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ABSTRACT

Interpreting and understanding the predictions made by deep learning models
poses a formidable challenge due to their inherently opaque nature. Many
previous efforts aimed at explaining these predictions rely on input fea-
tures—specifically, the words within NLP models. However, such explanations
are often less informative due to the discrete nature of these words and their lack
of contextual verbosity. To address this limitation, we introduce the Latent Con-
cept Attribution method (LACOAT), which generates explanations for predictions
based on latent concepts. Our founding intuition is that a word can exhibit mul-
tiple facets, contingent upon the context in which it is used. Therefore, given
a word in context, the latent space derived from our training process reflects a
specific facet of that word. LACOAT functions by mapping the representations of
salient input words into the training latent space, allowing it to provide predictions
with context-based explanations within this latent space. We will make the code
of LACOAT available to the research community.

1 INTRODUCTION

The opaqueness of deep neural network (DNN) models is a major challenge to ensuring a safe and
trustworthy AI system. Extensive and diverse research works have attempted to interpret and explain
these models. One major line of work strives to understand and explain the prediction of a neural
network model using attribution of input features to prediction (Sundararajan et al., 2017b; Denil
et al., 2014). These input features are words in the text domain. One limitation of explanation based
on input words is its discrete nature and lack of contextual verbosity. A word consists of multifaceted
aspects such as semantic, morphological, and syntactic roles in a sentence. Consider the example of
the word “trump” in Figure 1. It has several facets such as a verb, a verb with specific semantics, a
named entity and a named entity representing a particular aspect such as tower names, presidents,
family names, etc. We argue that given various contexts of a word in the training data, the model
learns these diverse facets during training. Given an input, depending on the context a word appears,
the model uses a particular facet of the input words in making the prediction. Circling back to the
input feature based explanation, the explanation based on salient words alone does not reflect the
facets of the word the model has used in the prediction and results in a less informed explanation.
On the contrary, an explanation enriched with facets of a salient word is more insightful than the
salient word alone and may additionally highlight potential issues in the training of the model.

Dalvi et al. (2022) shows that the latent space of DNNs represents the multifaceted aspects of words
learned during training. The clustering of training data contextualized representations provides ac-
cess to these multifaceted concepts, later referred to as latent concepts. Given an input word in
context at test time, we hypothesize that the alignment of its contextualized representation to a la-
tent concept represents the facet of the word being used by the model for that particular input. We
further hypothesize that this latent concept serves as a correct and enriched explanation of the input
word. To this end, we propose the LAtent COncept ATtribution (LACOAT) method that generates an
explanation of a model’s prediction using the latent concepts. LACOAT discovers latent concepts of
every layer of the model by clustering high-dimensional contextualized representations of words in
the training corpus. Given a test instance, it identifies the most salient input representations of every
layer with respect to the prediction and dynamically maps them to the latent concepts of the training
data. The shortlisted latent concepts serve as an explanation of the prediction. Lastly, LACOAT in-
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Figure 1: An example of various facets of word “trump”

tegrates a plausibility module that takes the latent concept-based explanation as input and generates
a human-friendly explanation.

LACOAT is a local explanation method that provides an explanation of a single test instance. The
reliance on the training data latent space makes the explanation reliable and further reflects on the
quality of learning of the model and the training data. We perform qualitative and quantitative
evaluation of LACOAT using the part-of-speech (POS) tagging and sentiment classification tasks
across three pre-trained models. LACOAT generates an enriched explanation of predictions that is
useful in understanding the reason for a prediction. It also helps in understanding how the model has
structured the knowledge of a task. LACOAT enables human-in-loop in the decision-making process
and augments the user with information about the prediction.

