
Published in Transactions on Machine Learning Research (07/2023)

Online Min-max Problems with Non-convexity and Non-
stationarity

Yu Huang∗ y-huang20@mails.tsinghua.edu.cn
Institute for Interdisciplinary Information Sciences
Tsinghua University
Yuan Cheng∗ cy16@mail.ustc.edu.cn
University of Science and Technology of China
Yingbin Liang liang.889@osu.edu
Department of Electrical and Computer Engineering
The Ohio State University
Longbo Huang† longbohuang@tsinghua.edu.cn
Institute for Interdisciplinary Information Sciences
Tsinghua University

Reviewed on OpenReview: https: // openreview. net/ forum? id= TdzQtbLeVw

Abstract

Online min-max optimization has recently gained considerable interest due to its rich ap-
plications to game theory, multi-agent reinforcement learning, online robust learning, etc.
Theoretical understanding in this field has been mainly focused on convex-concave settings.
Online min-max optimization with nonconvex geometries, which captures various online
deep learning problems, has yet been studied so far. In this paper, we make the first effort
and investigate online nonconvex-strongly-concave min-max optimization in the nonstation-
ary environment. We first introduce a natural notion of local Nash equilibrium (NE)-regret,
and then propose a novel algorithm coined TSODA to achieve the optimal regret. We fur-
ther generalize our study to the setting with stochastic first-order feedback, and show that
a variation of TSODA can also achieve the same optimal regret in expectation. Our theo-
retical results and the superior performance of the proposed method are further validated
by empirical experiments. To our best knowledge, this is the first exploration of efficient
online nonconvex min-max optimization.

1 Introduction
Online optimization (Cesa-Bianchi & Lugosi, 2006) is a powerful paradigm for modeling many applications
that require decision making based on information available sequentially. Specially, at each time instance, an
online player needs to make a decision based on the history information, and then receives a feedback (which
can be a possibly adversarial and nonstationary reward or loss value) that may be used in the future. There
have been extensive studies in this field for various scenarios, such as online convex optimization (Shalev-
Shwartz, 2012; Hazan et al., 2016), online bilevel optimization (Tarzanagh & Balzano, 2022), online federated
learning (Chen et al., 2020), etc. Recently, the online min-max (i.e., saddle point) problem has gained
considerable interest due to its broad applications in game theory (Roy et al., 2019; Zhang et al., 2022),
multi-agent reinforcement learning (Buşoniu et al., 2010; Zhang et al., 2021), online robust learning (Gabrel
et al., 2014; Ben-Tal et al., 2015), to name a few.

On the theoretical side, a line of works have explored provably efficient algorithms for online min-max
optimization. Specifically, Cardoso et al. (2019); Fiez et al. (2021); Immorlica et al. (2019); Zhang et al.
(2022) considered the zero-sum matrix games where the online objective function takes a bilinear form.
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Rivera et al. (2018); Roy et al. (2019) studied a more general online min-max problem, where the objective
is strongly-convex and strongly-concave. Noarov et al. (2021) focused on multi-objective online min-max
games, where the reward is convex-concave in each coordinate.

Despite many efforts so far, existing literature on online min-max optimization has mainly focused on on-
line convex-concave problems and did not take nonconvexity into consideration. However, in practice,
nonconvexity occurs very often in online min-max problems, particularly those that apply deep neural
networks (DNNs) for decision making. For instance, in the time-varying two-player zero-sum stochastic
games (Mertens & Neyman, 1981; Roy et al., 2019; Zhang et al., 2022), where the payoffs change with time,
the policies are modeled by DNNs with strong regularization, and hence the online objective function is
nonconvex-strongly-concave.

Motivated by the aforementioned practical problems, the goal of this paper is to take the first step towards
exploring the online nonconvex-strongly-concave min-max problem with dynamic (and hence non-
stationary) loss functions. Due to the nonconvexity and nonstationarity nature of the problem, two new
challenges arise as we explain below.

First, how to define an appropriate notion of regret for the nonstationary environment under the online
nonconvex setting? The standard notion of Nash Equilibrium (NE)-regret, e.g., Rivera et al. (2018) for
online convex-concave problems, which quantifies the difference between the cumulative loss of players and
the min-max value of the cumulative payoff loss, is highly unreasonable for nonconvex-concave setting, since
the min-max comparator is intractable for a nonconvex-concave function. Hence, new surrogate for regret is
in demand.

Second, with a desirable notion of regret, how to design efficient algorithms? A natural strategy to handle the
nonstationarity is that at each round, the decision maker first learns a good enough decision based on history
losses and then applies it to the adversarial loss of current round. Two key difficulties will arise during this
process. First, how to identify a good decision? In nonconvex min-max problems, a good decision usually
refers to a stationary point. The standard definition of a stationary point involves an optimization oracle,
which is unknown to the decision maker. Thus the decision maker needs to find a surrogate to identify a
near stationary point at each round. Second, when applying the decision based on history information to
the adversarial loss, mismatch errors arise due to the variability of the environment, which motivates the
need for nonstationarity measures.

1.1 Our contributions

In this paper, we handle the aforementioned challenges by introducing a new regret measure and develop-
ing efficient algorithms for online nonconvex min-max problem with optimal regret guarantees. The main
contributions are highlighted below.

• We first introduce a novel notion of dynamic regret for online nonconvex-strongly-concave min-max
problem, called local Nash equilibrium (NE)-regret, which jointly captures the nonconvexity,
nonstationarity, and min-max nature of our problem.

• Based on the regret notion, we propose an efficient online min-max optimization algorithm, named
Time-Smoothed Online gradient Descent Ascent (TSODA). The main idea underlying TSODA is to
output a near-stationary point at each round by performing two-timescale gradient descent ascent
and utilizing a specially designed stop criterion component.

• We show that the local NE-regret of TSODA scales as O( T
w2 ) with a iteration complexity of O(Tw),

where T represents the total number of rounds and w denotes the size of the sliding window used to
define local NE-regret. Such result matches the Ω( T

w2 ) regret lower bound and the order of iteration
complexity of O(Tw) provided in Hazan et al. (2017a) for online minimization (where we set the
maximization to be over a singleton). Thus, TSODA achieves the optimal performance for online
nonconvex-strongly-concave min-max optimization.

• We further generalize our study to the setting with stochastic first-order feedback and show that a
variation of TSODA can also achieve a regret of O( T

w2 ).
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• We verify our theoretical results and demonstrate the effectiveness of our algorithm through several
empirical experiments on real-world datasets.

To our best knowledge, this is the first study on online nonconvex min-max optimization with theoretical
characterization of the regret performance.

1.2 Related Work

Online Min-max Optimization. Recently, online min-max optimization, also known as online saddle-
point game, has emerged as an interesting optimization framework, and has been studied under various
settings. More specifically, the zero-sum matrix game considers the special case that the function is bilinear
with a payoff matrix At, where the objective function is given by ft(x, y) = x⊤Aty. Several works, for
example, Cardoso et al. (2019); Fiez et al. (2021); Immorlica et al. (2019); Zhang et al. (2022) proposed
and analyzed algorithms with respect to different notions of regret. For more general objective functions,
Rivera et al. (2018); Roy et al. (2019) studied the case where the loss function ft is strongly-convex-strongly-
concave. Very recently, Noarov et al. (2021) formulated a general multi-objective framework, where the goal
is to minimize the maximum coordinate of the cumulative vector-valued loss with convex-concave function in
every coordinate. We emphasize that all of the above studies did not consider nonconvexity in their objective
functions, which is the focus of our study here.

Online Nonconvex Optimization. As online nonconvex optimization is an active research area, var-
ious works have taken different approaches to handle the nonconvexity. Assuming access to an offline
nonconvex optimization oracle to approximate minimizers of perturbed nonconvex functions, Suggala &
Netrapalli (2020); Agarwal et al. (2019) studied the performance of “follow the perturbed leader” (FTPL)
algorithm (Kalai & Vempala, 2005), and their regrets are all static regret. Further, Hazan et al. (2017a);
Hallak et al. (2021); Aydore et al. (2019) considered online nonconvex problems under nonstationary en-
vironments, and utilized sliding windows method with window size w. They proposed different notions of
dynamic regrets and algorithms, and achieved an order of O( T

w2 ) according regret notions. Additionally,
Héliou et al. (2020) studied online nonconvex optimization with imperfect feedback. Except first-order opti-
mization, Héliou et al. (2020); Roy et al. (2022) considered zeroth-order online nonconvex optimization and
Lesage-Landry et al. (2020) studied second-order online nonconvex optimization.

Offline Min-max Optimization. There is a rich literature that studies a diverse set of algorithms for
min-max optimization with nonconvexity in the offline setting. We next describe only those studies highly
relevant to our study here. One celebrated approach is the nested-loop type algorithm (Rafique et al., 2021;
Nouiehed et al., 2019; Thekumparampil et al., 2019; Kong & Monteiro, 2021), where the outer loop can
be treated as an inexact gradient descent on a nonconvex function while the inner-loop aims to find an
approximate solution to the maximization problem (see Lin et al. (2020a) and references therein for a good
collection of such studies). Another approach, manifesting in the recent works of Lu et al. (2020) and Lin
et al. (2020a) considers less complicated single-loop structures. Specifically, the two-timescale GDA analyzed
in Lin et al. (2020a) is closest to the implementation at each round of our proposed TSODA method. But
it is not straightforward to generalize the design to the online setting, and our analysis of the new local
NE-regret for online optimization is also very different from such a offline min-max problem.

1.3 Notations

[T ] ≜ {1, . . . , T}. We use bold lower-case letters to denote vectors as in x, y, and denote its ℓ2-norm as ∥ · ∥.
We use calligraphic upper case letters to denote sets as in Y, and use the notation PY to denote projections
onto the set. For a differentiable function Φ(·) : Rm → R, we let ∇Φ(x) denote the gradient of Φ at x. For
a function f(·, ·) : Rm ×Y → R of two variables, ∇xf(x, y) (or ∇yf(x, y)) denotes the partial gradient of f
with respect to the first variable (or the second variable) at the point (x, y). We also use ∇f(x, y) to denote
the full gradient at (x, y) where ∇f(x, y) = (∇xf(x, y),∇yf(x, y)). Finally, we use the notation O(·) and
Ω(·) to hide constant factors which are independent of problem parameters.
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2 Problem Setup
We consider solving the following online min-max (i.e., saddle-point) problem:

minx∈Rm maxy∈Y ft(x, y), t ∈ [T ] (1)

where ft : Rm × Rn → R is generally nonconvex in x but concave in y and where Y is a convex set.
Such choice of unbounded x and bounded y is commonly used in existing analysis for nonconvex-concave
problems (Lin et al., 2020a; Li et al., 2022; Yang et al., 2022). In our work, such an assumption brings the
technical convenience by allowing us to control δ0

t,w =
∥∥y⋆

t,w

(
x0

t

)
− y0

t

∥∥2 at round t = 1 (see Section 6.2
for details). At each round t ∈ [T ], the environment first incurs a loss function ft. Without knowing the
knowledge of ft, the x-learner and y-learner are tasked with predicting xt and yt respectively to solve eq. (1)
based on loss functions up to round t − 1, i.e., {fi}t−1

i=1. The learners then observe the function ft(·) and
suffer a loss of ft(xt, yt).

