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Abstract

In this paper, we present a new formulation of unbalanced optimal transport called Dual
Regularized Optimal Transport (DROT). We argue that regularizing the dual formulation
of optimal transport results in a version of unbalanced optimal transport that leads to
sparse solutions and that gives us control over mass creation and destruction. We build
intuition behind such control and present theoretical properties of the solutions to DROT.
We demonstrate that due to recent advances in optimization techniques, we can feasibly
solve such a formulation and present extensive experimental evidence for this formulation
and its solution.

1 Introduction

Optimal transport is a ubiquitous problem in areas ranging from economics and the allocation of resources to
Riemannian geometry and measure theory. The motivation for and description of the basic problem arises
from transporting objects from one set of locations to the another using a minimal cost transportation plan.
Over the past century, but especially the last three decades, considerable work has been done to understand
the geometry of the problem and its various formulations. Many different variations of the problem have
been posed and algorithmic approaches have been developed to solve these variants. Most importantly for
our work, there has also been great interest and activity in applying optimal transport to machine learning,
computer vision, and domain transfer tasks. Optimal transport in the setting of machine learning tasks is the
starting point of this paper.

1.1 Background

There are several versions of the optimal transport problem that we use to motivate our formulation. The
original version is that of Monge which however, has some drawbacks (namely, the transport map must be a
function) and, for this reason, we begin with its natural generalization, the Monge-Kantorovich problem.
Problem 1. Given two probability spaces (X , µ) and (Y, ν), and a cost function c : X × Y → R+ ,
the Monge-Kantorovich Optimal Transport seeks a joint probability measure π on X × Y that minimizes∫
X×Y c(x, y)dπ(x, y), subject to the constraints that the pushforward of the marginals are consistent with the

inputs, PX#π = µ and PY#π = ν.

In a finite discrete setting this problem can be formulated as a linear program (see Problem 2) which,
unfortunately, is challenging to solve computationally but which does guarantee sparse solutions. Two
predominant methods are combinatorial flows Bertsekas & Castanon (1989); Gabow (1985); Duff & Koster
(2001) and PDE based solvers Benamou & Brenier (2000). None of these methods, however, scales well. As a
result, there are many alternative formulations of the OT problem that are easier to solve, including those
formulation types that include regularizing the primal objective function (see, for example, Cuturi (2013);
Essid & Solomon (2017); Blondel et al. (2018); Lorenz et al. (2019) ) with or without relaxed constraints.
These variants are referred to as regularized optimal transport. There is a second class of formulations called
unbalanced optimal transport (see for example Liero et al. (2017); Chizat et al. (2016); Blondel et al. (2018).
There are a number of proposed efficient algorithms to solve these various formulations, including Seguy et al.
(2018); Schmitzer (2019); Solomon et al. (2015); Frogner et al. (2015); Benamou et al. (2015); Genevay et al.
(2016); Alaya et al. (2019).
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1.1.1 Our Contribution

In this paper, we present a new formulation of optimal transport that regularizes the dual problem without
relaxing the dual constraints. We refer to this formulation as Dual Regularized Optimal Transport or DROT.
We show that this problem has a number of both theoretical and algorithmic properties that are desirable.
Specifically,

1. the dual of DROT is a form of unbalanced optimal transport whose solution leads to sparse solutions
to the optimal transport problem;

2. the solutions to DROT are good approximations to the solution of the Monge-Kantorovich problem;
3. with the appropriate choice of the dual regularizer, unlike other optimal transport

formulations, we can easily control the level of mass creation versus the level of mass
destruction and

4. DROT can be solved efficiently via Project and Forget, a general optimization method developed
in Gilbert & Sonthalia (2020).

2 Preliminaries

For all of our algorithmic discussions, we work in a finite, discrete setting. Let ∆n denote the n−1 dimensional
probability simplex. Then, (∆m,a) and (∆n, b) denote two finite probability spaces and we denote by P the
joint distribution on ∆m ×∆n. Note that P can be represented by an m× n matrix. The cost function we
denote by an m× n matrix C. The vector of all ones of length m is denoted 1m. The Frobenius dot product
of two matrices A,B we denote by 〈A,B〉. For some problem formulations and in an abuse of notation, the
distributions a and b on their respective spaces need not have the same total mass (i.e., they are not strictly
probability measures). Finally, given a convex function φ, we denote its convex conjugate by φ∗.

2.1 Background Problem Formulations

In a finite discrete setting the Monge-Kantorovich OT problem can be formulated as the following linear
problem.
Problem 2. Given two probability spaces (∆m,a) and (∆n, b) and a cost function C, we seek the mass
transportation map of minimal cost that is consistent with the input distributions:

OT(a, b) = min〈C,P 〉
subject to: a = P 1m, b = P T1n,P ≥ 0.

(1)

One important feature of the solution to Problem 2 is that it is sparse. Specifically, at most n+m− 1 entries
of P are non-zero Brualdi (2006) which means that for applications in machine learning and image processing,
the solutions are “interpretable” and they have efficient implementations.

In what follows, we sketch the problem formulation types that include regularizing the primal objective
function with and without relaxed constraints.

2.1.1 Regularized and Unbalanced Optimal Transport

In the first formulation variant Regularized Optimal Transport (or ROT), we use an entropic regularizer
without relaxing the constraints. Cuturi Cuturi (2013) shows that by adding an entropic regularizer, the
ROT problem can be solved quickly with the Sinkhorn matrix scaling algorithm.

ROT(a, b) = min〈C,P 〉+ γ
∑
i,j

Pij log(Pij)

subject to: a = P 1m, b = P T1n,P ≥ 0.
(2)

This formulation has proven to be extremely useful in practice despite the loss in sparsity of the solution
which smooths the transportation plan.
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A second natural regularizer is the quadratic function. Essid & Solomon (2017); Blondel et al. (2018); Lorenz
et al. (2019) study this variant and show experimentally that the solutions are sparse. Generalizing further,
Dessein et al. (2018b) use Bregman functions, a natural extension of Benamou et al. (2015).

A second main formulation variant, Unbalanced Optimal Transport (or UOT), maintains the regularized
primal objective function but relaxes the constraints on the marginal distributions. In a variety of applications,
the input distributions are not probability measures and they have different total mass. As a result, Chizat
et al. (2015); Liero et al. (2017) formulate transport between densities with different masses, or unbalanced
optimal transport. In this variant, we relax the constraint that marginals of the transport must match the
given marginals and instead penalize the deviation from the marginals. Similar to Cuturi (2013), Liero et al.
(2017) use entropy based divergences, such as the KL divergence, as the penalty function. Chizat et al. (2016)
present matrix scaling algorithms for UOT.