2 METHODOLOGY

LACOAT consists of the following four modules:
• The first module, ConceptDiscoverer, discovers latent concepts of a model given a corpus.
• PredictionAttributor, the second module, selects the most salient words (along with

their contextual representations) in a sentence with respect to the model’s prediction.
• Thirdly, ConceptMapper, maps the representations of the salient words to the latent concepts

discovered by ConceptDiscoverer and provides a latent concept-based explanation.
• PlausiFyer takes the latent concept-based explanation as input and generates a plausible and

human-understandable explanation of the prediction.
Consider a sentiment classification dataset and a sentiment classification model as an exam-
ple. LACOAT works as follows: ConceptDiscoverer takes the training dataset and the
model as input and outputs latent concepts of the model. At test time, given an input instance,
PredictionAttributor identifies the most salient input representations with respect to the
prediction. ConceptMapper maps these salient input representations to the most probable latent
concepts and provides them as an explanation of the prediction. PlausiFyer takes the input test
sentence and its concept-based explanation and generates a human-friendly and insightful explana-
tion of the prediction.

In the following we describe each of these modules in detail. Consider M represents the DNN model
being interpreted, with L layers, each of size H . �!z wi contextual representation of a word wi in an
input sentence {w1, w2, ..., wi, ....}. The representation can belong to any particular layer in the
model, and LACOAT will generate explanations with respect to that layer.

2.1 CONCEPTDISCOVERER

The words are grouped together in the high-dimensional space based on various latent relations such
as semantic, morphology and syntax (Mikolov et al., 2013; Reif et al., 2019). With the inclusion of
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context i.e. contextualized representations, these grouping evolves into dynamically formed clusters
representing a unique facet of the words called latent concept (Dalvi et al., 2022). Figure 1 shows a
few examples of latent concepts that capture different facets of the word ”trump”.

The goal of ConceptDiscoverer is to discover latent concepts given a model M and a dataset
D. We follow an identical procedure to Dalvi et al. (2022) to discover latent concepts. Specifically,
for every word wi in D, we extract contextual representations �!

z wi . We then cluster these con-
textualized representations using agglomerative hierarchical clustering (Gowda & Krishna, 1978).
Specifically, the distance between any two representations is computed using the squared Euclidean
distance, and Ward’s minimum variance criterion is used to minimize total within-cluster variance.
The algorithm has a hyperparamter K that defines the number of clusters. We optimize K for
each dataset as suggested by Dalvi et al. (2022). Each cluster represents a latent concept. Let
C = C1, C2, ..., CK represents the set of latent concepts extracted by ConceptDiscoverer,
where each Ci = w1, w2, ... is a set of words in a particular context. For sentence classification
tasks, we also consider the [CLS] token (or a model’s representative classification token) from
each sentence in the dataset as a “word” and discover the latent concepts. In this case, a latent
concept may consist of words only, a mix of words and [CLS] tokens, and [CLS] tokens only.

2.2 SALIENT REPRESENTATIONS EXTRACTION

The goal of PredictionAttributor is to extract salient contextual representations for a pre-
diction p from model M for some given input. We consider two strategies to achieve this goal:

Position Attribution This strategy uses the position of the output head as an indication of the
most salient contextual representation. For instance,

• In the case of sequence classification, the representation of the [CLS] token, �!z [CLS] (or a
model’s representative classification token) will be considered as the most salient representation.

• In the case of masked token prediction, the representation of the [MASK] token (�!z MASK) will be
considered as the most salient for making the prediction.

• In the case of sequence labeling, the representation at the time step of the prediction will be
used. For example, in the case of POS tagging, for the prediction of a tag of the word love in
the sentence I [love] soccer, the second time step’s representations (�!z w2 ) will be used.

Saliency based Attribution Gradient-based methods have been effectively used to compute the
saliency of the input features for the given prediction, such as pure Gradient (Simonyan et al., 2014),
Input x Gradient (Shrikumar et al., 2017) and Integrated Gradients (IG) (Sundararajan et al., 2017a).
For a given input s and prediction p, gradient-based methods give attribution scores for each token
in the input sequence estimating their importance to the prediction. In this work, we use IG as
our gradient-based method as its a well-established method from literature. However, this module
of LACOAT is agnostic to the choice of the attribution method, and any other method that identifies
salient input representations can be used while keeping the rest of the pipeline unchanged. Formally,
we first use IG to get attribution scores for every token in the input s, and then select the top tokens
that makeup 50% of the total attribution mass (similar to top-P sampling).