The following regularity assumptions for ft are made throughout the entire paper:
Assumption 1 (Smoothness). ft is ℓ-smooth ∀t ∈ [T ], i.e., ∀(x, y), (x′, y′), it holds that ∥∇ft(x, y) −
∇ft(x′, y′)∥ ≤ ℓ∥(x, y)− (x′, y′)∥.
Assumption 2 (Strong Concavity). The function ft(x, ·) is µ-strongly concave ∀t ∈ [T ], i.e., given x ∈ Rm,
∀y, y′, it holds that ft(x, y) ≤ ft (x, y′) + ⟨∇yft (x, y′) , y− y′⟩ − µ

2 ∥y− y′∥2.
Assumption 3 (Boundness). The set Y is a convex and bounded set with diameter D ≥ 0. There exists
M > 0, s.t. |ft(x, y)| ≤M , ∀t ∈ [T ], x ∈ Rm, y ∈ Y.

The above assumptions are standard in the literature of online learning (Hazan et al., 2017b) and min-max
optimization (Lin et al., 2020a;b). While our analysis primarily focuses on the nonconvexity of x, it is worth
mentioning that our approach can be extended to the nonconvex-concave setting by employing a weaker
condition for y, as discussed in Lin et al. (2020a).

When the loss ft is fixed for all t, our framework specializes to the standard nonconvex-strongly-concave
min-max optimization (Lin et al., 2020a;b). Putting into the context of online min-max optimization,
our formulation is similar to those in Roy et al. (2019); Rivera et al. (2018); Zhang et al. (2022), where
they studied only the case where ft is convex-concave. However, their standard regret minimization and
equilibrium computation will be computationally infeasible for general nonconvex-strongly-concave losses.
Next, we provide a motivating example for the online nonconvex-concave min-max optimization problem
that we study here.

Motivating Application. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a popular
machine learning model, in which a generator network Gx(·) playes against a discriminator network Dy(·)
via a min-max formulation given by:

min
x

max
y

M(x, y) = 1
2EP∼pdata log Dy(P) + 1

2EQ∼pnoise log (1−Dy (Gx(Q))) .

In practice, GANs are commonly trained with deep architectures, where both the discriminator and the
generator are deep neural networks, making GANs hard to optimize and analyze. To address such a challenge,
it is theoretically sound to consider an intermediate setting also arising in many real-world scenarios, called
GANs with semi-shallow architectures (Grnarova et al., 2017; Moghadam et al., 2021), where the generator
Gx(·) is any arbitrary deep neural network and the discriminator Dy(·) consists of a single layer network.
Such an architecture naturally yields a nonconvex-concave game, i.e., M(x, y) is nonconvex in x and concave
in y. Furthermore, there is a growing demand for GANs to handle time-varying scenarios (Mogren, 2016;
Esteban et al., 2017; Yoon et al., 2019), such as time-series data, where generated samples should preserve
the temporal dynamics of the data. This requires the GAN’s model parameters to be updated in real-time to
adapt to the changes in the data distribution, which leads to an online setting where the objective function
Mt(x, y) changes over time t. Therefore, by combining the above facts, the training of time-varying GANs
can be captured by online nonconvex-concave min-max problems. Solving such a type of problems has the
potential to advance the field of generative models, particularly in scenarios where the data distribution
changes over time.
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3 How to Measure the Performance?
3.1 Local Nash Equilibrium (NE)-Regret

We introduce a new definition of a local regret that suits online nonconvex-strongly-concave min-max prob-
lems. Our new metric is motivated by the online nonconvex optimization literature; see for example Hazan
et al. (2017a); Hallak et al. (2021). Specifically, for each t, we first define the smoothed functions of ft over
a sliding-window of size w as:

Ft,w(x, y) def= 1
w

∑w−1
i=0 ft−i(x, y). (2)

For notation convenience, we treat ft(x, y) as 0 for all t < 0. Moreover, since the averaging preserves strongly-
convexity, which implies Ft,w is strongly-concave in y, the maximization problem maxy∈Y Ft,w(x, y) can be
solved efficiently. Then, we can naturally define the following function:

Φt,w(x) def= maxy∈Y Ft,w(x, y). (3)

The overall goal of online min-max optimization can be viewed as online minimization over the above defined
Φt,w(·) function. Thus, we define the following regret metric with respect to Φt,w(·).
Definition 1 (Local Nash Equilibrium (NE)-Regret). Let ft be a sequence of functions satisfying Assumption
1-3, with Φt,w(·) defined in eq. (3). The w-local Nash Equilibrium (NE)-Regret is defined as:

RNE
w (T ) def=

∑T
t=1 ∥∇Φt,w(xt)∥2. (4)

∇Φt,w is well-defined since Φt,w is differentiable for nonconvex-strongly-concave min-max problem (Lin et al.,
2020a). We next justify the above notion of the local NE-regret from three aspects.

Why Norm of Gradient as Metric? At each round t of the nonconvex-concave min-max optimization
problem, the objective function can be expressed as minx∈Rm Γt(x), where Γt(·) = maxy∈Y ft(·, y) is generally
nonconvex, and hence finding the global minimum for Γt(x) is NP hard. A common surrogate for the global
minimum of Γt in the offline nonconvex-strongly-concave min-max literature is the notion of ϵ-stationary
point (Lin et al., 2020a;b) for a differentiable Γt, i.e., an output x such that ∥∇Γt(x)∥2 < ϵ. If ϵ = 0, then
x is a stationary point. Therefore, it is reasonable to leverage such a norm of gradient as the optimality
criterion for online nonconvex-concave min-max optimization.

Why Sliding-window Averaging? The motivation behind the window averaging is two-fold: (i) Ft,w and
Φt,w represent the average performance during the window, which is widely adopted to handle noises and
fluctuations when the environment and the loss function ft encounter mild perturbations and variations.
For instance, when each loss function ft is an unbiased noisy realization of some f , the expected gradient
norm of a randomly selected update inside the window is a standard measure in the nonconvex stochastic
optimization literature (Bottou et al., 2018) and can reduce the variation caused by noises. Such smoothed
notion is also a common practice in the field of online nonconvex optimization1 (Hazan et al., 2017a; Hallak
et al., 2021; Aydore et al., 2019; Zhuang et al., 2020). (ii) In practice, the average performance of a system is
a typical and intuitive notion commonly used to evaluate real-world applications. Suppose a decision maker
in a time-varying environment (with loss functions ft) has only finite term memory w. Then she naturally
wishes to find the best decision based on the entire finite term memory and will choose the average loss
function Ft,w and Φt,w as the performance metrics. As another example, if the environment varies in a
periodic manner, such an average performance metric during a whole period is naturally adopted in time
series forecasting problems.

Why Capturing the Dynamic Nature? It is desirable that the regret can capture how well the
players adapt their actions to the best decision at each round if the environment is nonstationary and
changes over time. In the well-studied online convex-concave setting, the notion of dynamic NE-regret (Roy
et al., 2019; Zhang et al., 2022) is defined for this purpose, since its definition of |

∑T
t=1 ft (xt, yt) −

1If we view Y to be singleton, the local NE-regret degenerates to local regret proposed in Hazan et al. (2017a).
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∑T
t=1 minx∈Rm maxy∈Y ft(x, y)| evaluates the gap to the min-max comparator at each round instead of

the min-max solution of the sum of functions over all rounds. For the nonconvex min-max setting, the
best min-max comparator at each round can be set as the stationary point of the window function Φt,w(·),
which has zero gradient. Hence, our local regret in eq. (4) can be interpreted as evaluating the gap between
∥∇Φt,w(xt)∥2 and its comparator (which equals zero gradient) at each round, and thus implicitly captures
the player’s adaption to the dynamic setting. In the special strongly-convex-strongly-concave case, under
some mild continuity conditions, a lower local NE-regret with w = 1 implies a lower dynamic NE-regret. We
provide a concrete toy example in Appendix A to illustrate this relationship.

3.2 Variability of Environment

Intuitively, if the environment (and hence the loss function ft) changes drastically over time, it will be hard
to obtain meaningful guarantees efficiently. To handle this problem, dynamic (Roy et al., 2019; Zhang et al.,
2022) or local (Hallak et al., 2021) regret serves as better performance metrics to take the changing environ-
ment into consideration. Such notions typically rely on certain nonstationarity measures of the environment
in order to reflect how the system dynamics affects the performance. Therefore, in this subsection, we in-
troduce such measures of variation for loss functions, which will be crucial in our analysis and capture the
nonstationarity of our online min-max settings.
Definition 2 (Variation of Sliding-window). Let us denote y∗

t,w(x) = arg maxy∈Y Ft,w(x, y). We define the
following two types of sliding-window variation:

V 1
w [T ] :=

T∑
t=1

sup
x∈Rm

∥∇xft

(
x, y∗

t,w(x)
)
−∇xft−w

(
x, y∗

t,w(x)
)
∥2, (5)

V 2
w [T ] :=

T∑
t=1

sup
x∈Rm

∥∇yft

(
x, y∗

t,w(x)
)
−∇yft−w

(
x, y∗

t−1,w(x)
)
∥2. (6)

Remark 1. V 1
w [T ] primarily measures the drift of ft and ft−w in x, considering that the y-players for these

models are determined by x through y∗
t,w(·). On the other hand, V 2

w [T ] further quantifies the changes of the
maximum players for Ft,w(x, ·) and Ft−1,w(x, ·), i.e. y∗

t,w and y∗
t−1,w. Therefore, by considering both V 1

w [T ]
and V 2

w [T ], we can jointly capture the variations in the environments of the online min-max problem.
Remark 2. Clearly, V 1

w [T ] and V 2
w [T ] are O(T ) if the gradients of ft are bounded and can be zero in the offline

setting, i.e., T = 1. A key observation is that if the loss function encounters a periodic shift with certain
period length of w∗, i.e., ft+w∗ = ft, then for w = w∗ and t ≥ w, we have ft = ft−w and y∗

t,w = y∗
t−1,w, which

is implied by the fact that Ft+1,w = Ft,w. As a consequence, for a well-tuned w ≪ T , the sliding-window
variations could be considerably smaller compared to T , especially V 1

w [T ] = V 2
w [T ] = O(w) in the above case.

4 TSODA: Time-Smoothed Online Gradient Descent Ascent

In this section, we present our proposed method, named time-Smoothed Online gradient Descent Ascent
(TSODA), for online nonconvex-strongly-concave problem, and we show that our approach is capable of
efficiently achieving a favorable local NE-regret bound.

4.1 Proposed Algorithm

At the high-level, our algorithm plays following the-leader iterates, aiming to find a suitable approximating
stationary point at each round using two-timescale gradient descent ascent (GDA). At each round t, TSODA
performs gradient descent over the variable x with the stepsize ηx and gradient ascent over the variable y
with the stepsize ηy on function Ft,w(x, y) until the following Stop Condition 1 is satisfied. Then, TSODA
observes the loss function ft+1 to be used in the next round. The pseudocode of TSODA is summarized in
Algorithm 1.
Stop Condition 1. The terminating condition for Algorithm 1 is:(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥yt+1 − PY (yt+1 + ηy∇yFt,w (xt+1, yt+1)) ∥2 + ∥∇xFt,w(xt+1, yt+1)∥2 ≤ δ2

2w2 . (7)
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Algorithm 1 Time-Smoothed Online Gradient Descent Ascent (TSODA)
Input: window size w ≥ 1, stepsizes (ηx, ηy), tolerance δ > 0
Initialization: (x1, y1)

1: for t = 1 to T do
2: Predict (xt, yt). Observe the cost function ft : Rm × Rn → R
3: Set (xt+1, yt+1)← (xt, yt)
4: repeat
5: xt+1 ← xt+1 − ηx∇xFt,w (xt+1, yt+1)
6: yt+1 ← PY (yt+1 + ηy∇yFt,w (xt+1, yt+1))
7: until Equation (7) in Stop Condition 1 holds
8: end for

Discussions about Stopping Criterion. Due to the online nature, the design of the stopping condition
is to guarantee that the learner outputs a good xt+1 with small local regret at round t, i.e., ∥∇Φt,w(xt+1)∥2

is small enough. However, in contrast to general online nonconvex games (Hazan et al., 2017a), where
the first-order information is available, we do not have direct access to the first-order oracle of Φt,w. To
circumvent this issue, we adopt the global error bound condition from the seminal paper (Drusvyatskiy &
Lewis, 2018) to translate conditions on ∇Φt,w(xt+1) into restrictions on tractable ∇Ft,w. Specifically, we
prove that ∥∇Φt,w(xt+1)∥2 is upper bounded by the left-hand side (LHS) of inequality in Stop Condition 1
(see Lemma 6.1). Therefore, alternatively we can utilize the accessible information of ∇Ft,w to terminate
the inner-loop iterations at time t.