UOT(a, b) = min〈C,P 〉+ γ1
∑
i,j

Pij log(Pij) + γ2KL(P 1m,a) + γ3KL(P T1n, b). (3)

Blondel et al. (2018) consider UOT with quadratic penalty terms and also considers an asymmetric version of
the problem in which only one marginal constraint has been relaxed. The Monge version of the problem also
has a relaxation that is similar to the unbalanced version of the Monge-Kantorovich problem Yang & Uhler
(2019).

The main drawback with the current formulations of unbalanced optimal transport is that it is unclear how
the solution methods balance creation, destruction, and transportion of mass. These formulations give us
control over mass creation and destruction versus transportion, by increasing or decreasing the penalty, but
we do not have control over the degree of creation versus that of destruction.

There is a version of the unbalanced problem known as partial optimal transport Caffarelli & McCann (2010);
Figalli (2010) that allows for some control. It does require that the input distributions dominate the learned
marginal distributions. As we shall show, our setting not only captures such optimal transport, but also
captures the mass creation version as well. That is, the learned marginals dominate the input distributions.

2.2 Dual regularized optimal transport (DROT)

We devise a new formulation of OT via dual regularization. We add a regularizer term to the dual objective
function so that it is strictly concave but we do not relax the dual constraints. This may be interpreted as
adding a strictly convex regularizer to the primal problem and relaxing the primal constraints, leading to
an unbalanced optimal transport problem. We state the discrete version of the problem and note there is a
natural continuous version which we do not state.
Problem 3. Given a and b two vectors of length m and n respectively (representing two distributions on m
and n points), an m× n cost matrix C, two strictly convex function ϕ and φ, and a regularization parameter
γ, find vectors f and g that maximize

DROT(a, b) = max〈f ,a〉+ 〈g, b〉 − 1
γ

(φ(f) + ϕ(g))

subject to: fi + gj ≤ Ci,j .

(4)

Let us consider the interpretation of this formulation. We begin with that of Peyré & Cuturi (2018). Suppose
we have n warehouses and m stores. Let a be the vector whose ith component is the number of items in
warehouse i and b be the m dimensional vector for the demand of each store. Let C be the cost to transport
items from warehouses to stores. Next, suppose we are an external shipper; we charge fi to pick up goods
from warehouse i regardless of where they are delivered and gj to deliver goods to store j regardless of the
originating warehouse. We want to maximize our income which is given by 〈f ,a〉+ 〈g, b〉 but our prices must
satisfy fi+ gj ≤ Cij , some cost constraint. The addition of the regularizer in the objective function, therefore,
regularizes the prices we can charge. This is in contrast with the formulation developed in Liero et al. (2017)
which penalizes the divergence from the input distribution. In many applications, such as domain transfer,
color transfer, and economics, regularizing prices (i.e., how profitable is it to transfer both to and from a
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certain data point) is more natural. For example, we may want to regularize prices and see how this affect
this the distributions a, b, representing demand and supply.

Using this interpretation, we note the following intuition. If we regularize the problem so that f , g are large,
then we as shippers are making a large profit. Hence, we want to ship as much as possible. Thus, such
regularizers would lead to solutions that create mass. On the other hand, if we regularize so that f , g are
small, negative even, then we as shippers do not want to ship goods. Hence, such regularizers lead to solutions
that destroy mass.

3 Theoretical analysis

In this section, we detail the theoretical analysis of the DROT problem formulation. We begin with an
analysis of the features of the solutions. We then discuss the choice of regularizer. We end with a discussion of
an algorithmic method for solving Problem 4, Project and Forget, a general method developed in Gilbert
& Sonthalia (2020).

3.1 Solution properties

In this section, we analyze the properties of the solutions to the DROT problem. This analysis includes
the relation between the solution to the DROT Problem 4 and that of other OT formulations (i.e., the
approximation quality of the solution), how the solutions depend on the regularization parameter, and finally,
what the trade-offs are in the creation and destruction of mass.
Definition 1. Let f : Rn → R. We say f is positive co-finite if for all x ≥ 0, f(rx)/r → ∞ as r → ∞.
Similarly, f is negative co-finite if for all x ≤ 0, f(rx)/r →∞ as r →∞. A function is co-finite if it is both
positive and negative co-finite.
Definition 2. Given a fucntion h : Rn → R, the convex conjugate h∗ : Rn → R is defined as follows

h∗(x∗) = sup
x∈Rn

xTx∗ − h(x).

Theorem 1. If we add the assumption that φ, ϕ are co-finite Bregman functions to our hypotheses for
Problem 4, then the following problem is the dual problem to DROT(a, b). Furthermore, strong duality holds.

min〈C,P 〉+ φ∗ (γ(a− P 1m))
γ

+
ϕ∗
(
γ(b− P T1n)

)
γ

subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0.
(5)

If we only have the assumption that φ (and similarly for ϕ) is positively (negatively) co-finite, then we must
add the constraint a− P 1 > 0 (a− P 1 < 0).

Proof. Since Bregman functions are strictly convex and we have linear inequality constraints, it is easy to see
that DROT(a, b) is a convex program. Furthermore, strong duality holds if Slater’s condition Slater (2014)
holds. Specifically, given C, we need to show the existence of an f and g such that for all i, j we have that
fi + gj < Cij . To do so, set

f = −‖C‖∞1n and g = −‖C‖∞1m.
Thus, we have strong duality.

Let us now compute the dual of the problem. To do so, let P be the dual variables and obtain the Lagrangian
L(f , g,P ):

L(f , g,P ) = 1
γ
φ(f) + 1

γ
ϕ(g)− fTa− gT b + 〈P ,f1Tm + 1ngT −C〉. (6)

Now we know that the dual problem is given by

max
Pij≥0

min
f ,g

L(f , g,P ). (7)
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Let us do some simplifications to get this into the standard form. We first note that the Lagrangian L can be
rewritten as

L(f , g,P ) = 1
γ
φ(f) + 1

γ
ϕ(g)− 〈f ,a− P 1n〉 − 〈g, b− P T1m〉 − 〈P ,C〉. (8)

Now, for fixed P consider the function

F (f) = 1
γ
φ(f)− 〈f ,a− P 1m〉.