2.3 CONCEPTMAPPER

For an input sentence at test time, PredictionAttributor provides the salient input repre-
sentations with respect to the prediction. ConceptMapper maps each salient representation to a
latent concept Ci of the training latent space. These latent concepts highlight a particular facet of the
salient representations that is being used by the model and serves as an explanation of the prediction.

ConceptMapper uses a logistic regression classifier that maps a contextual representation �!
z wi

to one of the K latent concepts. Specifically, the model is trained using the representations of words
from dataset D that are used by ConceptDiscoverer as input features and the concept index
(cluster id) as their label. Hence, for a concept Ci and a word wj 2 Ci, a training instance of the
classifier is the input x = �!

z wj and the output is y = i. To optimize the classifier and to evaluate its
performance, we split the dataset D into train (90%) and test (10%), and minimize the cross-entropy
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loss over all the representations. ConceptMapper used in the LACOAT pipeline is trained using
the full dataset D.

2.4 PLAUSIFYER

ConceptMapper presents latent concepts as an explanation, leaving their understanding to do-
main experts and model users. Interpreting these concepts can be challenging due to the need for
diverse knowledge, including linguistic, worldly, and geographical expertise (as seen in Figure 1).
PlausiFyer simplifies the interpretation of latent concepts by offering a user-friendly summary
and explanation of both the latent concept given the input sentence. Mousi et al. (2023) found
ChatGPT’s explanations of latent concepts to be as good as, and often superior to, human explana-
tions. PlausiFyer employs a similar approach, providing words from the latent concept, such
as w1, w2, ..., and the input sentence and using a Large Language Model (LLM) like ChatGPT to
explain their relationship.

We use the following prompt for sentence classification tasks:

Do you find any common semantic, structural, lexical and topical relation
between these sentences with the main sentence? Give a more specific and
concise summary about the most prominent relation among these sentences.

main sentence: {sentence}

{sentences}

No talk, just go.

and the following prompt for sequence labeling tasks:

Do you find any common semantic, structural, lexical and topical relation
between the word highlighted in the sentence (enclosed in [[ ]]) and the
following list of words? Give a more specific and concise summary about
the most prominent relation among these words.

Sentence: {sentence}

List of words: {words}

Answer concisely and to the point.

We did not provide the actual prediction of the model, or the gold label to avoid biasing the expla-
nation.

3 EVALUATION AND RESULTS

3.1 PROCEDURE AND SETTINGS

Data We use two tasks, Parts-of-Speech (POS) Tagging and Sentiment Classification for our ex-
periments. The former is a sequence labeling task, where every word in the input sentence is as-
signed a POS tag, while the latter classifies sentences into two classes representing Positive and
Negative sentiment. We use the Penn TreeBank dataset (Marcus et al., 1993) for POS Tagging and
the ERASER Movie Reviews dataset (Pang & Lee, 2004; Zaidan & Eisner, 2008) for Sentiment
Classification. The POS tagging dataset consists of 36k, 1.8k and 1.9k splits for train, dev and test
respectively and 44 classes.

The ERASER movie review dataset consists of labeled paragraphs with human annotations of the
words and phrases. We filter sentences that have a word/phrase labeled with sentiment and create a
sentence-level sentiment classification dataset. The final dataset contained 13k, 1.5k and 2.7k splits
for train, dev and test respectively. The dataset including all splits consists of 9.4k positive and 8.6k
negative instances.

4



Under review as a conference paper at ICLR 2024

(a) A positive labeled test instance corrected pre-
dicted by the model.

(b) A negatively labeled test instance that is incorrectly
predicted as positive.