Last-iterate Guarantee. At each round t, the stop condition will be triggered only when the local regret
of last iteration is small enough. Such a last-iterate type guarantee is different by nature from existing
offline nonconvex-strongly-concave min-max results (Lin et al., 2020b;a), which are only guaranteed to visit
an ϵ-stationary point within a certain number of iterations, i.e., where the return x̄ is uniformly drawn
from previous iterations. Crucially, we will establish the total iteration bound (see Theorem 2) in the next
subsection, which indicates that such last-iterate type outputs can be obtained efficiently. Furthermore, since
the stopping criterion leads to stronger guarantee, our result is incomparable with former offline iteration
complexity in the special case that T = 1.

4.2 Theoretical Guarantees

In this subsection, we provide the regret and computational complexity guarantees of our algorithm under
local NE-regret and highlight several connections with the existing results from offline min-max optimization
and online nonconvex problem.
Theorem 1 (Local NE Regret Minimization). Let κ = ℓ/µ denote the condition number. Under Assump-
tions 1-3, and letting the stepsizes be chosen as ηx = Θ

(
1/κ3ℓ

)
and ηy = Θ(1/ℓ), then Algorithm 1 enjoys

the following local NE-regret bound:

ℜNE
w (T ) =

∑T
t=1 ∥∇Φt,w(xt)∥2 ≤ 3

w2 (Tδ2 + (κw)2

(w−1)2 V 2
w [T ] + V 1

w [T ]).

Theorem 2 (Iteration Bound). Let τ denote the total number of iterations incurred by Algorithm 1. Then
τ can be upper bounded as:

τ ≤ 384κ3ℓMwT

δ2 + 576κ2T

µ
+ 576D2κ3ℓ2w2

δ2 + 1152 w2κ5

(w − 1)2δ2 V 2
w [T ].

Furthermore, the number of first-order gradient calls is bounded by O(wτ).

Theorems 1 and 2 together reveal the trade-off between the impact of sliding-window size w on the regret
and the computational complexity, where larger w leads to smaller regret bound but incurs more gradient
calls.

Robustness of TSODA. Our results in Theorems 1 and 2 are expressed in terms of variation measures
V 1

w [T ] and V 2
w [T ] of the environment introduced in Section 3.2. If we make the same assumption similar to
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that in Hazan et al. (2017a) that the gradient of ft is bounded, the above theorems provide a robust guarantee
for TSODA; namely, no matter how the environment changes at each round, TSODA always ensures O( T

w2 )
local NE-regret with O(Tw) iterations since V 1

w [T ] and V 2
w [T ] are O(T ) by definitions. Therefore, the

regret can be made sublinear in T if w is selected accordingly. Interestingly, depending on the degree of
nonstationarity, TSODA is capable of achieving even smaller local NE-regret.Particularly, as we discussed
in Remark 2, for the scenario that ft is periodic with period w ≪ T , V 1

w [T ] = V 2
w [T ] = O(w).

Optimality of Regret Bound. Note that the basic online nonconvex minimization problem can be viewed
as a special case of our online nonconvex min-max problem, if ft(x, y) takes values independent of y. In such a
degenerate case, our local NE-regret is equivalent to the local regret analyzed in Hazan et al. (2017a); Hallak
et al. (2021). Consequently, the adversarial example that incurs the local regret of Ω( T

w2 ) constructed in
Hallak et al. (2021) can also serve as a worst case example for our online noncovex min-max setting. Moreover,
under the same assumption made in Hazan et al. (2017a) (which is more restrictive than our assumption
here), we achieve a robust regret upper bound of O( T

w2 ) (as discussed in the previous paragraph), which
matches the worst-case lower bound, indicating that our bound Theorem 1 for online nonconvex min-max
problem is optimal.

Comparison to offline min-max optimization. When the environment is fixed, i.e. ft ≡ f or T = 1
with w = 1, our problem specializes to offline min-max optimization and V 1

w [T ] = V 2
w [T ] = 0 will disappear

from our results. Therefore, an immediate implication from our theorems is that GDA is guaranteed to find
ϵ-stationary point with O(κ3ϵ−2) iteration complexity. The best known complexity bound for GDA in offline
min-max optimization is O(κ2ϵ−2) (Lin et al., 2020a). However, as we discussed in Section 4.1, TSODA
aims to output x with last-iterate type guarantee, which is a stronger notion than that considered in Lin
et al. (2020a), where GDA are only guaranteed to visit an ϵ-stationary point within a certain number of
iterations. Thus, these results are not directly comparable.

5 TSODA with Stochastic First-order Oracle

In this section, we extend our online min-max framework to an online stochastic version. This setting is
motivated by the fact that, in real world application, such as training a neural network, an oracle with
access to the gradient of loss function is hard to reach. Instead, a stochastic first-order oracle (SFO) is used
to approximate the ground truth gradient. Similar settings have been studied in Nemirovski et al. (2009);
Hazan et al. (2017a); Hallak et al. (2021). Specifically, the formal SFO definition is as follows.

Definition 3 (Stochastic first-order oracle). A stochastic first-order oracle (SFO) is a function Sσ such
that, given a point (x, y) ∈ Rm × Y, a random seed ζ, and a smooth function h : Rm × Y → R satisfies:

• Sσ(x, y; ζ, h) is an unbiased estimate of ∇h(x, y) : E (S(x, y; ζ, h)−∇h(x, y)) = 0;
• Sσ(x, y; ζ, h) has variance bounded by σ2 > 0 : E

(
∥S(x, y; ζ, h)−∇h(x, y)∥2

)
≤ σ2.

5.1 Proposed Algorithm

With the above definition of SFO, we introduce the stochastic version of Algorithm 1, named TSODA-SFO
(see Algorithm 2). Similarly, TSODA-SFO also follows the-leader iterates using two-time scale GDA. Taking
the noise brought by SFO into consideration, nested loops and special stopping criterion (Stop Condition 2)
are modified accordingly. Specially, (i) SFO results in different coefficients in stop criterion compared to
TSODA. (ii) The stopping criterion in TSODA-SFO only ensures that ∥∇Φt,w(xt+1)∥2 is bounded by the
threshold plus the variation of SFO. But the variation here does not play an important role, since sliding
windows serve variance reduction purpose to reduce the variation in the final expected regret.
Stop Condition 2. The terminating condition for Algorithm 2 is:

2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥yk

t − PY
(
yk

t + ηyGk
y,t

)
∥2 + ∥Gk

x,t∥2 ≤ δ2/3w2. (8)
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Algorithm 2 TSODA with Stochastic First-order Oracle (TSODA-SFO)
Input: window size w ≥ 1, stepsizes (ηx, ηy), tolerance δ > 0
Initialization: (x1, y1)

1: for t = 1 to T do
2: Cost function ft : Rm × Rn → R is updated;
3: Sample ∇̃ft (xt, yt)← Sσ/w (xt, yt; ζ, ft)
4: Set ∇̃Ft,w (xt, yt) = ∇̃Ft−1,w (xt, yt) + 1

w (∇̃ft−w (xt, yt)− ∇̃ft (xt, yt))
5: Set x0

t = xt, y0
t = yt, G0

x,t = ∇̃xFt,w (xt, yt), G0
y,t = ∇̃yFt,w (xt, yt), k = 0

6: while Equation (8) in Stop Condition 2 is not satisfied do
7: xk+1

t ← xk
t − ηxGk

x,t

8: yk+1
t ← PY

(
yk

t + ηyGk
y,t

)
9: Sample ∇̃fi(xk+1

t , yk+1
t )← S σ

w
(xk+1

t , yk+1
t ; ζ, fi) for i = t− w + 1, · · · , t;

10: Set Gk+1
t := (Gk+1

t,x , Gk+1
t,y ) = 1

w

∑t
i=t−w+1 ∇̃fi(xk+1

t , yk+1
t )

11: k ← k + 1
12: end while
13: xt+1 = xk

t , yt+1 = yk
t , and ∇̃Ft,w(xt+1, yt+1) = Gk

t

14: end for

5.2 Theoretical Guarantees

Denote τt as the number of iterations of inner-loop at round t and thus τ =
∑T

t=1 τt. Given the SFO and
the inner-loop termination condition in eq. (8), one immediate question is whether Algorithm 2 terminates
in finite time. To this end, we first establish that for each round t, the inner-loop terminates with finite
iterations τt provided that δ is not too small (recall that δ is the tolerance for stopping criterion).

Theorem 3 (Finite Iteration with SFO). Let κ = ℓ/µ denote the condition number, and let the stepsizes be
chosen as ηx = Θ

(
1/κ3ℓ

)
and ηy = Θ(1/ℓ). Under Assumptions 1-3, for any t ∈ [T ], if δ, w and σ satisfy

that δ2 = O( κ4ℓ2σ2

w ), then τt and τ are finite with high probability. Specially, when K ∈ R is large enough,
P(τt > K) = O(1/K).

With the finite step stopping guarantee on hand, we next characterize the performance of TSODA-SFO with
expected local NE-regret formally in terms of w, T, V 1

w [T ], V 2
w [T ].

Theorem 4 (Expected Local NE-Regret with SFO). Under the setting of Theorem 3, TSODA-SFO enjoys
the following expected local NE regret bound:

E
[
ℜNE

w (T )
]
≤ T

w2

(
3δ2 + (360κ2+9)σ2

w

)
+ 3κ2

(w−1)2 V 2
w [T ] + 3

w2 V 1
w [T ].

Beyond the previous regret analysis, we next provide an upper bound on the overall iteration complexity of
SODA-SFO. Similar to Li & Orabona (2019); Hallak et al. (2021), we adopt the following stronger boundness
assumption on the SFO to control the noise caused by SFO calls in the stochastic settings.

Assumption 4. Given any point (x, y) ∈ Rm × Y, random seed ζ, and smooth function h: Rm × Y, the
SFO defined in Definition 3 satisfys that ∥S(x, y; ζ, h)−∇h(x, y)∥2 ≤ σ2.

Remark 3. We remark here that Theorems 3 and 4 do not require Assumption 4, and Theorem 3 provide the
finite iteration guarantee with high probability and Theorem 4 provides an upper bound for expected regret.
With Assumption 4, which is slightly stronger than the assumptions in Definition 3, we are able to provide
the following deterministic bound on iterations and the number of SFO calls as in Theorem 5. Furthermore,
Theorem 5 can provide deterministic guarantees rather than high probability guarantees because Assumption
4 controls the variation of noise in an absolute and deterministic manner.

9
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Theorem 5 (Iterations and SFO calls bounds). Under the setting of Theorem 3 and Assumption 4, and
suppose that δ2 > 8064κ4σ2. Then the total number of iterations satisfies

τ ≤ 1
ηx

2MTw + 9δ2T
ℓ + 72ℓw2

µ2(w−1)2 V 2
w [T ] + w2M + 5ℓD2w2

32(
δ2

3 − 2688κ4σ2
)

Furthermore, the number of SFO calls is bounded by O(wτ).