Due to the strict convexity and co-finiteness of φ, we have that F is a strictly convex function. and has a
unique stationary point that corresponds to its global minimum f∗. We can solve for this as follows. For the
case when we have positive co-finiteness only, we need a− P < 0 for F to have a stationary point. Note if
these conditions are not satisfied then the value of L(f , g,P ) is negative infinity, however if it is satisfied then
it is a finite number. Thus, since we have the outer maximization, this is equivalent to adding the constraint.

0 = ∇F (f∗) = 1
γ
∇φ(f∗)− a + P 1m.

Thus, we have that
1
γ
∇φ(f∗) = a− P 1m.

Now from Bauschke & Borwein (1998), if we can show that φ is essentially strictly convex then due to φ
being co-finite, we have that ∇φ∗∇φ(f) = f .

Lemma 1. If φ is a Bregman function, then φ is essentially strictly convex

Proof. From Rockafellar (1970), we know that a function φ is essentially strictly convex if for all convex
S ⊂ {x : ∇φ(x) 6= 0} =: dom(∂φ), φ is strictly convex on S. From Rockafellar (1970), we also know that
dom(∂φ) ⊂ domφ. Thus, since Bregman functions are strictly convex, we have that φ is essentially strictly
convex.

Hence via Lemma 1, we have that
f∗ = ∇φ∗ (γ(a− P 1m))

Performing a similar calculation for g and substituting into Equation 7, we get the following equation for
dual.

max
Pij≥0

−〈C,P 〉+ 1
γ
φ(∇φ∗(γ(a− P 1m)))− 〈∇φ∗(γ(a− P 1m)),a− P 1n〉

+ 1
γ
ϕ(∇ϕ∗(γ(b− P T1m)))− 〈∇ϕ∗(γ(b− P T1m)), b− P T1n〉

To simplify this, Amari (2016) tells us that

ψ∗ (∇ψ(x)) = xT∇ψ(x)− ψ(x) (9)

From Rockafellar (1970), we know that φ∗∗ = cl(conv(φ)). However, since φ is closed and convex, we have
that φ∗∗ = φ. Additionally, since we also have that φ∗ is closed and convex Rockafellar (1970), we also have
that φ∗∗∗ = φ∗. Thus, we have that

1
γ
φ(∇φ∗(γ(a− P 1m))) = 〈a− P 1m,∇φ∗(γ(a− P 1m))〉

− 1
γ
φ∗(γ(a− P 1m))
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Substituting back, we get that dual of DROT(a, b) is given by

Minimize: 〈C,P 〉+ φ∗(γ(a−P 1m))
γ + ϕ∗(γ(b−P T 1n))

γ

Subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0

Remark 1. Our proof of strong duality, as written, does not hold for the entropic regularizer. For this
regularizer we need to add the assumption that Cij > 0 for all i, j. With such an assumption, setting f , g = 0
satisfies Slater’s condition1. We also need to add the constraint that f , g ≥ 0 so, in the dual formulation, we
add the dual variables c1, c2 that correspond to these constraints.

Theorem 1 shows us the dual formulation of DROT resembles unbalanced optimal transport problems from
Chizat et al. (2015); Liero et al. (2017), but with different types of penalty functions on the transport map.
Indeed, if we set φ and ϕ to be quadratic regularizers, then Theorem 1 shows that the dual DROT formulation
and a formulation in Blondel et al. (2018) are equivalent.

Furthermore, note that if φ, ϕ are positive co-finite functions, then DROT necessarily destroys mass. On the
other hand, if φ, ϕ are negative co-finite function, then DROT necessarily creates mass. This matches our
intuition exactly. In the objective function for DROT, the regularizer term is φ(f) + ϕ(g) which we seek
to minimize. For positive co-finite functions, we do so when both f and g are highly negative. Using the
shipping interpretation of the dual problem, f and g represent the prices we charge to ship and a negative
price means that we, as shippers, pay to do the shipping! Such incentives result in not shipping goods or,
more abstractly, destroying mass. On the other hand, for negatively co-finite functions, we minimize the
objective function when f , g are both highly positive; that is, we are incentivized to ship more goods, or to
create mass.

We note that for the dual DROT formulation, it is not necessary that φ∗, ϕ∗ attain their minima at 0 (the
minimum is attained at 0 if and only if φ, ϕ attain their minima at 0) and, under such conditions, the
regularizers actually encourage some deviation from the marginals a, b; thus, encouraging the creation or
destruction of mass. Note we could also introduce similar incentives in other variants, but they appear
naturally in this variant.

The next proposition quantifies how far the solution to DROT is from that of the Monge-Kantorovich
formulation.
Proposition 1. Suppose φ, ψ are bounded from below. Let P ∗,f∗, g∗ be the optimal solutions, primal and
dual, to the Monge-Kantorovich formulation (Problem 2) and let P ∗φ,ϕ,f

∗
φ,ϕ, g

∗
φ,ϕ be the optimal solutions to

DROT, Problem 4. Then the following are true.

1. The difference between the value of the DROT objective and that of the Monge-Kantorovich formulation
is upper and lower bounded by

φ
(
f∗φ,ϕ

)
+ ϕ(g∗φ,ϕ) ≤ γ(OT(a, b)−DROT(a, b)) ≤ φ(f∗) + ϕ(g∗).

2. We can estimate the quality of the approximation (as a function of the regularizers φ and ϕ) as

γ〈C,P ∗ − P ∗φ,ϕ〉 ≤φ(f∗) + ϕ(g∗) + φ∗(γ(a− P ∗φ,ϕ1m)) + ϕ∗(γ(b− (P ∗φ,ϕ)T1n))

3. and

φ∗(γ(a− P ∗φ,ϕ1m)) + ϕ∗(γ(b− (P ∗φ,ϕ)T1n)) ≤ γ〈C,P ∗ − P ∗φ,ϕ〉 − φ(f∗φ,ϕ)− ϕ(g∗φ,ϕ).

Proof. Let us first prove the lower bound for part 1. To do this note that since f∗φ,ϕ and g∗φ,ϕ satisfy the
constraints f∗φ,ϕ1Tm + 1n(g∗φ,ϕ)T ≤ C, we have that

〈f∗φ,ϕ,a〉+ 〈g∗φ,ϕ, b〉 ≤ 〈f∗,a〉+ 〈g∗, b〉 = OT (a, b)
1For all experiments involving the entropic regularizer, we add a small number to the cost matrix to guarantee that all the

costs are positive.
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Then subtracting 1
γφ
(

f∗φ,ϕ

)
+ 1

γϕ
(

g∗φ,ϕ

)
from both sides and rearranging gives us the the lower bound.