Figure 2: ERASER explanation examples

Models We fine-tune 12-layered pre-trained models; BERT-base-cased (Devlin et al., 2019),
RoBERTa-base (Liu et al., 2019) and XLM-Roberta (Conneau et al., 2020) using the training
datasets of the two tasks. We use transformers package ((Wolf et al., 2020)) with the default settings
and hyperparameters. The task performance of the models is provided in Appendix Tables 3 and 4.

Module-specific hyperparameters When extracting the activation and/or attribution of a word,
we average the respective value over the word’s subword units. We optimize number of clusters K
for each dataset as suggested by (Dalvi et al., 2022). We use K = 600 (POS tagging) and K = 400
(Sentiment Classification) for ConceptDiscoverer.

Since the number of words in D can be very high, and the clustering algorithm is limited by the total
number of representations it can efficiently cluster, we filter out words with frequencies less than 5
and randomly select 15 contextual occurrences of every word with the assumption that a word may
have a maximum of 15 facets. These settings are in line with Dalvi et al. (2022). In the case of
[CLS] tokens, we keep all of the instances.

We use a Zero-vector as the baseline vector in PredictionAttributor’s IG method, use 500
approximation steps. For ConceptMapper, we use the cross-entropy loss with L2 regularization
and train the classifier with ’lbfgs’ solver and 100 maximum iterations. Finally, for PlausiFyer,
we use ChatGPT as the LLM with a temperature of 0 and a top p value of 0.95.

Layer LACOAT works independently for every layer and generates explanations with respect to
an input layer. Since the last layer is closest to the output, we found their explanations to be most
useful in understanding the prediction. Below, we present the results of LACOAT using the last layer.

3.2 QUALITATIVE EVALUATION

Figures 2 and 3 show LACOAT’s output for both tasks using layer 12 of the BERT model. The
sentence is the input sentence, prediction is the output of the model, true label is the gold label. The
explanation is the final output of LACOAT. Cluster X is the latent concept aligned with the most
salient word representation at the 12th layer and X is the cluster ID. For the sentiment classification
task, we discovered various [CLS] only clusters at the 12-layer. In such cases, we randomly pick
five [CLS] instances from the latent concept and show their corresponding sentences in the figure.

Correct predicted label with correct gold label Figures 2a and 3a present a case of correct
prediction with latent-concept explanation and human-friendly explanation. The latent concept-
based explanations are harder to interpret especially in the case of sentence-level latent concepts as
in Figure 2a compared to latent concepts consisting of words (Figure 3a). However, in both cases,
PlausiFyer highlights additional information about the relation between the latent concept and

5



Under review as a conference paper at ICLR 2024

(a) An adverb with semantics showing degree and in-
tensity of an action

(b) An incorrect prediction that can be detected
from the latent concept

Figure 3: POS tagging explanation examples

the input sentence. For example, it captures that the adverbs in Figure 3a have common semantics
of showing degree or frequency. Similarly, it highlights that the reason of positive sentiment in 2a is
due to praising different aspects of a film and its actors and actresses.

Wrong predicted label with correct gold label Figures 2b and 3b show rather interesting sce-
narios where the predicted label is wrong. In the case of the sentiment classification (Figure 2b), the
input sentence has a negative sentiment but the model predicted it as positive. The instances of latent
concepts show sentences with mixed sentiments such as “manages to charm” and “epitome of twist
endings” is positive, and “mess of fun” is negative. This provides the domain expert an evidence
of a possible wrong prediction. The PlausiFyer’s explanation is even more helpful as it clearly
states that “there is no clear ... relation between these sentences ...”. Similarly, in the case of the POS
example (Figures 3b), while the prediction is Noun, the majority of words in the latent concepts are
plural Nouns, giving evidence of a possibly wrong prediction. In addition, the explanation did not
capture any morphological relationship between the concept and the input word.

In order to study how the explanation would change if it is a correct prediction, we employ the
TextAttack tool (Morris et al., 2020) to create an adversarial example of the sentence in Figure 2b
that flips its prediction. The new sentence replaces ‘laughing’ with ‘kidding’ which has a similar
meaning but flipped the prediction to a correct prediction. Figure 6 in the appendix shows the full
explanation of the augmented sentence. With the correct prediction, the latent concept changed
and the explanation clearly expresses a negative sentiment “... all express negative opinions and
criticisms ...” compared to the explanation of the wrongly predicted sentence.