The above results also provide a robust guarantee for TSODA-SFO, where TSODA-SFO achieves an expected
regret of O( T

w2 ) with at most O(Tw) iterations and hence O(Tw2) calls of SFO, as long as V 1
w [T ] and V 2

w [T ]
scale with O(T ). Following the similar discussions from Remark 2 and Section 4.2, such condition can hold
with relaxed assumptions depending on nonstationarity.

Specially, if the variance of SFO defined in Definition 3 is zero, then SFO reduces to perfect first order
feedback. Hence, as discussed in Section 4.2, the adversarial example provided by Hazan et al. (2017a) is
also applicable to the stochastic setting, and thus indicates that the expected regret O( T

w2 ) reaches optimality.
If the set Y is a singleton, online nonconvex min-max problem with SFO reduces to the online nonconvex
problem with SFO. In this case, the term consisting of V 2

w [T ] will disappear in our analysis, and our theorems
recover the results in Hallak et al. (2021).

6 Proof Overview
In this section, we will outline the regret and iteration analyses for TSODA (Theorems 1 and 2).

6.1 Key Ideas in the Proof of Theorem 1

We can directly decompose the local NE-regret ℜNE
w by Cauchy-Schwarz inequality as follows:

ℜNE
w ≤ 3

T∑
t=1
∥∇Φt−1,w (xt)∥2

︸ ︷︷ ︸
Optimization error

+ 3
T∑

t=1
∥∇xFt−1,w(xt, y∗

t,w(xt))−∇xFt−1,w(xt, y∗
t−1,w(xt))∥2

︸ ︷︷ ︸
Variability of y

+ 3
w2

T∑
t=1
∥∇xft

(
xt, y∗

t,w(xt)
)
−∇xft−w

(
xt, y∗

t,w(xt)
)
∥2

︸ ︷︷ ︸
Variability of x

In the following part, we will interpret each error term and provide a high-level overview of how to control
them.

Optimization error. This term arises due to the overarching strategy of TSODA, which is to perform two-
timescale GDA at each round t in order to seek an approximate stationary point of Φt,w(·). The following
key lemma shows that if Stop Condition 1 is satisfied, then ∥∇Φt−1,w(xt)∥2 ≤ δ2

w2 when TSODA enters the
t-th round. This implies that the optimization error can be controlled by 3T δ2

w2 .
Lemma 6.1. Given a pair (x, y) ∈ Rm × Y, for t ∈ [T ] and w > 0, it holds that

∥∇Φt,w(x)∥2 ≤2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥y− PY (y + ηy∇yFt,w (x, y)) ∥2 + 2∥∇xFt,w(x, y)∥2.

Variability of x and y. These errors occur since the model {ft−i}w−1
i=0 used for evaluating (xt, yt) is different

from the training model {ft−i}w
i=1, which corresponds to the level of the variation in the environment. i).

The variability of x can be directly bounded by the sliding-window variation V 1
w [T ] by definition. ii). We

show in Lemma B.1 that Ft,w(x, y) is ℓ-smooth and y⋆
t,w(·) is κ-Lipschitz, and hence the variability of y

can be further bounded by 3κ2

(w−1)2 ∥∇yft

(
xt, y∗

t,w(xt)
)
− ∇yft−w

(
xt, y∗

t−1,w(xt)
)
∥2, which is controlled by

V 2
w [T ].
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6.2 Key Ideas of Theorem 2

The proof of Theorem 2 can be divided into two parts: the inner-loop and outer-loop analysis.

Inner-loop Analysis. Denote the sequence generated in the inner-loop at time t ∈ [T − 1] by

x0
t = xt, xk+1

t ← xk
t − ηx∇xFt,w

(
xk

t , yk
t

)
;

y0
t = yt, yk+1

t ← PY
(
yk

t + ηy∇yFt,w

(
xk

t , yk
t

))
.

Let τt be the number of times the gradient update is executed at the t-th iteration. For convenience, denote
τT = 0. Note that xτt

t = xt+1 and yτt
t = yt+1. In such a two time-scale setting, i.e. ηx ̸= ηy, the movement

of xk
t is slower than yk

t , and the κ-Lipschitzness of y⋆
t,w(·) indicates that y⋆

t,w(xk
t ) also moves slowly. The

inner-loop of TSODA can be viewed as conducting gradient ascent on a strongly-concave function Ft,w(xk
t , ·),

which changes slowly. Following the standard analysis of offline nonconvex min-max optimization Lin et al.
(2020b), we can establish the following descent property:

ηx

8

τt−1∑
j=0

[∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
+ (6κℓ)2∥yj+1

t − yj
t∥2
]
≤ (Φt,w (xt)− Φt,w (xt+1)) + 9ℓ

2 δ0
t,w, (9)

where δ0
t,w =

∥∥y⋆
t,w

(
x0

t

)
− y0

t

∥∥2 measures the distance between y0
t and the optimal solution for y-player given

x0
t at the beginning of round t. Notice that the LHS of eq. (9) is the quantity in Stop Condition 1 when

ηy = 1
ℓ . Since TSODA performs GDA at round t only when Stop Condition 1 does not meet, we can further

lower-bound the LHS of eq. (9) by ηx
8 ·

δ2

2w2 · τt, and obtain

ηxδ2τt

16w2 ≤ (Φt,w (xt)− Φt,w (xt+1)) + 9ℓ

2 δ0
t,w. (10)

Outer-loop Analysis. By decomposing ΦT,w(xT ) =
∑T

t=1(Φt,w(xt)−Φt−1,w(xt−1)) and rearranging terms,
we obtain:

T −1∑
t=1

Φt,w(xt)− Φt,w(xt+1) ≤ 1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT,w(xT ). (11)

Substituting eq. (10) over t ∈ [T ] into the above inequality, we obtain

ηxδ2τ

16w2 ≤
1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT,w(xT )︸ ︷︷ ︸

V1

+ 9ℓ

2

T∑
t=1

δ0
t,w︸ ︷︷ ︸

V2

.

The V1 term can be bounded by considering the boundness of ft. As for the V2 term, we can upper bound
δ0

t,w for t > 1 using ∥y∗
t,w(xt)− y∗

t−1,w(xt)∥2 + ∥y∗
t−1,w(xt)− y0

t∥2. This quantity can be further controlled
by the sliding-window variation in y and the tolerance δ in Stop Condition 1 separately. Note that δ0

1,w can
be directly bounded by D, which is the diameter of Y.

Significance of Techniques. Based on the sketch of the analysis provided in this section, we can now delve
into the technical differences between our work and the general online nonconvex games, specifically the work
presented in Hazan et al. (2017a). One key difference is that we lack direct access to the first-order oracle
of Φt,w, whereas such information is available in Hazan et al. (2017a). Consequently, while our outer-loop
analysis draws inspiration from Hazan et al. (2017a), we must address the challenge of limited knowledge of
the first-order oracle and develop novel stop conditions tailored to the min-max setting. More importantly,
our inner loop features a more intricate min-max structure, which requires further technical development
to handle the dynamics of two players. The analysis presented in Hazan et al. (2017a), which focuses on a
single player, cannot be directly extended to our setting. As a result, specialized techniques for min-max
optimization must be employed to analyze the iteration complexity in the inner loop.

11
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(a) MNIST (b) Fashion-MNIST

Figure 1: Performance of TSODA with different window size: average regret Ravg vs. round.

(a) MNIST (b) Fashion-MNIST
Figure 2: Comparison of TSODA and onlineGDmax: number of gradient calls vs. average accuracy.

7 Experiments

In this section, we evaluate the efficiency of the proposed TSODA algorithm and verify the theoretical results
through numerical simulations.

We consider the min-max problem of training an empirical Wasserstein robustness model (WRM) (Sinha
et al., 2017), which has the following form2:

min
x

max
{yi}N

i=1

L(x, y;D) ≜ 1
N

∑
(ξi,zi)∈D

[
ℓ (hx (yi) , zi)− γ ∥ξi − yi∥2

]
, (12)

where ℓ is the cross-entropy loss function, N is the number of training samples, x is the network parameter,
(ξi, zi) ∈ D corresponds to the i-th data sample and label, respectively, and yi is the adversarial sample
corresponding to ξi. Denote {yi}N

i=1 as y.

Training Settings. The real-world datasets we consider are MNIST (Deng, 2012) and Fashion-
MNIST (Xiao et al., 2017), each containing 60k samples. We simulate the online WRM model as follows.
We randomly split the given dataset into T pieces {Dt}T

t=1, and the learner sequentially receives Dt. At each
round t, ft(x, y) = L(x, y;Dt). We choose T = 100 for the online setting. The network architecture mainly
follows Sinha et al. (2017), which consists of three convolution blocks with filters of size 8×8, 6×6 and 5×5
respectively activated by ELU function (Clevert et al., 2015), then followed by a fully connected layer and
softmax output. Furthermore, we set the adversarial perturbation γ ∈ {0.4, 1.3}, which is consistent with
Sinha et al. (2017).

Metrics. Since we do not have access to the first-order oracle of ∇Φt,w in practice, two alternative per-
formance metrics are considered, which capture the essence of the online setting and are consistent with
the definition of our local NE-regret. The first metric is the stronger notion we utilize in the stop cri-
terion, which provides an upper bound for ∥∇Φt,w(xt)∥2. Observing that the projected gradient of y
does not change significantly in experiments, we only compute ∥∇xFt,w(xt, yt)∥2 and report the average
Ravg ≜ 1

t

∑t
j=1 ∥∇xFj,w(xj , yj)∥2 of these at each round t, which serves as an approximation of 1

tℜ
NE
w (t).

The second metric is the average accuracy, where we evaluate the test accuracy of output (xt, yt) from the
last round on the newly coming Dt and report the average from round 1 to t.

The Effect of Window Size w. In Figure 1, we plot Ravg of TSODA on MNIST and Fashion-MNIST
with different w. It can be observed that as w increases from 2 to 10, the local regret becomes smaller, which
verifies the bound in Theorem 1 and justifies the usage of large window size.

2Note that we can choose sufficiently large γ > 0 to make the maximization part be strongly-concave.
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TSODA vs. Baseline Algorithm. To further investigate the performance of TSODA, we conduct exper-
iments to compare it with a baseline algorithm. Note that to our best knowledge, there has been no existing
formal studies on the performance of any developed algorithm for online nonconvex min-max problems. Here,
we consider a baseline algorithm, which is a natural extension of the well-known offline min-max method
GDmax (Jin et al., 2020) to the online framework, named onlineGDmax. Specifically, onlineGDmax replaces
the inner-loop procedure of TSODA by the nested-loop GDmax, i.e., at each iteration in the inner-loop of
round t, onlineGDmax will firstly maximize the function by multi-step gradient ascent for y, which is 10
steps in our setting, and then perform one-step GD for x. Typically, the stepsizes for GDmax are chosen to
be equal, i.e. ηx = ηy (Sinha et al., 2017). In Figure 2, TSODA achieves similar accuracy to onlineGDmax
but with significantly fewer gradient calls, which demonstrates the efficiency of our approach.

