
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Interpreting Emergent Military Tactics in a
General AlphaZero Framework

Anonymous authors
Paper under double-blind review

Abstract

This paper presents an approach that combines AlphaZero with convolu-
tional and transformer-based neural network architectures to learn strategies
in battlefield-inspired gridworld games. These games are designed to bal-
ance realism with rapid outcomes, featuring multiple agents organized into
competing teams. To encourage effective coordination among agents, we
investigate different reward shaping methods and evaluate their impact
on emergent teamwork. The learned strategies are analyzed on a tactical
level, in an attempt to reveal insights into multi-agent collaboration and
competitive behavior. In particular, the framework provides a testbed for
studying how military-style strategies can emerge from self-play. Through a
series of comparative studies, we further break down the contributions of
architectural components and training methodologies to demonstrate the
effectiveness of this approach for decision-making in dynamic adversarial
settings.

1 Introduction

Modern military operations are defined by complexity, uncertainty, and the need for rapid
decision-making in adversarial environments. Commanders must coordinate multiple units
under conditions of resource scarcity, contested terrain, and evolving threats. As warfare
increasingly involves decentralized teams operating in dynamic battlefields, the demand
for tools that can simulate, analyze, and optimize tactical and strategic choices grows.
Computational models make it possible to study military decision-making in controlled
settings, allowing large-scale analysis of coordination, resource use, and planning against
opponents.
Artificial intelligence methods, particularly reinforcement learning, have demonstrated their
ability to generate adaptive strategies in competitive domains such as board games. Extending
these capabilities into military-inspired settings enables the study of emergent tactics in
scenarios that echo real-world battlefield constraints - limited ammunition, restricted weapon
range, shrinking safe zones, and the necessity of holding strategic ground. These conditions
mirror the challenges faced by military units tasked with balancing offensive aggression,
defensive resilience, and the conservation of scarce resources while under constant threat
from an intelligent adversary.
This work applies the AlphaZero (Silver et al., 2017; Schrittwieser et al., 2020) framework,
augmented with modern neural network architectures, to battlefield-inspired gridworld
games. These environments serve as testbeds for analyzing how military-style tactics, such
as coordinated maneuvers, focused fire, and positional control, can emerge from self-play.
Our study looks at how reward shaping and model selection affect strategy and how they
impact performance. These findings help explain how AI agents can learn flexible, resilient
decision-making.

2 Related Work

Several recent efforts have explored reinforcement learning in environments that combine spa-
tial reasoning, adversarial dynamics, and team coordination. Gridworld combat simulations

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

have proven particularly effective as lightweight testbeds for emergent tactics. Peng et al.
(2017) introduced multi-agent battle games where agents must coordinate movement and
attack decisions under resource constraints. The StarCraft Multi-Agent Challenge (SMAC
Vinyals et al. (2019)) further advanced this line of research by framing micromanagement
tasks in real-time strategy battles, highlighting the difficulty of multi-agent coordination in
partially observable, adversarial settings. Unlike these environments, our battlefield game is
simpler and fully observable. This makes it easier to link learned behaviors to design and
training choices, while still keeping key tactical features like limited ammo, shrinking safe
zones, and contested objectives.
Reward shaping has been widely investigated as a means of improving coordination in adver-
sarial games. Potential-based shaping Ng et al. (1999) has been shown to accelerate learning
without altering the set of optimal policies, and has been applied to cooperative navigation
and combat scenarios to encourage behaviors such as maintaining formation, focusing fire, or
controlling strategic areas Nanxun et al. (2024). In gridworld-based combat, shaping terms
related to distance-to-goal or team-health balance have been especially effective in promoting
teamwork. Our study builds on this work by designing shaping functions that explicitly
encourage cohesion, focus fire, and positional control, and by analyzing their impact on
emergent strategies in a self-play AlphaZero framework.
Finally, evaluation of agent strength in competitive environments often relies on head-to-head
competitions and Elo ratings Elo (1978), while methods like Sequential Probability Ratio
Testing Wald (1945) provide statistical reliability.

