recovery score = >(B) where

o(B) denotes the standard deviation of matrix B. Such ratio indicates the extent that the target
concept relation entry in the matrix is more significant than a random noise; the larger the score is the
more significant the relation recovery.

Results All results are shown in Table|l| which verifies that our proposal can identify the concept-
relation of interest from contrastive corpus pairs. For the demonstrated results, we used the same
trained model as in the experiments on recovering relations from real-world LLM activations.

A.3.2 Steering Vector Recovery

Except for the relationships between concepts, our model is also able to recover the concepts as
current SAEs. To verify this, semi-synthetic benchmarks like SSAE [24]] can offer valuable insights
into concept identifiability. Following this setting, we tested whether our model can recover steering
vectors from paired text. Specifically, we constructed five categories of word pairs where only a
single interpretable concept changes, including gender, plurality, comparative, tense, and negation.
While these changes are intuitive, ensuring the word pairs capture a clear ground-truth concept is
non-trivial. Despite this challenge, our model demonstrated strong performance in identifying the
underlying concept differences. Specifically, (1) the average correlation of concept differences within
each category exceeded 0.86; (2) assuming one ground-truth pair, the correlation rose above 0.93; and
(3) the maximum correlation within a category reached over 0.94. These results support our claim
that our model can indeed recover meaningful steering vectors. The word lists for the five categories
is summarized in Table [l

A4 LLM Activation Experiments

In addition to the experimental results presented in Section [5.3]of the main text, we provide here: (1)
detailed settings for training and inference; (2) visualizations of training losses and sparsity values; (3)
comparisons across different hyper-parameter settings, and (4) extended experiment on SAEBench
with larger latent size and base language models.

A.4.1 Details on the Real-world Experiments Settings

Training We train our linear model on activations from the pretrained LLM
pythia-160m-deduped [5), using SAELens [6] and dictionary-learning [36] for activation
extraction. Importantly, in the original implementation of dictionary-learning [36], activations are
loaded using an object named ActivationBuffer, which is refreshed with new activations once a
predefined consumption threshold is reached. During each refresh, a random shuffling is applied.
However, this randomization disrupts the temporal structure of the LLM activations. To preserve
temporal information, we modify the corresponding refresh function to disable the random shuffling.
Details of this modification can be found in the examples/README.md file in our code repository.

The model is trained on a total of 50 million tokens from the Pile dataset [17]. To capture time-
delayed influences, we consider two values of 7, namely {5, 20}, as described in Eq. While
our main results focus on the setting with 7 = 20, which offers better guarantees for capturing
rich temporal semantics, this choice will be further justified in a later section of the supplementary
materials. To address the distributed and uncertain nature of time-delayed dependencies—where
some relations manifest over longer time spans and others over shorter ones—we aggregate the B,
matrices using max-pooling. This operation preserves any causal link that appears at any time step.
We refer to the resulting aggregated matrix as aggB. Unless otherwise specified, the weight of the
independence constraint on the noise term is set to & = 0.1 in Eq.[T1]

To better enforce sparsity in the hidden feature activations, we apply TopK filtering [8] in addition to
the ¢; sparsity term included in the final loss function. Given the importance of feature dimensionality
in Sparse Autoencoders (SAEs), we evaluate three configurations: 768 (which directly matches the
LLM’s hidden size and aligns with the identifiability discussion in Section3)), 3072, and 6144—the
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Table 4: Summary of word pairs in the five categories

Categories

Pairs

Gendered Pairs

(male, female), (actor, actress), (prince, princess), (king, queen), (god,
goddess), (wizard, witch), (boy, girl), (man, woman), (father, mother),
(son, daughter), (brother, sister), (husband, wife), (nephew, niece), (uncle,
aunt), (gentleman, lady), (monk, nun), (grandfather, grandmother), (lord,
lady), (spokesman, spokeswoman)

