
Fundamental Limits of Prompt Compression: A Rate-
Distortion Framework for Black-Box Language Models

Alliot Nagle∗
UT Austin

Adway Girish∗

EPFL
Marco Bondaschi

EPFL
Michael Gastpar

EPFL

Ashok Vardhan Makkuva†

EPFL
Hyeji Kim†

UT Austin

Abstract

We formalize the problem of prompt compression for large language models
(LLMs) and present a framework to unify token-level prompt compression methods
which create hard prompts for black-box models. We derive the distortion-rate
function for this setup as a linear program, and provide an efficient algorithm
to compute this fundamental limit via the dual of the linear program. Using the
distortion-rate function as the baseline, we study the performance of existing
compression schemes on a synthetic dataset consisting of prompts generated from
a Markov chain, natural language queries, and their respective answers. Our
empirical analysis demonstrates the criticality of query-aware prompt compression,
where the compressor has knowledge of the downstream task/query for the black-
box LLM. We show that there is a large gap between the performance of current
prompt compression methods and the optimal strategy, and propose Adaptive
QuerySelect, a query-aware, variable-rate adaptation of a prior work to close the
gap. We extend our experiments to a small natural language dataset to further
confirm our findings on our synthetic dataset.

1 Introduction

In spite of the recent success of transformer-based [1] large language models (LLMs) in language
modeling tasks, inference calls to a transformer can be costly in both time and memory usage.
Although significant progress has been made to improve the memory usage and runtime efficiency
via implementation-level optimizations [2, 3, 4] and architecture-level optimizations and alternatives
[5, 6, 7], a third type of optimization that compresses the input (an input-level optimization) has the
benefit that it directly reduces the resource usage of an LLM inference call, and it can be used in
conjunction with the other two types of optimizations for further efficiency gains. In this work, we
offer a framework and analysis for a recent body of literature in this direction, known as prompt
compression [8, 9, 10].

The goal of a prompt compression method is to transform a sequence of input tokens x into a shorter
sequence of tokens m such that the response generated by a target LLM will semantically mean the
same thing regardless of whether x or m is given as input. Using m as the input directly decreases
the memory and runtime requirements necessary for an LLM inference call. Moreover, the additional
benefits to this approach are: (1) redundant or superfluous tokens are removed, making room to fit
more pertinent information in the target LLM’s limited-size context window, (2) it can be used in
addition to implementation and architecture-level optimizations to get further efficiency gains, and (3)
it is the only technique available when seeking to lower costs for black-box API calls to closed-source

∗Equal contribution. †Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

A
ve

ra
ge

d
is

to
rt

io
n

Log loss

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

0/1 loss

Selective [11]

LLMLingua [12]

LLMLingua Query [13]

LLMLingua-2 [14]

QuerySelect

Adaptive QuerySelect

Optimal (Query-agnostic)

Optimal (Query-aware)

No Compression

Figure 1: The distortion-rate trade-off of all prompt compression methods compared to the query-
aware and query-agnostic theoretical limits on a synthetic dataset with binary prompts. All distortions
are computed with the log loss (left) and 0/1 loss (right) distortion metrics formally defined in (1).
We observe that (1) most existing methods are far from the theoretical limit, suggesting that there
is still room for improvement in this field, (2) conditioning on the query allows for a significant
improvement, as seen by the performance of the query-aware method QuerySelect against the query-
agnostic LLMLingua-2 [14], and (3) our proposed method Adaptive QuerySelect, a query-aware
and variable-rate adaptation of LLMLingua-2, achieves the best performance among all methods
considered, and is the only method to outperform the optimal query-agnostic strategy.

models. This third point is particularly important, since the associated cost for a black-box API model
inference call, from the perspective of the caller, is determined by the runtime and the number of input
tokens, both which can be reduced with prompt compression. In our framework and analysis, we focus
on the prompt compression for black-box models setting, where the output of a prompt compression
method is a set of tokens (“hard prompts”) [11, 12, 13, 14], and exclude methods which output
embedding vectors (“soft prompts”) [15, 16, 17] as those are not transferable to black-box models.