Cross model analysis LACOAT provides an opportunity to compare various models in terms of
how they learned and structured the knowledge of a task. Figure 4 compares the explanation of
RoBERTa (left) and XLMR (left) for identical input. Both models predicted the correct label. How-
ever, their latent concept based explanation is substantially different. RoBERTa’s explanation shows
a large and diverse concept where many words are related to finance and economics. The XLMR’s
latent concept is rather a small focused concept where the majority of tokens are units of measure-
ment. It is worth noting that both models are fine-tuned on identical data.

3.3 VALIDATING THE METHODOLOGY

The correctness of LACOAT depends on the performance of each module it comprised off. The
ideal way to evaluate the efficacy of these modules is to consider gold annotations. However, the
ground truth annotations are not available for any module. To mitigate this limitation, we design
various constrained scenarios where certain assumptions can be made about the representations of
the model. For example, the POS tagging model optimizes POS tags so it is highly probable that
the last layer representations form latent concepts that are a good representation of POS tags as
suggested by various previous works (Kovaleva et al., 2019; Durrani et al., 2022). One can assume
that for ConceptDiscoverer, the last layer latent concepts will form groupings of words based
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Figure 4: Comparing explanation of RoBERTa (left) and XLMR (right)

on specific tags and for PredictionAttributor, the input word at the position of the predicted
tag should reside in a latent concept that is dominated by the words with identical tag. We evaluate
the correctness of these assumptions in the following subsections.

Latent Concept Annotation For the sake of evaluation, we annotated the latent concepts automat-
ically using the class labels of each task. Given a latent concept, we annotate it with a certain class
if more than 90% of the words in the latent concept belong to that class. In the case of POS tagging,
the latent concepts will be labeled with one of the 44 tags. In the case of ERASER, the class labels,
Positive and Negative, are at sentence level. We tag a latent concept Positive/Negative if 90% of its
tokens whether [CLS] or words belong to sentences labeled as Positive/Negative in the training data.
The latent concepts that do not fulfill the criteria of 90% for any class are annotated as Mixed.

3.3.1 CONCEPTDISCOVERER

A latent concept is a true reflection of the properties that a representation possesses.

ConceptDiscoverer identifies latent concepts by clustering the representation in the high di-
mensional space. We questioned whether the discovered latent concepts are a true reflection of the
properties that a representation possesses. Using ConceptDiscoverer, we form latent concepts
of the last layer and automatically annotate them as described above. We found 87%, 83% and
86% of the latent concepts of BERT, RoBERTa and XLMR that perfectly map to a POS tag re-
spectively. We further analyzed other concepts where 95% of the words did not belong to a single
tag. We found them to be of a compositional nature i.e. a concept consisting of related semantics
like a mix of adjectives and proper nouns about countries such as Sweden, Swedish (Appendix Fig-
ure 5). For ERASER, we found 78%, 95% and 94% of the latent concepts of BERT, RoBERTa and
XLMR to consist of either Positive or Negative sentences. The high number of class-based clusters
of RoBERTa and XLMR show that at 12th layer, majority of their latent space is separated based on
these two classes. Appendix Table 10 presents these figures for each layer.

3.3.2 PREDICTIONATTRIBUTOR

The salient input representation correctly represents the latent space of the output. Here, we
aim to evaluate the PredictionAttributor module. We consider it to be correct if at least
for the last (few) layer(s), the salient representation aligns with the latent concept that is dominated
by the words/sentences of the same tag/class as the label. There are two ways to select a salient
input representation – Position based and Saliency based. We evaluate the former as the number of
times an input representation at the position of the output head maps to the latent concept that is
annotated with an identical label as the output. For example, consider that the model predicts Proper
Noun (PN) for the input word ”Trump”. In order for the input representation of the predicted label
to be aligned with the latent concept, the representation of the word ”Trump” on at least the last
layer should be in a cluster of words whose label is PN.1 Similarly for sentiment classification, we
expect the [CLS] representation on the last layer to map to a latent concept that is dominated by the
same class as the prediction. For the saliency based method, we calculate the number of times the

1We labeled concepts with a tag if 90% of the words in the concept belongs to one class.
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Table 1: Accuracy of PredictionAttributor in mapping a representation to the correct latent
concept. See Appendix Table 7, 8, 9 for full results.