Plurality Pairs

(cat, cats), (dog, dogs), (apple, apples), (box, boxes), (child, children),
(book, books), (car, cars), (tree, trees), (house, houses), (bird, birds),
(chair, chairs), (table, tables), (shoe, shoes), (shirt, shirts), (sock, socks),
(cup, cups), (plate, plates), (pen, pens), (bag, bags), (door, doors),
(window, windows), (lamp, lamps), (phone, phones), (laptop, laptops),
(flower, flowers), (cloud, clouds), (mountain, mountains), (river, rivers),
(lake, lakes), (egg, eggs), (grape, grapes), (potato, potatoes), (tomato,
tomatoes), (bus, buses), (kiss, kisses), (wish, wishes), (match, matches),
(dish, dishes), (baby, babies), (lady, ladies), (city, cities), (party, parties),
(family, families), (knife, knives), (leaf, leaves), (wolf, wolves)

Comparative Pairs

(fast, faster), (tall, taller), (small, smaller), (old, older), (young, younger),
(short, shorter), (long, longer), (high, higher), (low, lower), (strong,
stronger), (weak, weaker), (rich, richer), (poor, poorer), (hard, harder),
(soft, softer), (loud, louder), (bright, brighter), (dark, darker), (clean,
cleaner), (easy, easier), (happy, happier), (cool, cooler), (deep, deeper),
(wide, wider), (narrow, narrower), (thick, thicker), (thin, thinner), (heavy,
heavier), (light, lighter), (safe, safer), (cheap, cheaper)

Tense Change Pairs

(walk, walked), (run, ran), (eat, ate), (go, went), (write, wrote), (speak,
spoke), (drink, drank), (drive, drove), (read, read), (sleep, slept), (sit,
sat), (stand, stood), (fly, flew), (begin, began), (buy, bought), (bring,
brought), (build, built), (catch, caught), (choose, chose), (come, came),
(cut, cut), (dig, dug), (do, did), (draw, drew), (fall, fell), (feel, felt), (find,
found), (get, got), (give, gave), (have, had), (hear, heard), (hide, hid),
(hold, held), (keep, kept), (know, knew), (leave, left), (lose, lost), (make,
made), (meet, met), (pay, paid), (ride, rode), (say, said), (see, saw), (sell,
sold), (send, sent), (sing, sang), (sit, sat), (teach, taught), (think, thought)

Negative Prefix Pairs

(possible, impossible), (legal, illegal), (visible, invisible), (complete,
incomplete), (fair, unfair), (known, unknown), (fortunate, unfortunate),
(able, unable), (happy, unhappy), (certain, uncertain), (clear, unclear),
(real, unreal), (necessary, unnecessary), (likely, unlikely), (available,
unavailable), (comfortable, uncomfortable), (pleasant, unpleasant), (reli-
able, unreliable), (acceptable, unacceptable), (usual, unusual), (wanted,
unwanted), (expected, unexpected), (connected, disconnected), (under-
stood, misunderstood), (placed, misplaced)

latter follow the considerations of SAE literature. Note that all of the choices take into account the

invertibility condition of the mixing function, as discussed in the footnote of the proof of Theorem I}
We optimize the loss function defined in Eq. [TT|using the Adam optimizer with a learning rate of 0.01
and a weight decay of 0.0001. Unless otherwise specified, we use a random seed of 123; additional
experiments were conducted with seeds 456 and 789 for robustness.

Inference During inference, our primary goal is to interpret the hidden features—particularly those
activated by significant entries in the time-delayed (aggB) or instantaneous () relation matrices.
This selection process differs from conventional SAE interpretation, which typically examines feature
importance across the entire feature space by measuring activation strength for a given prompt. In
contrast, our method emphasizes the relational structure of features—how they connect to form
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semantic transitions. We aim to understand the meaning of each feature by analyzing how both types
of relations (instantaneous and time-delayed) link features together.

Our feature selection process involves the following steps: First, we select the top 100 coordinates (we
also tried 200, though 100 proved sufficient) from either aggB or M, and extract the corresponding
feature dimensions. Next, we generate 10,000 prompts from the EleutherAI/pile dataset, convert
them into token streams, and feed them into the trained model to observe how each token responds
to each selected concept feature. Finally, for each selected feature, we collect the tokens whose
activations exceed a threshold (set to 3.0), along with their corresponding prompts. These tokens are
viewed as consequences of the activation of the given feature, while the associated prompts serve as
contexts that reveal the token and therefore, feature’s meaning.