Despite the progress in the prompt compression literature, there is a lack of proper formalization of
this problem and there is no clear framework to unify these works. Most works propose methods that
work well but offer no insight into key questions, such as “How far are we from the theoretical limit
of the rate-distortion trade-off?”, “How essential is the conditioning on the query when compressing
the prompt?”, and “How does tokenization impact the performance of prompt compression methods?”
We offer a unifying framework for the problem of prompt compression and seek to answer these
questions with theory and experiments. Our main contributions can be summarized as follows.

1. Theoretical analysis: We formalize the problem of prompt compression and formulate it as
a rate-distortion problem (Sec. 3.1). We characterize the optimal trade-off between the rate
of compression and the distortion incurred, i.e., the distortion-rate function, via a dual linear
program, and provide a geometric algorithm to compute this optimal trade-off (Sec. 3.2, Sec. 3.3).

2. Evaluation: We introduce a synthetic dataset with binary prompts and natural language queries,
for which we can compute the distortion-rate function (Sec. 4.1), and compare and obtain insights
on existing prompt compression algorithms as in Fig. 1 (Sec. 4.2). We further confirm our
findings by extending our experiments to a small natural language dataset and NarrativeQA [18].

3. Algorithm design: Our novel method, “Adaptive QuerySelect,” a query-aware, variable-rate
adaptation of LLMLingua-2 [14], outperforms all prompt compression methods on our datasets
and has a rate-distortion curve that significantly reduces the gap with the theoretical limit (Sec. 4).

2 Background and related works

Long prompts slow the inference process due to the increase in the number of tokens for the LLM
to process. It is also known that very long prompts can cause LLMs to “forget” parts of the input
and produce erroneous answers [19]. Therefore, studying how these prompts can be compressed
is essential. As shown in Fig. 2, we wish to design a compressor that, upon receiving the prompt,
produces a “compressed” version (which has fewer tokens than the prompt) called the compressed

2

LLMx PŶ = ϕLLM(x, q)

q

It was the best of times, it was the worst
of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it
was the season of light, it was the season
of darkness, it was the spring of hope, it
was the winter of despair.

Prompt

How were the times?
Query

Best and worst. (60%)
Contrasting. (20%)
Mixed. (10%)
Dualistic. (5%)
. . .

Output

(a) Black-box LLM without prompt compression.

comp LLMx
m

PŶ = ϕLLM(m, q)

q

best times worst, age wisdom
foolish, epoch belief incredul,
season light dark, hope despair.

Compressed prompt (query-agnostic)

(b) Query-agnostic prompt compression

comp LLMx
m

PŶ = ϕLLM(m, q)

q

best worst.
Compressed prompt (query-aware)

(c) Query-aware prompt compression

Figure 2: Model for prompt compression in LLMs. (a): Without prompt compression, the LLM
takes a long Prompt and Query as input, and produces an Output distribution. (b) and (c): The
prompt is passed through a compressor to obtain a shorter Compressed prompt and the LLM takes this
compressed prompt and query as input instead. (b) The compressor does not have access to the query,
and preserves all highlighted tokens. (c) The compressor has access to the query, and preserves only
the tokens highlighted in orange.

prompt, such that a target LLM is able to give answers that are “close enough,” per some appropriately
chosen metric, to the ground truth. Though similar in spirit to text summarization, prompt compression
has the advantage that the compressed prompt is not required to be human-readable.

All prompt compression methods belong to one of two groups: those that compress the prompt into
soft prompts and those that compress the prompt into hard prompts. In soft-prompt compression,
the compressor is trained to transform the input prompt into a set of embedding vectors (sometimes
referred to as “soft tokens”) that do not map back into the token space. These methods, including
Gist Tokens [15], AutoCompressor [17], and In-Context Auto-Encoder [16] are trained end-to-end
and require specialized fine-tuning of the target LLM to interpret the soft prompt inputs.