3 Methodology

3.1 Battlefield Game

To simulate a battlefield, we devised a simple, fully observable, zero-sum, gridworld-based
game between two players. The game is played on a square grid of size H ×W (with default
value of 7× 7) with two agents per team. At the start of play, Player 1’s agents are placed
randomly on the top row, and Player 2’s agents on the bottom row, with a small number
of obstacles randomly distributed to ensure partial cover while maintaining connectivity
across the map. Each agent is initialized with a fixed amount of ammunition, and this
resource is tracked explicitly in the state tensor alongside positional information, health, and
center-control streak counters.
Gameplay unfolds in discrete turns, with each team selecting joint actions for its agents from
a space of movement, waiting, or firing primitives. Because each individual agent can in
general take 9 actions (4 move actions, 4 shoot actions, and 1 wait action), the dimension of
the joint action space for 2 agents is 92 = 81. Firing consumes one unit of ammo regardless
of whether the shot hits, and agents that exhaust their supply cannot shoot further. The
range of a shot is limited.
Line-of-sight rules decide if a shot hits, with obstacles and safe-zone edges blocking its
trajectory. Furthermore, obstacles also block movement. The safe zone gradually shrinks
inward at fixed intervals, instantly eliminating any agents that fall outside its bounds. This
will induce the agents to move towards the goal state, and at the same time places a natural
upper bound on the number of moves a game can have. A match ends when one or both
teams lose all agents (due to firing or board shrinkage) or when the center has been held for
the required number of steps. The outcome reward is zero-sum, with the victorious team
receiving +1, the defeated team -1, and drawn games yielding zero. This occurs when all
agents are eliminated.
These dynamics make the environment strategically rich. Limited ammunition forces players
to weigh immediate attacks against saving resources for later, especially as the shrinking
safe zone increases close encounters. Agents must coordinate offensive pressure, defensive
positioning, and control of the center, all while managing a dwindling supply of shots. The
combination of spatial control, resource management, and adversarial planning makes this
game a challenging benchmark for studying multi-agent reinforcement learning under scarcity.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1.1 State Representation

The game state is represented as a 3-D tensor of size H ×W × 11: planes 1 and 2 represent
the agent locations of the current player, planes 3 and 4 those of the other player, plane
4 the position of the obstacles, planes 5 and 6 the remaining health points for resp. the
current and other player, plane 7 the remaining steps, planes 8 and 9 the center-capture
streak counters and planes 10 and 11 the remaining ammunition for current and other player.
The advantage of representing everything from the perspective of the current player is that
we can use the same neural network for both players; we only have to swap the corresponding
planes. This improves training efficiency.
The environment’s dynamics depend only on the current state st and the players’ action at.
The next state st+1 is determined from these alone, meaning the Markov property holds:

P (st+1 | st, at, st−1, at−1, . . . ) = P (st+1 | st, at).

While the game is fully observable and the dynamics are Markovian, we still augment the
game state by passing extra information to the neural network. First, we can stack a
configurable number of past states on top of the current canonical encoding, effectively
giving the network access to short-term history in the form of additional planes. Second,
we append broadcast planes (planes that uniformly filled with the same value across the
whole board) that inject additional context: one plane encodes the normalized number of
steps remaining in the episode, another marks whether the current position has already
occurred in the same episode so serves as a repetition indicator, and a third encodes the
normalized number of steps since the last damage event. These additional planes provide the
network with information that is not strictly required for optimality, but can help it learn
more efficiently by highlighting information that is otherwise implicit in the trajectory.

3.2 Training Loop

The training process follows the AlphaZero paradigm, consisting of a data generation phase
and a training phase. An agent plays games against itself, generating training data at each
turn. This data is then in the second phase used to update the weights of the neural network
fθ.
The selection of the action to take during self-play is guided by a Monte Carlo Tree Search
(MCTS (Kocsis and Szepesvári, 2006; Browne et al., 2012; Coulom, 2006; Gelly and Silver,
2011)), which is itself guided by a neural network fθ. The network takes a state representation
s and outputs a policy prior and a value estimate, (p, v) = fθ(s). The MCTS algorithm uses
these outputs to explore the search space. After a set number of simulations, the action to
take is chosen based on the most visited child node of the game tree root st. This action is
then executed and the game moves on to then new state st+1. This process continues until
the episode is terminated.
After a fixed number of episodes, the training phase begins. The normalized visit counts
form the training target π for the policy head. The game’s final outcome z serves as the
training target for the value head. These (s, π, z) tuples are stored in a replay buffer, from
which batches are sampled to train the network fθ.