POS ERASER
Position/Saliency Position based Saliency based

Layers BERT RoBERTa XLMR BERT RoBERTa XLMR BERT RoBERTa XLMR

9 92.38 86.97 91.97 37.09 98.45 0 31.94 99.59 32.63
10 92.79 89.64 92.64 99.55 99.14 0 99.57 99.69 92.06
11 93.39 89.95 92.59 99.82 99.27 99.17 99.71 99.48 94.97
12 93.95 90.04 93.13 99.25 99.27 99.08 99.25 99.27 99.08

Table 2: Top 1,2 and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept. See Table 5, 6 in the Appendix for results on all layers. Model: BERT

Layers 0 1 2 5 6 7 10 11 12

POS Top 1 100 100 100 99.03 97.76 96.51 92.67 90.86 84.19
Top 2 100 100 100 99.75 99.34 98.91 97.89 97.34 94.15
Top 5 100 100 100 99.94 99.83 99.68 99.68 99.64 99.05

ERASER Top 1 100 100 100 97.19 96.44 94.86 83.09 76.84 68.24
Top 2 100 100 100 99.63 99.3 98.97 92.67 88.02 83.24
Top 5 100 100 100 99.94 99.89 99.9 97.75 96.01 94.24

representation of the most salient word/[CLS] token maps to the latent concept of the identical label
as that of the prediction.

We do not include ConceptMapper when evaluating PredictionAttributor and conduct
this experiment using the training data only where we already know the alignment of a salient repre-
sentation and the latent concept. Table 1 shows the results across the last four layers (See Appendix
Table 7, 8, 9 for full results). For POS, the salient representation is identical for both the position
based and saliency based methods and results in the same performance. We observed a successful
match of 93.95%, 90.04% and 93.13% for BERT, RoBERTa and XLMR models respectively. We
observed the mismatched cases and found them to be of compositional nature i.e. latent concepts
comprised of semantically related words (see Appendix Figure 5 for examples).

For ERASER, more than 99% of the time, the last layer’s salient representation maps to the pre-
dicted class label, confirming the correctness of PredictionAttributor. For lower layers,
the performance drops and even reaches zero as in the case of XLMR. This is mainly due to the ab-
sence of class-based latent concepts in the lower layers i.e. concepts that comprised more than 90%
of the tokens belonging to sentences of one of the classes. The other reason is the position-based
method which fails to find the right latent concept when the most attributed word is different from
the position of the output head.

3.3.3 CONCEPTMAPPER

ConceptMapper correctly maps a new representation to the latent space. Here, we evaluate
the correctness of ConceptMapper in mapping a test representation to the training data latent
concepts. ConceptMapper trains using representations and their cluster ids as labels. For every
layer, we randomly split this training data into 90% train and 10% test data. Here, the test data serves
as the gold standard annotation of latent concepts. We train ConceptMapper using the training
instances and measure the accuracy of the test instances. Table 2 presents the accuracy of the POS
and ERASER tasks using BERT (See Appendix Tables 5, 6 for results of other models). Top-1, Top-
2 and Top-5 refer to top 1, 2 and 5 predictions of the mapper. Observing Top-1, the performance of
ConceptMapper starts high (100%) for lower layers and drops to 84.19 and 68.24% for the last
layer. We found that the latent space becomes dense on the last layer. This is in line with Ethayarajh
(2019) who showed that the representations of higher layers form a cone. This causes several similar
concepts close in the space. If true, the correct label should be among the top predictions of the
mapper. We empirically tested it by considering the top two and top five predictions of the mapper.
It achieved a performance of up to 99.05% and 94.24% for POS and ERASER respectively.
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3.3.4 PLAUSIFYER

