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ABSTRACT

Precise glucose level monitoring is critical for people with diabetes to avoid se-
rious complications. While there are several methods for continuous glucose
level monitoring, research on maintenance devices is limited. To mitigate the
gap, we provide a novel neural control system for continuous glucose moni-
toring and management that uses differential predictive control, Neural CGMM.
Our approach, led by a sophisticated neural policy and differentiable modeling,
constantly adjusts insulin supply in real-time, thereby improving glucose level
optimization in the body. This end-to-end method maximizes efficiency, pro-
viding personalized care and improved health outcomes, as confirmed by em-
pirical evidence. Code and data are available at: https://github.com/
azminewasi/NeuralCGMM.

1 INTRODUCTION

Continuous glucose monitoring and maintenance play a crucial role in diabetes management, offer-
ing real-time glucose level management that empowers informed decisions on diet, medication, and
lifestyle, leading to improved glycemic control and reduced risk of hypoglycemia (Lee & Lupsa,
20215 [Yu et al., 2023} Trief et al.l 2016). Yet, there remains no suitable method capable of pre-
dicting, controlling, and automating the entire process efficiently. Differentiable Predictive Control
(DPC) uses a differentiable programming-based policy gradient method to train a neural network
to approximate an explicit Model Predictive Control (MPC) controller without the need for super-
vision from an expert controller (Cortez et al.|, [2022; 2023} |Drgona et al., |2022). By employing
differentiable system models, typically represented by ODEs, DPC adeptly adjusts to individual pa-
tient conditions, predicting and optimizing glucose levels.

In this work, we explore, define, and formulate the closed-loop GCM problem, and showcase a
method (Neural CGMM) to solve it effectively with DPC. Our framework for precise glucose-level
management addresses a crucial gap in current healthcare systems. Formulated as a parametric op-
timal control problem, it minimizes tracking errors against desired references, incorporates tailored
constraints for safe insulin injection, and provides personalized care.

2 PROBLEM FORMULATION

The ultimate goal of this work is to automate insulin delivery based on continuous glucose mon-
itoring to maintain target glucose levels in individuals with diabetes. The control objective is to
minimize the deviation of the glucose levels from the target values while optimizing insulin delivery
to ensure stable and controlled blood glucose concentrations. The system is represented by a differ-
entiable model that captures the dynamics of glucose-insulin interaction. The differentiable nature
allows seamless integration with DPC. The control policy, denoted as 7 (g, R), will determine in-
sulin delivery actions at each time step based on the continuous glucose monitoring data g;, and the
predictions R = [rg,...,7,+n] over a predefined prediction horizon N. The parametric optimal
control problem for glucose level maintenance is formulated as follows:

m N-1
miniemizez (Z Q- ‘g}c —r,i| + QN - |g}v —T§v| + Qu - |u§g —uz._1|> (1)
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Figure 1: (a) Continuous Glucose Monitoring and Maintenance System; (b) Model Data Flow; (c)
Glucose Level Output. (Full-size figures are available in Appendix ) ) )
subject to g;. . ; = ODESolve(f(g},,uy,)), uj, = mo(gy, R'), 9o ~ Pgo» R' ~ Pr,uj, €U, g; € G.

The equations dictate the evolution of blood glucose levels, denoted as gi, influenced by the differ-
entiable system model f (g}, ui), where u}, represents insulin delivery actions. The control policy
7y determines insulin delivery based on glucose levels gi and predicted references R'. Initial glu-
cose levels g follow a probability distribution P,,, and references R’ follow Pg. Constraints U
and G ensure insulin delivery and glucose levels adhere to physiological limits. The formulation,
incorporating weighting factors @4, Qn, and @, aims to optimize insulin delivery over a predic-
tion horizon, addressing glucose control with consideration for safety and physiological factors. The
optimization process involves tuning parameters ¢ using stochastic gradient descent.

3  NeuralCGMM METHOD AND EXPERIMENTS

Let us consider P,,, Pr and Pp as distributions for initial conditions, required glucose levels, and
system disturbances. For model-based policy optimization, we consider a discrete-time partially ob-
servable linear state space model (SSM) (Rangapuram et al., 2018)) that characterizes the dynamics
of a patient within a medical setting as a partially observable white-box system model (Drgona et al.,
2020). The model is represented by g1 = Agx + Bug + Edy; yr = Cgy. Here, gi. denotes the pa-
tient’s glucose level, u; denotes control actions governing glucose regulation, and dj, encompasses
system disturbances. yj, represents the measured variable—glucose flow regulation.