3.2.1 MCTS

Monte-Carlo Tree Search is a tree-traversal algorithm that operates in three distinct phases.
Firstly, during the selection phase, the next node in the tree-traversal process is selected
with the help of the PUCT (polynomial upper confidence trees) selection rule. At each node,
this rule selects the action that maximizes a balance between exploitation - represented
by the current action-value estimates Q(s, a) - and exploration, implemented by an upper-
confidence bound term that depends on the network’s policy prior and the node’s visit counts.
Concretely, the action a selected at state s is

a = arg max
a′

[
Q(s, a′) + cpuct p(a′|s)

√∑
b N(s, b)

1 + N(s, a′)

]
,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where p(a|s) is the prior probability of action a under the neural network’s policy, N(s, a)
is the visit count for that state-action pair, and cpuct is an exploration constant. This rule
ensures that moves with higher action-value estimates or stronger priors are favored, while
still allocating visits to less explored actions.
Secondly, we enter the expansion phase: when the search encounters a leaf node that has
not yet been visited, the neural network is called to provide (i) a policy distribution over all
legal actions of this node, and (ii) a scalar value prediction. The policy is used to initialize
the prior probabilities of the node’s outgoing edges. The value estimate of this new leaf node
is then backed up along the path in the third phase called backpropagation: state-action visit
counts are incremented, and action-value estimates Q(s, a) are updated as running averages
of the backed-up values.
Several enhancements make this process more effective in AlphaZero. The search tree is reused
between moves: after a real action is selected and played on the board, the corresponding
child becomes the new root, preserving past simulations and avoiding recomputation. To
promote diversity in self-play, we add Dirichlet noise to the root priors so the search explores
different plausible moves. Moreover, during self-play, moves are sampled proportionally to
visit counts rather than chosen deterministically, which broadens the training distribution.

3.2.2 Reward Shaping

A Markov Decision Process (MDP - Puterman (2014)) is the standard mathematical frame-
work to model decision-making under uncertainty over time and formalizes how a player
interacts with an environment. Formally, an MDP is a 5-tuple:

M = (S,A, P, R, γ)
with a S the set of states, A the set of possible actions and P (s′ | s, a) the probability of
landing in state s′ after taking action a in state s. The reward R(s, a, s′) is the immediate
feedback an agent receives after moving from s to s′ via a. In our game, this reward is
only rewarded at the end of the game. It is +1 for winning, -1 for losing and 0 for a draw.
Furthermore, an MDP has a discount factor γ ∈ [0, 1] which determines how much future
rewards matter compared to immediate ones.
The goal of an MDP is to find a policy π(at|st) such that the discounted accumulated reward

Gt =
∞∑

k=0
γkR(st+k, at+k, st+k+1)

is maximized. This policy is the optimal policy π∗.
Reward shaping (Ng et al., 1999) augments the raw MDP reward with an additional signal
derived from a potential function ϕ(s) over states. Instead of altering the true terminal
reward rt, it adds a discounted difference of potentials between successive states st and st+1:

rshaped
t = rt + γ ϕ(st+1) − ϕ(st)

One can show (see Ng et al. (1999)) that adding this potential difference dt = γ ϕ(st+1) − ϕ(st)
to the original sparse reward does not change the optimal policy of the MDP.
The strength of AlphaZero comes from combining large-scale search with deep function
approximation, without the need for hand-crafted shaping terms. However, potential-based
reward shaping can be deliberately added to speed up learning when rewards are delayed or
sparse. We apply reward-shaping in two locations in the training loop:

1. When a MCTS simulation steps from state st to next state st+1 for the current actor,
the code computes a local potential difference dt = γ ϕ(st+1)− ϕ(st) and stores it
along the path1. During backpropagation, these differences are accumulated to form
an additive term that is added to the terminal outcome z before updating each
edge’s total value. This directly impacts MCTS search.