8 Conclusions

This paper provides the first analysis for the online nonconvex-concave min-max optimization problem. We
introduced a novel notion of local Nash Equilibrium regret to capture the nonconvexity and nonstationary
of the environment. We developed and analyzed algorithms TSODA and its stochastic version with respect
to the proposed notions of regret, establishing favorable regret and complexity guarantees. Furthermore, we
conduct experiments with real-world data to validate the theoretical statements and show its superiority in
practice.
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A Concrete Toy Example for Section 3.1

Consider a two-player game characterized by time-varying loss functions {ft}T
t=1. For any t ∈ [T ], we define

the function as:

ft(x, y) = atx2 − bty2 x ∈ R, y ∈ [−1, 1] (13)
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Here, both at and bt are strictly positive. It is evident that ft is strongly-convex with respect to x and
strongly-concave with respect to y. We can straightforwardly compute the min-max value of the problem
minx∈R maxy∈[−1,1] ft(x, y) to be 0, which corresponds to the optimal solution (xt, yt) = (0, 0).

Referencing Zhang et al. (2022), the dynamic Nash Equilibrium (NE)-regret is defined as:

ℜdyn(T ) := |
T∑

t=1
ft (xt, yt)−

T∑
t=1

min
x∈R

max
y∈[−1,1]

ft(x, y)|.

We further simplify by setting yt = arg maxy∈[−1,1] ft(x, y), as the maximization problem can be effi-
ciently solved even in our nonconvex-strongly-concave setting. Then, for ft as defined in eq. (13), we obtain
ℜdyn(T ) =

∑T
t=1 atx

2
t .

On the other hand, when w = 1, ∇Φt,w(xt) = 2atxt, then the local NE-regret is

RNE
1 (T ) =

T∑
t=1
∥∇Φt,1(xt)∥2 = 2

T∑
t=1

a2
t x2

t .

Combining these results, we obtain:

ℜdyn(T ) =
T∑

t=1

a2
t

at
x2

t ≤
1

mint∈[T ] at

T∑
t=1

a2
t x2

t ≤ CRNE
1 (T )

where C = 1
2 mint∈[T ] at

is some positive constant.

From the above derivations, it is clear that in this specific toy case, a lower local NE-regret implies a lower
dynamic NE-regret.

B Missing Proof of Section 4

B.1 Technical Lemma

Recall that Φt,w(x) = maxy∈Y Ft,w(x, y) and y∗
t,w(x) = arg maxy∈Y Ft,w(x, y). In this section, we first

present some technical lemmas to characterize the structure of the function Φt,w and y∗
t,w in the nonconvex-

strongly-concave setting, which will be essential throughout the analysis.
Lemma B.1. Φt,w(·) is (ℓ + κℓ)-smooth with ∇Φt,w(·) = ∇xFt,w

(
·, y⋆

t,w(·)
)

. Also, y⋆
t,w(·) is κ-Lipschitz.

Proof. Since the averaging maintains strongly-nonconcavity and smoothness, i.e. Ft,w(x, y) is still µ-strongly-
concave in y and ℓ-smooth. Thus, the proof directly follow Lemma 4.3 in Lin et al. (2020a) and we omit the
details.

Furthermore, we derive the following lemma to provide the smoothness property of y∗
t,w(x) with respect to

t. In other words, given any fixed x, the movement of y∗
t,w(x) when t changes can be controlled by the

variability of environment of the sliding window.
Lemma B.2. For any x ∈ Rm, t ∈ [T ], it holds that

∥∥y∗
t−1,w(x)− y∗

t,w(x)
∥∥ ≤ ∥∥∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

∥∥
µ(w − 1) .

Proof. By the optimality of y∗
t,w(x) and y∗

t−1,w(x), for ∀x, we have

(y− y∗
t,w(x))⊤∇yFt,w(x, y∗

t,w(x)) ≤ 0,∀y ∈ Y, (14)
(y− y∗

t−1,w(x))⊤∇yFt−1,w(x, y∗
t−1,w(x)) ≤ 0,∀y ∈ Y. (15)

17
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Summing up Equation (14) with y = y∗
t−1,w(x) and Equation (15) with y = y∗

t,w(x) yields that

(y∗
t−1,w(x)− y∗

t,w(x))⊤(∇yFt,w(x, y∗
t,w(x))−∇yFt−1,w(x, y∗

t−1,w(x))) ≤ 0. (16)

By the definition of Ft,w(x, y), we have

∇yFt,w(x, y∗
t,w(x))−∇yFt−1,w(x, y∗

t−1,w(x))

= 1
w

w−1∑
i=0
∇yft−i(x, y∗

t,w(x))− 1
w

w−1∑
i=0
∇yft−i−1(x, y∗

t−1,w(x))

= 1
w

{
∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

}
+ 1

w

w−1∑
i=1

{
∇yft−i(x, y∗

t,w(x))−∇yft−i(x, y∗
t−1,w(x))

}
. (17)

Since for any t and fixed x, the ft(x, ·) is µ-strongly-concave, we have

(y∗
t−1,w(x)− y∗

t,w(x))⊤ {∇yft−i(x, y∗
t−1,w(x))−∇yft−i(x, y∗

t,w(x))
}

+ µ
∥∥(y∗

t−1,w(x)− y∗
t,w(x))

∥∥2 ≤ 0. (18)

Plug Equations (17) and (18) into Equation (16), then we have

(y∗
t−1,w(x)− y∗

t,w(x))⊤ 1
w

{
∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

}
+ w − 1

w
µ
∥∥(y∗

t−1,w(x)− y∗
t,w(x))

∥∥2 ≤ 0.

As a result
w − 1

w
µ
∥∥y∗

t−1,w(x)− y∗
t,w(x)

∥∥2

≤ −(y∗
t−1,w(x)− y∗

t,w(x))⊤ 1
w

{
∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

}
≤ 1

w

∥∥y∗
t−1,w(x)− y∗

t,w(x)
∥∥∥∥∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

∥∥ ,

where the last inequality follows from Cauchy-Schwartz inequality.

Finally, by some algebra manipulation, we finish the proof as following

∥∥y∗
t−1,w(x)− y∗

t,w(x)
∥∥ ≤ ∥∥∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

∥∥
µ(w − 1) .

The next lemma provides an upper bound for the gradient norm of ∇Φt,w in term of ∇Ft,w, which justifies
our design of stop conditions.
Lemma B.3. Given a pair (x, y) ∈ Rm × Y, for t ∈ [T ] and w > 0, it holds that

∥∇Φt,w(x)∥2 ≤2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥y− PY (y + ηy∇yFt,w (x, y)) ∥2

+ 2∥∇xFt,w(x, y)∥2.

Proof. By Cauchy-Schwartz inequality, we have

∥∇Φt,w(x)∥2 ≤2∥∇Φt,w(x)−∇xFt,w(x, y)∥2 + 2∥∇xFt,w(x, y)∥2

≤2ℓ2∥y∗
t,w(x)− y∥2 + 2∥∇xFt,w(x, y)∥2
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where the last inequality holds by combining Lemma B.1 and the fact that Ft,w is ℓ-smooth.

To proceed the analysis, we need an important result about global error condition for proximal gradient
algorithms from Drusvyatskiy & Lewis (2018), which is presented in Lemma B.4 for completeness. Since
Ft,w(x, ·) is µ-strongly-concave over Y, we have

Ft,w(x, y) ≥ Φt,w(x) + µ

2 ∥y− y∗
t,w(x)∥2.

which implies Ft,w(x, ·) satisfies the quadratic growth condition. Then applying Lemma B.4, we obtain the
error bound condition for Ft,w(x, ·) also holds. Specifically, in our setting, α = µ, β = ℓ, and Gt degenerates
to the projected gradient mapping with t = ηy. Therefore,

∥y∗
t,w(x)− y∥ ≤ ( 2

µ
+ ηy)(1 + ℓηy) · 1

ηy
∥y− PY (y + ηy∇yFt,w (x, y)) ∥

= ( 2κ

ℓηy
+ 1)(1 + ℓηy) · ∥y− PY (y + ηy∇yFt,w (x, y)) ∥.

Thus, we complete the proof.

Lemma B.4 (Restate of Corollary 3.6 in Drusvyatskiy & Lewis (2018)). Consider a closed, convex function
g : Rn → R and a C1-smooth convex function f : Rn → R with β-Lipschitz continuous gradient. Denote
the proximal mapping:

proxt,g(x) := argmin
y∈Rn

{
g(y) + 1

2t
∥y − x∥2

}
and the prox-gradient mapping:

Gt(x) := t−1 (x− proxt,g(x− t∇f(x))
)

.

Suppose that the function φ := f + g has a nonempty set S of minimizers and consider the following
conditions:

• (Quadratic growth)

φ(x) ≥ φ⋆ + α

2 · dist2(x; S) for all x ∈ [φ ≤ φ∗ + ν] (19)

• (Error bound condition)

dist(x, S) ≤ γ ∥Gt(x)∥ is valid for all x ∈ [φ ≤ φ∗ + ν] (20)

Then property (19) implies property (20) with γ =
(
2α−1 + t

)
(1 + βt). Conversely, condition (20) implies

condition (19) with any α ∈
(
0, γ−1).

B.2 Local Regret: Proof of Theorem 1

Proof of Theorem 1. Recall the definition of Φt,w and notice that

Φt,w(x) = max
y∈Y

1
w

t∑
i=t−w+1

fi(x, y) = max
y∈Y

[
Ft−1,w(x, y) + 1

w
(ft(x, y)− ft−w(x, y))

]
.

Then

19
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∥∇Φt,w (xt)∥2 =
∥∥∇xFt,w(xt, y∗

t,w(xt))
∥∥2

=
∥∥∇xFt−1,w(xt, y∗

t−1,w(xt)) +∇xFt−1,w(xt, y∗
t,w(xt))−∇xFt−1,w(xt, y∗

t−1,w(xt))

+ 1
w

(
∇xft

(
xt, y∗

t,w(xt)
)
−∇xft−w

(
xt, y∗

t,w(xt)
))∥∥∥∥2

≤ 3 ∥∇Φt−1,w (xt)∥2 + 3κ2

(w − 1)2 ∥∇yft

(
xt, y∗

t,w(xt)
)
−∇yft−w

(
xt, y∗

t−1,w(xt)
)
∥2

+ 3
w2 ∥∇xft

(
xt, y∗

t,w(xt)
)
−∇xft−w

(
xt, y∗

t,w(xt)
)
∥2, (21)

where the second term in last inequality follows from that

∥∇xFt−1,w(xt, y∗
t,w(xt))−∇xFt−1,w(xt, y∗

t−1,w(xt))∥
≤ ℓ∥y∗

t,w(xt)− y∗
t−1,w(xt)∥

(a)
≤

κ
∥∥∇yft,w(x, y∗

t,w(x))−∇yft−w(x, y∗
t−1,w(x))

∥∥
(w − 1)

where (a) is implied by Lemma B.2.

Moreover, for the first term in Equation (21), by Lemma B.3, and the stop condition, we obtain

∥∇Φt−1,w (xt)∥2 ≤ δ2

w2 .

Summing over t = 1, · · · , T , and combining the definition of variation measures V 1
w [T ] and V 2

w [T ], then we
have

ℜNE
w (T ) =

T∑
t=1
∥Φt,w(xt)∥2 ≤ 3

w2 (Tδ2 + (κw)2

(w − 1)2 V 2
w [T ] + V 1

w [T ]).

B.3 Oracle Queries: Proof of Theorem 2

Denote the sequence generated in the inner-loop at time t ∈ [T − 1] by

x0
t = xt xk+1

t ← xk
t − ηx∇xFt,w

(
xk

t , yk
t

)
y0

t = yt yk+1
t ← PY

(
yk

t + ηy∇yFt,w

(
xk

t , yk
t

))
Let τt be the number of times the gradient update is executed at the t-th iteration. Note that xτt

t = xt+1
and yτt

t = yt+1.