Next, we parameterize the control policy using deep neural networks, expressed as: wup =
mo(yk, R, D). Here, y; represents the insulin flow to be controlled, R = {¥min, Ymax} denotes
the desired glucose level for the given insulin flow, and D corresponds to change in glucose level of
the patient. With the partially observable system model and control policy in place, we formulate
a differentiable closed-loop system model. In the closed-loop system, three penalty terms are in-
tegrated based on the objective function: control loss optimizes insulin regulation, a regularization
loss deters aggressive changes in control actions to ensure patient safety, and a constraint loss limits
insulin delivery rate and amount for feasibility, collectively optimizing the state variable g.
Integrating all components, we formulate a DPC problem to be optimized comprehensively over the
distribution of training scenarios, as demonstrated in Figure |1| (b). We train the model for neural
control policy using stochastic gradient descent. Details are discussed in Appendix [B]

Experiments. To evaluate our model’s effectiveness, we conducted training using Neuromancer
(Drgona et al., 2023)) with synthetic data, detailed in the Appendix. Experimental results, illustrated
in Figure|I|c), showcase the model’s adept adaptation to evolving constraints during policy updates
across 3000 simulation steps, highlighting the model’s responsiveness to changes in patient glucose
levels and health dynamics. Details are discussed in Appendix

4 CONCLUSION

This work introduces a significant contribution by exploring, defining, and formulating the closed-
loop GCM problem through the effective application of DPC. Our innovative framework, employing
DPC for precise glucose management, addresses a critical gap in healthcare systems. Utilizing a
sophisticated neural policy and prioritizing resource optimization, our system detects and automati-
cally corrects glucose irregularities, enhancing patient support in critical healthcare situations.
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A RELATED WORKS AND MOTIVATION

A.1 CONTINUOUS GLUCOSE MONITORING AND MAINTENANCE

Continuous Glucose Monitoring (CGM) technology, introduced in 1999, has emerged as a transfor-
mative tool in diabetes management. Offering real-time and predictive glycemic data, CGM systems
contribute significantly to detecting trends, identifying asymptomatic events, and assessing glycemic
variability. Enhanced frequency of glucose monitoring correlates with reduced hypoglycemia and
increased time in range , leading to improved A1C levels. The comprehensive insights provided
by CGM data analysis enable targeted treatment interventions, such as preventing hypoglycemia,
optimizing glycemic control at specific times, and enhancing overall performance (Miller, [2020).

Recent advancements in CGM systems go beyond traditional blood glucose monitoring, offering
robust data for effective diabetes management. [Schubert-Olesen et al.| outlines practical recom-
mendations for incorporating CGM into everyday physical activities, emphasizing the pivotal role
of CGM in enhancing patient engagement. Additionally, Ma et al.| underscores the significance of
closed-loop management systems, integrating electrochemical sensing of glucose and noninvasive
monitoring technologies. These advancements not only underscore the potential of CGM in im-
proving glucose control, especially in patients with higher initial AI1C levels, but also emphasize
the importance of consistent device usage for optimal benefits, setting a foundation for the future of
diabetes care.

Despite notable advancements in glucose monitoring technologies, there exists a notable gap in ad-
dressing maintenance aspects, particularly the development of a system capable of autonomously
administering the required insulin dosage to patients as needed. The complexity of such a system
lies in its integration of both an accurate prediction policy and an optimization policy, with con-
straints aimed at minimizing costs and risks while simultaneously ensuring improved patient health
outcomes.

A.2 DIFFERENTIABLE PREDICTIVE CONTROL

Differentiable Predictive Control (DPC) stands as an innovative methodology for addressing the
challenges of model predictive control (MPC) in complex systems. By learning explicit neural con-
trol laws offline, DPC effectively mitigates the computational demands of online MPC. It achieves
this by incorporating state and input constraints into the loss function through penalty functions and
aggregating them with the MPC cost function. The resulting neural network control policy is trained
offline using stochastic gradient descent, leveraging automatic differentiation of MPC problem cost
functions and constraints. Demonstrating high performance with low computational resources, DPC
has been successfully implemented in various applications, offering a promising avenue for enhanc-
ing control system efficiency and applicability (Drgona et al., 2022} |Cortez et al.l [2022; |Oshin &
Theodoroul, [2023)).