In this work, we focus instead on methods that compress the prompt into hard prompts, where the
compressor’s output is a set of tokens. While it is technically feasible to fine-tune the target LLM
in this setting, it is unnecessary and often avoided because the utility of this setting is compressing
prompts for black-box models that are not fine-tuned. These methods often use either the target LLM,
or a smaller and faster LLM, to compress the prompt. The basic idea behind all these methods is to
identify the tokens that are “most relevant,” per an appropriate metric, and retain as many of them in
the compressed prompt as possible. These methods include Selective Context [11], LLMLingua [12],
LLMLingua-2 [14], and LongLLMLingua [13]. More details on these works can be found in Sec. 4.2.
Precursors to the prompt compression works include text compression methods, which have the added
constraint that the compressed text is human-readable [20, 21, 22]. Prompt compression methods are
different from these in that the text only needs to be interpretable by the target LLM, not by a human.

We offer a framework for hard-prompt compression methods where we assume that a query is provided
in addition to the compressed prompt during the target LLM inference call. Functionally, this is the
most useful interpretation of prompt compression since it clarifies that the goal is to compress the
prompt for a given query/task. This setting is also used in the LLMLingua and LongLLMLingua
works, and is more general than the setting where no query is used (the query can then be empty).

3 Distortion-rate function for prompt compression

We first formalize the problem of prompt compression, and then develop a rate-distortion framework
to study its fundamental limits. In particular, we define and characterize the distortion-rate function,
which describes the optimal trade-off between how much and how well the prompt is compressed. A
complete overview of the notation can be found in App. A.

3

3.1 A formal model for prompt compression

Black-box LLM. As depicted in Fig. 2a, we assume that we have a pretrained LLM which takes a
pair of the prompt x ∈ Vnx and the query q ∈ Vnq , (x, q) ∈ Vnx+nq as inputs, where V refers to the
vocabulary of the LLM (i.e., the set of all tokens), and nx and nq are the lengths of the prompt and
query respectively. The output of the LLM is given by PŶ = ϕLLM(x, q), where ϕLLM : V∗ → P(V∗)
is a deterministic function which maps a sequence of tokens to a probability distribution on sequences
of tokens. We denote the set of all prompts x by X and the set of all queries q byQ. Clearly, they are
both equal to V∗, but this notation is useful in the subsequent discussion. We model prompt-query
pairs (X,Q) as random variables drawn according to the joint distribution PXQ ∈ P(X ×Q).
In cases where we have a correct answer y ∈ Y = V∗ corresponding to the pair (x, q), we characterize
the “closeness” of the LLM output PŶ = ϕLLM(x, q) to the answer y using a distortion measure
d : Y×P(Y)→ [0,∞]. Two possible choices of d are the log loss dlog and the 0/1 loss d0/1, given by

dlog(y,PŶ) = log
1

PŶ (y)
and d0/1(y,PŶ) = 1

{
y ̸= argmax

ŷ
PŶ (ŷ)

}
. (1)

These are respectively the cross-entropy loss between the distributions δy and PŶ , and the pre-
diction error. When dealing with natural language queries, a semantic distortion metric such as
RougeL [23] or BertScore [24] is more appropriate. Additionally, there is no single answer that is
uniquely correct. To account for this variability in what qualifies as a correct answer, we model
the answer as a random variable Y drawn from the distribution PY |XQ(·|x, q), which depends on
the prompt x and query q. This induces the joint distribution PXQY = PXQPY |XQ. We charac-
terize the “closeness” between the correct answer and the LLM output by the average distortion,
given by EY∼PY |XQ(·|x,q)

[
d
(
Y, ϕLLM(x, q)

)]
. With d = dlog, this is the cross-entropy loss between

PY |XQ(·|x, q) and PŶ = ϕLLM(x, q), and with d = d0/1, this is the prediction error probability.

