
Batch size selection by stochastic optimal control

Jim Zhao
Department of Computer Science
ETH Zürich, Zürich, Switzerland.
jimzhao@student.ethz.ch

Aurelien Lucchi
Department of Mathematics

Computer Science University of Basel, Basel, Switzerland.

Frank Proske
Department of Mathematics

University of Oslo, Oslo, Norway.

Antonio Orvieto
Department of Computer Science
ETH Zürich, Zürich, Switzerland.

Hans Kersting
Inria, Ecole Normale Supérieure

PSL Research University, Paris, France.

Abstract

Stochastic gradient descent (SGD) and its variants are widespread in the field of
machine learning. Although there is extensive research on the choice of step-size
schedules to guarantee convergence of these methods, there is substantially less
work examining the influence of the batch size on optimization. The latter is
typically kept constant and chosen via experimental validation.
In this work we take a stochastic optimal control perspective to understand the effect
of the batch size when optimizing non-convex functions with SGD. Specifically,
we define an optimal control problem, which considers the entire trajectory of SGD
to choose the optimal batch size for a noisy quadratic model. We show that the
batch size is inherently coupled with the step size and that for saddles there is a
transition-time t⇤, after which it is beneficial to increase the batch size to reduce
the covariance of the stochastic gradients. We verify our results empirically on
various convex and non-convex problems.

1 Introduction
Stochastic gradient methods are extremely popular in the field of machine learning [4] [3] [10].
Despite their simplicity, they require carefully tuning some hyper-parameters, such as the step size
and the batch size. While the choice of step size has been an extensive area of research, including
cyclic step sizes [1][9] or adaptive step sizes, such as AdaGrad [7], RMSProp [20], Adam [12],
etc., there has been noticeably less work regarding the choice of the batch size. This is somewhat
surprising given that batch size tuning has been shown to have significant advantages over tuning
the step size [19][8]. A notable exception is a work by Balles et al. [2] that proposes a greedy batch
size selection based on maximizing the bound on the expected gain of a single SGD step. Another
work by De et al. [6] proposes different increasing batch-size schedules, motivated by approximately
constant SNR in gradient approximations, and provides theoretical guarantees for convergence. [11]
theoretically analyze the influence of batch size, step size and gradient covariance on the properties
of the achieved minima. They show that the ratio of step size to batch size determines a trade-off
between the width of the minima, measured by the trace of the Hessian, and the expected terminal
loss.
In contrast to prior work that optimizes greedy objectives, we investigate the use of stochastic optimal
control in order to study what is the optimal batch size when considering the entire trajectory of the
stochastic process. To the best of our knowledge, our approach to selecting the batch size is novel.
In fact, stochastic optimal control has only rarely been used in the field of optimization, with the
exception of [14], but for the problem of step size selection in one dimension. Their extension to the

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

multi-dimensional case is based on a local diagonal-quadratic assumption. Similarly, we consider
the continuous-time representation of SGD and define a continuous control problem that selects the
optimal batch size by solving the related Hamilton–Jacobi-Bellman equation (HJBE) analytically,
without requiring a diagonal-quadratic assumption.
Furthermore, we verify the validity of our theoretical analysis empirically on various convex and
non-convex problems. We show that the derived optimal batch-size schedule only evaluates 19.7 %
as many samples compared to switching to the maximal batch size for a 2D saddle point, and only
48.3 % as many samples compared to switching to the maximal batch size for a saddle point in 40
dimensions with two descent directions.
2 Continuous-time models for SGD
A common way to analyze SGD is to model it as a stochastic differential equations (SDE), which is a
well-established approach in the field of stochastic approximation [13, 14]. In the field of machine
learning, this approach was taken in [16] to examine the stationary distributions of a stochastic
process and in [11] to determine factors influencing the minima found by SGD. In [17] the authors
use continuous-time models of mini-batch SGD and SVRG to derive convergence bounds.
In the case, where the loss function f : Rd ! R can be written as the sum of individual functions
fi, each corresponding to some data point i 2 [1, . . . , n], that is min✓

⇥
f(✓) := 1

n

Pn
i=1 fi(✓)

⇤
, an

update step in mini-batch SGD is of the form
✓k+1 = ✓k � ↵⌘rfBk(✓k), (1)

where ↵⌘ is the step-size, in which ⌘ is the maximal allowed step-size, and ↵ is the adjustment factor
as was also done in [14], and

rfBk(✓) =
1

mk

X

i2Bk

fi(✓), (2)

where |Bk| = mk for some mk ⌧ n. Let the empirical covariance of rfi(✓) be denoted by ⌃(✓) :=
1
n

