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ABSTRACT

Although the Transformer has been the dominant architecture for time series fore-
casting tasks in recent years, a fundamental challenge remains: the permutation-
invariant self-attention mechanism within Transformers leads to a loss of tem-
poral information. To tackle these challenges, we propose PatchMixer, a novel
CNN-based model. It introduces a permutation-variant convolutional structure to
preserve temporal information. Diverging from conventional CNNs in this field,
which often employ multiple scales or numerous branches, our method relies ex-
clusively on depthwise separable convolutions. This allows us to extract both
local features and global correlations using a single-scale architecture. Further-
more, we employ dual forecasting heads that encompass both linear and nonlinear
components to better model future curve trends and details. Our experimental re-
sults on seven time-series forecasting benchmarks indicate that compared with the
state-of-the-art method and the best-performing CNN, PatchMixer yields 3.9%
and 21.2% relative improvements, respectively, while being 2-3x faster than the
most advanced method. We will release our code and model.

1 INTRODUCTION

Long-term time series forecasting (LTSF) is a crucial task aimed at predicting future trends over an
extended period by leveraging substantial historical time-series data. LTSF applications span a wide
range of domains, including traffic flow estimation, energy management, and financial investment.

Transformer (Vaswani et al., 2017) has been the dominant architecture in time series forecasting
tasks in the last few years. It was first applied in the field of Natural Language Processing (NLP)
and later extended as a universal architecture to the field of Computer Vision (CV) and so on. To
address the limitations of the vanilla Transformer models, such as quadratic time or memory com-
plexity, Informer (Zhou et al., 2021) introduced an innovative Transformer architecture with reduced
complexity.Subsequently, numerous Transformer variants (Wu et al., 2021; Zhou et al., 2022; Liu
et al., 2022b) emerged in the field of time series analysis, to enhance performance or improve com-
putational efficiency.

However, the effectiveness of Transformers in LTSF tasks has been called into question by an exper-
iment involving simple Multi-Layer Perception (MLP) networks (Zeng et al., 2023), which surpris-
ingly surpassed the forecasting performance of all previous Transformer models. Therefore, they
posed an intriguing question: Are Transformers effective for long-term time series forecasting? In
response to this, a Transformer-based model, PatchTST (Nie et al., 2023), used a patch-based tech-
nique motivated by CV and reached state-of-the-art (SOTA) prediction results. Recent transformers
(Zhang & Yan, 2023; Lin et al., 2023) also adopted patch-based representations and achieved note-
worthy performance. This naturally gives rise to another important question: Does the impressive
performance of PatchTST primarily stem from the inherent power of the Transformer architecture,
or is it, at least in part, attributed to the use of patches as the input representation?

In this paper, we address this issue by introducing a novel backbone architecture called PatchMixer,
which is based on Convolutional Neural Networks (CNNs). PatchMixer is primarily composed of
two convolutional layers and two forecasting heads. Its distinguishing feature is the “patch-mixing”
design, which means the model initially segments the input time series into smaller temporal patches
and subsequently integrates information from both within and between these patches. Motivated by
the multi-head attention mechanism in Transformer, we employ the dual forecasting heads design
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in our model. These enhancements enable PatchMixer to outperform other CNN-based models,
leading to state-of-the-art accuracy in time series forecasting.

The main contributions of this work are as follows:

• We propose PatchMixer, a novel model built on convolutional architecture. This approach
efficiently replaces the computation-expensive self-attention module in Transformers while
leveraging a novel patch-mixing design to uncover intricate temporal patterns in the time
series.

• PatchMixer is efficient in long-term time series forecasting. By adopting a single-scale
structure and optimizing patch representations, our model achieves a significant perfor-
mance boost. It is 3x faster for inference and 2x faster during training compared to current
SOTA model.

• On seven popular long-term forecasting benchmarks, our PatchMixer outperforms the
SOTA method by 3.9% on MSE and 3.0% on MAE. Besides, our model achieves a sub-
stantial 21.2% relative reduction in MSE and 12.5% relative reduction in MAE on average
compared with the previous best CNN model.

2 RELATED WORK

CNNs for long-term context. CNNs typically employ a local perspective, with layered convolu-
tions extending their receptive fields across input spaces. For instance, TCN (Bai et al., 2018) first
introduced CNN structure into TSF tasks, employing causal and dilated convolutions for temporal
relationships. SCINet (Liu et al., 2022a) furthered this by extracting multi-resolution information
through a binary tree structure. Recently, MICN (Wang et al., 2023) adopted multi-scale hybrid
decomposition and isometric convolution for feature extraction from both local and global perspec-
tives. TimesNet (Wu et al., 2023) segmented sequences into patches cyclically for temporal pattern
analysis using visual models like Inception (Szegedy et al., 2015). On the single-scale front, S4
(Gu et al., 2021) processed long sequences through structured state spaces, offering valuable in-
sights into long-term dependency modeling. CKConv (Romero et al., 2021) leveraged continuous
convolutional kernels cater to varied data. Hyena (Poli et al., 2023) suggests adaptability to model
long-term contexts, by using a combination of long convolutions and gating.

Depthwise Separable Convolution. This is a widely employed technique used in the field of com-
puter vision. The work of depthwise separable convolutions was initially unveiled (Sifre & Mallat,
2014) in 2014. Later, this method was used as the first layer of Inception V1 (Szegedy et al., 2015)
and Inception V2 (Ioffe & Szegedy, 2015). During the same period, Google introduced an efficient
mobile model, called MobileNet (Howard et al., 2017). Its core layers were built on depthwise
separable filters. Consequently, the Xception (Chollet, 2017) network demonstrated how to scale
up depthwise separable filters. Recently, ConvMixer (Trockman & Kolter, 2022) via the method
suggested the patch representation itself may be a critical component to the “superior” performance
in CV tasks.

Channel Independence. A multivariate time series can be seen as a signal with multiple channels.
When the input tokens take the vector of all time series features and project it to the embedding
space to mix information, it is called “channel mixing”. “channel independence” is exactly the
opposite. Intuitively, the correlation among variables may help improve prediction accuracy. Zeng
et al. (2023) used this strategy for the first time in the LTSF field, and its effectiveness was further
verified in Nie et al. (2023). These two studies have shown that strategies emphasizing channel
independence are more effective than channel mixing methods for forecasting tasks. Therefore, we
adopt a channel-independent approach instead of a channel-mixing design. Furthermore, motivated
by this concept, we explore correlations between and within patches of each univariate time series,
which aligns with the idea of “patch mixing”.
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3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

In this work, we address the following task: Given a set of multivariate time series instances with a
historical look-back window L : (x1, . . . ,xL), where each xt at time step t represents a vector of
M variables. Our objective is to make predictions for the subsequent T time steps, resulting in the
prediction sequence (xL+1, . . . ,xL+T ).