Prompt compression. As described in Sec. 2, we consider two types of prompt compression:
query-agnostic and query-aware. Fig. 2b depicts the query-agnostic version, where the goal is to
design a compressor denoted by comp as a possibly random function from X toM, i.e., the set of
all compressed prompts. The compressor takes in the prompt X ∼ PX and produces a compressed
prompt M = comp(X) with len(M) ≤ len(X). Then, the user replaces X with the compressed
prompt M and provides the LLM with the input (M,Q), resulting in the output distribution PŶ =
ϕLLM(M,Q). To quantify the performance of this compressor comp, two quantities are of interest:

(1) the rate E
[
len(M)
len(X)

]
, to measure how much the prompt is compressed, and

(2) the distortion E
[
d
(
Y, ϕLLM(M,Q)

)]
, to measure how well the prompt is compressed,

with both expectations taken with respect to (w.r.t.) PMXQY . If we compress x to a low rate, the
compressed prompt m may not retain the information in x that is necessary for the query q, leading to
an output ϕLLM(m, q) that is different from PY |XQ(·|x, q) and hence, a high distortion. Thus, there
is a trade-off between these quantities, which we formalize as the distortion-rate function in Sec. 3.2.

We can also model query-aware prompt compression similarly, with the difference being that the
compressor also has access to the query q ∈ Q, as shown in Fig. 2c. In addition to the average rate
and distortion computed over all queries, it is also interesting to consider the rate and distortion
for each query. To simplify the presentation, we restrict our discussion here to the query-agnostic
setting, and only briefly mention the analogous definitions and results for the query-aware setting. A
complete development of the query-aware setting can be found in App. B.

3.2 Rate-distortion formulation for prompt compression

Distortion-rate function D∗(R). The distortion-rate function for any compression problem char-
acterizes the fundamental trade-off between the distortion and the rate [25, 24, 26, 27]. We say that
the pair (R,D) is achievable if there exists a compressor with rate at most R and distortion at most D.
For a given rate R, the distortion-rate function D∗(R) is the smallest distortion that can be achieved
by a compressor with rate at most R. Formally, it is defined as

D∗(R) ≜ inf{D ≥ 0 | (R,D) is achievable}
= inf{D ≥ 0 | there exists a compressor with rate ≤ R and distortion ≤ D}. (2)

4

We are now ready to characterize the distortion-rate function for prompt compression.

D∗(R) for query-agnostic prompt compression. Recall that our quantities of interest are the rate
E
[
len(M)
len(X)

]
, and the distortion E

[
d
(
Y, ϕLLM(M,Q)

)]
, with both expectations taken w.r.t. PMXQY ,

where M = comp(X) for a random function comp. By the functional representation lemma [27, 28],
a random function from X toM is equivalent to a conditional distribution PM |X . Thus, we can
equivalently model the compressor as a conditional distribution PM |X , and (2) is explicitly written as

D∗(R) = inf
PM|X

E
[
d
(
Y, ϕLLM(M,Q)

)]

s.t. PM |X is a compressor, and

E
[
len(M)

len(X)

]
≤ R,

(3)

with both expectations taken w.r.t. the joint distribution PMXQY = PM |XPXQY induced by the
compressor PM |X . The constraint “PM |X is a compressor” is short for the following requirements: (1)
it is a conditional distribution, i.e., for each x ∈ X ,

∑
m∈M PM |X(m|x) = 1, (2) if len(m) > len(x),

then PM |X(m|x) = 0, and (3) if len(m) = len(x), then PM |X(m|x) = 0 unless m = x. This
means that the compressor either strictly reduces the length of the prompt or does no compression
and retains the original prompt.

Note that all of the expressions in the objective and the constraints in (3) are linear in PM |X . Hence,
the optimization problem is simply a linear program (LP), which is simple from an optimization
perspective [29, 30]. However, the dimensions of this problem are still large and solving the LP
directly quickly becomes infeasible as the lengths of the prompts increase. In Sec. 3.3, we deal with
this optimization problem directly, and show that the dual of the LP provides an exact, practically
realizable solution.

The extension to the query-aware setting is straightforward; we then have query-dependent (or
conditional) distortion-rate functions D∗

q (R) for each q ∈ Q, and an average distortion-rate function,
denoted by D̄∗(R). Refer to App. B for an explicit characterization of D∗

q (R) and D̄∗(R).