2. Separately, when a self-play game ends and training examples are finalized, the
value training targets can be shaped offline. Trajectories (st, at, st+1) are recorded,

1It is important to remember that in state st+1 the player who moves is the next player, hence
the potential must be adjusted accordingly.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with the acting player at each step. The algorithm recomputes the same dt =
γ ϕ(st+1) − ϕ(st), discounts, and accumulates them backward. This cumulative
potential term then added to the usual terminal result z to yield the per-time-step
training label zt = z +

∑
k≥t γ k−t dk. This directly impacts model training.

The following shaped rewards can be applied:

1. The team-health advantage ϕ1 measures the difference in the number of alive agents
between both players.

2. A center control reward ϕ2 measures the best (minimum) inverse distance among
each team’s agents to the board center.

3. A goal-proximity bonus averages inverse distance to the center over all alive agents
and rewards broad, coordinated progress toward the capture square.

4. To reflect the shrinking safe zone, a border-safety term ϕ3 rewards being farther
from the shrinking boundary.

5. Tactical pressure is captured by a line-of-sight threat ϕ4 feature that checks whether
any of our agents has an unobstructed view to any opponent within weapon range.

6. Two coordination bonuses drive within-team synergy: cohesion (ϕ5) favors teammates
being closer together, and focus-fire (ϕ6) rewards both agents choosing the same
nearest opponent as their most attractive target.

All terms are combined linearly with weights wi and clipped to [−1, 1]:

ϕ(st) = clip
( 6∑

i=1
wiϕi(st),−1, 1

)
3.2.3 Model acceptance

Model acceptance plays a central role in AlphaZero-style training, as it determines whether
the network being trained replaces the current baseline used for generating self-play data.
Without a principled acceptance criterion, training can drift, either by promoting weak
models that degrade performance or by stagnating because promising models are never
adopted.
In our implementation, two acceptance strategies are available. The first is a simple threshold
test, where a candidate model plays a fixed number of evaluation games against the previous
snapshot, and is accepted if its win rate exceeds a preset threshold. While straightforward,
this approach can be noisy, especially with limited evaluation games. To address this, the
code also supports pool-based acceptance using Sequential Probability Ratio Testing (SPRT -
(Wald, 1945)). Here, the candidate is tested against a pool of the last accepted models, with
outcomes evaluated using a likelihood ratio test between a null hypothesis of equal strength
(p0 = 0.50) and an alternative of improvement (p1 = 0.55). This provides a statistically
rigorous mechanism for early acceptance or rejection. If SPRT remains inconclusive after a
cap on evaluation games, the decision falls back to the Wilson lower confidence bound (LCB)
(Wilson, 1927) of the observed win rate, accepting only if the bound clears a safety threshold.

3.3 Neural Networks

The neural network in AlphaZero is trained directly from the outcomes of the MCTS process.
For each position encountered during self-play, the search produces an improved policy target
π in the form of the normalized visit counts over actions at the root, and a value target z that
reflects the eventual game outcome (optionally augmented with potential-based shaping).
These targets are paired with the canonical board representation to form training examples
(st, πt, zt). The network is then updated by minimizing a composite loss: a cross-entropy
term aligning its policy head with the visit-count distribution, a mean-squared error term
aligning its value head with the target outcome, and a regularization penalty to prevent
overfitting:

L = (z − v)2 − πT log(p) + c∥θ∥2

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We use both convolutional neural network (He et al., 2016) and Transformer-based architec-
tures Vaswani et al. (2017). Details can be found in appendix A. Both types have a common
core, a value head to predict value v and a policy head to predict vector p. The transformer
network can also process action tokens, which are extra sequence elements representing legal
moves. These additional tokens are added to the flattened board state.