From the perspective of channel independence, the multivariate time series (x1, ...,xL) is split to
M univariate series x(i) ∈ R1×L. We consider the i-th univariate series of length L as x

(i)
1:L =

(x
(i)
1 , ...,x

(i)
L ) where i = 1, ...,M . These univariate series are independently fed into the model. At

last, the networks provide prediction results x̂(i) = (x̂
(i)
L+1, ..., x̂

(i)
L+T ) ∈ R1×T accordingly.

3.2 MODEL STRUCTURE

The overall architecture of PatchMixer is illustrated in Figure 1. We employ a single-scale depthwise
separable convolutional block to capture both the global receptive field and local positional features
within the input series. We also devise dual forecasting heads, including one linear flatten head and
one MLP flatten head. These forecasting heads jointly incorporate nonlinear and linear features to
model future sequences independently. The prediction results from the dual heads are subsequently
combined to produce the final prediction, denoted as x̂. Detailed explanations of these components
will be provided in the following sections.

Figure 1: PatchMixer overview.

3.3 PATCH EMBEDDING

Patch Representation. Our work is inspired by PatchTST’s (Nie et al., 2023) patch processing
technique, which is proposed for use in the Transformer architecture. This method unfolds the input
univariate time series X1D ∈ RL through a sliding window with the length of P and the step of S.
Before transformation, it extends the original univariate time series X1D by repeating its final value
S times. This process results in a series of 2D patches, maintaining their original relative positions.
The patching process is illustrated by the following formulas.
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X̂2D = Unfold (ReplicationPad(X1D),size=P,step=S) (1)

We hypothesize that the strong predictive performance observed in time series forecasting is at-
tributed more to the patch embedding methods rather than the inherent predictive capabilities of the
Transformers. Therefore, we design PatchMixer based on CNN architectures, which has shown to
be faster at a similar scale with Transformers. For a fair comparison, we follow its setup of patch
embedding and adopt default settings, specifically P = 16 and S = 8. This configuration results
in a series of patches with a half-overlap between each patch. We further discussed the effects of
overlaps and convolutional kernel sizes in the appendix section.

Embedding without Positional Encoding. Local positional information, signifying the temporal
order of time series data, holds significant importance. However, the self-attention layer within the
Transformer architecture is unable to inherently preserve this positional information. To augment the
temporal context of time series inputs, traditional Transformer models such as Informer (Zhou et al.,
2021), Autoformer (Wu et al., 2021), and FEDformer (Zhou et al., 2022) employ three types of input
embeddings. This process is depicted in Equation 3, where TFE represents temporal feature encod-
ing (for example, MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, and MonthOfYear), PE
represents position embedding, and VE represents value embedding.

Embedding(X) = sum(TFE + PE + V E) : xL → xD (2)

Recent Transformers like PatchTST treat a patch as an input unit, eliminating the need for temporal
feature encoding. Instead, they focus on capturing comprehensive semantic information that is not
readily available at the point level. This is achieved by aggregating timesteps into subseries-level
patches.

Embedding(X) = sum(PE + V E) : xN×S → xN×D (3)

Unlike the Transformer, the CNN structure inherently possesses permutation variance, obviating the
necessity of using position embedding in our model. Ultimately, our embedding can be represented
by the following formula 4, which can be accomplished with a single linear layer.

Embedding(X) = V E : xN×S → xN×D (4)

3.4 PATCHMIXER LAYER

As discussed in Section 2, previous CNNs in LTSF often modeled global relationships within time
series data across multiple scales or numerous branches. In contrast, our Patchmixer employs single-
scale depthwise separable convolution as the core module. The patch-mixing design separates the
per-location (intra-patch) operations with depthwise convolution, and cross-location (inter-patch)
operations with pointwise convolution, which allows our model to capture both the global receptive
field and local positional features within the input series.

Depthwise Convolution: We use a specific type of grouped convolution where the number of groups
equals the number of patches, denoted as N . To expand the receptive field, we employ a larger kernel
size, typically equal to our default patch step, S, resulting in K = 8. In this process, each of the N
patches in the input feature map undergoes a separate convolution with one kernel. This operation
generates N feature maps, each corresponding to a specific patch. These feature maps are then
concatenated sequentially to create an output feature map with N channels. Depthwise convolution
effectively employs group convolution kernels that are the same for patches sharing the same spatial
locations. This allows the model to capture potential periodic patterns within the temporal patches.
The following equation 5 shows the process of one univariate series xN×D in layer l − 1 passing
through the depthwise convolution kernel in layer l.

xN×D
l = BatchNorm

(
σ{Conv

N→N
(xN×D

l−1 ,stride=K,kernel size=K)}
)

(5)
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Pointwise Convolution: Our depthwise convolutional operation may not capture the inter-patch
feature correlations effectively, which is why we follow it with pointwise convolution. Through this
layer, we achieve temporal interaction between patches.

xN×D
l = BatchNorm

(
σ{ConvDepthwise(xN×D

l−1 }
)
+ xN×D

l−1 (6)

xA×D
l+1 = BatchNorm

(
σ{Conv

N→A
(xN×D

l ,stride=1,kernel size=1)}
)

(7)

The above equations 6 and 7 demonstrate the process of the univariate series xN×D in layer l pass-
ing through the pointwise convolution kernel in layer l + 1, where A means the number of output
channels in pointwise convolution. Following each of these convolution operations, we apply an
activation function and post-activation BatchNorm. In this context, σ denotes an element-wise non-
linearity activation function. For our work, we employ the GELU activation function as described
in reference (Hendrycks & Gimpel, 2016).

We demonstrate the effectiveness of the separable convolution method, achieving superior overall
performance compared to the attention mechanism. The details of the experiments are presented
in Section 4.2. Additionally, pointwise convolution allows us to control the degree of information
aggregation among patches by adjusting the number of output channels A, as illustrated in Figure 2.
In the main text, we set A = N , which means the default setting is patch disaggregation. We delve
into this character further in Appendix 5, indicating that patch aggregation can enhance prediction
performance across various datasets.

Figure 2: Patch Aggregation and Patch Disaggregation via Pointwise Convolution.

3.5 DUAL FORECASTING HEADS

Previous LTSF methods often followed a paradigm of decomposing inputs, such as employing the
seasonal-trend decomposition technique and combining the decomposed components to obtain pre-
diction results. Similarly, the multi-head attention mechanism in Transformers also involves decom-
posing and aggregating multiple outputs.

Motivated by the above instances, we propose a novel dual-head mechanism based on the
decomposition-aggregation concept, one is dedicated to capturing linear features and the other fo-
cuses on capturing nonlinear variations. Specifically, PatchMixer extracts the overall trend of tem-
poral changes through a linear residual connection spanning the convolution, and it uses an MLP
forecasting head after a fully convolutional layer with a nonlinear function to meticulously fit the
tiny changes in the prediction curve. Finally, we can derive the prediction results by summing their
respective outputs. The utilization of dual heads yields a more effective mapping effect in compar-
ison to the direct utilization of the previous single linear flattening head. We confirmed in Section
4.2 that both forecasting heads are indispensable for accurate prediction.
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3.6 NORMALIZATION AND LOSS FUCTION

Instance Normalization. This technique has recently been proposed to help mitigate the distribu-
tion shift effect between the training and testing data (Ulyanov et al., 2016; Kim et al., 2022). It
simply normalizes each time series instance x(i) with zero mean and unit standard deviation. In
essence, we normalize each x(i) before patching and the mean and deviation are added back to the
output after dual forecasting heads.