Connections to information-theoretic setups. We provide a brief overview of rate-distortion
theory from the information theory literature in App. D and describe how our model compares. In
particular, we note that our model for prompt compression closely resembles the setup of compression
with side-information for function computation [31, 32, 33, 34], where both the encoder and the
decoder are part of the system design. More recently, there has also been a growing interest in
computing the distortion-rate functions of these classical setups for real-world datasets [35, 36, 37].
However, in our model for prompt compression, only the encoder (which is the compressor) can be
designed, hence our model is one of compression for a fixed decoder. Such a model has not been
actively studied in the information theory literature before, but in the next subsection, we show that
the distortion-rate function can be written as an explicit LP in terms of this fixed decoder.

3.3 Linear program formulation of the distortion-rate function

Having expressed the distortion-rate function for prompt compression as an LP, we now look to solve
this LP. We first rewrite (3) as an explicit LP using optimization-theoretic notation, and hide the
probabilistic notation involving expectations and conditional probabilities in the parameters of the LP.
Refer to App. A for an overview of the notation.
Proposition 1 (Primal LP). The distortion-rate function for query-agnostic prompt compression (3)
is given by the solution to the linear program

D∗(R) = inf
(zx∈RMx

+)
x∈X

∑

x∈X
D⊤

x zx

s.t.
∑

x∈X
R⊤

x zx ≤ R, 1⊤zx = 1, ∀x ∈ X ,
(LP)

where for each x ∈ X ,Mx denotes the set of compressed prompts associated to x, i.e., the set of all
possible token sequences of length smaller than len(x), the vectors zx ∈ RMx

+ are the optimization

5

variables and the constants Dx,Rx ∈ RMx
+ with components indexed by m ∈Mx are given by

Dx,m ≜ PX(x)E [d(Y, ϕLLM(m,Q))] and Rx,m ≜ PX(x)
len(m)

len(x)
, m ∈Mx, (4)

with the expectation taken with respect to PQY |MX(·, ·|m,x).
Proof. This follows immediately from (3) by defining the constants Dx,Rx ∈ RMx

+ for each
x ∈ X as given in (4), and taking zx to be PM |X(·|x). We use the fact that PM |X(m|x) = 0 when
len(m) > len(x) to reduce the dimension of zx fromM toMx to obtain (LP).

For our experimental setup in Sec. 4.2, we see that dimension of the LP is too large to solve (LP)
directly using off-the-shelf solvers. Fortunately, the dual of the LP can be written more concisely,
and can also be solved using a relatively simple algorithm.
Theorem 1 (Dual LP). The distortion-rate function for query-agnostic prompt compression (3) is
given by the solution to the dual of the linear program (LP), i.e.,

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m]

}
. (dual-LP)

Proof sketch. This follows by taking the dual [29] of the LP (LP) and simplifying the resulting
expression. For a complete proof, refer to App. C.1.

Rx,m

Dx,m

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

−λ
(x)
1

−λ
(x)
2

m
(x)
1

m
(x)
2

m
(x)
3

Figure 3: Lower-left convex enve-
lope for an example with |Mx| =
11, kx = 3.

Algorithm to solve (dual-LP). While the optimization prob-
lem in (dual-LP) seems difficult to solve, with its max-min
structure and the supremum over a continuous variable, it pro-
vides a neat geometric interpretation which allows for a com-
putationally simple algorithm given in Algorithm 1. It takes
as input R, (Dx)x∈X , (Rx)x∈X , and returns as output the
distortion-rate function at R, i.e., D∗(R). In App. C.2, we
prove that the output is indeed D∗(R), and provide a step-by-
step illustration of the algorithm on an artificial example. A
high-level description of the algorithm is given below.

Before presenting the algorithm, it is useful to define the fol-
lowing geometric object. The lower-left convex envelope of a
set of points in R2

+ is the largest convex function that lies below
and to the left of the points, as shown in Fig. 3 for the points
{(Rx,m,Dx,m)}m∈Mx

for a fixed x ∈ X . Let kx be the number of points on this envelope, then
these kx points are exactly the minimizers of minm∈Mx

[Dx,m + λRx,m] for some λ ≥ 0. Solving
this inner minimization problem of (dual-LP) is thus easy, and amounts to simply finding the points
labelled as “m(x)” on the lower-left convex envelope, ordered from left to right, as done in Lines 3–4
of Algorithm 1. Let the magnitudes of slopes of the line segments on the envelope be given by the
“λ(x)” terms in decreasing order (Lines 5–6). Also letting λ