Pn
i=1(rfi(✓) � rf(✓))(rfi(✓) � rf(✓))T , then by the assumption above, the covariance of

rfBk(✓) is cov(rfBk(✓)) = ⌃(✓)/mk. From this, an SDE of the following form can be derived
(see A.1 for details):

d✓t = �↵rf(✓t)dt+ ↵

s
⌘⌃(✓t)

mt
dBt, (3)

where dBt is Brownian motion and mt denotes the time-dependent batch size Now that a continuous-
time model of SGD is derived, different tools such as optimal control theory can be applied to analyze
the effect of the batch-size when optimizing non-convex functions.
3 Optimal control
Now consider a dynamical system with state vector xt 2 Rd and a control vector mt 2 Rl

dXt

dt
= f(Xt,mt, t), X0 = x0, (4)

with a given function f : Rd ⇥ Rl ⇥ R ! Rd. 1 The control mt is limited to the admissible set M
on the fixed time interval [0, T] , which is a time-invariant, closed, and convex subset of Rl. The cost
functional being considered is

Jmt(x, t) := K(mt(t ! T, x)) +

Z T

t
L (x⌧ ,m⌧ , ⌧) d⌧, (5)

with given functions K : Rd ! R and L : Rd ⇥ Rl ⇥ [0, T] ! R. m(t ! T, x) denotes the
forward flow map [18] following the system of ODEs in Eq. (4) with some batch-size schedule mt

and the initial condition Xt = x and ending at XT =: m(t ! T, x). The optimization problem
m⇤ = arg min

m:[0,T]!M
Jmt(x0, 0), �(x, t) := min

m:[0,T]!M
Jmt(x, t) (6)

can be solved via the Hamilton-Jacobi-Bellman equation

0 =
@�(x, t)

@t
+ min

m2M

�
L(x,m, t) +rx�(x, t)

T f(x,m, t)

�(x, T) = K(m(t ! T, x)) (7)
In the next section we will formulate a continuous control problem that selects the optimal batch-size
by optimizing the desired objective function and derive an optimal batch-size schedule.

1This function f(·, ·, ·) describes the dynamical system and is not to be confused with the loss function f(·).

2

4 Method
Consider the objective f(✓) = ✓TA✓ with ✓ 2 Rd and A 2 Rd⇥d. Moreover, we assume for the
sake of simplicity that the fi’s are such that ⌃(✓) = ⌃ = diag(�1, . . .�d) is diagonal with constants
�i � 0, for i = 1, . . . , d. Then the continuous-time representation of SGD is defined by the update

d✓t = �↵A✓tdt+ ↵

r
⌘⌃

mt
dBt. (8)

Further, let A 2 Rd⇥d be symmetric and thus diagonalizable, i.e. A = V T⇤V with orthogonal V
and ⇤ = diag(�1, . . . ,�d). (Otherwise we can choose A0 = 1

2 (A+ AT)). Note that the �i can be
both positive and negative.
Theorem 4.1 The average dimension-decoupled dynamics are given by (see A.2 for a derivation):

dgi(t)

dt
= �2↵�igi(t) +

1

2
�i

↵2⌘�i

mt
, for i = 1, . . . , d (9)

with
Pd

i=1 gi(t) = E[(✓t)TA✓t] = E[f(✓t)], where the expectation is over the Brownian motion.

In a convex setting, a large batch size is generally desired because it corresponds to a smaller variance
of the stochastic gradient, which in turn speeds up the convergence. However, larger batch sizes also
come at the expense of more expensive computation time. In the following, we therefore optimize
the loss value but also add a term that penalizes the size of the batch. Additionally, we introduce a
cost-weight-factor � 2 [0, 1] to weigh between using small batch sizes and having a low terminal
loss.
The continuous control problem with the above dynamics then becomes

min
m2[mmin,mmax]

J(g, t) = min
m2[mmin,mmax]