Loss Function. Here we combine Mean Squared Error (MSE) and Mean Absolute Error (MAE) in
an equal 1:1 ratio as our loss function. Surprisingly, we find that this simple method achieves supe-
rior accuracy overall, striking a balance between achieving lower MSE and MAE. The experimental
details can be seen in Appendix A.2.

The MSE loss is:

LMSE =
1

M

M∑
i=1

∥x̂(i)
L+1:L+T − x

(i)
L+1:L+T ∥

2
2, (8)

while the MAE loss is:

LMAE =
1

M

M∑
i=1

∥x̂(i)
L+1:L+T − x

(i)
L+1:L+T ∥. (9)

4 EXPERIMENTS

4.1 MULTIVARIATE LONG-TERM FORECASTING

Datasets. We evaluate the performance of our proposed PatchMixer on 7 commonly used long-
term forecasting benchmark datasets: Weather, Traffic, Electricity, and 4 ETT datasets (ETTh1,
ETTh2, ETTm1, ETTm2). The statistics of those datasets are summarized in Appendix A.1.1. It
should be noted that ETTh1 and ETTh2 are small datasets, while ETTm1, ETTm2, and Weather are
medium datasets. Traffic and Electricity each have more than 800 and 300 variables, respectively,
with each variable containing tens of thousands of time points, naturally categorizing them as large
datasets. Generally, smaller datasets contain more noise, while larger datasets exhibit more stable
data distributions.

Baselines and metrics. We choose SOTA and representative LTSF models as our baselines, in-
cluding Transformer-based models like PatchTST (2023), FEDformer (2022), Autoformer (2021),
Informer (2021), in addition to two CNN-based models containing MICN (2023) and TimesNet
(2023), with the significant MLP-based model DLinear (2023) to served as our baselines. To assess
the performance of these models, we employ widely used evaluation metrics: MSE and MAE. The
details of each baseline are described in Appendix A.1.2.

Results. Table 1 shows the multivariate long-term forecasting results. Our model outperforms all
baseline methods significantly in all largest benchmarks, containing Traffic, Electricity, and Weather.
On other datasets, we achieve the best performance across all or most prediction lengths. Quantita-
tively, PatchMixer demonstrates an overall relative reduction of 3.9% on MSE and 3.0% on MAE
in comparison to the state-of-the-art Transformer (PatchTST). When evaluated against the best-
performing MLP-based model (DLinear), our model showcases an overall decline of 11.6% on
MSE and 9.4% on MAE. Moreover, in comparison to the achievable outcomes with the best CNN-
based model (TimesNet), we demonstrate a remarkable overall relative reduction of 21.2% on MSE
and 12.5% on MAE.

4.2 ABLATION STUDY

Training and Inference Efficiency. We aim to demonstrate PatchMixer’s superior efficiency in
training and inference times compared to PatchTST, as shown in Figure 3. We conducted experi-
ments using PatchTST’s data loader and the ETTm1 dataset with a batch size of 8, resulting in data
dimensions of 8 × 7 × L per batch. We report both inference time per batch and training time per
epoch while varying the look-back length from 96 to 2880.
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Table 1: Multivariate long-term forecasting results with our model PatchMixer. We use prediction
lengths T ∈ {96, 192, 336, 720} for all datasets. The best results are in bold and the second best
results are in underlined.

Models
PatchMixer

(Ours)
PatchTST

(2023)
DLinear
(2023)

MICN
(2023)

TimesNet
(2023)

FEDformer
(2022)

Autoformer
(2021)

Informer
(2021)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.151 0.193 0.152 0.199 0.176 0.237 0.172 0.240 0.165 0.222 0.238 0.314 0.249 0.329 0.354 0.405
192 0.194 0.236 0.197 0.243 0.220 0.282 0.218 0.281 0.215 0.264 0.275 0.329 0.325 0.370 0.419 0.434
336 0.225 0.267 0.249 0.283 0.265 0.319 0.275 0.329 0.274 0.304 0.339 0.377 0.351 0.391 0.583 0.543
720 0.305 0.323 0.320 0.335 0.323 0.362 0.314 0.354 0.339 0.349 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.363 0.245 0.367 0.251 0.410 0.282 0.479 0.295 0.593 0.321 0.576 0.359 0.597 0.371 0.733 0.410
192 0.384 0.254 0.385 0.259 0.423 0.287 0.482 0.297 0.617 0.336 0.610 0.380 0.607 0.382 0.777 0.435
336 0.393 0.258 0.398 0.265 0.436 0.296 0.492 0.297 0.629 0.336 0.608 0.375 0.623 0.387 0.776 0.434
720 0.429 0.283 0.434 0.287 0.466 0.315 0.510 0.309 0.640 0.350 0.621 0.375 0.639 0.395 0.827 0.466

E
le

ct
ri

ci
ty 96 0.129 0.221 0.130 0.222 0.140 0.237 0.153 0.264 0.168 0.272 0.186 0.302 0.196 0.313 0.304 0.393

192 0.144 0.237 0.148 0.240 0.153 0.249 0.175 0.286 0.184 0.289 0.197 0.311 0.211 0.324 0.327 0.417
336 0.164 0.257 0.167 0.261 0.169 0.267 0.192 0.303 0.198 0.300 0.213 0.328 0.214 0.327 0.333 0.422
720 0.200 0.289 0.202 0.291 0.203 0.301 0.215 0.323 0.220 0.320 0.233 0.344 0.236 0.342 0.351 0.427

E
T

T
h1

96 0.353 0.381 0.375 0.399 0.375 0.399 0.405 0.430 0.384 0.402 0.376 0.415 0.435 0.446 0.941 0.769
192 0.373 0.394 0.414 0.421 0.405 0.416 0.447 0.468 0.436 0.429 0.423 0.446 0.456 0.457 1.007 0.786
336 0.392 0.414 0.431 0.436 0.439 0.443 0.579 0.549 0.491 0.469 0.444 0.462 0.486 0.487 1.038 0.784
720 0.445 0.463 0.449 0.466 0.472 0.490 0.699 0.635 0.521 0.500 0.469 0.492 0.515 0.517 1.144 0.857

E
T

T
h2

96 0.225 0.300 0.274 0.336 0.289 0.353 0.349 0.401 0.340 0.374 0.332 0.374 0.332 0.368 1.549 0.952
192 0.274 0.334 0.339 0.379 0.383 0.418 0.442 0.448 0.402 0.414 0.407 0.446 0.426 0.434 3.792 1.542
336 0.317 0.368 0.331 0.380 0.480 0.465 0.652 0.569 0.452 0.452 0.400 0.471 0.477 0.479 4.215 1.642
720 0.393 0.426 0.379 0.422 0.605 0.551 0.800 0.652 0.462 0.468 0.412 0.469 0.453 0.490 3.656 1.619