B.3.1 Supporting Lemmas

We present three key lemmas which are important step descent lemmas. In this section, we focus on a crucial
quantity, δk

t,w =
∥∥y⋆

t,w

(
xk

t

)
− yk

t

∥∥2, which are useful for the subsequent analysis. Throughout our analysis,
we choose ηx = 1

8κ3ℓ and ηy = 1
ℓ .

Lemma B.5. Denote τt the total iteration of inner-loop at round t with 1 ≤ t ≤ T − 1. For convenience,
let τT = 0. For 0 ≤ k ≤ τt − 1, we have

Φt,w

(
xk+1

t

)
≤Φt,w

(
xk

t

)
− (ηx

2 − η2
xκℓ)

∥∥∇xFt,w

(
xk

t , yk
t

)∥∥2 + ηxℓ2

2 δk
t,w. (22)
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Proof. Since Φt,w is (ℓ + κℓ)-smooth and ℓ + κℓ ≤ 2κℓ, for any x, x+ ∈ Rm, we have

Φt,w

(
x+)− Φt,w (x)−

(
x+ − x

)⊤∇Φt,w (x) ≤ κℓ
∥∥x+ − x

∥∥2
.

Plugging x+ − x = −ηx∇xFt,w (x, y) yields that

Φt,w

(
x+) ≤Φt,w (x)− ηx ∥∇xFt,w (x, y)∥2 + η2

xκℓ ∥∇xFt,w (x, y)∥2

+ ηx (∇xFt,w (x, y)−∇Φt,w (x))⊤∇xFt,w (x, y) .

By Young’s inequality, we have

(∇xFt,w (x, y)−∇Φt,w (x))⊤∇xFt,w (x, y)

≤ ∥∇xFt,w (x, y)−∇Φt,w (x) ∥2 + ∥∇xFt,w (x, y) ∥2

2 .

Since ∇Φt,w (x) = ∇xFt,w

(
x, y∗

t,w(x)
)
, we have

∥∇xFt,w (x, y)−∇Φt,w (x) ∥2 ≤ ℓ2∥y− y∗
t,w(x)∥2.

Putting these pieces together, we obtain

Φt,w

(
x+) ≤Φt,w (x)− (ηx

2 − η2
xκℓ) ∥∇xFt,w (x, y)∥2

+ ηxℓ2

2 ∥y− y∗
t,w(x)∥2

Lemma B.6. For any t, k ≥ 0, the following statement holds true,

∥yk+1
t − yk

t ∥2 ≤ (4− 2
κ

)δk
t,w. (23)

Proof. By Young’s inequality, we have

∥yk+1
t − yk

t ∥2 ≤ 2∥yk+1
t − y⋆

t,w

(
xk

t

)
∥2 + 2∥y⋆

t,w

(
xk

t

)
− yk

t ∥2

≤
(

2(1− 1
κ

) + 2
)

δk
t,w = (4− 2

κ
)δk

t,w.

Lemma B.7. Let δk
t,w =

∥∥y⋆
t,w

(
xk

t

)
− yk

t

∥∥2, the following statement holds true,

δk
t,w≤

(
1− 1

2κ

)
δk−1

t,w + 2κ3η2
x∥∇xFt,w(xk−1

t , yk−1
t )∥2.

Proof. Since ft(x, ·) is µ-strongly concave and ηy = 1/ℓ, we have

∥y⋆
t,w

(
xk−1

t

)
− yk

t ∥2 ≤ (1− 1
κ

)δk−1
t,w .

By Young’s inequality, we have

δk
t,w ≤

(
1 + 1

2(κ− 1)

)
∥y⋆

t,w

(
xk−1

t

)
− yk

t ∥2 + (1 + 2(κ− 1))∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2

≤
(

2κ− 1
2κ− 2

)
∥y⋆

t,w

(
xk−1

t

)
− yk

t ∥2 + 2κ∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2

≤
(

1− 1
2κ

)
δk−1

t,w + 2κ∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2. (24)
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Since y⋆
t,w(·) is κ-Lipschitz, we have

∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2 ≤ 2κ2∥xk

t − xk−1
t ∥2 = 2κ2η2

x∥∇xFt,w(xk−1
t , yk−1

t )∥2.

Thus, plug into eq. (24)

δk
t,w≤

(
1− 1

2κ

)
δk−1

t,w + 2κ3η2
x∥∇xFt,w(xk−1

t , yk−1
t )∥2.

B.4 Proof of Theorem 2

Proof of Theorem 2. Denote γ = 1− 1
2κ , from Lemma B.7 and using telescoping we have

δk
t,w ≤ γkδ0

t,w + 2κ3η2
x

k−1∑
j=0

γk−1−j
∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
 . (25)

Specially, for t > 1,

δ0
t,w = ∥y0

t − y∗
t,w(x0

t )∥2

≤ 2∥yτt−1
t−1 − y∗

t−1,w(xτt−1
t−1 )∥2 + 2∥y∗

t−1,w(xτt−1
t−1 )− y∗

t,w(xτt−1
t−1 )∥2

≤ δ2

ℓ2w2 + 2
µ2(w − 1)2 ∥∇yft(xτt−1

t−1 , y∗
t,w(xτt−1

t−1 ))−∇yft−w(xτt−1
t−1 , y∗

t−1,w(xτt−1
t−1 ))∥2.

Then plug Equation (25) into Equations (22) and (23) from Lemmas B.5 and B.6, and sum over outer loop
number.

(ηx

2 − η2
xκℓ− 2κ4η3

xℓ2)
τt−1∑
j=0

∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
≤ Φt,w (xt)− Φt,w (xt+1) + κηxℓ2δ0

t,w

τt−1∑
j=0
∥yk+1

t − yk
t ∥2 ≤ (8κ− 4)δ0

t,w + (16− 8
κ

)κ4η2
x

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
.

Letting ηx = 1
8κ3ℓ , we have

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
≤ 8

ηx
(Φt,w (xt)− Φt,w (xt+1)) + 8κℓ2δ0

t,w (26)

τt−1∑
j=0

(κℓ)2∥yj+1
t − yj

t∥2 ≤ (8κ− 4)(κℓ)2δ0
t,w + 1

4

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
. (27)

Therefore add Equation (26) × 5ηx
4 and Equation (27) × 9ηx

2 we have

ηx

8

τt−1∑
j=0

[∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
+ (6κℓ)2∥yj+1

t − yj
t∥2
]
≤ (Φt,w (xt)− Φt,w (xt+1)) + 9ℓ

2 δ0
t,w. (28)
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Denote Φ0,w(x) = 0, we notice that

ΦT,w(xT ) =
T∑

t=1
(Φt,w(xt)− Φt−1,w(xt−1))

=
T∑

t=1
(Φt,w(xt)− Φt−1,w(xt)) +

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

= 1
w

T∑
t=1

(
Ft−1,w(xt, y∗

t,w(xt))− Ft−1,w(xt, y∗
t−1,w(xt))

)
+ 1

w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

(i)
≤ 1

w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1)),

where (i) follows from that y∗
t−1,w(xt) is the maximizer of Ft−1,w(xt, ·).

By some algebra, we have
T −1∑
t=1

Φt,w(xt)− Φt,w(xt+1) ≤ 1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT,w(xT ).

Sum Equation (28) over t, we have

ηx

8 ×
δ2

2w2 τ = ηxδ2τ

16w2

≤ηx

8

T∑
t=1

τt−1∑
j=0

[∥∥∥∇xFt,w

(
xj

t , yj
t

)∥∥∥2
+ (κℓ)2∥yj+1

t − yj
t∥2
]

≤
T∑

t=1
(Φt,w (xt)− Φt,w (xt+1)) + 9ℓ

2

T∑
t=1

δ0
t,w

≤ 1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT +1,w(xT +1)

+ 9Tδ2

2ℓw2 + 9ℓ

µ2(w − 1)2 V 2
w [T ] + 9ℓD2

2

≤ 2MT

w
+ M + 9Tδ2

2ℓw2 + 9ℓ

µ2(w − 1)2 V 2
w [T ] + 9ℓD2

2 .

Hence

τ ≤ 384κ3ℓMwT

δ2 + 576κ2T

µ
+ 1152 w2κ5

(w − 1)2δ2 V 2
w [T ] + 576D2κ3ℓ2w2

δ2 .

C Missing Proof of Section 5

We first make some notation in Algorithm 2 clearly here, Gk+1
t = 1

w

∑t
i=t−w+1 ∇̃fi(xk+1

t , yk+1
t ) =

∇̃Ft,w(xk+1
t , yk+1

t ) =
(
∇̃xFt,w(xk+1

t , yk+1
t ), ∇̃yFt,w(xk+1

t , yk+1
t )

)
. And for casimplification, we denote

yk
t = yτt

t for any k ≥ τt.
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Before our theoretical analysis of Algorithm 2 and proof of Section 5, we define the filtration in Algorithm 2
formally to describe clearly what is known and what is unknown at certain stage.
Definition 4 (Filtration). For any t ≥ 1, we denote filtration Ft to be the σ-fields that corresponds to the
randomness of all gradient feedback up to stage t − 1 and the decision of ft at stage t. In particular, Ft

includes ft, xt and ∇̃Ft−1,w(xt, yt), but doesn’t include ∇̃ft(xt, yt), ∇̃Ft,w(xt, yt).
For any t ≥ 1, k ≥ 1, we denote filtration Fk

t to be the σ-fields that corresponds to the randomness of
all gradient feedback up to the k-th iteration in line 6 at stage t in Algorithm 2. In particular, Fk

t includes
ft, xk

t , yk
t , ∇̃Ft,w(xt, yt), {∇̃fi(xk−1

t , yk−1
t )}t

i=t−w+1 and Gk−1
t , but doesn’t include Gk

t , {∇̃fi(xk
t , yk

t )}t
i=t−w+1.

C.1 Finite Iteration: Proof of Theorem 3

C.1.1 Supporting Lemmas

Generally speaking, the lemmas in this section extends lemmas in Appendix B.3.1 to noisy setting. We first
provide a descend lemma for Φt,w(x) in each iteration of inner loop.

Lemma C.1. Denote τt the total iteration of inner-loop at stage t and δk
t,w =

∥∥y⋆
t,w

(
xk

t

)
− yk

t

∥∥2, for
0 ≤ k ≤ τt − 1

Φt,w

(
xk+1

t

)
≤Φt,w

(
xk

t

)
− (ηx

2 − η2
xκℓ)

∥∥∇̃xFt,w (x, y)
∥∥2 + ηxℓ2δk

t,w

+ ∥∇̃xFt,w (x, y)−∇xFt,w (x, y) ∥2.

Proof. Since Φt,w is (ℓ + κℓ)-smooth, for any x, x+ ∈ Rm, we have

Φt,w

(
x+)− Φt,w (x)−

(
x+ − x

)⊤∇Φt,w (x) ≤ κℓ
∥∥x+ − x

∥∥2
.