Z T

t
(1� �)m⌧d⌧ + � ·

dX

i=1

 m
i (t ! T, gi) (10)

s.t. J(g, T) = � ·
dX

i=1

 m
i (T ! T, gi) = � ·

dX

i=1

gi, (11)

where we use the short-hand notation J(g, t) := J(g1, . . . , gd, t), mmin and mmax are the feasible
range of batch sizes with 1 mmin < mmax n, and m

i (t ! T, gi) is the forward flow map of the
respective ODE in Eq. (9) starting at gi : gi(t) and ending at m

i (t ! T, gi) := gi(T). This control
problem can be solved via the HJB-equation from which we can derive the following batch-size
schedule, depending on the eigenvalues �i of f(✓) (see A.3 for the derivation)
Theorem 4.2 Depending on the sign of the eigenvalues �i, for i = 1, . . . , d we have the following

batch-size schedule:

m⇤
t =

(q
⌘
2

�
(1��)

Pd
i=1 �i�ie�2↵�i(T�t) · ↵ if f(✓) is convex, i.e. �i � 0 8i

mmin if f(✓) is concave, i.e. �i 0 8i.
(12)

With a non-convex objective f(✓) we can assume w.l.o.g. that the eigenvalues are ordered, such that

�1 < . . . < �p 0 < �p+1 < . . . < �d. Then the batch-size schedule is

m⇤
t =

(
mmin if t t⇤q

⌘
2

�
(1��)

Pd
i=1 �i�ie�2↵�i(T�t) · ↵ if t > t⇤

(13)

with t⇤ such that

�����

pX

i=1

�i�ie
�2↵�i(T�t⇤)

����� =

������

dX

i=p+1

�i�ie
�2↵�i(T�t⇤)

������
(14)

In the case where d = 2 and �1 < 0 < �2 we can express t⇤ explicitly as

t⇤ = T � 1

2↵(�2 � �1)
ln
✓

�2�2

��1�1

◆
. (15)

We can see in Eq. (12) and (13) that the step size is proportionally compensated by the batch size
(ignoring ↵ in the exponent), which was already observed in [11] and in [2]. Looking at (15), we see
that a change in the schedule only occurs, if |�1�1| < |�2�2|. That is, moving along the negative
eigendirection is less likely than along the positive eigendirection, which makes it more challenging
to escape saddles of this type. In the following we will verify our results empirically.

3

5 Experimental results

We validated our results empirically for a saddle point in 2D, which can be found in Fig. 1. We ran
another experiment for d = 40, which can be found in A.6. The loss function f(✓) = 1

2✓
TA✓ was

chosen with A = diag(�0.001, 0.1), such that the positive eigenvalue is two orders of magnitude
larger than the negative eigenvalue. The experiment was repeated for 1000 runs of each 2000 iterations.
Given the parameter choice in (74), the transition time was calculated to be at t⇤ = 1886.22. The
batch-sizes were restricted to the interval [1, 1000]. The batch-size returned by the optimal schedule
was rounded to the closest integer. A more detailed description of the experiment setup can be found
in A.5.
We compared the schedule to using just the minimal/maximal batch-size for the entire run and
switching to the maximal batch-size at t⇤, which corresponds to the case if there is no cost for the
size of the batch-size. (An analysis on this can be found in A.4).
Additionally, we compared our schedule to the CABS rule proposed in [2] on a convex quadratic
function for d = 40 dimensions. We can see in Fig. 2b that our proposed schedule only evaluates
10% as many samples as the CABS rule, but reaches approximately the same average terminal loss.
Moreover, if we look in Fig. 2a at the average loss value reached when the CABS rule evaluates
as many samples as our proposed schedule we can see that it is 77% higher than the terminal loss
achieved by our schedule. This indicates that the learning efficiency with respect to per sample
evaluation varies over the course of optimization. Of course in order to fully evaluate learning
efficiency other aspects such as the number of parameter updates and the cost of the schedule
evaluation needs to be taken into consideration as well.

(a) (b)

(c) (d)

Figure 1: Averaged quantities over 1000 runs of 2500 iterations each, with the transition time t⇤ ⇡ 1886.
The batch-size schedule was calculated with T = 2000, but was kept running for another 500 iterations. (a)
Average loss E[f(xk)]. (b) Contour plot with averaged absolute values of iterates. Every 150th iterate is plotted.
Using the maximal batch-size from the beginning (orange) leads to a smooth curve, but does not travel as
far along the x1-direction (descent direction). In contrast, switching the schedule (red and green plot) from
a small batch size mmin to a larger batch size (mmax or m⇤(k)) at t⇤ helps escaping the saddle point. (c)
Cumulative number of samples Sk =

Pk
i=1 mi evaluated for different schedules. After 2000 iterations only

20.1 % as many samples are evaluated with the adaptive batch-size schedule m⇤
t (red) compared to switching

directly to mmax (green) at t⇤. After 2500 iterations the proportion increased to 84.5 %. (d) Average cost
Jk = E

h
(1� �)

Pk
i=1 mi + � · x2500

i
. Note that both non-constant schedules achieve a negative final loss

because the objective function is unbounded from below.