E
T

T
m

1 96 0.291 0.340 0.290 0.342 0.299 0.343 0.302 0.352 0.340 0.377 0.326 0.390 0.505 0.475 0.626 0.560
192 0.325 0.362 0.332 0.369 0.335 0.365 0.342 0.380 0.374 0.387 0.365 0.415 0.553 0.496 0.725 0.619
336 0.353 0.382 0.366 0.453 0.369 0.386 0.381 0.403 0.392 0.413 0.392 0.425 0.621 0.537 1.005 0.741
720 0.413 0.413 0.420 0.533 0.425 0.421 0.434 0.447 0.433 0.436 0.446 0.458 0.671 0.561 1.133 0.845

E
T

T
m

2 96 0.174 0.256 0.165 0.255 0.167 0.260 0.188 0.286 0.183 0.271 0.180 0.271 0.255 0.339 0.355 0.462
192 0.227 0.295 0.220 0.292 0.224 0.303 0.236 0.320 0.242 0.309 0.252 0.318 0.281 0.340 0.595 0.586
336 0.266 0.323 0.278 0.329 0.281 0.342 0.295 0.355 0.304 0.348 0.324 0.364 0.339 0.372 1.270 0.871
720 0.344 0.372 0.367 0.385 0.397 0.421 0.422 0.445 0.385 0.400 0.410 0.420 0.433 0.432 3.001 1.267

Figure 3: Comparison of Training and Inference Times: PatchMixer vs. PatchTST

Our results highlight two key improvements. First, PatchMixer achieves a 3x faster inference and
2x faster training speed compared to PatchTST. Second, PatchTST’s performance is highly sensitive
to the length of the look-back window, particularly when it reaches or exceeds 1440. In contrast,
PatchMixer exhibits fewer fluctuations in both inference and training times with increasing historic
length, contributing to higher accuracy and computational efficiency. All experiments in this sub-
section are conducted on the same machine, utilizing a single GPU RTX4090 for consistent and
reliable findings. Moreover, we also explore where the speed-up comes from in Appendix A.5.

Depthwise Separable Convolution vs. Self-attention Mechanism, Standard Convolution. To
assess the effectiveness of depthwise separable convolution, we replace the module in PatchMixer
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Table 2: Ablation of depthwise separable convolution in the Traffic, ETTm1, and ETTm2 datasets.
We replace the convolutional module with a transformer encoder in PatchTST and standard convo-
lution. The better results are highlighted in bold.

Datasets Traffic ETTm1 ETTh1

Prediction Length T 96 192 336 720 96 192 336 720 96 192 336 720

Dual Heads
MSE 0.377 0.391 0.399 0.429 0.290 0.327 0.356 0.420 0.355 0.373 0.392 0.440
MAE 0.251 0.256 0.258 0.283 0.340 0.362 0.381 0.416 0.384 0.394 0.412 0.455

Attention Mechanism
+ Dual Heads

MSE 0.368 0.388 0.401 0.447 0.294 0.331 0.360 0.422 0.355 0.378 0.393 0.451
MAE 0.240 0.249 0.256 0.273 0.340 0.365 0.386 0.417 0.382 0.397 0.411 0.460

PatchMixer Layer
+ Dual Heads

MSE 0.362 0.382 0.392 0.428 0.290 0.325 0.353 0.413 0.355 0.373 0.391 0.446
MAE 0.242 0.252 0.257 0.282 0.340 0.361 0.382 0.413 0.383 0.394 0.410 0.463

with the transformer encoder of PatchTST and standard convolution separably. Each uses one layer
and follows the same configuration.

The results are shown in Table 9, which implies that convolutional layers outperform attention layers
in the majority of cases. The results of depthwise separable convolution are close to those of standard
convolution, whereas standard convolution achieves its best results primarily in small and medium-
sized datasets. In contrast, the superior predictive performance of separable convolution is evenly
distributed across datasets of various sizes.

Dual Forecasting Heads. We use a single Linear Flatten Head as a baseline. In Figure 4, it is
evident that the dual-head mechanism outperforms all other results and is at least comparable to one
of the output heads within the dual-head setup. This outcome underscores the effectiveness of the
dual-head mechanism when compared to a single-layer output head.

Figure 4: Ablation study of dual heads. We use prediction lengths T ∈ {96, 192, 336, 720} in three
datasets Weather, ETTm1, and ETTm2.

Varying Look-back Window. In principle, the large receptive field is beneficial for improving per-
formance, while the receptive field of the look-back window in time series analysis is also important.
Generally speaking, a powerful LTSF model with a strong temporal relation extraction capability
should be able to achieve better results with longer input historical sequences. However, as argued
in Zeng et al. (2023), this phenomenon has not been observed in most of the Transformer-based mod-
els. We also demonstrate in Figure 5 that in most cases, these Transformer-based baselines except
PatchTST have not benefited from longer look-back window L, which indicates their ineffectiveness
in capturing long-term temporal information. In contrast, recent baselines such as PatchTST, DLin-
ear, and our PatchMixer consistently reduce the MSE scores as the receptive field increases, which
confirms our model’s capability to learn from the longer look-back window.

1We omit the results of Informer because its performance significantly deviated from the other models,
which could distort the comparison results.
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Figure 5: Forecasting performance (MSE) with varying look-back windows on 3 largest
datasets: Traffic, Electricity, and Weather. The look-back windows are selected to be L =
24, 48, 96, 192, 336, 720, and the prediction horizons are T = 96, 720. We use our PatchMixer
and the baselines for this experiment.1

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce PatchMixer, a novel CNN-based model for long-term time series forecast-
ing. PatchMixer leverages depthwise separable convolution with an innovative patch-mixing design
to efficiently capture both global and local temporal patterns without self-attention mechanisms. We
also highlight the importance of modeling linear and nonlinear components separately through dual
forecasting heads, further enhancing our model’s predictive capability. Our experiments demon-
strate that PatchMixer outperforms state-of-the-art methods in terms of prediction accuracy while
being significantly faster in both training and inference.

While our model has exhibited promising results, there is still potential for improvement, especially
in the integration of external temporal features. Long-term time series forecasting often relies on
external factors like holidays, weather conditions, or economic indicators. Effectively incorporat-
ing these features into patch-based models presents a challenge due to the inherently local nature of
patch-based operations. These models tend to focus on individual time points rather than broader pe-
riods. We sincerely hope that further research in this direction could lead to more robust forecasting
solutions.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We use 7 popular multivariate datasets provided in (Wu et al., 2021) for forecasting. Detailed statis-
tical data on the size of the datasets are as follows.

Table 3: Statistics of popular datasets used for benchmarking.