A.4.2 Visualizations of Training Loss and Sparsity Metrics

Here, we compare the training dynamics across different settings by examining the reconstruction
loss (Eq. [6)), the independence of the estimated noise term (Eq. [9), and the sparsity of both time-
delayed and instantaneous relations (Eq.[T0). The comparisons are made with respect to variations in
hidden feature dimensionality, the sparsity weight on learned relations (i.e., 5 in Eq[TT), the temporal
coverage of delayed relations, as determined by 7 € {5, 20}, and the parameter of the TopK filtering
of the hidden features.

We begin by examining the training dynamics with 7 = 5, comparing different settings of the sparsity
constraint (8 € {0.1,0.01}), TopK values ({0, 25,100}, where 0 indicates that TopK is disabled),
and hidden dimensions (z_dim € {768,3072,6144}). The corresponding results are presented in
Figure[8] It is worth noting that certain unstable training batches occasionally impact the overall
stability during training. However, since most of the configurations eventually converge and our
primary interest lies in the behavior at convergence, we cap the y-axis at 5.0 to improve the clarity of
the visualizations. Our key findings are summarized below.
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Figure 8: Dynamics of reconstruction loss, noise independence, and time-delayed and instantaneous
relations sparsity with setting 7 to 5. The x-axis starts at SM tokens, and the y-axis values are capped
at 5 to enhance visualization clarity.

20



Insights on the Number of Training Tokens and the Impact of Hidden Feature Dimensionality
From Figure 8] we observe that SOM training tokens are sufficient for convergence across all settings
when the hidden feature dimensionality is greater than 768—specifically, at 3072 and 6144. From
the subplots in the first column, it is evident that higher-dimensional hidden features provide greater
stability during training. This increased robustness likely helps mitigate the effects of noisy or
unstable batches within the token stream, leading to more consistent optimization of the objective.
Consequently, in the subsequent case studies, including Section[5.3]of the main content, we focus on
the settings with hidden dimensionalities of 3072 and 6144.

Impact of TopK Filtering The training process is in general more stable after applying TopK
filtering. More specifically, comparing the sub-diagrams from the first row in Figure [§]to the second
and the third rows, we can see that the decrease of the reconstruction error is significantly less effected
by some of the token batches, especially, for the setting when feature dimension is set to 3072 or
6144.

Impact of Sparsity Strength In general, when f3 sets to 0.01 (pay attention to the round marker
in Figure [§]as oppose to star marker), both the time-delayed and the instantaneous relations show
lower sparsity compared with a stronger sparsity weight. This might be due to a weaker constrain
that results a better optimization results, while the stronger one might increase the sharpness of the
potential solution space. This also indicates that 0.01 is sufficient for achieving our goal of sparse
causal relations in our model.

A.4.3 Sensitivity and Ablation Studies

Sensitivity Study on o and 5 We conducted additional comparisons with 5 = 0, 0.001, 0.005,
0.05, 1.0 and a = 0, 0.001, 0.01 to cover a broader hyperparameter range, using 7 = 5 and feature
dimension 3072. The results are shown in the two tables below, with our selected setting in bold
text. The tables highlight that (1) concept relationships are inherently sparse, while a large 3 disrupts
optimization, and (2) « has a stronger effect, with 0.1 being a well-balanced choice.

Table 5: Performance comparison under different values of o
o 0.0 0.001 0.01 0.1 1.0

Reconstruction Loss | 0.0227 0.0191 0.0118 0.0128 0.1121
Independence Loss | 4.3849 24572 0.3910 0.1448 0.5252
B, Sparsity (L1) | 0.0012  0.0007 0.0018 0.0007 0.0058
M Sparsity (L1) | 0.0002 0.0001 0.0002 0.0001 0.0009

Table 6: Performance comparison under different values of 3
J6; 0.0 0.001  0.005 0.01 0.05 0.1 1.0

Reconstruction Loss | 0.0126  0.0126 0.0126 0.0128 0.0126 0.0128 0.8950
Independence Loss |  0.1522 0.1496 0.1504 0.1448 0.1550 0.1582 3.7682
B Sparsity (L1) | 0.0003 0.0005 0.0005 0.0007 0.0007 0.0013 0.0053
M Sparsity (L1) | 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0007