3.4 Elo Rating

To systematically compare different models, we rely on Elo rating (Elo, 1978) calculations.
Elo is a logistic, match-by-match rating system that adjusts players’ ratings based on
performance relative to expectation. For players A and B with ratings RA and RB, the
expected score for A is

EA = 1/(1 + 10(RB−RA)/400)

After a game the ratings are updated according to

RA ← RA + K(SA − EA) and RB ← RB + K(SB − EB)

where SA,B ∈ {1, 1
2 , 0} for respectively a win, draw or loss and K is a coefficient that

controls volatility. We set K = 32. A 400 point rating difference advantage to 10-to-1 odds
of winning.

4 Experiments

4.1 Strategies

We cannot strictly speak of “learned strategies” as the training process does not directly
optimize for tactical sequences of moves. Instead, what is learned is (i) an estimate of the
expected outcome of a given board state through the value head, and (ii) a prior probability
distribution over actions that guides MCTS via the policy head.
To illustrate typical gameplay, figure 1 shows a duel between two players (red and blue) on a
7× 7 grid. The game play is the result of using the AlphaZero algorithm with a transformer
network, trained over 1000 iterations with reward shaping. One iteration is a cycle of data
generation with MCTS and learning of the neural network. Initially, the agents are positioned
on opposite sides of the board, while the central objective square is marked by a yellow cross.
In steps 1 and 2, both players advance toward the central region (note that intermediate
game steps are omitted for clarity). In subfigure 2, the board begins to shrink (grey squares),
but all agents have moved within the safe zone. By subfigure 4, the blue team has successfully
positioned its agents to defend or capture the center, whereas the red team has already
lost one agent due to the second shrinkage. In the final stage (subfigure 5), the blue player
occupies the central square. Because shooting is restricted to horizontal and vertical lines of
sight, the remaining red agent is unable to contest this position, resulting in victory for the
blue team.
Very often though, teams lose one of their agents early on the game - mostly due to board
shrinkage - such that the end game is typically one-on-one. This endgame then reduces to a
waiting game: both remaining agents keep the goal square under fire, prohibiting the other
player from occupying the goal square. Unless mistakes are made, these games almost always
end in a draw. The most important conclusion is that players don’t learn to coordinate
the behavior of their agents. To accomplish coordination, more refined reward shaping is
probably needed.

4.2 Impact of reward shaping

We trained two transformer networks with 4 layers and 4 heads per layer. The first network
was trained with reward shaping (both during MCTS and model training - see section 3.2.2)
while the other one was trained without. Figure 2 shows how the loss (policy, value and
total) evolves during training - the different graphs have been smoothed with an exponential
moving average (EMA) for clarity. As can be seen, the use of shaping has little to no impact

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Gameplay example

on the training loss.

Figure 2: Loss graph with and without shaping

Rank Model Elo
1 shaping100 1649.5
2 shaping400 1582.5
3 noshaping400 1571.3
4 shaping500 1554.5
5 noshaping100 1493.9
6 noshaping500 1474.2
7 random 1174.0

Table 1: Elo ranking - reward
shaping

We also compared the resulting models based on their performance using the Elo metric,
for models after 100, 400 and 500 training iterations for both training with and without

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

reward shaping - the games themselves for Elo calculations were played without any reward
shaping (this should have been learned during training). The results are shown in table
1. The models learned with reward shaping perform better in general. However, training
duration doesn’t seem to improve performance (something we also notice in section 4.3).

4.3 Impact of acceptance threshold

As mentioned previously, model acceptance or rejection has a profound impact on the
behavior of the algorithm: it determines whether the network being trained replaces the
current baseline used for generating self-play data, which might lead to favoring weak models
with low performance. Because the model essentially plays against itself, this weakness can
remain hidden during training. This is why more involved acceptance mechanisms like SPRT
are used. In this section however, we study two training scenario’s where acceptance is purely
based playing a fixed number of evaluation games against the previous model snapshot and
having a win rate higher than some threshold. In the first scenario, this threshold is low
(60%), in the second scenario, the threshold is put at 90%. In both scenario’s, a transformer
network with 4 layers and 4 heads per layer is trained.
Figures 3 and 4 shows the impact of the acceptance threshold. The total training loss in
figure 3 is slightly lower when acceptance is easier, because the model adapts more rapidly to
the provided data. The win rates of the new model (figure 4(a)) are similar but decreasing,
which has a profound impact of the acceptance rate, but while the win rate stays steadily
above 60%, it regularly drops below 90% such that the second scenario has a much lower
(and decreasing) average acceptance rate (figure 4(b)).