Datasets Weather Traffic Electricity ETTh1 ETTh2 ETTm1 ETTm2

Variables 21 862 321 7 7 7 7
Timesteps 52696 17544 26304 17420 17420 69680 69680

Frequencies 10 Minutes 1 Hour 1 Hour 1 Hour 1 Hour 15 Minutes 15 Minutes

• Weather:2 This dataset collects 21 meteorological indicators in Germany, such as humidity
and air temperature.

• Traffic:3 This dataset records the road occupancy rates from different sensors on San Fran-
cisco freeways.

• Electricity:4 This is a dataset that describes 321 customers’ hourly electricity consumption.

• ETT (Electricity Transformer Temperature):5 These datasets are collected from two dif-
ferent electric transformers labeled with 1 and 2, and each of them contains 2 different
resolutions (15 minutes and 1 hour) denoted with m and h. Thus, in total we have 4 ETT
datasets: ETTm1, ETTm2, ETTh1, and ETTh2.

A.1.2 BASELINES

We choose SOTA and the most representative LTSF models as our baselines:

• PatchTST (Nie et al., 2023): the current SOTA LTSF model as of August 2023. It uses
channel-independent and patch techniques and achieves the highest performance by utiliz-
ing the vanilla Transformer encoders.

• DLinear (Zeng et al., 2023): a highly insightful work that employs simple linear models
and trend decomposition techniques, outperforming all Transformer-based models at the
time. This work inspired us to reflect on the utility of Transformers in LTSF and indirectly
led to the numerous births of MLP-based models in recent studies.

• MICN (Wang et al., 2023): another non-transformer model that enhances the performance
of CNN models in LTSF through down-sampled convolution and isometric convolution,
outperforming many Transformer-based models. This excellent work has been selected for
oral presentation at ICLR 2023.

• TimesNet (Wu et al., 2023): it proposes a task-general backbone for time series analysis
and achieves SOTA in five mainstream time series analysis tasks, including short- and long-
term forecasting, imputation, classification, and anomaly detection before DLinear.

• FEDformer (Zhou et al., 2022): it employs trend decomposition and Fourier transformation
techniques to improve the performance of Transformer-based models in LTSF. It was the
best-performing Transformer-based model before DLinear.

• Autoformer (Wu et al., 2021): it combines trend decomposition techniques with an auto-
correlation mechanism, inspiring subsequent work such as FEDformer.

2https://www.bgc-jena.mpg.de/wetter/
3https://pems.dot.ca.gov/
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://github.com/zhouhaoyi/ETDataset
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• Informer (Zhou et al., 2021): it proposes improvements to the Transformer model by uti-
lizing a sparse self-attention mechanism and generative-style decoder, inspiring a series of
subsequent Transformer-based LTSF models. This work was awarded Best Paper at AAAI
2021.

Classical RNN-based and CNN-based models, such as DeepAR (Salinas et al., 2020) and LSTnet
(Lai et al., 2018), have been demonstrated in previous works to be less effective than previous
Transformer-based models in LTSF (Zhou et al., 2021; Wu et al., 2021). Therefore, we did not
include them in our baselines. We also noted other excellent works recently, such as Crossformer
(Zhang & Yan, 2023), TiDE (Das et al., 2023), and MTS-Mixers (Li et al., 2023). However, due to
limited resources, we could only select the LTSF models that were most relevant to our work and
most representative at each stage as our baselines.

The implementation of all baselines is from their respective code repository. We also adopt their
default hyper-parameters to train the models to expect look-back windows. It is noted that default
look-back windows for different baseline models could be different. For previous models, such as
Informer, Autoformer, and FEDformer, the default look-back window is L = 96; and for recent
PatchTST and DLinear, the default look-back window is L = 336. The reason for this difference
is that previous Transformer-based baselines are easy to overfit when the look-back window is long
while the latter tend to underfit recent models. However, this can lead to an underestimation of the
baselines.

Meanwhile, PatchTST(Nie et al., 2023) reports two versions of models, PatchTST/64 for the look-
back window L = 512 and PatchTST/42 for L = 336. Therefore, to compare the best performance
of our model and all baselines, we report L = 336 for PatchMixer, PatchTST/42 for PatchTST, and
the best result in L = 24, 48, 96, 192, 336 for the other baseline models by default. Thus it could be
a strong baseline.

A.1.3 IMPLEMENTATION DETAILS

Model Parameters. For all benchmarks, our model contains only 1 PatchMixer layer and di-
mension of latent space D = 256 by default. The MLP head consists of 2 linear layers with
GELU (Hendrycks & Gimpel, 2016) activation function: one projecting the hidden representation
D = 2 × T for the forecasting length T , and another layer that projects it back to the final predic-
tion target D = T . The linear head includes a flatten operation and a linear layer aims to project
the embed vector directly from N × D to T . Dropout with probability 0.2 is applied in the patch
embedding for all experiments. Our method uses the ADAMw optimizer. The training process will
be early stopped after ten epochs if there is no loss degradation on the valid set. All the experiments
are repeated 5 times with different seeds, implemented in PyTorch, and conducted on NVIDIA RTX
4090 24GB GPUs. The code will be publicly available.

A.2 MORE RESULTS ON ABLATION STUDY

Varying Patch Strides. The patch overlap O is related to the patch step size, and the relationship is
O = P − S. We conduct this experiment in Figure 6 on two large datasets, Weather and Electricity.
One observation is that the MSE score oscillated in a small range (between 0.003 and 0.001) with
different choices of S, indicating the robustness of our model to patch overlaps.

Varying Convolutional Kernel Sizes. We have conducted the experiments in Figure 7 on two large
datasets, Weather and Electricity. There was no significant pattern in the MSE score with different
choices of K, the ideal patch overlap and convolution kernel size may depend on the datasets.

Loss Function. We study the effects of different loss functions in Table 4. We include PatchTST
as the SOTA benchmark for the Transformer-based model. By comparing results with MSE, MAE,
SmoothL1loss, MSE, and MAE accordingly. The motivation of patching is natural: Since LTSF
tasks usually use these two metrics, MSE and MAE, previous time series prediction tasks typically
used MSE as the loss function, only a few models (Liu et al., 2022a) use MAE as the loss function
for training. Recent work has also employed SmoothL1loss (Lin et al., 2023) and we notice that
SmoothL1loss is a type of loss function that attempts to combine the advantages of both MSE and
MAE. This observation motivates us to explore a multi-task loss approach.
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Figure 6: MSE scores with varying patch strides S from 1 to 16 where the look-back window is 336
and the prediction length is 720.

Figure 7: MSE scores with varying kernel sizes of depthwise convolution K from 1 to 16 where the
look-back window is 336 and the prediction length is 720.

In Table 4, we can intuitively observe that conventional training methods solely based on MSE do
not yield optimal results, falling short of models trained solely on MAE or a combination of MSE
and MAE (MSE+MAE). However, training exclusively on MAE tends to result in inferior MSE
metrics. Taking all these factors into consideration, we ultimately decided to employ a training
approach that combines MSE and MAE in a 1:1 ratio, aiming to strike a balance between these two
loss functions to improve performance.