The human-friendly explanation is faithful to the latent-concept based explanation i.e. it con-
veys the correct relation based on which representations in a latent concept are grouped together.
We rely on the findings of (Mousi et al., 2023) who showed that the annotations of latent concepts
produced by generative models are better than human annotations. In our qualitative evaluation, we
found rare cases where PlausiFyer was unable to capture the relation between the latent concept
and the input (Appendix Figure 7 shows an example).

4 RELATED WORK

The explainability methods can be approached by local explanations and global explanations (Mad-
sen et al., 2023; Sundararajan et al., 2017b; Denil et al., 2014; Selvaraju et al., 2020; Kapishnikov
et al., 2021; Zhao & Aletras, 2023; Kim et al., 2018; Ghorbani et al., 2019; Jourdan et al., 2023; Zhao
et al., 2023; Ribeiro et al., 2016). Lyu et al. (2023) provides a comprehensive survey on explain-
ability methods in NLP. LACOAT is a local explanation method providing post-hoc explanations for
each single instance. One of the most common ways for local explanations is to interpret the model
prediction based on the input features. However, the shortcoming of this type of method is the lack
of contextual verbosity, which could not interpret the multifaceted roles of the input features and
could not demonstrate how the models learn the contextual and task knowledge. To solve this issue,
the concept-based explanation is a popular method to identify the high-level influential factor and to
have a clearer and more comprehensive understanding of the model’s prediction process (Kim et al.,
2018; Ghorbani et al., 2019; Zhao et al., 2023; Jourdan et al., 2023). For instance, TCAV is a global
explanation method that utilizes directional derivatives to measure the model’s prediction sensitivity
towards a human-defined concept to generate explanations (Kim et al., 2018). A limitation of the
methods is their reliance on human pre-defined concepts, which may be subject to human bias, and
the concept may not represent the way the model has learned the knowledge of a task.

A number of works attempted to explain and interpret NLP models using high-level concepts ex-
tracted from hidden representations (Zhao et al., 2023; Dalvi et al., 2022; Rajani et al., 2020). Zhao
et al. (2023) worked on global explanation and trained a separate surrogate model to discover latent
concepts based on two optimization criteria i.e. auto encoding loss to stay faithful to the original
model distribution and impact of the latent concept to prediction. Different from them, we provide
local explanations and we ensure the faithfulness of latent concepts to the model by extracting them
directly from the hidden representation without any supervised training. Rajani et al. (2020) used
k-nearest neighbors of the training data for low-confidence predictions and showed them to be useful
in revealing acquired erroneous correlations, pinpointing misclassified instances, and enhancing the
performance of the finetuned model. Our latent concept discovery module is similar to Dalvi et al.
(2022) and is based on hierarchical clustering. Dalvi et al. (2022) proposed it to analyze how knowl-
edge of a task is structured in the network. LACOAT extends it to how the structured knowledge is
used in the prediction and provides a human-friendly explanation.

5 CONCLUSION AND LIMITATIONS

We presented LACOAT that provides a human-friendly explanation of a model’s prediction using the
training data latent concepts. We performed a thorough evaluation of each module of LACOAT. The
qualitative evaluation showed that LACOAT explanations are insightful in explaining a correct pre-
diction, in highlighting a wrong prediction and in comparing the explanations of models. LACOAT
promises to engage human-in-the-loop in the decision-making process and is an essential step to-
wards trust in AI.

A few limitations of LACOAT are: 1) while hierarchical clustering is better than nearest neighbor
in discovering latent concepts as established by Dalvi et al. (2022), it has computational limitations
and it can not be easily extended to a corpus of say 1M tokens. 2) LACOAT requires access to the
training data and the model for explanation which may not be available for large language models
such as Llama and ChatGPT.
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