Figure 3: Impact of different acceptance ratio - Training
Loss

Rank Model Elo
1 hard100 1660.0
2 hard200 1613.1
3 hard300 1578.6
4 hard500 1560.3
5 standard200 1551.9
6 hard400 1515.7
7 standard400 1512.3
8 standard300 1498.4
9 standard500 1468.7

10 standard100 1464.0
11 random 1076.9

Table 2: Elo ranking - acceptance
ratio

(a) Win Rate (b) Acceptance Ratio

Figure 4: Impact of different acceptance ratio. (a) Win rate (b) Acceptance rate

These loss curves don’t say anything about the performance of the learned models. To
compare them, we selected 5 models from the standard 60% acceptance scenario (after
respectively 100, 200, 300, 400 and 500 iterations (standard100 to standard500) and 5

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

models from the 90% acceptance scenario (hard100 to hard500). As a baseline, we also
put in an agent that selects action at random. We computed the different Elo scores (with
8 interactions between all models) - see table 2. From this table, we can draw two main
conclusions: (i) a higher acceptance threshold leads to better performing models (the top
3 is occupied by models learned with the 90% acceptance threshold) and (ii) - and more
worrying - models that were learned later in the learning process don’t necessarily perform
better then earlier models.

4.4 Impact of architecture

We compare 3 different types of neural networks
as described in section 3.3, who each trained for
1000 iterations: a convolutional neural net (cnn), a
transformer network with action tokens (trans01)
and a standard transformer network without action
tokens (trans02). The Elo rating of these net-
works and a random agent were computed (table
3) where each agent ran 1000 MCTS simulations
before choosing an action.

Rank Model Elo
1 trans01 1662.4
2 cnn 1606.2
3 trans02 1527.6
4 random 1203.8

Table 3: Elo ranking - architec-
tures

This table shows that including action tokens in the transformer architecture significantly
improves performance; this architecture outperforms both the CNN and the vanilla trans-
former.

5 Conclusion

This study shows how an AlphaZero framework, using both convolutional and transformer
models, can develop tactical and strategic behavior in battlefield-like settings. By adding
features such as limited ammunition, shrinking safe zones, and contested objectives, the
environment recreated important aspects of combat and attempted to force agents to balance
attack, defense, and teamwork. The experiments demonstrated that, through self-play, agents
can learn competitive strategies without explicit programming.
The investigation of reward shaping, model acceptance thresholds, and architectural variations
revealed not only their technical impact on training performance but also their practical
implications for military-style coordination.
The results show that AI-based testbeds can help explore how tactics and strategies emerge.
Even in simplified gridworld settings, the framework captures key dynamics like resource
competition, spatial control, and adaptation. Future work could broaden the range of agents,
environments, and goals to study how AI might inform or challenge human approaches to
command and control. Another useful addition would be the use of league training Vinyals
et al. (2019) as an alternative to SPRT to create models that consistently become better as
training progresses.

6 Reproducibility statement & LLM usage

In order to ensure reproducibility, the necessary python code is provided as a zip file together
with this submission. The authors acknowledge the use of LLM’s for help with writing this
paper.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
2012.

R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. Computers
and Games, pages 72–83, 2006.

A. E. Elo. The Rating of Chessplayers, Past and Present. Arco Publishing, 1978.

S. Gelly and D. Silver. Monte-Carlo tree search and rapid action value estimation in computer
go. Artificial Intelligence, 175(11):1856–1875, 2011.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of the 17th
European Conference on Machine Learning (ECML), pages 282–293. Springer, 2006.