Patch Aggregation vs Patch Disaggregation. Intuitively, the relationships among patches are re-
lated to the potential period of the datasets, so fewer output channel numbers in pointwise convolu-
tion is beneficial for the model to learn periodic correlation through weight sharing, which is called
patch aggregation. In the case of patch disaggregation, pointwise convolution can better fit the fu-
ture development trend of time series by retaining more weights. Therefore, we can freely adjust the
degree of patch aggregation by modifying the proportion of output channels and input channels in
pointwise convolution.

From Table 5, we can see that for small and medium-sized datasets, patch aggregation has a signif-
icant improvement in prediction performance. It is noted that the results of full patch aggregation
are similar to those using global average pooling. Both prevent overfitting by reducing the number
of parameters, which is beneficial to improving the prediction accuracy of small and medium-sized
data sets. However, for the two largest datasets, Traffic and Electricity, the effect of patch disaggre-
gation is better. Moreover, we indicate that patch aggregation is a universal technique that can be
used not only for PatchMixer but also for other models with patch presentation.
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Table 4: Ablation study of loss functions for training in PatchMixer. 4 cases are included: (a) both
MSE and MAE are included in loss function; (b) MSE; (c) MAE; (d) SmoothL1loss. The best results
are in bold.

Models
PatchMixer PatchTST

MSE+MAE MSE MAE SmoothL1loss MSE+MAE MSE MAE SmoothL1loss
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.149 0.193 0.154 0.196 0.152 0.190 0.151 0.193 0.151 0.192 0.152 0.199 0.152 0.186 0.150 0.191

192 0.191 0.233 0.197 0.237 0.193 0.231 0.194 0.237 0.195 0.234 0.197 0.243 0.197 0.230 0.196 0.236
336 0.225 0.269 0.225 0.267 0.227 0.265 0.229 0.272 0.247 0.275 0.249 0.283 0.250 0.273 0.250 0.278
720 0.307 0.324 0.302 0.322 0.308 0.321 0.309 0.326 0.321 0.328 0.320 0.335 0.322 0.326 0.321 0.330

Tr
af

fic

96 0.362 0.242 0.370 0.252 0.369 0.237 0.367 0.252 0.364 0.240 0.367 0.251 0.379 0.231 0.382 0.234
192 0.382 0.252 0.388 0.258 0.388 0.244 0.386 0.256 0.382 0.245 0.385 0.259 0.398 0.239 0.403 0.245
336 0.392 0.257 0.400 0.266 0.398 0.246 0.400 0.267 0.396 0.253 0.398 0.265 0.411 0.246 0.419 0.257
720 0.428 0.282 0.436 0.288 0.429 0.266 0.435 0.290 0.434 0.277 0.434 0.287 0.443 0.265 0.460 0.296

E
le

ct
ri

ci
ty 96 0.128 0.221 0.128 0.221 0.128 0.217 0.130 0.224 0.131 0.223 0.130 0.222 0.131 0.224 0.131 0.223

192 0.144 0.237 0.142 0.236 0.143 0.233 0.145 0.240 0.148 0.239 0.148 0.240 0.149 0.241 0.148 0.240
336 0.164 0.257 0.163 0.255 0.162 0.252 0.166 0.260 0.165 0.256 0.167 0.261 0.165 0.257 0.167 0.257
720 0.201 0.290 0.199 0.289 0.199 0.284 0.204 0.293 0.208 0.293 0.202 0.291 0.207 0.290 0.207 0.290

E
T

T
h1

96 0.355 0.383 0.354 0.384 0.353 0.379 0.356 0.384 0.376 0.401 0.375 0.399 0.367 0.392 0.376 0.400
192 0.373 0.394 0.376 0.397 0.376 0.392 0.375 0.394 0.411 0.418 0.414 0.421 0.411 0.416 0.412 0.418
336 0.391 0.410 0.397 0.421 0.396 0.410 0.394 0.411 0.429 0.432 0.431 0.436 0.431 0.427 0.430 0.431
720 0.446 0.463 0.446 0.462 0.437 0.450 0.444 0.462 0.445 0.462 0.449 0.466 0.443 0.455 0.442 0.460

E
T

T
h2

96 0.220 0.298 0.226 0.300 0.224 0.296 0.222 0.298 0.275 0.334 0.274 0.336 0.277 0.331 0.276 0.334
192 0.267 0.332 0.276 0.335 0.272 0.331 0.270 0.333 0.340 0.375 0.339 0.379 0.343 0.374 0.341 0.375
336 0.304 0.363 0.319 0.368 0.311 0.364 0.307 0.364 0.329 0.378 0.331 0.380 0.333 0.378 0.331 0.378
720 0.375 0.417 0.395 0.427 0.380 0.416 0.377 0.417 0.378 0.419 0.379 0.422 0.382 0.417 0.380 0.419

E
T

T
m

1 96 0.290 0.340 0.292 0.341 0.290 0.334 0.289 0.339 0.290 0.338 0.290 0.342 0.294 0.330 0.294 0.330
192 0.325 0.361 0.326 0.362 0.328 0.357 0.327 0.362 0.334 0.365 0.332 0.369 0.339 0.359 0.337 0.358
336 0.353 0.382 0.354 0.382 0.355 0.377 0.355 0.382 0.359 0.382 0.366 0.392 0.361 0.378 0.362 0.378
720 0.413 0.413 0.417 0.413 0.415 0.409 0.416 0.413 0.421 0.420 0.420 0.424 0.415 0.414 0.415 0.414

E
T

T
m

2 96 0.164 0.251 0.168 0.253 0.165 0.249 0.164 0.251 0.165 0.250 0.165 0.255 0.164 0.246 0.164 0.246
192 0.220 0.291 0.224 0.291 0.219 0.285 0.219 0.289 0.219 0.289 0.220 0.292 0.215 0.283 0.218 0.285
336 0.264 0.322 0.265 0.320 0.265 0.318 0.261 0.317 0.275 0.326 0.278 0.329 0.270 0.320 0.270 0.323
720 0.342 0.375 0.343 0.370 0.347 0.370 0.345 0.371 0.365 0.382 0.367 0.385 0.355 0.374 0.363 0.380

Avg. 0.292 0.316 0.296 0.318 0.294 0.312 0.294 0.318 0.305 0.322 0.306 0.327 0.307 0.318 0.309 0.322

A.3 UNIVARIATE FORECASTING

Table 6 summarizes the results of univariate forecasting on ETT datasets. There is a target feature
”oil temperature” within those datasets, which is the univariate series that we are trying to forecast.
We cite the baseline results from (Zeng et al., 2023).

A.4 ROBUSTNESS ANALYSIS

A.4.1 RESULTS WITH DIFFERENT RANDOM SEEDS

The main tables in this article, including Table 1 and Table 6, are the averages of five random
experiments. Besides, the remaining tables are generated using a fixed random number seed 2021.
To examine the robustness of our results, we train the PatchMixer model with 5 different random
seeds: 2021, 2022, 2023, 2024, and 2025. We calculate the MSE and MAE scores with each
selected seed. The mean and standard derivation of the results are reported in Table 7. The variances
are considerably small which indicates the robustness of our model.