For the upper bound, note that f∗1Tm + 1n(g∗)T ≤ C, hence we have that

1
γ
φ(f∗) + 1

γ
ϕ(g∗)− (f∗)Ta− (g∗)T b ≥ −DROT (a, b).

Thus, rearranging gives us the upper bound.

Now for part 2, we have that
〈C,P ∗〉 = 〈f∗,a〉+ 〈g∗, b〉.

Then we subtract (φ(f∗) + ϕ(g∗))/γ from both sides to get

〈C,P ∗〉 − 1
γ

(φ(f∗) + ϕ(g∗) = 〈f∗,a〉+ 〈g∗, b〉 − 1
γ

(φ(f∗) + ϕ(g∗).

Then we have that
〈f∗,a〉+ 〈g∗, b〉 − 1

γ
(φ(f∗) + ϕ(g∗) ≤ DROT (a, b).

Thus, we get that

〈C,P ∗〉 − 1
γ

(φ(f∗) + ϕ(g∗) ≤ 〈C,P ∗φ,ϕ〉+
φ∗(γ(a− P ∗φ,ϕ1m))

γ
+
ϕ∗(γ(b− (P ∗φ,ϕ)T1n))

γ

Rearranging the above equation gives us part 2.

For part 3, note that
〈C,P ∗〉 = 〈f∗,a〉+ 〈g∗, b〉 ≥ 〈f∗φ,ϕ,a〉+ 〈g∗φ,ϕ, b〉.

Then we subtract (φ(f∗φ,ϕ) + ϕ(g∗φ,ϕ))/γ from both sides to get

〈C,P ∗〉 − 1
γ

(φ(f∗φ,ϕ) + ϕ(g∗φ,ϕ)) ≥ DROT (a, b)

Substituting in the primal objective for DROT and rearranging gives us part 3.

These bounds reveal how the various parameters control the problem. Specifically, we can see that error
OT(a, b)−DROT(a, b) is O(γ−1). More interestingly, we see how φ, ϕ affect the quality of the approximation.
Parts 2, 3 of Proposition 1 also give us an interplay between the penalty incurred for not satisfying the
marginal constraints and the cost of the transport.
Corollary 1. Suppose φ, ψ are bounded from below. If P ∗γ is the solution to DROT (a, b) for a given γ,
and P ∗ is the solution to OT(a, b) then, ‖a − P ∗γ 1m‖ and ‖b − (P ∗γ )T1n‖, OT (a, b) −DROT (a, b), and
|〈C,P ∗ − P ∗γ 〉| are all O(γ−1).

Proof. Note that at the optimal point, by the KKT conditions, we have stationarity. So we have that

1
γ
∇φ(f∗γ ) = a− P ∗γ 1m ⇒ ‖a− P ∗γ 1m‖ = 1

γ
‖∇φ(f∗γ )‖.

Now due to the convexity of φ, and part 1 of Proposition 1, we have that φ(f∗γ ) is bounded from above.
Then again due to the convexity of φ, this implies that ‖∇φ(f∗γ )‖ is bounded from above, Thus, ‖a−P ∗γ 1m‖
is O(γ−1). Similarly, noting that φ, ψ are bounded from below, due to Proposition 1 part 1, we have that
OT (a, b)−DROT (a, b) is O(γ−1). Finally, since ‖a− P ∗γ 1m‖ is bounded, we have that a− P ∗γ 1m lives in
a bounded set whose diameter is O(γ−1). Thus, φ∗(γ(a−P ∗γ 1m)) is bounded. Thus, using similar reasoning
to before and Proposition 1 parts 2 and 3, we have that |〈C,P ∗ − P ∗γ 〉| is O(γ−1).
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Because the sparsity of solutions to OT problems is critical for some applications, the next series of analysis
is the study of the support of solutions to DROT.
Definition 3. Given F : Rd×Θ→ R and G such that for each θ ∈ Θ, G(θ) ⊂ Rd, we define a parameterized
family of optimization problems parameterized by θ ∈ Θ where the function V , V (θ) = maxx∈G(θ) F (x, θ) is
the value function and x∗, x∗(θ) = {x ∈ G(θ) : F (x, θ) = V (θ)} is the optimal policy correspondence.
Definition 4. Let G : Θ → P(Rd) be a function from the parameter space Θ to the power set of Rd. We
say that G is upper hemicontinuous at θ ∈ Θ if G(θ) is nonempty and if, for every open set U ⊂ Rd with
G(θ) ⊂ U , there exists a δ > 0 such that for every θ′ ∈ Nδ(θ) (every θ′ in some δ-neighborhood of θ),
G(θ′) ⊂ U .

In our set up d = 2n and Θ = [0,∞) such that [f g] ∈ R2n and γ ∈ Θ. Then G(θ) is the set of feasible f , g
and V (f , g, θ) is the DROT objective function.
Proposition 2. Given two discrete measures µ, ν, a cost function c, and Bregman regularizers φ, ϕ and γ−1 ∈
[0,∞), the value function V is well defined and continuous on [0,∞) and the optimal policy correspondence
x∗ is also well defined and continuous on (0,∞). Furthermore, if φ, ϕ are both positive co-finite or both
negative co-finite, then the optimal policy correspondence is upper hemicontinuous on [0,∞) and bounded
from below.

Proof. Let us start by defining a new problem DROTn as follows. Here we add the following new constraints:
−n ≤ fi, gj . In this case, we have that the feasible region is bounded and closed and hence is compact.

We are going to show continuity using Berge’s maximal theorem. Hence we need to show the assumptions for
Berge’s theorem are true. Here let Kn = {[f , g] ∈ R2n : −n ≤ fi, gj}, then we have

Xn = {[f , g] ∈ R2n : fi + gj ≤ Cij} ∩Kn

This Xn will be the feasible region for the problem DROTn. Now let Θ = [0,∞). Now define T : Xn×Θ→ R
that is defined as follows.

T (f , g, γ−1) = 〈f ,a〉+ 〈g, b〉 − γ−1φ(f)− γ−1ϕ(g)

Finally, let us define Gn(θ) = Xn for all θ ∈ Θ. In this case, we have that the value function is

Vn(θ) = max
x∈Gn(θ)

T (x, θ),

where x = [f , g] and the optimal policy correspondence is

x∗n(θ) = {x ∈ Gn(θ) : T (x, θ) = Vn(θ)}.