Recent advancements in DPC extend its utility by introducing it as a differentiable policy class
for reinforcement learning in continuous state and action spaces. By leveraging KKT conditions
and convex approximation, researchers have enabled the differentiation through MPC, allowing for


https://www.mdpi.com/1660-4601/19/19/12296
https://doi.org/10.2337/diaclin.34.1.25
https://doi.org/10.2337/diaclin.34.1.25
https://onlinelibrary.wiley.com/doi/abs/10.1111/jdi.14028
https://onlinelibrary.wiley.com/doi/abs/10.1111/jdi.14028

Published as a Tiny Paper at ICLR 2024

end-to-end learning of the cost and dynamics of a controller. Notably, DPC exhibits superior data
efficiency in comparison to generic neural networks, particularly evident in experiments involving
pendulum and cartpole domains (Amos et al.,|2019). The approach marks a departure from tradi-
tional system identification methods, showcasing DPC’s potential to outperform existing techniques
and streamline learning in scenarios where expert guidance may be unavailable.

Recognizing DPC’s capability in managing intricate systems, we plan to address the maintenance
challenges of current CGM systems by developing an advanced closed-loop system presented in this
paper. This solution aims to enhance the effectiveness, efficiency, and optimization of continuous
glucose monitoring and management using a neural network control policy.

B METHODOLOGY IN DEPTH

B.1 DIFFERENTIABLE PREDICTIVE CONTROL

DPC, a deep learning-driven substitute for MPC in handling unknown nonlinear systems, utilizes
deep learning to grasp system dynamics from data, providing adaptability to such systems. DPC
excels in managing complex real-world scenarios due to its end-to-end optimization, flexibility, and
constraint support. Its ability to seamlessly handle time-varying references and constraints, along
with reduced computational complexity, establishes DPC as a more efficient and versatile alternative
to conventional MPC in control applications.

DPC is an algorithm rooted in model-based policy optimization. It leverages the differentiability
inherent in a broad range of model representations for dynamic systems, encompassing differential
equations, state-space models, and diverse neural network architectures. In the DPC framework,
a differentiable closed-loop system is created, consisting of a neural control policy and a system
dynamics model. The optimization process involves refining this system by utilizing parametric
control objectives as intrinsic reward signals. These rewards are evaluated across a sampled dis-
tribution of the problem parameters, enabling the algorithm to iteratively improve the performance
of the control policy and model (Drgona et al., [2022). A sample diagram is added here from the
original DPC work.

The DPC problem can be formally expressed as a parametric optimal control problem, where a
parametric control policy, denoted as g (g(t),£(t)) and parameterized by trainable weights W, is
employed for a continuous-time dynamical system. The system is described by the differential
equation:

— = = flg(t), u(t) 2)

Here, g(t) represents the time-varying state, u(t) denotes the system control inputs, and f charac-
terizes the state transition dynamics. Alternatively, in discrete-time form, obtained through methods
such as ODE solvers or state-space models, the system evolves as:

k1 = f (g, ur) 3)

The objective is to optimize the parametric control policy to determine the control inputs, u, in
order to minimize a certain cost or objective function associated with the system’s behavior. The
optimization is performed over the parameter space 6 to enhance the policy’s performance in guiding
the system dynamics. Using, this, we formulate the DPC problem as a following parametric optimal
control problem presented in Equation T}

m N-1
mingie 3= (300, o i @l o)

=1 k=1



Published as a Tiny Paper at ICLR 2024

suject to:

Jk+1 = ODESolve (f(g;.ut)) ,

u’lbg = Ty (g;gaRl) )

9o ~ Pyos

R' ~ Pg,
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The primary benefit of formulating the DPC problem with differentiable closed-loop dynamics mod-
els, control objective functions, and constraints lies in the ability to employ automatic differentiation,
specifically backpropagation through time. This approach facilitates the direct computation of pol-
icy gradients. By expressing the problem as a computational graph and leveraging the chain rule,

we can efficiently compute the gradients of the loss function with respect to the policy parameters
W.

To obtain the gradients of the objective function with respect to the policy parameters W, we can
apply the chain rule for partial differentiation. Let’s denote the objective function as J:

m N-1

10)=3 (Z Qy - [gk = k| + Qn - [gh —riv] +Qu- [ui —u;;l!) )
i=1 \ k=1

The chain rule for partial differentiation of J with respect to the policy parameters W is expressed

as:
m N-—1

oJ aJ og: oJ  oul
aw‘zz<ai'mg§+ai'aw§> ©
im1 k=1 \99k U,
Here, gg{ and aauJ are the partial derivatives of the objective function with respect to the state and
k k

control inputs at time step k, respectively. The terms % and % represent the gradients of the state

and control inputs with respect to the policy parameters W.