A.4.2 RESULTS WITH DIFFERENT MODEL PARAMETERS

To see whether PatchMixer is sensitive to the choice of different settings, we perform another ex-
periment with varying model parameters. We vary the number of PatchMixer layers L = {1, 2, 3}
and select the model dimension D = {128, 256}. In total, there are 6 different sets of model
hyper-parameters to examine. Figure 8 shows the datasets are robust to the choice of model hyper-
parameters.
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Table 5: Patch Aggregation Analysis. We use prediction lengths T ∈ {96, 192, 336, 720}. PFA
means Patch Full Aggregation and PDA means Patch Dis-Aggregation, while the better results of
them are in bold.

Models
PatchMixer

PatchTST
Pooling PFA PDA

Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.147 0.188 0.148 0.191 0.149 0.193 0.152 0.199
192 0.187 0.229 0.189 0.230 0.191 0.233 0.197 0.243
336 0.220 0.261 0.218 0.261 0.225 0.269 0.249 0.283
720 0.295 0.315 0.298 0.318 0.307 0.324 0.320 0.335

Tr
af

fic

96 0.385 0.257 0.382 0.256 0.362 0.242 0.367 0.251
192 0.402 0.265 0.397 0.262 0.382 0.252 0.385 0.259
336 0.414 0.272 0.409 0.269 0.392 0.257 0.398 0.265
720 0.443 0.291 0.436 0.284 0.428 0.282 0.432 0.287

E
le

ct
ri

ci
ty 96 0.133 0.226 0.131 0.224 0.128 0.221 0.130 0.222

192 0.149 0.244 0.144 0.237 0.144 0.237 0.148 0.240
336 0.169 0.263 0.166 0.258 0.164 0.257 0.167 0.261
720 0.209 0.295 0.202 0.289 0.201 0.290 0.202 0.291

E
T

T
h1

96 0.355 0.383 0.357 0.384 0.355 0.383 0.375 0.399
192 0.376 0.396 0.380 0.399 0.373 0.394 0.414 0.421
336 0.391 0.410 0.393 0.411 0.391 0.410 0.431 0.436
720 0.445 0.457 0.442 0.456 0.446 0.463 0.449 0.466

E
T

T
h2

96 0.220 0.298 0.221 0.299 0.225 0.300 0.274 0.336
192 0.267 0.332 0.269 0.335 0.275 0.334 0.339 0.379
336 0.304 0.363 0.306 0.366 0.316 0.368 0.331 0.380
720 0.375 0.417 0.379 0.420 0.397 0.427 0.379 0.422

E
T

T
m

1 96 0.301 0.343 0.289 0.338 0.290 0.340 0.290 0.342
192 0.336 0.363 0.323 0.358 0.325 0.361 0.332 0.369
336 0.364 0.386 0.355 0.378 0.353 0.382 0.366 0.392
720 0.428 0.416 0.416 0.408 0.413 0.413 0.420 0.424

E
T

T
m

2 96 0.165 0.252 0.165 0.252 0.176 0.257 0.165 0.255
192 0.220 0.289 0.220 0.291 0.227 0.295 0.220 0.292
336 0.262 0.320 0.261 0.320 0.267 0.322 0.278 0.329
720 0.341 0.373 0.341 0.373 0.344 0.372 0.367 0.385

Table 6: Univariate long-term forecasting results with PatchMixer. ETT datasets are used with
prediction lengths T ∈ {96, 192, 336, 720}. The best results are in bold and the second best results
are in underlined.

Models
PatchMixer

(Ours)
PatchTST

(2023)
DLinear
(2023)

MICN
(2023)

TimesNet
(2023)

FEDformer
(2022)

Autoformer
(2021)

Informer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.054 0.179 0.055 0.179 0.056 0.180 0.062 0.198 0.056 0.182 0.079 0.215 0.071 0.206 0.193 0.377
192 0.066 0.198 0.071 0.205 0.071 0.204 0.079 0.223 0.072 0.209 0.104 0.245 0.114 0.262 0.217 0.395
336 0.078 0.220 0.081 0.225 0.098 0.244 0.093 0.243 0.086 0.229 0.119 0.270 0.107 0.258 0.202 0.381
720 0.093 0.243 0.087 0.232 0.189 0.359 0.132 0.292 0.082 0.228 0.142 0.299 0.126 0.283 0.183 0.355

E
T

T
h2

96 0.119 0.268 0.129 0.282 0.131 0.279 0.131 0.282 0.136 0.286 0.128 0.271 0.153 0.306 0.213 0.373
192 0.147 0.305 0.168 0.328 0.176 0.329 0.193 0.350 0.186 0.340 0.185 0.330 0.204 0.351 0.227 0.387
336 0.166 0.332 0.185 0.351 0.293 0.437 0.194 0.355 0.220 0.373 0.231 0.378 0.246 0.389 0.242 0.401
720 0.217 0.374 0.224 0.383 0.276 0.426 0.295 0.442 0.241 0.392 0.278 0.420 0.268 0.409 0.291 0.439

E
T

T
m

1 96 0.027 0.123 0.026 0.121 0.028 0.123 0.030 0.131 0.029 0.127 0.033 0.140 0.056 0.183 0.109 0.277
192 0.040 0.152 0.039 0.150 0.045 0.156 0.044 0.156 0.047 0.163 0.058 0.186 0.081 0.216 0.151 0.310
336 0.055 0.177 0.053 0.173 0.061 0.182 0.063 0.186 0.080 0.214 0.084 0.231 0.076 0.218 0.427 0.591
720 0.075 0.211 0.074 0.207 0.080 0.210 0.078 0.210 0.084 0.222 0.102 0.250 0.110 0.267 0.438 0.586

E
T

T
m

2 96 0.067 0.188 0.065 0.186 0.063 0.183 0.064 0.184 0.066 0.187 0.067 0.198 0.065 0.189 0.088 0.225
192 0.097 0.233 0.094 0.231 0.092 0.227 0.095 0.232 0.113 0.250 0.102 0.245 0.118 0.256 0.132 0.283
336 0.122 0.267 0.120 0.265 0.119 0.261 0.122 0.265 0.133 0.277 0.130 0.279 0.154 0.305 0.180 0.336
720 0.172 0.324 0.171 0.322 0.175 0.320 0.202 0.348 0.182 0.333 0.178 0.325 0.182 0.335 0.300 0.435
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Table 7: Long-term forecasting results with different random seeds in PatchMixer.