Ablation Studies on Bias Terms Finally, we explore whether there will be potential performance
improvement when additional bias terms added to our linear encoder and decoder functions in
equation [7] to give a more complete justification of our implementation. We also compared these
two settings in the real LLM activations (feature dimension=3072, a = 0.1, 5 = 0.01, 7 = 5). The
results shown in the table below indicate that the flexibility gain of the bias terms is not significant in
our model.
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Table 7: Ablation comparisons on the bias terms for the encoder and decoder

Metric (real-world) Without Bias With Bias
Reconstruction Loss 0.0129 0.0129
Independence Loss 0.1452 0.1457
B Sparsity (L1) 0.0007 0.0007
M Sparsity (L1) 0.0001 0.0001

A.4.4 More Showcases on the Recovered Concepts and Relations from LLM Activations

In addition to the examples presented in Section[5.3]of the main text, we provide additional cases
here to further illustrate the diversity and interpretability of the recovered concepts and relations,
highlighting how they manifest across different domains and contexts.

Table 8: More examples of the discovered time-delayed relations with contextual explanations.

From_ID From_Explanation To_ID To_Explanation Context
2341 Orders/mandate in appel- 2592  “decision” and “obser- Legal judgment
late judgment vance” labels
1856 Technical error message 1833  “FAILURE” Describes the fail-
ure reason
2579 “APPEALS” 2592  Court/party geographical Appeals in legal
location or case handler ~ documents
1833 Ajax request header: 2390  Syntax and functions like  Ajax request func-
‘application’, “function” “each” tion labels
(type, URL, status)
1856 Volume number in case 2341  “mandamus” from “writ Summary of case
citation of mandamus” docket
2100 Page number where case 2579  “APPEALS” Case citation
starts structure
790 Wikipedia ship owner 2730  “ship” Wikipedia entity
name tagging
1825 Email forward/reply 1641 Common words like Email metadata
dashes “subject”, “thanks” and signals
1551 Name + “Wynne” (e.g., 2311  “sat” (in Parliament) Wikipedia bios
“John Wynne”) for people named
Wynne
1124 UTF encoding label 1657 Tags like “UTF-8”, XML document
“/DOCTYPE” structure
1675 HTML starting signal 2583 Common HTML tags HTML document
“<” like “a”, “pre” recognition
1303 “default” keyword 2623  Follows “default” (e.g., Generic technical
“context”, “_) documentation
1895 “Q”, “Re”, “forward” 1203 “thanks” Email or Q&A
style messages
2708 Personal pronouns (“I’, 2584  Tense indicators like Human language
“you”) “will”, “have” facts

Time-delayed Causal Relations Table [8] showcases further examples of time-delayed causal
relations extracted from LLM activations by using our model, with the same setting that we have
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Table 9: More examples of the discovered instantaneous relations with contextual explanations.

From_ID From_Explanation To_ID To_Explanation Context
2341 Labels ‘license’ in com- 1856  Labels ‘license’ in both Bash script con-
ment of "license control comment and command  text
pre server" line
2592 Labels ‘research’ 227 Labels ‘research’ with Academic texts
nearby nouns like “pro-
gram”
2592 Labels ‘magazine’ 80 Labels ‘magazine’ and Academic texts

common related nouns
like “teenage”, “blogs”

2592 Labels ‘module’ 2208  Labels both ‘module’ and  JavaScript code
‘exports’ as in ‘“mod-
uleéxports”

2623 Labels ‘https’ 227 Labels both ‘https’ and URLSs
/A

shown in the main content Table 3] Many of these reflect the structured nature of legal, technical, and
encyclopedic language. For instance, feature 2341 (e.g., “Orders/mandate in appellate judgment”) is
linked to feature 2592 (e.g., “decision” and “observance”), revealing how commands or mandates
precede judicial conclusions in legal discourse. Similarly, technical logs such as feature 1856 (error
messages) anticipate subsequent failure indicators (feature 1833, “FAILURE”), reflecting typical
diagnostic progressions in computing contexts.