(x)
0 = +∞ and λ

(x)
kx

= 0, observe that

for i = 1, . . . , kx, m(x)
i minimizes Dx,m + λRx,m over m for λ ∈

[
λ
(x)
i , λ

(x)
i−1

)
. Importantly, it is

enough to consider just these sequences “m(x)” and “λ(x)” sequences computed for all x ∈ X (Lines
2–6) to solve (dual-LP), instead of the entire setMx and the continuum of all positive real numbers
λ respectively. This makes the problem tractable even for large values of |Mx|.
The rest of the algorithm computes the outer supremum. Lines 7–9 prepare for this by introducing
new notation “m̃(x)” and “λ̃” such that for λ ∈

[
λ̃j , λ̃j−1

)
, m̃(x)

j minimizes Dx,m + λRx,m over
m ∈Mx. There is no calculation involved in this step; what we gain is that the range of λ on which
the minimizer is m̃(x)

j no longer depends on x. This gives us everything we need to compute the
distortion-rate function, which is obtained by lines 10–13. Observe that the input R is only used for
lines 10–13, so for a given dataset, lines 1–9 can be run once and the results “m̃(x)” and “λ̃” stored,
with only lines 10–13 run for each value of R.

We derive a similar dual LP formulation of the query-aware distortion-rate functions in App. B. In
fact, we see that both the conditional and average distortion-rate functions are of the same form
as (dual-LP), with different parameters. Hence, Algorithm 1 can compute all of the distortion-rate
functions that we have defined, namely the query-agnostic and query-aware (conditional and average)
distortion-rate functions.

6

Algorithm 1: To compute the distortion-rate function via the dual linear program (dual-LP)
1 Input: R, (Dx)x∈X , (Rx)x∈X ; Output: D∗(R), the distortion-rate function at rate R;

2 for x ∈ X do
3 FindM(x)

env ⊆Mx such that {(Rx,m,Dx,m)}
m∈M(x)

env
are on the lower-left convex boundary of

{(Rx,m,Dx,m)}m∈Mx
; ▷ see Fig. 3 for an example

4
{
m

(x)
1 ,m

(x)
2 , . . . ,m

(x)
kx

}
←M(x)

env ordered such that R
x,m

(x)
kx

> · · · > R
x,m

(x)
1

;

5 for i = 1, . . . , kx − 1 do λ
(x)
i ←

D
x,m

(x)
i

−D
x,m

(x)
i+1

R
x,m

(x)
i+1

−R
x,m

(x)
i

;

6 λ
(x)
0 ← +∞; λ(x)

kx
← 0; Λ(x) ←

{
λ
(x)
0 , λ

(x)
1 , . . . , λ

(x)
kx−1, λ

(x)
kx

}
; ▷ λ

(x)
0 > · · · > λ

(x)
kx

7
{
λ̃0, . . . , λ̃k

}
←
⋃

x∈X Λ(x) with +∞ = λ̃0 > λ̃1 > · · · > λ̃k−1 > λ̃k = 0 ; ▷ k ≥ kx ∀x ∈ X
8 for x ∈ X do
9 for j = 1, . . . , k do Find i ∈ {1, . . . , kx} :

(
λ
(x)
i , λ

(x)
i−1

)
⊇
(
λ̃j , λ̃j−1

)
; set m̃(x)

j ← m
(x)
i ;

10 for j = 1, . . . , k do
11 if

∑
x∈X R

x,m̃
(x)
j

> R then λj ← λ̃j−1 else λj ← λ̃j ;

12 Dj ← −λjR+
∑

x∈X

[
D

x,m̃
(x)
j

+ λjRx,m̃
(x)
j

]
;

13 Return maxj=1,...,k Dj ; ▷ = D∗(R)

4 Experiments

The distortion-rate function defined in Sec. 3 describes the best possible trade-off between the
achievable values of rate and distortion in the query-aware and query-agnostic cases. In this section,
we compare the performance of existing prompt compression methods (that are compatible with the
black-box model setting we consider here) with the optimal curve for a synthetic dataset. We observe
that there is a sizeable gap between the performance of existing methods and the optimal curve. We
propose Adaptive QuerySelect, a query-aware and variable-rate adaptation of LLMLingua-2 [14],
that outperforms the existing methods on this synthetic dataset. We also consider a query-aware
version of LLMLingua-2 called QuerySelect and observe that it outperforms the query-agnostic
version, which highlights the importance of conditioning on the query.