Set x+ = xk+1
t , x = xk

t , we have x+ − x = xk+1
t − xk

t = −ηx∇̃xFt,w

(
xk

t , yk
t

)
, which yeilds that

Φt,w

(
xk+1

t

)
≤Φt,w

(
xk

t

)
− ηx

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2 + η2
xκℓ

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ ηx
(
∇̃xFt,w

(
xk

t , yk
t

)
−∇Φt,w

(
xk

t

))⊤ ∇̃xFt,w

(
xk

t , yk
t

)
. (29)

By Young’s inequality, we have(
∇̃xFt,w

(
xk

t , yk
t

)
−∇Φt,w

(
xk

t

))⊤ ∇̃xFt,w

(
xk

t , yk
t

)
≤
∥∇̃xFt,w

(
xk

t , yk
t

)
−∇Φt,w

(
xk

t

)
∥2 + ∥∇̃xFt,w

(
xk

t , yk
t

)
∥2

2

≤
2∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2 + 2∥∇xFt,w

(
xk

t , yk
t

)
−∇Φt,w

(
xk

t

)
∥2

2

+
∥∇̃xFt,w

(
xk

t , yk
t

)
∥2

2 . (30)

Since ∇Φt,w

(
xk

t

)
= ∇xFt,w

(
xk

t , y∗
t,w(xk

t )
)
, we have

∥∇xFt,w

(
xk

t , yk
t

)
−∇Φt,w

(
xk

t

)
∥2 ≤ ℓ2∥yk

t − y∗
t,w(xk

t )∥2. (31)

Putting Equations (29) to (31) together, we obtain

Φt,w

(
xk+1

t

)
≤Φt,w

(
xk

t

)
− (ηx

2 − η2
xκℓ)

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ ηxℓ2∥yk
t − y∗

t,w(xk
t )∥2 + ∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2.
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The next lemma characterizes the descent property of distance to the maximizer y∗
t,w.

Lemma C.2. Let δk
t,w =

∥∥y⋆
t,w

(
xk

t

)
− yk

t

∥∥2, the following statement holds true,

δk
t,w≤

(
1− 1

4κ

)
δk−1

t,w + 8κ3η2
x∥∇̃xFt,w(xk−1

t , yk−1
t )∥2

+ 2κ

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

.

Proof. Since f(x, ·) is µ-strongly concave and ηy = 1/ℓ, we have

∥y⋆
t,w

(
xk−1

t

)
− yk

t ∥2

=
∥∥y⋆

t,w

(
xk−1

t

)
− PY

(
yk−1

t + ηy∇̃xFt,w(xk−1
t , yk−1

t )
)∥∥2

=
∥∥y⋆

t,w

(
xk−1

t

)
− PY

(
yk−1

t + ηy∇xFt,w(xk−1
t , yk−1

t )
)

+PY
(
yk−1

t + ηy∇xFt,w(xk−1
t , yk−1

t )
)
− PY

(
yk−1

t + ηy∇̃xFt,w(xk−1
t , yk−1

t )
)∥∥2

≤ (1 + 1
2(κ− 1))

∥∥y⋆
t,w

(
xk−1

t

)
− PY

(
yk−1

t + ηy∇xFt,w(xk−1
t , yk−1

t )
)∥∥2

+(1+2(κ−1))∥PY(yk−1
t +ηy∇xFt,w(xk−1

t ,yk−1
t ))−PY(yk−1

t +ηy∇̃xFt,w(xk−1
t ,yk−1

t ))∥2

≤ (1− 1
2κ

)δk−1
t,w + 2κ− 1

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

. (32)

By Young’s inequality, we have

δk
t,w ≤

(
1 + 1

2(2κ− 1)

)
∥y⋆

t,w

(
xk−1

t

)
− yk

t ∥2

+ (1 + 2(2κ− 1))∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2

≤
(

4κ− 1
2(2κ− 1)

)
∥y⋆

t,w

(
xk−1

t

)
− yk

t ∥2 + 4κ∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2

≤
(

1− 1
4κ

)
δk−1

t,w + 4κ∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2

+ 2κ

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

.

Since y⋆
t,w(·) is κ-Lipschitz, we have

∥y⋆
t,w

(
xk

t

)
− y⋆

t,w

(
xk−1

t

)
∥2 ≤ 2κ2∥xk

t − xk−1
t ∥2

= 2κ2η2
x∥∇̃xFt,w(xk−1

t , yk−1
t )∥2.

Thus, plug into

δk
t,w≤

(
1− 1

4κ

)
δk−1

t,w + 8κ3η2
x∥∇̃xFt,w(xk−1

t , yk−1
t )∥2

+ 2κ

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

.

The next lemma shows that updates over y can be controlled by δk
t,w plus a noisy term.

Lemma C.3. For any t, k ≥ 0, the following statement holds true,

∥yk+1
t − yk

t ∥2 ≤ (4− 1
κ

)δk
t,w + 4κ

ℓ2

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2

.
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Proof. By Young’s inequality, we have

∥yk+1
t − yk

t ∥2 ≤ 2∥yk+1
t − y⋆

t,w

(
xk

t

)
∥2 + 2∥y⋆

t,w

(
xk

t

)
− yk

t ∥2

(i)
≤
(

2(1− 1
2κ

) + 2
)

δk
t,w + 4κ

ℓ2

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2

≤ (4− 1
κ

)δk
t,w + 4κ

ℓ2

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2

,

where (i) follows from Equation (32).

C.1.2 Proof of Theorem 3

Proof. From Lemma C.1

δk
t,w≤

(
1− 1

4κ

)
δk−1

t,w + 8κ3η2
x∥∇̃xFt,w(xk−1

t , yk−1
t )∥2

+ 2κ

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

.

Denote γ = 1− 1
4κ , Given Fk−1

t we have

δk
t,w ≤ γkδ0

t,w + 8κ3η2
x

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w

(
xj

t , yj
t

)∥∥∥2


+ 2κ

ℓ2

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2


(i)
≤ γkD2 + 32κ4η2

xδ2

3w2 + 2κ

ℓ2

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2
 , (33)

where the first term of (i) follows from that Y is bounded with D, and the second term of (i) follows from
the stopping criterion of Algorithm 2 and

∑k−1
j=0 γk−1−j ≤ 4κ.

Notice that for any fixed t, k and j ∈ [k − 1],

E
∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2

(i)= EFj
t

[
E
[∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2
∣∣∣∣F j

t

]]

= EFj
t

 1
w2E

∥∥∥∥∥
t−1∑

i=t−w

{
∇̃xfi(xj

t , yj
t )−∇xfi(xj

t , yj
t )
}∥∥∥∥∥

2∣∣∣∣F j
t


(ii)= EFj

t

[
1

w2

t−1∑
i=t−w

E
[∥∥∥∇̃xfi(xj

t , yj
t )−∇xfi(xj

t , yj
t )
∥∥∥2
∣∣∣∣F j

t

]]
(iii)= EFj

t

[
1

w2 · w ·
σ2

w2

]
= σ2

w3 , (34)

where (i) follows from the property of conditional expectation, (ii) follows from that the SFO calls in line 9
of Algorithm 2 is independent and (iii) follows from definition of SFO and filtration F j

t .

Thus take expectation over two sides of Equation (33), we have

E
[
δk

t,w

]
≤ γkD2 + 32κ4η2

xδ2

3w2 + 8κ2σ2

ℓ2w3 . (35)
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Then by Lemma C.2

Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

)
≥ (ηx

2 − η2
xκℓ)

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

− ηxℓ2δk
t,w − ∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2

≥ 15ηx

32
∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

− ηxℓ2δk
t,w − ∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2. (36)

By Lemma C.3

15
4 κ2ℓ2ηxδk

t,w + 15
4ℓ

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2 ≥ 15ηx

32 × 2κ2ℓ2∥yk+1
t − yk

t ∥2. (37)

Sum Equation (36) and Equation (37), we have

Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

)
+ 15

4 κ2ℓ2ηxδk
t,w + 15

4ℓ

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2

≥ 15ηx

32 ×
(

2κ2ℓ2∥yk+1
t − yk

t ∥2 +
∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2)
− ηxℓ2δk

t,w − ∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2

Rearranging the term, we have

Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

)
≥ 15ηx

32 ×
(

2κ2ℓ2∥yk+1
t − yk

t ∥2 +
∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2)
− 5κ2ℓ2ηxδk

t,w −
(

15
4ℓ

+ 1
)
∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2. (38)

Take expectation over both sides of Equation (38), plug into Equation (35) and follow from the similar step
of Equation (34), we have

E
[
Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

)]
≥ 5ηxδ2

32w2 − 5κ2ℓ2ηx

(
γkD2 + 32κ4η2

xδ2

3w2 + 8κ2σ2

ℓ2w3

)
−
(

15
4ℓ

+ 1
)

σ2

w3 .

Because γ = 1− 1
4κ ≤ 1, there exist a constant K̃ such that γK̃D2 ≤ max

{
32κ4η2

x
3w2 , 8κ2σ2

ℓ2w3

}
. Thus for k ≥ K̃,

we have

E
[
Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

)]
≥ 5ηxδ2

32w2 − 5κ2ℓ2ηx

(
35κ4η2

xδ2

3w2 + 9κ2σ2

ℓ2w3

)
−
(

15
4ℓ

+ 1
)

σ2

w3

≥ 25ηxδ2

256w2 −
45κ4ηxσ2

w3 −
(

15
4ℓ

+ 1
)

σ2

w3 .
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when δ2 > 2304κ4σ2

5w + 256(4ℓ+1)σ2

25ηxw , we set α = 25ηxδ2

256w2 − 45κ4ηxσ2

w3 −
( 15

4ℓ + 1
)

σ2

w3 > 0. Then for K ≥ K̃, we have

2M ≥ E
[
Φt,w

(
xK̃

t

)
− Φt,w

(
xK+1

t

)]
= E

 K∑
k=K̃

(
Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

))
=

K∑
k=K̃

(
E
[(

Φt,w

(
xk

t

)
− Φt,w

(
xk+1

t

) ∣∣∣∣τt ≥ k + 1
)]

P (τt ≥ k + 1) + 0 · P (τt < k + 1)
)

≥ α

K∑
k=K̃

P (τt ≥ k + 1)

≥ α
K∑

k=K̃

P (τt > K) = α
(
K − K̃

)
P (τt > K) ,

where the third equation follows from the Optional Stopping Theorem. Consequently, we have τt is finite in
probability, which implies that τ =

∑T
t=1 τt is finite in probability since it is the finite sum of finite variables

in probability.

C.2 Local Regret: Proof of Theorem 4

Proof of Theorem 4. Following from Equation (21), we have

∥∇Φt,w (xt)∥2 =
∥∥∇xFt,w(xt, y∗

t,w(xt))
∥∥2

≤ 3 ∥∇Φt−1,w (xt)∥2 + 3κ2

(w − 1)2 ∥∇yft

(
xt, y∗

t,w(xt)
)
−∇yft−w

(
xt, y∗

t−1,w(xt)
)
∥2

+ 3
w2 ∥∇xft

(
xt, y∗

t,w(xt)
)
−∇xft−w

(
xt, y∗

t,w(xt)
)
∥2. (39)

For the first term

∥∇Φt−1,w(xt)∥2

=
∥∥∇Φt−1,w(xτt−1

t−1 )
∥∥2

≤ 3
∥∥∇Φt−1,w(xτt−1

t−1 )−∇xFt−1,w(xτt−1
t−1 , yτt−1

t−1 )
∥∥2

+ 3
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2 + 3
∥∥∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

≤ 3ℓ2 ∥∥y⋆
t−1(xτt−1

t−1 )− yτt−1
t−1

∥∥2 + 3
∥∥∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

+ 3
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2
.
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Consider
∥∥y⋆

t−1(xτt−1
t−1 )− yτt−1

t−1
∥∥2

∥∥y⋆
t−1(xτt−1

t−1 )− yτt−1
t−1

∥∥2

(i)
≤ ( 2κ

ℓηy
+ 1)2(1 + ℓηy)2 ∥∥yτt−1

t−1 − PY
(
yt + ηy∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)∥∥2

≤ 2( 2κ

ℓηy
+ 1)2(1 + ℓηy)2 ∥∥yτt−1

t−1 − PY
(
yt + ηy∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)∥∥2

+ 2( 2κ

ℓηy
+ 1)2(1 + ℓηy)2 ∥∥PY

(
yt + ηy∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)
− PY

(
yt + ηy∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)∥∥2

(ii)
≤ 2( 2κ

ℓηy
+ 1)2(1 + ℓηy)2 ∥∥yτt−1

t−1 − PY
(
yt + ηy∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)∥∥2

+ 2( 2κ

ℓηy
+ 1)2(1 + ℓηy)2 · η2

y
∥∥∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2
,

where (i) follows from Lemma B.4 similar to Lemma B.3 and (ii) follows from the project operator is a
contraction.