B.2 WHITE-BOX SYSTEM MODEL WITH CONTROL POLICY

As mentioned in Section (3| the control policy is parameterized using deep neural networks (MLP),
specifically expressed as ux = mg(yk, R, D). In this formulation, y;, represents the glucose level
to be regulated, R = {Ymin, Ymax } denotes the desired glucose levels of the patient, and D accounts
for observed disturbances, encompassing changes in the patient due to physiological factors such
as eating or drinking. The neural network structure is instantiated as an MLP with bounds, charac-
terized by an input size comprising the current glucose level, desired glucose levels, and observed
disturbances. It outputs the control input u. The overall neural network policy, is constructed as a
node in the computational graph, mapping inputs to the corresponding control output as follows in

Figure[2]
C EXPERIMENTS AND IMPLEMENTATION DETAILS

C.1 PARAMETERS

All experimental information is provided in this table[T]

C.2 DATASET GENERATION

The data generation process involves creating training and development datasets for a dynamic sys-
tem. For each scenario, initial conditions are sampled from the system, and a prediction horizon
of 100 steps is defined. The optimal is sampled from a uniform distribution between 18 and 20.
Disturbance trajectories are generated using the system’s simulation model. The data is organized
into batches for efficient training, with 64 sampled scenarios for each batch. Finally, dataloader
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Figure 2: Close Loop System Model.
Table 1: Parameter Settings for the System
NAME VALUE
Desired Glucose Level, gmin_range (12.,18.)
Prediction Horizon, ngeps 100
Samples, ngamples 2000
Batch Size 64
Control Model MLP
MLP Specification 2 hidden layers with 32 units in each
MLP Activation GELU
Control Loss Hyperparameter Qg =0.01
Regularization Loss Hyperparameter Qn =0.1
Constraint Loss Hyperparameter Q. = 0.02
Trainer Parameters: Epochs 200
Trainer Parameters: Warmup 50
Trainer Parameters: Optimizer AdamW
Trainer Parameters: Learning Rate 0.001
Trainer Parameters: Early Stopping No update in 5 steps

instances are created for both training and development datasets, facilitating the training of the DPC
algorithm on the dynamic system.

C.3 TEST

For testing, we randomly generated a test set of 3000 datapoints as described in Section [C.2] and
generated predictions using the model.

In Figure [3] we can see the output and model parameters for different values in the synthetic test
set. We can see in the y chart that the control policy is trying to keep the value within limits, though
there are several changes in the system. u is also within the constraints. Also, the d chart shows that
the model is capturing the disturbances nicely.

The best model and test data samples, along with the codes, are included in the supplementary
material for result reproduction purposes.
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Figure 3: Test Output Visualization.

C.4 FIGURES

Here we include a zoomed version of the two charts in Figure[I] The another is already added in
Figure 3] chart 1.
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Figure 5: Model Data Flow for Continuous Glucose Monitoring and Maintenance System

D DISCUSSION

This study establishes a theoretical foundation for monitoring and maintaining glucose levels
through differential predictive control. We feel that it is a scalable procedure that requires in-depth
research and development with clinical objectives in order to develop a practical healthcare solution.

Study Limitations due to Synthetic Data. We acknowledge that synthetically generated data has
limitations and might not accurately represent the intricacies of real-world situations. It is important
to point out that this relates to a clinical procedure in which errors could result in patient deaths.
As the research on active glucose level maintenance is still limited, we are unable to test it with
real-world data. Using synthetically generated data, this work provides a foundational framework
for further exploration and clinical studies.

Scalability. Usual healthcare devices face scalability challenges in diverse clinical settings due to
varying patient conditions and limitations. However, DPC offers a promising solution by dynami-
cally adapting to patient dynamics, mitigating the impact of clinical variations. Its ability to handle
personalized constraints and optimize insulin delivery makes it a scalable and adaptable approach for
addressing diverse clinical limitations in our parametric optimal control framework. Effective im-
plementation of this approach requires extensive research, rigorous testing, meticulous calibration,
and thorough clinical trials to setup and analyze different parameters and factors, ultimately leading
to the development of a practical product that addresses glucose level management effectively.

Limitations. There are certain shortcomings and problems that may arise that should be considered.
The extensive calibration required for the practical application of our approach can be a practical
obstacle in real-world healthcare settings, as can the complexity of conducting rigorous clinical
testing during the development stage. These tasks can be costly and time-consuming, which may
hinder the broad adoption of our approach. Lastly, unexpected external factors and technological
limitations may affect the precision and dependability of glucose level predictions, which we believe
is a problem for almost all devices.

Through this work, we hope to pave the way for future research initiatives, ultimately contributing to
the development of a refined device that holds the potential to positively impact the lives of millions
worldwide.
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