We include an ablation study on the impact of tokenization of the prompt compression problem, as
tokenization is lossy since it groups together multiple symbols into a single symbol before passing it
to an LLM. We study the effect of tokenization on the prompt compression problem by forcing the
tokenizer on the encoder and decoder side to tokenize the bits of the binary string prompts in our
dataset individually, which we refer to as “forced tokenization.” We run experiments in this setting
and with the regular “standard tokenization.” Additional details on our experiments can be found in
App. F. Our code is made available for reproducibility purposes.2

4.1 Experimental setup

Dataset. In order to run experiments that are computationally tractable but still meaningful to the
prompt compression problem, we construct a synthetic dataset {(xi, qi, yi)}Ni=1 with (1) prompts
xi being sequences from V = {0, 1}, i.e., binary prompts, (2) natural language queries qi, such as
“Count the number of 1s,” “Compute the parity,” and “Is the binary string a palindrome?” and (3)
their associated answers yi. In total, we construct a dataset of seven queries; a complete specification
of the dataset, including a few examples is available in App. F.2.1. The binary prompts are generated
from a first-order Markov chain on {0, 1} with a 0.1 probability of transitioning and a 0.9 probability
of remaining in the same state, and the minimum and maximum possible lengths for each prompt are
four and ten, respectively. All methods are evaluated on a validation set of 1400 examples in total (7
queries, 200 examples per query). The optimal distortion-rate function is computed using Algorithm 1,

2Our code is available at https://github.com/acnagle/fundamental-limits

7

https://github.com/acnagle/fundamental-limits

taking PXQY to be the empirical distribution on the dataset, i.e., PXQY = 1
N

∑N
i=1 δ(xi,qi,yi). This

is the natural choice when the true distribution is unknown. Another choice is a parametric model
with parameters learned from a dataset, but it is unclear what is an appropriate model in this case.

We also run experiments on a small natural language dataset curated with GPT-4 [38] and NarrativeQA
[18] for a large-scale experiment. The small dataset consists of ten prompts with four queries each,
and a few examples are provided in Table 3 in App. F.2.1. More details on the considerations made in
constructing our datasets are provided in App. E.

Baseline methods. We compare the rate-distortion trade-off of the optimal strategy (both query-
aware and query-agnostic) with prompt compression methods that can be used to compress prompts
for a black-box target LLM: Selective Context [11], LLMLingua [12], LLMLingua Query [13],
LLMLingua-2 [14]. As such, we do not consider methods like Gist Tokens [15], In-Context Autoen-
coder [16], and AutoCompressor [17] since they require special training methods generally not com-
patible with black-box target LLMs. Selective Context uses − logP(xi | x0, x1, . . . , xi−1) to score
the i-th token, and retains the tokens whose score is larger than the p-percentile, where p ∈ [0, 1] is
the ratio parameter. LLMLingua uses a similar method, but they first partition the input prompt into
segments and condition on previously compressed segments to compress the current segment. They
later extended their method to perform query-aware compression, which is what we use for LLMLin-
gua Query. While these methods use a decoder-style (causal) transformer LLM to do prompt com-
pression, this approach makes an independence assumption on the influence of future tokens have on
the i-th token. LLMLingua-2 instead uses an encoder-style (bidirectional) LLM to perform a token
classification task, where their model predicts whether a given token should be kept or removed.

Our proposed methods. We add two novel contributions over the LLMLingua-2 work: (1) we
adapt LLMLingua-2 to the query-aware setting, whereas the original work only proposed the query-
agnostic approach, which we call “QuerySelect,” and (2) we further adapt this query-aware approach
into a variable-rate approach we refer to as “Adaptive QuerySelect.” This approach lets the encoder
model decide which tokens to keep based on the confidence over a specified threshold. In other
words, LLMLingua-2 and QuerySelect accept a rate parameter to determine the compression ratio,
but Adaptive QuerySelect replaces the rate parameter with a threshold parameter. The encoder
model predicts the probability of keeping a particular token, and the token is kept if the predicted
probability is above the threshold, resulting in a variable-rate compression of the prompt. Variable-
rate compression is important as some prompts are more compressible than others, and vice versa.