D. Nanxun, W. Qinzhao, L. Qiang, and W. Wei. Tactical reward shaping for large-scale
combat by multi-agent reinforcement learning. Journal of Systems Engineering and
Electronics, 35(6):1516–1529, 2024.

A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the 16th International
Conference on Machine Learning (ICML), pages 278–287, 1999.

P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang. Multiagent
bidirectionally-coordinated nets: Emergence of human-level coordination in learning
to play starcraft combat games. arXiv preprint arXiv:1703.10069, 2017.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

J. Schrittwieser et al. Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588:604–609, 2020.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess
and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems (NeurIPS), pages 5998–6008, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. nature, 575(7782):350–354, 2019.

A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945.

E. B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of
the American Statistical Association, 22(158):209–212, 1927.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A Neural Networks Structure

A.1 Convolutional neural network

As a baseline, we use a convolutional neural network (He et al., 2016) tailored to the
AlphaZero framework, with a structure that mirrors the classical “torso + dual heads” design.
The input is the canonical board tensor of shape (C, H, W ) with the number of channels C
determined by the chosen state representation (see section 3.1.1) . A first convolutional layer
with 64 filters of size 3× 3 (stride 1, padding 1) followed by batch normalization and ReLU
activation projects the raw input into a higher-dimensional feature space. This is followed
by three residual blocks, each consisting of two 3× 3 convolutions with batch normalization
and a skip connection, producing features of the same channel dimension.
From this shared body, the network branches into two specialized heads. The policy head
begins with a 1× 1 convolution that reduces the feature channels to a small number (2 by
default), followed by batch normalization, ReLU, and flattening, then a fully connected layer
that outputs logits over all legal actions. The value head also starts with a 1× 1 convolution
reducing the channels to 1, followed by batch normalization, ReLU, flattening, and two fully
connected layers: the first maps to the hidden dimension (equal to the torso channel size),
and the second reduces to a single scalar. A hyperbolic tangent activation bounds this value
in [−1, 1].

A.2 Transformer network

Alongside the convolutional network, we also use a Transformer (Vaswani et al., 2017)-based
architecture where the convolutions are replaced with attention layers. The input is still the
canonical board state tensor, but instead of being processed spatially by convolutions, it is
flattened into a sequence of tokens: each board cell corresponds to a token, with its input
features given by the stacked state planes at that location. To this sequence, the model
prepends a dedicated [CLS] token, whose embedding is trained to summarize the global
state. After the sequence passes through a stack of Transformer encoder layers (consisting
of multi-head self-attention and feedforward blocks with residuals and normalization), the
[CLS] representation serves as a pooled embedding that captures global context across the
entire board.
To preserve spatial structure after flattening, the model adds a positional encoding to each
token. By default this is a learnable embedding of row and column indices, ensuring that the
network can distinguish otherwise identical features that occur in different parts of the grid.
The model can also process action tokens, which are extra sequence elements representing
legal moves. These are constructed with simple features such as normalized row and column
coordinates of the target action, along with mask indicators of legality. When included, the
action tokens attend jointly with board tokens, giving the network a direct channel to reason
about action-specific features in context with the current position.
The network outputs again bifurcate into a policy head and a value head. The policy head
typically reads from the action tokens (or from per-cell embeddings mapped back to the
grid) and produces logits over all legal actions. The value head uses the [CLS] embedding,
passed through one or more dense layers and a final tanh activation, to predict the expected
game outcome in [−1, 1]. Thus, while structurally different, the Transformer and CNN
architectures play analogous roles: both learn shared state representations and feed them
into dual heads, but the Transformer introduces more flexible, attention-based modeling of
spatial and action dependencies, with the [CLS] token acting as a learned global summary.

11


	Introduction
	Related Work
	Methodology
	Battlefield Game
	State Representation

	Training Loop
	MCTS
	Reward Shaping
	Model acceptance

	Neural Networks
	Elo Rating

	Experiments
	Strategies
	Impact of reward shaping
	Impact of acceptance threshold
	Impact of architecture

	Conclusion
	Reproducibility statement & LLM usage
	Neural Networks Structure
	Convolutional neural network
	Transformer network