Then

∥∇Φt−1,w(xt)∥2

≤ 6(2κ

ηy
+ ℓ)2(1 + ℓηy)2 ∥∥yτt−1

t−1 − PY
(
yt + ηy∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

)∥∥2 + 3
∥∥∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

+ 6(2κ + ℓηy)2(1 + ℓηy)2 ∥∥∇yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )− ∇̃yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )
∥∥2

+ 3
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

(i)
≤ δ2

w2 + 6(2κ + ℓηy)2(1 + ℓηy)2 ∥∥∇yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )− ∇̃yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )
∥∥2

+ 3
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2
, (40)

where (i) follows from Stop Condition 2 of inner-loop.

Plug Equation (40) into Equation (39) and sum over t, we have

Rw(T ) =
T∑

t=1
∥∇Φt,w(xt)∥2

≤
T∑

t=1

{
3δ2

w2 + 18(2κ + ℓηy)2(1 + ℓηy)2 ∥∥∇yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )− ∇̃yFt−1,w(xτt−1
t−1 , yτt−1

t−1 )
∥∥2

+ 9
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

+ 3κ2

(w − 1)2 ∥∇yft

(
xτt−1

t−1 , y∗
t,w(xτt−1

t−1 )
)
−∇yft−w

(
xτt−1

t−1 , y∗
t−1,w(xτt−1

t−1 )
)
∥2

+ 3
w2

∥∥∇xft

(
xτt−1

t−1 , y∗
t,w(xτt−1

t−1 )
)
−∇xft−w

(
xτt−1

t−1 , y∗
t,w(xτt−1

t−1 )
)∥∥2
}

= 3Tδ2

w2 + 3κ2

(w − 1)2 V 2
w [T ] + 3

w2 V 1
w [T ]

+
T∑

t=1

{
18(2κ + ℓηy)2(1 + ℓηy)2 ∥∥∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

+ 9
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2}
. (41)

29



Published in Transactions on Machine Learning Research (07/2023)

Notice that for any t ∈ [T ],

E
∥∥∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2

(i)= EF
τt−1
t−1

[
E
[∥∥∇yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2
∣∣∣∣Fτt−1

t−1

]]

= EF
τt−1
t−1

 1
w2E

∥∥∥∥∥
t−1∑

i=t−w

{
∇yfi(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yfi(xτt−1

t−1 , yτt−1
t−1 )

}∥∥∥∥∥
2∣∣∣∣Fτt−1

t−1


(ii)= EF

τt−1
t−1

[
1

w2

t−1∑
i=t−w

E
[∥∥∇yfi(xτt−1

t−1 , yτt−1
t−1 )− ∇̃yfi(xτt−1

t−1 , yτt−1
t−1 )

∥∥2
∣∣∣∣Fτt−1

t−1

]]
(iii)= EF

τt−1
t−1

[
1

w2 · w ·
σ2

w2

]
= σ2

w3 , (42)

where (i) follows from the property of conditional expectation, (ii) follows from that the SFO calls in line 9
of Algorithm 2 is independent and (iii) follows from definition of SFO.

Similarly, for any t, we have

E
∥∥∇xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )− ∇̃xFt−1,w(xτt−1

t−1 , yτt−1
t−1 )

∥∥2 = σ2

w3 . (43)

Plug Equations (42) and (43) into Equation (41), we have

E
[
ℜNE

w (T )
]

=
T∑

t=1
E
[
∥∇Φt,w(xt)∥2

]
≤ 3Tδ2

w2 + 3κ2

(w − 1)2 V 2
w [T ] + 3

w2 V 1
w [T ] +

(
18(2κ + ℓηy)2(1 + ℓηy)2 + 9

)
Tσ2

w3

≤ 3Tδ2

w2 + 3κ2

(w − 1)2 V 2
w [T ] + 3

w2 V 1
w [T ] +

(
360κ2 + 9

)
Tσ2

w3 .

C.3 Iteration and SFO Calls Bound: Proof of Theorem 5

Proof of Theorem 5. From Lemma C.1

δk
t,w≤

(
1− 1

4κ

)
δk−1

t,w + 8κ3η2
x∥∇̃xFt,w(xk−1

t , yk−1
t )∥2

+ 2κ

ℓ2

∥∥∇xFt,w(xk−1
t , yk−1

t )− ∇̃xFt,w(xk−1
t , yk−1

t )
∥∥2

.

Denote γ = 1− 1
4κ , Given Ft we have

δk
t,w ≤ γkδ0

t,w + 8κ3η2
x

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w

(
xj

t , yj
t

)∥∥∥2


+ 2κ

ℓ2

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2
 . (44)

Then by Lemma C.2

Φt,w

(
xk+1

t

)
≤ Φt,w

(
xk

t

)
− (ηx

2 − η2
xκℓ)

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ ηxℓ2δk
t,w + ∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2. (45)
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Then plugging Equation (44) into Equation (45) and summing up them over k = 0, . . . , τt − 1, we have

Φt,w(xτt
t ) ≤ Φt,w(x0

t )− (ηx

2 − η2
xκℓ)

τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2 + ηxℓ2
τt−1∑
k=0

γkδ0
t,w

+ 8κ3η3
xℓ2

τt−1∑
k=0

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w

(
xj

t , yj
t

)∥∥∥2


+ 2ηxκ

τt−1∑
k=0

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(xj

t , yj
t )−∇xFt,w(xj

t , yj
t )
∥∥∥2


+
τt−1∑
k=0
∥∇̃xFt,w

(
xk

t , yk
t

)
−∇xFt,w

(
xk

t , yk
t

)
∥2

≤ Φt,w(x0
t )− (ηx

2 − η2
xκℓ− 32κ4η3

xℓ2)
τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ 4κηxℓ2δ0
t,w +

(
8κ2ηx + 1

)(τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

,

where the last inequality follows from that
∑τt−1

k=0 γk = 1−γτt

1−γ ≤ 4κ and changing the order of summation
over j and k.

Rearranging the terms, we have

(ηx

2 − η2
xκℓ− 32κ4η3

xℓ2)
τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

≤ Φt,w (xt)− Φt,w (xt+1) + 4κηxℓ2δ0
t,w

+
(
8κ2ηx + 1

)(τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

.

By Lemma C.3

∥yk+1
t − yk

t ∥2 ≤ (4− 1
κ

)δk
t,w + 4κ

ℓ2

∥∥∇xFt,w(xk
t , yk

t )− ∇̃xFt,w(xk
t , yk

t )
∥∥2

.

Then
τt−1∑
k=0
∥yk+1

t − yk
t ∥2 ≤ (16κ− 4)δ0

t,w + 128κ4η2
x

τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ 36κ2

ℓ2

τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2

.

Notice that δ0
0,w ≤ D2 and for any t ≥ 2

δ0
t,w = ∥y0

t − y∗
t,w(x0

t )∥2

≤ 2∥yτt−1
t−1 − y∗

t−1,w(xτt−1
t−1 )∥2 + 2∥y∗

t−1,w(xτt−1
t−1 )− y∗

t,w(xτt−1
t−1 )∥2

≤ 2κ2∥yτt−1
t−1 − PY

(
yτt−1

t−1 + ηyG
τt−1
y,t−1

)
∥2

+ 2
µ2(w − 1)2 ∥∇yft(xτt−1

t−1 , y∗
t,w(xτt−1

t−1 ))−∇yft−w(xτt−1
t−1 , y∗

t−1,w(xτt−1
t−1 ))∥2

≤ δ2

4ℓ2w2 + 2
µ2(w − 1)2 ∥∇yft(xτt−1

t−1 , y∗
t,w(xτt−1

t−1 ))−∇yft−w(xτt−1
t−1 , y∗

t−1,w(xτt−1
t−1 ))∥2.
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Letting ηx = 1
32κ3ℓ and ηy = 1

ℓ , we have

τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2 ≤ 16
7ηx

(Φt,w

(
xk

t

)
− Φt,w

(
xk

t+1
)
) +

64κℓ2δ0
t,w

7

+ 640
7ηx

(
τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

(46)

τt−1∑
k=0

2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥yk+1

t − yk
t ∥2 =

τt−1∑
k=0

72(κℓ)2∥yk+1
t − yk

t ∥2

≤ 72(κℓ)2(16κ− 4)δ0
t,w + 9

τt−1∑
k=0

∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2

+ 2596κ4

(
τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

. (47)

Therefore add Equation (46) ×10ηx and Equation (47) ×ηx, we have

ηx

τt−1∑
k=0

[∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2 + 2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥yk+1

t − yk
t ∥2

]

≤ 160
7 (Φt,w (xt)− Φt,w (xt+1)) + 1152ηxκ3ℓ2δ0

t,w

+ 2688ηxκ4

(
τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

. (48)

Denote Φ0,w(x) = 0, we notice that

ΦT,w(xT )

=
T∑

t=1
(Φt,w(xt)− Φt−1,w(xt−1))

=
T∑

t=1
(Φt,w(xt)− Φt−1,w(xt)) +

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

= 1
w

T∑
t=1

(
Ft−1,w(xt, y∗

t,w(xt))− Ft−1,w(xt, y∗
t−1,w(xt))

)
+ 1

w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

(i)
≤ 1

w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1)),

where (i) follows from that y∗
t−1,w(xt) is the maximizer of Ft−1,w(xt, ·).

By some algebra, we have

T∑
t=1

Φt,w(xt))− (Φt,w(xt+1) ≤ 1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT +1,w(xT +1).
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Sum Equation (48) over t and take expectation, we have(
δ2

3w2 − 2688κ4 σ2

w2

)
ηxτ

≤
T∑

t=1
ηx

τt−1∑
k=0

[∥∥∇̃xFt,w

(
xk

t , yk
t

)∥∥2 + 2
(

(2κ

ηy
+ ℓ)(1 + ℓηy)

)2
∥yk+1

t − yk
t ∥2

]

− 2688ηxκ4
T∑

t=1

(
τt−1∑
k=0

∥∥∇̃xFt,w(xk
t , yk

t )−∇xFt,w(xk
t , yk

t )
∥∥2
)

≤
T∑

t=1
(Φt,w (xt)− Φt,w (xt+1)) + 1152ηxκ3ℓ2

T∑
t=1

δ0
t,w

≤ 1
w

T∑
t=1

(
ft(xt, y∗

t,w(xt))− ft−w(xt, y∗
t,w(xt))

)
− ΦT +1,w(xT +1) + 1152ηxκ3ℓ2

{
(T − 1)δ2

4ℓ2w2

+ 2
µ2(w − 1)2

T∑
t=2
∥∇yft(xτt−1

t−1 , y∗
t,w(xτt−1

t−1 ))−∇yft−w(xτt−1
t−1 , y∗

t−1,w(xτt−1
t−1 ))∥2 + D2

}

≤ 2TM

w
+ M + 288Tηxκ3δ2

w2 + 2304ηxκ3ℓ2

µ2(w − 1)2 V 2
w [T ] + 1152ηxκ3ℓ2D2,

where the first inequality follows from Assumption 4.

Thus

τ ≤ 1
ηx

2MTw + 9δ2T
ℓ + 72ℓw2

µ2(w−1)2 V 2
w [T ] + w2M + 5ℓD2w2

32(
δ2

3 − 2688κ4σ2
) .
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