Notably, semantic connections span heterogeneous domains. Wikipedia entity labeling (e.g., ship
names and their categories) and web document structures (e.g., UTF labels leading to encoding
declarations) both reveal meaningful temporal dependencies that LLMs internalize. The relation
between personal pronouns (feature 2708, “I”, “you”) and tense markers (feature 2584, “will”, “have”)
further illustrates how human language patterns are temporally structured, even over several tokens.
These cases reinforce the model’s capacity to track and anticipate semantic developments over time
in a content- and domain-aware manner.

Instantaneous Causal Relations Table[9|provides more instances of instantaneous relationships,
highlighting features that are co-activated within the same context window. In the domain of Bash
scripting, we observe co-occurrence between licensing-related comments (feature 2341) and execution
commands (feature 1856), showing how LLMs jointly encode comment semantics and imperative
script logic.

In academic and technical domains, common conceptual pairs such as “research” and “program”,
or “magazine” and related digital terms like “blogs” or “websites”, are represented together (e.g.,
features 2592 and 227 or 80). These examples suggest that the model forms composite concepts out
of frequently co-occurring terms, such as in publication metadata or content descriptions.

In programming contexts, the instantaneous link between “module” (feature 2592) and the JavaScript
construct “module.exports” (feature 2208) demonstrates that the model learns the tight coupling
between programming keywords. Likewise, the relation between “https” (feature 2623) and its full
syntactic pattern “https://” (feature 227) reflects how structured URL formats are stored as unified
units in the model’s activation space. Together, these examples demonstrate the model’s ability to
encode concise, domain-specific composite structures through simultaneous feature activation.

Notes on the Results Following our presentation of the causal relations recovered from LLM
activations, we clarify several key points regarding the interpretation of these results. First, due
to variations in tokenization strategies across different corpora, many identified tokens in a given
sentence may correspond only to partial words. This issue can be exacerbated by noise introduced
during data collection processes such as OCR or web crawling. To address this, we rely on human
judgment and linguistic intuition to infer and annotate the complete underlying word, ensuring that
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Table 10: Gemma-2-2B instantaneous-relation-only model on SAEBench with different latent sizes.

Latent Size Recon. Loss | Sparse Probing Acc.T Absorption | Autointerp 1

6k 0.0108 0.6736 0.0139 0.6883
16k 0.0059 0.6918 0.0167 0.7117

Table 11: Absorption statistics with extended training budgets.

Model Full Absorption Fraction Absorption Fraction # Split Features
Pythia-160M-16k 6.471 x 1072 9.185 x 1073 1.043
Gemma-2-2B-16k 1.289 x 1072 3.794 x 1074 1.269

the labeling remains accurate and avoids overextending to unrelated tokens. Second, the recovered
time-delayed relations we present may be somewhat semantically constrained, as the clearest relations
tend to align with explicit syntactic structures. Many of our examples—such as those from code
snippets or legal documents—convey semantic information through formal syntax. While these
cases are illustrative, we view the discovery of more abstract, syntactically diffuse relations in
general language text as an important direction for future work. It is also important to note that
the examples we present were not cherry-picked; rather, they are representative cases that naturally
appear throughout the dataset and were surfaced by our method. These relational patterns would
not be easily discoverable using sparse autoencoders (SAEs), as SAEs do not consider interactions
between features. Finally, we observe that feature pairs exhibiting strong causal relations tend to
be activated under highly similar prompt conditions, indicating that these features are contextually
aligned and often co-occur within the same linguistic environments.

A.4.5 Additional SAEBench Results on Larger Latent Sizes and Models

Following the same dataset and training protocol as in the main experiments, we trained the simplified
instantaneous-relation-only variant with 16k latents on Gemma-2-2B and compared it to our 6k-latent
configuration. As shown in Table[T0] the 16k model reduces reconstruction loss (0.0059 vs. 0.0108)
and slightly improves sparse probing top-1 accuracy (0.6918 vs. 0.6736). Its absorption score is
modestly higher (0.0167 vs. 0.0139) but remains small, and the Autointerp score increases (0.7117
vs. 0.6883). Overall, performance on SAEBench metrics remains at a similar level across latent sizes.