L PatchMixer (Multivariate) PatchMixer (Univariate)
Metric MSE MAE MSE MAE

W
ea

th
er

96 0.1509±0.0021 0.1934±0.0022 - -
192 0.1935±0.0027 0.2360±0.0028 - -
336 0.2246±0.0033 0.2675±0.0028 - -
720 0.3046±0.0026 0.3230±0.0019 - -

Tr
af

fic
96 0.3634±0.0015 0.2447±0.0023 - -
192 0.3836±0.0012 0.2537±0.0017 - -
336 0.3931±0.0010 0.2583±0.0011 - -
720 0.4291±0.0051 0.2826±0.0051 - -

E
le

ct
ri

ci
ty 96 0.1285±0.0010 0.2208±0.0007 - -

192 0.1442±0.0008 0.2373±0.0007 - -
336 0.1643±0.0014 0.2569±0.0011 - -
720 0.1998±0.0015 0.2889±0.0010 - -

E
T

T
h1

96 0.3530±0.0017 0.3812±0.0019 0.0543±0.0018 0.1794±0.0042
192 0.3734±0.0020 0.3937±0.0023 0.0662±0.0004 0.1984±0.0008
336 0.3921±0.0070 0.4136±0.0109 0.0779±0.0009 0.2196±0.0009
720 0.4453±0.0020 0.4630±0.0016 0.0930±0.0031 0.2432±0.0034

E
T

T
h2

96 0.2254±0.0013 0.3004±0.0005 0.1188±0.0009 0.2684±0.0005
192 0.2743±0.0010 0.3344±0.0009 0.1465±0.0025 0.3045±0.0012
336 0.3168±0.0020 0.3676±0.0013 0.1662±0.0009 0.3319±0.0006
720 0.3934±0.0037 0.4263±0.0012 0.2168±0.0025 0.3744±0.0023

E
T

T
m

1 96 0.2911±0.0016 0.3395±0.0012 0.0266±0.0001 0.1228±0.0003
192 0.3253±0.0013 0.3618±0.0007 0.0401±0.0004 0.1519±0.0003
336 0.3529±0.0008 0.3822±0.0014 0.0549±0.0005 0.1769±0.0009
720 0.4134±0.0035 0.4132±0.0006 0.0752±0.0012 0.2108±0.0039

E
T

T
m

2 96 0.1739±0.0021 0.2558±0.0007 0.0665±0.0006 0.1875±0.0008
192 0.2274±0.0041 0.2954±0.0024 0.0967±0.0015 0.2334±0.0012
336 0.2661±0.0011 0.3229±0.0013 0.1220±0.0007 0.2666±0.0005
720 0.3428±0.0016 0.3727±0.0004 0.1724±0.0016 0.3242±0.0025

Figure 8: MSE scores with varying model parameters. Each bar indicates the MSE score of a
parameter combination. The combinations (L,D) = (1, 128), (1, 256), (2, 128), (2, 256), (3, 128),
(3, 256) are orderly labeled from 1 to 6 in the figure. The model is run with PatchMixer to forecast
96 steps.
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Table 8: Comparison of practical efficiency of methods under L = 336 and T = 720 on the ETTm1.
MACs are the number of multiply-accumulate operations.

Network Type MACs Computational Complexity
Attention Mechanism + Dual Heads 293.63M O(N2 ·D +N ·D2)

Standard Convolution + Dual Heads 175.57M O(N2 ·D ·K)

Depthwise Separable Convolution + Dual Heads 66.32M O(N ·D ·K +N ·D ·N)

Table 9: Ablation of PatchMixer Layer in performances for multi-scale benchmarks, the large (Traf-
fic), medium (ETTm1), and small-scale (ETTm2) datasets. The better results are highlighted in bold
and the second best results are in underlined.

Datasets Traffic ETTm1 ETTh1

Prediction Length T 96 192 336 720 96 192 336 720 96 192 336 720
Attention Mechanism

+ Dual Heads
MSE 0.368 0.388 0.401 0.447 0.294 0.331 0.360 0.422 0.355 0.378 0.393 0.451
MAE 0.240 0.249 0.256 0.273 0.340 0.365 0.386 0.417 0.382 0.397 0.411 0.460

Standard Convolution
+ Dual Heads

MSE 0.366 0.383 0.393 0.426 0.290 0.324 0.355 0.410 0.353 0.372 0.400 0.443
MAE 0.247 0.253 0.258 0.279 0.339 0.361 0.382 0.414 0.381 0.392 0.425 0.462

Depthwise Separable Convolution
+ Dual Heads

MSE 0.362 0.382 0.392 0.428 0.290 0.325 0.353 0.413 0.355 0.373 0.391 0.446
MAE 0.242 0.252 0.257 0.282 0.340 0.361 0.382 0.413 0.383 0.394 0.410 0.463

A.5 COMPUTATIONAL EFFICIENCY ANALYSIS

In this section, we explore the sources of acceleration and the efficiency of PatchMixer.

From a structural analysis, PatchMixer leverages the strength of convolutions for local modeling
while overcoming the limitations of their receptive fields. Through patch embedding, which trans-
forms the 1D sequence into a 2D matrix, we effectively address this limitation. A moderately sized
kernel (K = 8) is sufficient to process stacked patches (P = 16), as the number of patches is treated
as the channel dimension. This novel approach allows for feature extraction within and across
patches, enabling simple 1D convolutions to capture temporal patterns both locally and globally.

Although both PatchMixer and PatchTST utilize parallelization, the computational cost under de-
fault configurations varies significantly. Assuming we set the number of patches to N , the embed-
ding size to D, and the convolutional kernel size to K. PatchTST directly employs the vanilla Trans-
former’s encoder, with the complexity primarily stemming from the self-attention mechanism and
the feed-forward network, thus the total complexity is O(N2 ·D+N ·D2). Conversely, PatchMixer’s
complexity mainly originates from depthwise separable convolutions. Its depthwise convolution’s
complexity is O(N ·D ·K) and the pointwise convolution’s complexity is O(N ·D ·N). Therefore,
the total complexity is the sum of these two. If a standard 1D convolution replaces the convolutional
part of the PatchMixer Layer, the model’s complexity becomes O(N2 ·D ·K).

We compare the average practical efficiencies with 5 runs. The PatchMixer Layer is composed of
depthwise separable convolutions, so the PatchMixer model can be represented as Depthwise Sepa-
rable Convolution + Dual Heads. Alternatively, a standard 1D convolution can replace the depthwise
separable convolution, denoted as Standard Convolution + Dual Heads, while the attention mecha-
nism can be represented as Attention Mechanism + Dual Heads. As shown in Table 8, using standard
convolution results in a lower inference cost than employing the attention mechanism, and the ef-
ficiency and complexity of the depthwise separable convolution approach are superior to that of
standard convolution.

To assess the effectiveness of depthwise separable convolution, we replace the module in Patch-
Mixer with the transformer encoder of PatchTST and standard convolution separably. Each uses
one layer and follows the same configuration. As shown in Table 9, convolution methods gener-
ally outperform the attention mechanism in terms of predictive performance. Moreover, depthwise
separable convolution, with fewer parameters, exhibits similar predictive performance to standard
convolution. This underscores the efficient predictive capacity of our patch-mixing design.
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