The first few assumption for Berge’s maximal theorem are that T is a continuous function, Θ is closed and Xn

is closed. These are clearly true. Thus, we just need to show that G is compact valued and continuous. First,
we see that Xn is compact. Hence G is compact valued. Thus, we just need to show that G is continuous.

We shall do this by showing that Gn is upper and lower hemicontinuous.

For upper hemicontinuity, we need to show that for all θ ∈ Θ that for every sequence (θj)j∈N with θj → θ
and every sequence (xj)j∈N with xj ∈ Gn(θj) for all j, there exists a convergent sub-sequence xjk

such that
xjk
→ x ∈ Gn(θ). In this case, since Gn(θj) = Xn for all θj , we have that xj ∈ Xn. Then since Xn is

compact, we have a convergent sub-sequence.

For lower hemicontinuity, we need to show that for all θ ∈ Θ, for every open set X ′ ⊂ Xn with Gn(θ)∩X ′ 6= ∅,
there exists a δ > 0 such that for every θ′ ∈ Nδ(θ), Gn(θ′) ∩X ′ 6= ∅. In this case, since Gn(θ) = Xn for all θ,
this is trivially true.
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Thus, Gn is compact valued and continuous. Thus, by the Berge’s maximal theorem, we have that Vn is
well defined and continuous. Also we have that x∗n is upper hemicontinuous. Now we have that for a fixed
θ ∈ (0,∞), [f , g]→ T (f , g, θ) is a strictly concave function and Gn(θ) is a convex. Thus, we have that there
has a unique maximizer. Thus, x∗n(θ) is a singleton set. Thus, being upper hemicontinuous implies continuity
and that the function θ 7→ [f , g] ∈ x∗n(θ) is a continuous function.

Let V, x∗ be the value function and optimal policy correspondence for DROT. Then we need to show that
V, x∗ are continuous at all θ ∈ (0,∞). To do this let θ ∈ (0,∞) and let f∗φ,ϕ, g

∗
φ,ϕ be the optimal solutions.

Then we know there exists an n such that [f∗φ,ϕ, g∗φ,ϕ] ∈ int(Kn). Thus, due to the continuity of x∗n there
is a ball B around θ, such that x∗n(B) ⊂ int(Kn) and x∗n = x∗ on B. Thus, V = Vn on B. Thus, V, x∗ is
continuous on (0,∞). Finally part 1 of Proposition 1 shows that V is continuous at 0.

The final detail that we need to prove is the fact that x∗ is upper hemicontinuous at 0. First, suppose both φ
and ϕ are negative co-finite. Then since φ, ψ are bounded from below and

φ(f∗φ,ϕ) + ϕ(g∗φ,ϕ) ≤ φ(f∗) + ϕ(g∗).

We see that φ(f∗φ,ϕ), ϕ(g∗φ,ϕ) are bounded from above. Thus, since the two functions are negative co-finite,
there exists an N such that, N ≤ f , g. Thus, we see that, x∗ = x∗N . Thus, we have upper hemi-continuous at
0.

Let us now suppose that both φ and ϕ are positive co-finite. Then since φ, ψ are bounded from below. and

φ(f∗φ,ϕ) + ϕ(g∗φ,ϕ) ≤ φ(f∗) + ϕ(g∗).

We see that φ(f∗φ,ϕ), ϕ(g∗φ,ϕ) are bounded from above. Thus, since the two functions are positive co-finite,
there exists an N such that, N ≥ f , g.

Now we know that at γ−1 → 0, we have that

‖〈f∗ − f∗φ,ϕ,a〉+ 〈g∗ − g∗φ,ϕ, b〉‖ → 0.

Thus now assume for the sake of contradiction that

f∗φ,ϕ → −∞

as γ−1 → 0. Then we have that
〈f∗ − f∗φ,ϕ,a〉 → ∞

as γ−1 → 0. Thus, we must have that
〈g∗ − g∗φ,ϕ, b〉 → −∞

as γ−1 → 0. But then this would imply that there exists a coordinate of g∗φ,ϕ that goes to infinity as γ−1 → 0.
This is a contradiction. Thus f∗φ,ϕ is bounded from below.

Similarly, we have that g∗φ,ϕ is bounded from below. Thus, there exists an N such that x∗ = x∗N . Thus, x∗ is
upper hemicontinuous at 0.

The implication of the upper-hemicontinuity of the optimal policy correspondence is that any sequence of
solutions (f∗φ,ϕ)n, (g∗φ,ϕ)n to the DROT Problem 4 for a sequence of (γ)n, has a convergent sub-sequence.
Lower-hemicontinuity implies that all solutions to the OT Problem 2 can be expressed as limits of sequences
of solutions to DROT.

Finally, we show that the transport map P that results from solving DROT is at least as sparse as that from
the OT solution. While this is result is for the case when γ is large, as we will see experimentally, we produce
sparse solutions for all γ.
Corollary 2. Suppose that we have an instance of Problem 2 such that for any two optimal dual solutions
(f∗1 , g∗1), (f∗2 , g∗2), we have that f∗1 −f∗2 = c1, and g∗1 −g∗2 = −c1. Then there exists Γ such that for all γ ≥ Γ,
if P ∗γ is the solution to DROT Problem 4 for γ and P ∗ is any optimal solution to Problem 2, then we have
that supp(P ∗γ ) ⊂ supp(P ∗).

9
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Proof. First, we note that the solution to the optimal transport problem is now unique upto constants.
Then due to the existence of strictly complementary solutions. We see that all solution must be strictly
complementary.

Let f∗, g∗ be the optimal solutions to the non-regularized problem. Then we know that supp(P ∗) = {i, j :
f∗i + g∗j = Ci,j}. Then there is an ε > 0, such that for any non active constraint we have that

f∗i + g∗j −Cij < −ε

Then let V = {f , g : ‖f∗ − f‖ < ε/3, ‖g − g∗‖ < ε/3}. Then by upper continuity we know that there exists
a δ > 0 such that for all γ−1 < δ we have that f∗φ,ϕ, g

∗
φ,ϕ ∈ V . Thus, by complementary slackness we have

the needed result.

3.2 Example regularizers

In this subsection, we focus on three different example regularizers: quadratic, entropic, and exponential. All
of these regularizers satisfy the theoretical assumptions of the theoretical analysis in the previous subsection
although there are some important differences amongst them.