We also extended the training scale to 500M tokens for Pythia-160M and to 300M tokens for Gemma-
2-2B, both with 16k latents. In both cases we observed very small absorption fractions, and the
mean number of split features remained close to one, indicating minimal feature splitting. Summary
statistics are reported in Table[T1]

A.4.6 Statistical Testing and Absorption Analysis

To strengthen the empirical findings, we additionally performed statistical testing to assess the
equivalence of reconstruction losses and the robustness of absorption scores. Using 100 samples
per method (N = 300), any shift > 0.00127 across groups would be detected with power > 0.8.
Pairwise Welch—-TOST and Hodges—Lehmann tests with A = 0.001 confirmed equivalence: all 90%
confidence intervals lay within [—A, A], demonstrating statistical equivalence at @ = 0.05 among
the three methods.

For absorption, although rigorous hypothesis testing is challenging due to the very small magnitudes
observed, we collected a sufficiently large number of samples (> 200) to establish confidence intervals.
The mean and 95% confidence intervals were 0.0135 £ 0.0002 for the 6k model and 0.0136 =+ 0.0002
for the 16k model, which are more than sufficient to demonstrate negligible absorption in practice.

Additionally the signal-to-noise ratio (20.02 for our method vs. 2.39 for the SAE baseline) already
indicates a strong margin. Such a large difference is unlikely to arise from random noise.
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A.4.7 Preliminary Investigation with Time Lag up to 100

To address the potential limitation that a fixed value of 7 may be overly restrictive in capturing the
rich and diverse semantics of real-world contexts, we explore a more flexible approach. Specifi-
cally, different types of concept-relations may require varying numbers of steps to be successfully
recovered. Furthermore, even for a single concept-relation, stable recovery across different contexts
may necessitate a range of steps rather than a single fixed value. In light of these considerations, in
addition to the recovered relations shown in Table[3] Table[§] and Table[9] we present the relations
captured within 100 steps, grouping them into bins of sizes 10, 20, and 50. This binning naturally
categorizes the relations of interest, facilitating further analysis and discussion.

The increased flexibility provided by a larger time lag allows us to recover a greater number of
concept-relations. For example, we can recover relations such as “monument” — “from” and “seek”
— “opportunity”. Interestingly, increasing the time lag not only allows longer-range relations to be
captured but also enables previously overlooked relations to be discovered, as this flexibility improves
identification of concepts entangled in the relation. To better illustrate the relations recovered with a
larger time lag, we are preparing a web demo, which will soon be included in the code repository
once it is ready.

To better illustrate the relations recovered with a larger time lag, we are preparing a web demo, which
will soon be included in the code repository once it is ready. However, our primary contribution is
to demonstrate that our model can recover relation-concepts more effectively than existing SAEs,
addressing a gap that is currently missing but crucial for advancing LLM interpretability. A broader
and more systematic study of this phenomenon is left to future work.

A.4.8 Addition Experiments with Pretrained SAE

As ablation study we additionally construct our linear model using the pretrained Sparse Autoencoder
(SAE) from Gemma Scope [29] on the Gemma 2 2B model [53]]. To enable feasible qualitative
evaluation, we selected the top 2, 034 most frequently activated features from the commonly used
SAE gemma-2-2b/20-gemmascope-res-16k using the SAELens package [6]. We trained our
linear model on 5 million tokens from the Pile [17|] dataset.

Since time-delayed influences may occur with variable time lags, we set a sufficiently large value
for 7 in Eq. 3] In practice, we use 7 < 20 and aggregate the time-delayed matrices B, using
max-pooling—that is, if a causal link exists in any of the time-lagged matrices B, we consider that
link to be present in the aggregated causal structure.

Case Studies Our analysis reveals rich causal structures among programming-related concepts in
LLM activations. We examine both time-delayed and instantaneous causal relationships, providing
insights into how the model processes and generates code-related content.

Time-Delayed Causal Relations We identified several meaningful time-delayed causal relation-
ships in programming contexts. A prominent example is the causal link from a concept representing
"function definitions and related code structure in programming languages" to a concept representing
"variable definitions and data types in programming contexts." This relationship aligns with the
natural structure of programming, where global function definitions often precede and influence local
variable declarations or data structures. When the model processes or generates function definitions,
it subsequently activates concepts related to the variables and data types that would appear within
those functions.