4

(a) (b)

Figure 2: Comparison of average loss and number of evaluated samples with the CABS rule proposed in
[2] over 100 runs of 500 iterations each. a Average loss E[f(xk]. All three schedules achieve approximately
the same terminal loss. The average loss reached by the CABS rule at iteration 201 after evaluating as many
samples as the proposed schedule. b Cumulative number of samples Sk =

Pk
i=1 mi evaluated. At the end of

optimization our proposed schedule evalutes only 10% as many sampels as the CABS ruls while reaching almost
the same average terminal loss. Moreover, if we compare the average loss value reached when the CABS rule
evaluates as many samples as our proposed schedule (after around 257 iterations), we can see that it is still 77%
higher than the terminal loss achieved by our schedule.

6 Discussion
In this work we tried to understand what the theoretical optimal batch size is, which takes into
account the entire trajectory of the continuous-time model of SGD, for optimizing both convex and
non-convex noisy quadratic functions in multiple dimensions. In practice, this approach could also
be used to optimize more general functions in machine learning, by approximating the function
with a local quadratic model. However there are a few limitations to this approach. In practice,
the eigenvalues of the Hessian are unknown and need to be estimated. The work of [21] presents
a framework in which this could be potentially done. Alternatively, one could optimize quadratic
models that are typically used in trast-region methods [5]. Another minor limitation is that the derived
schedule is continuous, but a batch-size can only be integer. It is also worth mentioning, that in
practice, there are other considerations for choosing the mini batch to achieve optimal performance,
for instance to powers of two [15]. Future work could focus on validating the schedule on more
general functions and popular machine learning benchmarks, such as MNIST, Cifar-10 or SVHN,
where efficient estimation of eigenvalues becomes relevant.

5

References
[1] Naman Agarwal, Surbhi Goel, and Cyril Zhang. Acceleration via fractal learning rate schedules.

In International Conference on Machine Learning, pages 87–99. PMLR, 2021.

[2] Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning
rates. arXiv preprint arXiv:1612.05086, 2016.

[3] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

[4] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

[5] Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

[6] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Big batch sgd: Automated
inference using adaptive batch sizes. arXiv preprint arXiv:1610.05792, 2016.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[8] Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data
fitting. SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

[9] Baptiste Goujaud, Damien Scieur, Aymeric Dieuleveut, Adrien B Taylor, and Fabian Pedregosa.
Super-acceleration with cyclical step-sizes. In International Conference on Artificial Intelligence

and Statistics, pages 3028–3065. PMLR, 2022.

[10] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225–1234.
PMLR, 2016.

[11] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint

arXiv:1711.04623, 2017.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[13] Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms and

applications, volume 35. Springer Science & Business Media, 2003.

[14] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pages 2101–2110.
PMLR, 2017.

[15] Jan Lucas and Ben Juurlink. Mempower: data-aware gpu memory power model. In International

Conference on Architecture of Computing Systems, pages 195–207. Springer, 2019.

[16] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate bayesian inference. arXiv preprint arXiv:1704.04289, 2017.

[17] Antonio Orvieto and Aurelien Lucchi. Continuous-time models for stochastic optimization
algorithms. Advances in Neural Information Processing Systems, 32, 2019.

[18] Slobodan N. Simić. Lecture Notes: The flow of a differential equation. http://www.math.
sjsu.edu/~simic/Fall05/Math134/flows.pdf, 2005. [Online; accessed 28-Sep-2022].

[19] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[20] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012.

6

http://www.math.sjsu.edu/~simic/Fall05/Math134/flows.pdf
http://www.math.sjsu.edu/~simic/Fall05/Math134/flows.pdf

[21] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural
networks through the lens of the hessian. In 2020 IEEE international conference on big data

(Big data), pages 581–590. IEEE, 2020.

7

	Introduction
	Continuous-time models for SGD
	Optimal control
	Method
	Experimental results
	Discussion
	Appendix
	Derivation of the continuous-time representation of SGD
	Average decoupled dynamics of SDE
	Solving the HJB-equation
	2D Saddle point with no running cost
	Experiment setup
	More experiments
	Optimizing non-convex function in higher dimensions
	Optimizing convex function in higher dimensions