3.2.1 Quadratic

The quadratic regularizers are φ(f) = ‖f‖2
2 and similarly for ϕ(g). This regularizer is thoroughly studied

in Blondel et al. (2018) and, for brevity, we do not discuss it further. We observe that the regularizer is a
co-finite Bregman function.

3.2.2 Exponential

Let φ(f) =
∑n
i=1 e

fi and similarly for ϕ(g). We observe that φ, ϕ are positively co-finite Bregman functions
and, by Theorem 1, this formulation of DROT must destroy mass. To be more concrete, the convex conjugate
of φ is φ∗(x) =

∑n
i=1 xi log(xi)− xi with the stipulation that xi ≥ 0 and similarly for ϕ∗. In Theorem 1, the

variable x in the dual formulation of DROT is x = a− P 1m and the requirement that xi ≥ 0 implies

ai − (P 1n)i ≥ 0 or ai ≥ (P 1n)i.

Hence, the transport process only destroys or preserves mass; it does not create it.

3.2.3 Entropy

Let φ(f) =
∑n
i=1 fi log(fi)− fi and similarly for ϕ(g). The convex conjugate of φ is φ∗(x) =

∑n
i=1 e

xi and
similarly for ϕ∗. In Remark 1, we detail the additional stipulations we impose when we use the entropic
regularizers. These constraints include that (f)i, (g)i ≥ 0 which implies that in the dual formulation of
DROT, the variables x and y satisfy x = a− (P 1m)− c1 and y = b− (P T1n)− c2, where c1, c2 are vectors
which non-negative entries. In the optimization problem, we optimize for c1, c2 as well. We minimize this
term in the objective when a− (P 1n)−c1 is negative, or when a < (P 1n) + c1 (and similarly for b). Because
c1 is variable, it is not clear whether we favor creating or destroying mass. As we will see, however, in the
experiments, we always favor creating mass in this formulation. This matches our intuition as f , g must be
positive.

3.3 Efficient algorithm: Project and Forget

While there are many different potential algorithmic techniques that could be used to solve this problem, we
adopt a new algorithmic method, Project and Forget Gilbert & Sonthalia (2020), which is a conversion
of Bregman’s cyclic method into an active set method and, as such, can solve highly constrained convex
optimization problems. In Particular, Gilbert & Sonthalia (2020) performed an extensive comparison
experiment to validate the choice of Project and Forget for the quadratically regularized version of the

10
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problem. They showed that using Project and Forget, they could solve the problem for much larger
values of n for the quadratically regularized version of the problem.

Project and Forget is an iterative method with three major steps per iteration: (i) an (efficient) oracle
to find violated constraints, (ii) Bregman projection onto the hyperplanes defined by each of the active
constraints, and (iii) the forgetting of constraints that no longer require attention. To better understand the
algorithm the following discussion is adapted from Gilbert & Sonthalia (2020)

Let L(ν) be the set of constraints in consideration at the start of the νth iteration. First, we run an oracle to
add new constraints to get L̃(ν+1). Then we do the Project and Forget steps.

The Project and Forget steps for the algorithm are presented in Algorithm 1. Let us step through the code to
obtain an intuitive understanding of its behavior. Let Hij = {f , g : fi + gj ≤ Cij} ∈ L̃(ν+1) be a constraint
and f , g the current iterate. The first step is to calculate f ′g′ and θ. Here f ′, g′ is the projection of f , g
onto the boundary of Hij and θ is a “measure” of how far f , g is from f ′, g′. In general, θ can be any real
number and so we examine two cases: θ positive or negative.

From Gilbert & Sonthalia (2020) we know that θ is negative if and only if the constraint is violated. In this
case, in Algorithm 1 we have c = θ because the algorithm always maintains zij ≥ 0. Then on line 5, we
compute the projection of f , g onto Hij . Finally, since we corrected fg for this constraint, we add |θ| to zij .
Since each time we correct for Hij , we add to zij , we see that zij stores the total corrections made for Hij .
On the other hand, if θ is positive, this constraint is satisfied. In this case, if we also have that zij is positive;
i.e., we have corrected for Hij before and we have over compensated for this constraint. Thus, we must undo
some of the corrections. If c = zij , then we undo all of the corrections and zi is set to 0. Otherwise, if c = θ
we only undo part of the correction.

For the Forget step, given a constraint Hij ∈ L̃(ν+1), we check if z(ν+1)
ij = 0. If so, then we have not done any

net corrections for this constraint and we can forget it; i.e., delete it from L̃(ν+1).

If we think of L(ν) as matrix, with each constraint being a row, we see that at each iteration L(ν) is a sketch of
the matrix of active constraints. Hence, during each iteration we update this sketch by adding new constraints
(rows). During the Forget step, we determine which parts of our sketch are superfluous and we erase (forget)
these parts (rows) of the sketch.

Algorithm 1 Project and Forget algorithms.
1: function Project(x, z, L)
2: for Hij = {f , g : fi + gj ≤ Cij} ∈ L do
3: Find f ′, g′, θ by solving θei := ∇φ(f ′)−∇φ(f), θej = ∇ϕ(g′)−∇ϕ(g) and f ′, g′ ∈ Hij

4: cij = min (zij , θ)
5: f , g ← fnew, gnew, such that θei := ∇φ(fnew)−∇φ(f) and θej = ∇ϕ(gnew)−∇ϕ(g).
6: zij ← zij − cij

return f , g, z
7: function Forget(z, L)
8: for Hij = {f , g : fi + gi ≤ Cij} ∈ L do
9: if zij == 0 then Forget Hij

return L

To adapt Project and Forget for DROT, the three major steps are as follows. First, we use a naive oracle
that searches through all of the constraints and adds to the current list of active constraints any violated
constraint. In particular, since each constraint is independently satisfied or not, we can do this search in
parallel. In the project step, we observe that the constraints are of the form fi + gj ≤ Cij . To calculate the
projection, we first calculate f ′i , g

′
j , θ as the solutions to the following equations, where ei, ej are the i, jth

standard basis vectors.
θei := ∇φ(f ′)−∇φ(f) and θej = ∇ϕ(g′)−∇ϕ(g).

We discuss an analytic formula for θ, that only depends on fi, gj ,Cij for the different regularizers below.

11
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Quadratic regularizer. For the quadratic regularizer, we have that θ = Cij−fi−gj

2γ .