Additional time-delayed relationships include causal links from "programming language syntax
specifications" to "code implementation details" and from "algorithmic problem statements" to
"solution implementation structures." These relationships demonstrate how the model captures the
sequential dependencies inherent in programming tasks, where understanding of requirements or
specifications precedes implementation details.

Instantaneous Causal Relations Our method also reveals interesting instantaneous causal re-
lationships that occur within the same time step. We observe a strong instantaneous causal link
between a concept representing "specific formatting and notation elements commonly used in math-
ematical expressions or programming syntax" and a concept representing "mathematical symbols
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and expressions in technical content." This relationship indicates that the model simultaneously
processes formatting rules and the mathematical content they structure, reflecting how these aspects
are intrinsically connected in code representation.

We also identified instantaneous causal relationships between "programming language keywords"
and "syntax highlighting patterns,” as well as between "code indentation patterns" and "block
structure delineation." These instantaneous relationships capture the syntactic constraints that operate
simultaneously within programming languages, where certain elements must co-occur for the code to
be well-formed.

These case studies demonstrate that our method can extract meaningful causal relationships from real
LLM activations, providing insights into how these models process and generate structured content
like code. The identified causal structures align with the logical and syntactic relationships one would
expect in programming contexts, validating the effectiveness of our approach for interpretability
research.

A.5 Compute Resources and Code

All experiments were conducted on a computing cluster equipped with NVIDIA L40 GPUs. The
synthetic verification experiments were run using 16 CPU cores, 32 GB of memory, and a single
GPU. The Jacobian complexity experiment was executed on CPU only, as the computation did not fit
within GPU VRAM; to avoid out-of-memory (OOM) errors, 32 CPU cores and 400 GB of memory
were allocated. The scaled-up synthetic experiment with the linear model used 32 CPU cores, 64 GB
of memory, and one GPU. The large language model (LLM) activation experiment was performed
using 16 CPU cores, 15 GB of memory, and a single GPU.

The code that can replicate the main experiments presented in our paper can be accessed via https:
//github.com/xiangchensong/temp-inst-sae

A.6 Limitations

We acknowledge certain limitations of our work. The linear approximation, while computationally
efficient and theoretically grounded, may not capture all nonlinear interactions present in LLM acti-
vations. Future work should explore extending our framework to incorporate bounded nonlinearities
while maintaining computational tractability. Additionally, developing methods to automatically
interpret the discovered causal structures in terms of human-understandable concepts remains a
challenge. Our method also assumes a specific form of temporal dependency that might not fully
capture the long-range dependencies that LLMs can handle. The current formulation is limited to
first-order temporal dependencies, and extending this to higher-order dependencies would increase
computational complexity. Lastly, tokenization has been shown to critically affect LLM identifiability
during our evaluations, even though it is not inherently part of LLM interpretation methods. We
emphasize the importance of choosing a tokenization strategy that preserves semantic information
and maximizes the effectiveness of LLM interpretation approaches.

A.7 Societal Impacts

Our interpretability approach can improve transparency, support alignment interventions, facilitate
debugging and bias detection, advance scientific understanding of causal representations, and inform
educational tools that raise Al literacy. At the same time, deeper insight into model internals
may enable malicious manipulation, create misplaced confidence in safety tools, widen resource
disparities, expose private information from training data, and distract attention from broader social
and governance measures. Future work should include collaboration with ethicists, social scientists,
and policy experts to guide responsible use.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Major claims are described in abstract and emphasized in introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in Appendix[A.6
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theorems are supported with complete and correct proof in Appendix [A.T]
with assumptions clearly presented in main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A detailed description of the experimental setup is provided in Appendix [A.7]
for the synthetic experiments and in Appendix [A.4]for the LLM activation experiments. The
codebase required to reproduce the experiments is included in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The model data used in our experiments are either from publicly available
datasets or can be generated using the codebase provided in the supplementary materials.
The main experimental results can be reproduced using this submitted codebase.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed settings are provided in the Appendix [A.2]and[A.4]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The mean value of multiple runs and with std plotted with error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes the computation resources use in the experiment is provided in Ap-
pendix[A.3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: authors have reviewed and conform the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in a seperate section in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets including baseline codes and the dataset and models are explicitly
mentioned and credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Detailed instructions have been provided along with the codebase.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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