Entropic regularizer. In the case of the entropic regularizer, we have that

θ = log
(

Cij

fi + gj

)
/γ.

And for the exponential regularizer, θ is given by

θ = −e
fi − egj +

√
(efi − egj )2 + 4eCij )
2γ .

For exponential, this is done by solving the Lagrange multiplier problem.

Mixed regularizers. In the case we want to mix regularizers, calculating θ is more difficult. For example,
if φ is quadratic and ϕ is entropy, then θ is the root of ex + x+ fi + gj −Cij .

Once we have calculated θ, we set c := min(Pij , θ) and we update Pij ← Pij − c and f , g as follows

f ← ∇φ−1(cei +∇φ(f)) and g ← ∇ϕ−1(cej +∇ϕ(g)).

In the forget step, if Pij = 0, then we forget the related constraint (i.e., remove it from the list of active
constraints). Note that P is the dual variable and is the desired transportation plan. One feature of Project
and Forget is in addition to calculating the primal variables, we also retain the desired dual variable P ,
the transportation plan.

One of the reasons we chose to solve DROT with Project and Forget is for its convergence analysis
and rate. Specifically, we see that each iteration of the method takes O(n2) time and the method uses a
total of O(n2) memory. Further, Gilbert & Sonthalia (2020) show that Project and Forget has a linear
rate of convergence and that the rate is at most L

L+µ2 for some µ ∈ (0, 1], where L is the number of active
constraints. Corollary 2 gives us an estimate of the sparsity of our solutions P ∗φ,ϕ and, hence, an estimate on
the number of active constraints. (We note that there are comparatively few active constraints typically).
Thus, giving us a reasonable problem specific upper bound on the rate of convergence.

4 Experiments

In this section, we provide extensive experimental evidence to support the theoretical results presented in
the previous section, to provide the intuition about dual regularized optimal transport (where theoretical
analysis is unavailable), and to demonstrate that our new formulation of optimal transport is both different
and useful (performing domain transfer tasks, including color transfer and digit classification).2

4.1 Verifying theoretical properties

The first solution property that we verify experimentally is the sparsity of the transport plan. To generate a
problem instance for verification, we uniformly sample two distributions a, b from ∆100. Then we sample
Cij independently and uniformly from [0, 1]. As we can see from Figure 1(i), in all cases, we find solutions
that are sparser than the true optimal transport plan. As the regularization parameter γ increases, the size
of the support of our transport plans increases until we reach the true support size. For the entropic and
exponentially regularized versions, for γ = 105, the optimization had not converged so we do not plot those
results.

Next, we evaluate how well our objective functions approximate the Wasserstein distance (the objective
of Problem 1) and how well our transport plans approximate the true plans. We construct a simple
problem instance (as our previous instance is difficult to calculate for large γ) consisting of two Gaussian
distributions with means ±15 and variance 10. The cost matrix C is given by Cij = 1. Then we plot

2All experiments were run on a machine with 8 cores and 56 GB of memory.
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(i) Sparsity (ii) Entropy

(iii) Quadratic (iv) Exponential

Figure 1: (i) Sparsity of the solutions for the different regularizers versus the regularization parameter; (ii–iv)
Error |〈C,P ∗ − P ∗φ,ϕ〉| (blue line) and OT (a, b) − DROT (a, b) (red line) versus γ for the three different
regularizers.

OT (a, b)−DROT (a, b) (red line) and |〈C,P ∗ − P ∗φ,ϕ〉| (blue line) versus γ. Furthermore, the gap between
the two lines is φ∗(γ ∗ (a−P 1m)/γ + ϕ∗(γ ∗ (a−P T1n)/γ. From our theoretical analysis, we know that all
of these quantities should be O(γ−1). From the plots it is evident that OT (a, b)−DROT (a, b) (red line)
and |〈C,P ∗−P ∗φ,ϕ〉| (blue line) decrease linearly. Finally, since the plots are log-log plot, the plots show that
φ∗(γ ∗ (a−P 1m))/γ +ϕ∗(γ ∗ (a−P T1n))/γ also decrease linearly with respect to γ. Thus, the experiments
suggest that the theoretical error rate is tight. That is the error is Θ(γ−1).

Finally, we test the intuition sketched in our theoretical analysis as to when mass is created versus destroyed.
Specifically that, entropy regularization creates mass, the exponential regularization destroys mass, and the
quadratically regularized problem does both. To verify this, we uniformly sample two distributions a, b from
∆100 and sample Cij independently and uniformly from [0, 1]. Then we compute the transport plan and
marginals for all three different regularizers for a variety of different values of γ. Figure 2 shows that our
intuition matches exactly what occurs in practice. The quadratic regularizer both creates and destroys mass;
that is, sometimes the yellow bars (bar chart for a) are bigger and sometimes the yellow bars are smaller.
The exponential regularizer only destroys mass; i.e., the yellow bars are always bigger. Finally, the entropic
regularizer only creates mass; i.e., the yellow bars are always smaller. In each case, we see that as γ gets
bigger, the marginals of the transport plan better approximate the true marginals.

Note that all experiments were run until the Project and Forget feasibility error was smaller than 1e-15.
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(i) Quadratic (ii) Exponential

(iii) Entropy

Figure 2: Graphs showing the mass creation and destruction for the different regularizers. The yellow bars
represent the true marginal distribution.

4.2 Domain Transfer

In this section, we explore how our new formulation performs on the task of domain transfer. We also
investigate our intuition as to how the different regularizers affect the results. The goal of this section is not to
present state of the art results for domain transfer, but to demonstrate that creating versus destroying mass
gives us different results. And so, being able to decide whether mass is created or destroyed is a desirable
attribute in a problem formulation and algorithmic method.

We compare our formulation DROT against other formulations. Specifically, we compare against standard
optimal transport OT, entropic regularization of the primal ROT, and UOT with entropic regularization of
the primal with KL divergence controlling the deviation from marginals. All of our DROT formulations are
solved using Project and Forget. The other formulations are solved using the python optimal transport
library with the following algorithms: we solve ROT using the algorithm in Cuturi (2013), we solve OT using
the algorithm in Bonneel et al. (2011), and we solve UOT using the algorithm in Chizat et al. (2016).

For all domain transfer problems we use the squared Euclidean distance as the cost function. Thus, once we
have computed our transport plans P (obtained from solving any of the versions of optimal transport), we
compute the barycentric projection map to transfer one data set into the domain of the other data set. That
is, because we use the squared Euclidean distance as the cost, if a, b are the two data sets, the transport of a

to the domain of b, denoted â is given by, âi =
∑n

j=1
Pijbj∑n

j=1
Pij

.
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(i) Source (ii) Exp. (iii) Quad. (iv) Ent. (v) Target

(vi) Source (vii) UOT (viii) ROT (ix) OT (x) Target

(xi) Source (xii) Exp. (xiii) Quad. (xiv) Ent. (xv) Target

(xvi) Source (xvii) UOT (xviii) ROT (xix) OT (xx) Target

Figure 3: Images produced by doing color transfer using different regularizers (Exponential, Quadratic,
Entropy) for DROT and images produced by doing color transfer using other formulations of optimal
transport.

4.2.1 Color Transfer

Color transfer consists of the first domain transfer experiment. In these experiments, we use the same setup
as Blondel et al. (2018). For each picture, we first perform k means to cluster the three dimensional pixels in
each image, generating k color centers for each image. We used k = 4096 clusters. These centers are the
point masses for the two distributions. The weight of each center is proportional to the number of points
assigned to that cluster and the cost matrix is given by the Euclidean squared distance between the color
centers. We want to demonstrate two things with this experiment:

1. DROT results in good quality images that look different. This is not the case with the other
formulations of OT, which produce similar pictures, as seen in Figure 3.

2. The regularization parameter γ, when used with the quadratic regularizer, destroys mass and this is
evident in the images but when used with the entropic regularizer, the way in which mass is created
is not reflected in the images (although it is in a toy example).

For the quadratic regularizer γ = 1e4, for the entropic regularizer γ = 1e4, for the exponential regularizer,
γ = 10log10(e10) ≈ 104.34. Here we picked γ that looked best for the first set of images and used the same γ
for the second set. For ROT we set γ = 1e− 2. For UOT we set the regularizer γ1 = 1e− 2, and we set the
penalty γ3 = γ2 = 1e1.
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(i) γ = 1e1 (ii) γ = 1e2 (iii) γ = 1e3 (iv) γ = 1e4

(v) γ = 1e− 1 (vi) γ = 1e0 (vii) γ = 1e1 (viii) γ = 1e4

Figure 4: Images produced by doing color transfer for different values of γ. The top row is for the quadratic
regularizer, and the bottom row is for the entropic regularizer.

For the first demonstration, we can see the performance of the different regularizers in Figure 3. If we use the
entropic regularizer, then the transferred image is more faithful to the original color distribution. Additionally,
we see that entropic regularized images are cleaner and have fewer artifacts.

For the second demonstration, we can see from Figure 4, that when γ is small and we use the quadratic
regularizer, we tend to destroy the mass; i.e., the images are corrupted. As we can see in Figure 4, however,
for the entropic regularizer, for all values of γ, the images look identical. We argue that this phenomenon
occurs as a result of two different phenomena. First, we note that the entries in the cost matrix are less than 1.
Because of the entropic regularizer, the critical point of the objective function always has the entries greater
than 1. Thus, the solution to the entropic regularized problem will always be on the boundary, regardless of
the value of γ. That is, mass transport always occurs. This does not, however, explain why the images look
identical. We conjecture a second phenomenon is at play: when we have a convex cost function, we conjecture
that, changing γ results in creating mass simply by shifting the distribution upwards (as demonstrated in
Figure 5). That is, the transport plan maintains the shape of the distribution and just shifts it up. For
images, shifting the distribution by a bounded amount does not impact the appearance of the color transfer
and the images look similar.

(i) γ = 1e1 (ii) γ = 1e2 (iii) γ = 1e3

Figure 5: Graphs showing that the entropic regularizer maintains the distribution shape. We used the
squared Euclidean distance as the cost function and performed transport from the red distribution to the
blue distribution.
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USPS DE OT ROT DQ UOT

Figure 6: Images of the first four digits in the USPS dataset, when transported using to the MNIST domain
using various optimal transport problems. DE/DQ refers to entropic/quadratic regularized version of DROT.

Problem Trained on MNIST Trained on USPS
Dual Entropy 76.46% 62.54%
Dual Quadratic 65.75% 63.79%

OT 62.04% 65.32%
UOT 75.44% 66.16%
ROT 66.99% 63.87%

Table 1: Accuracy using a 1 nearest neighbor classifier after transporting the USPS dataset to the MNIST
domain.

4.2.2 MNIST, USPS classification

Finally, we use domain adaptation for classification. To test the performance of DROT, we transport between
the MNIST training data set and USPS training data sets. First, we pad the USPS images with zeros so that
they are are the same size as the MNIST images and the use the squared Euclidean distance as the metric
between the two data sets. We then transport the USPS training set images to the MNIST domain.

For the quadratic regularizer, we set γ = 1e7, the entropic regularizer we set γ = 1e5. These were the smallest
γ’s at which transport happened. For ROT and UOT we set γ = γ1 = γ2 = γ3 = 1. Note γ was finalized
before we looked at any of the digits or the prediction accuracy. It was chosen whenever the transport plan
P had non trivial number of non-zero entries.

Let us start by examining the appearance of the transported digits. Figure 6 shows what the first 4 digits in
the USPS data set look like after they have been transported to the MNIST domain. We can see again that
the entropic regularized transport is the most faithful to the original image and has the cleanest new digits.
We note that some of the digits are flipped, we present them this way as they are flipped in the dataset we
have as well. We then use the various transported USPS digits for classification. We use labels for both
MNIST and USPS. That is, we try to classify the MNIST digits using a classifier trained on the transported
USPS dataset and to classify the transported USPS digits using a classifier trained on the MNIST dataset.
Table 1 shows that the entropic regularized version performs well.
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5 Conclusion

In conclusion, in this paper, we present a new formulation of optimal transport called Dual Regularized
Optimal Transport. We prove many theoretical results, including connections to the UOT problem, and
properties of the solutions for various choices of φ, ϕ, γ. We also build the intuition that regularizing f , g to
be more positive results in mass creation and regularizing to be more negative results in mass destruction.
We support this intuition with experimental evidence. Finally, we also showed creating mass, via the dual
entropic regularized problem results in novel, and useful results when applied to domain transfer.

We hope that this paper helps understand the dual problem of optimal transport and that future researchers
can use the useful interpretations of the dual to design optimal transport based algorithms for their various
different applications. In terms of future work, we are interested in understanding under what situations such
problems result in a metric on the space of distributions. We are also interested in dynamical formulations of
the problem as well.
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