Models. We use Mistral 7B Instruct v0.2 [39] as our black-box target LLM, which is fine-tuned on
the training set partition of our synthetic dataset. This model is fixed after fine-tuning and no prompt
compression methods have access to any part of it. All prompt compression methods use an LLM
as part of their compression algorithm; we use deduplicated Pythia 1B [40] for Selective Context,
LLMLingua, and LLMLingua Query and RoBERTa Base [41] for LLMLingua-2-based methods. For
each method, we finetune on the training set partition to enable the best performance possible for that
method. More information on how we trained these methods and the data we used is in App. F. For
all models, including the target LLM, we fine-tune with LoRA [42] and conduct a hyperparameter
grid search. We choose the configuration with the best performance on a test set that is different from
the validation set. More details on the hyperparameter search are provided in App. F.3.

For the natural language dataset, no fine-tuning is necessary on the decoder side. On the encoder side,
Selective Context, LLMLingua, and LLMLingua Query use the same model as on the decoder side,
and LLMLingua-2 uses a specially fine-tuned version of XLM RoBERTa Large [43, 14]. We use a
custom fine-tuned XLM RoBERTa Large model as the encoder for the QuerySelect and Adaptive
QuerySelect methods. The training dataset of (prompt, query, answer) tuples used to train this custom
model is filtered from the Databricks Dolly 15k [44] dataset to only include examples with prompt
lengths between a specified minimum and maximum length (see Sec. F.3.2 for details).

4.2 Results

Fig. 1 summarizes our experimental contributions on the synthetic dataset. We observe a large
gap between the optimal curve and existing prompt compression methods. Thus, we propose
QuerySelect as a query-aware and Adaptive QuerySelect as a query-aware, variable-rate modification
of LLMLingua-2 to close this gap. Our results show that Adaptive QuerySelect achieves the best
performance and, in fact, is the only method to outperform the optimal query-agnostic strategy. We

8

also note that the optimal distortion-rate curves eventually fall below the baseline performance of
using the full prompt (no compression). This observation is especially interesting because it shows
that compressing prompts can improve performance on downstream tasks, as observed on natural
language datasets in previous prompt compression works [12, 13, 14]. We accredit the performance
of Adaptive QuerySelect to variable-rate compression, where we allow the compressor to choose how
much it should compress based on the query and prompt as input (see App. B, Remark 1 for a formal
explanation of variable-rate compression). Even though this approach relinquishes explicit control
over the rate, our experiments show that variable-rate compression is the closest to optimality.

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string
a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

Count the number of transitions
from 0 to 1 and 1 to 0.

Selective [11]

LLMLingua [12]

LLMLingua Query [13]

LLMLingua-2 [14]

QuerySelect

Adaptive QuerySelect

Optimal (Query-aware)

No Compression

Figure 4: We highlight the distortion-rate curves for two of the seven queries in the validation partition
of our synthetic dataset. Our method, Adaptive QuerySelect, is able to match the performance of
the optimal query-aware strategy (left). Some queries naturally incur less distortion than others
with the target LLM, even with a query-agnostic approach, if the query is aligned well with the data
generation process for the prompt (right). Note that QuerySelect covers the line of LLMLingua-2 as
their performance is identical for this query.

Gap from optimality depends on the query. In Fig. 4, we highlight the distortion-rate curves
for two out of seven of the queries in our synthetic dataset. Despite the fact that Fig. 1 shows a
gap in average performance between the query-aware optimal strategy and Adaptive QuerySelect,
Fig. 4 (left) shows that Adaptive QuerySelect can match the performance of the optimal query-aware
compression scheme. Comparing Fig. 4 (left) and (right), we see that the prompt compression
problem is easier (methods are closer to optimality) for certain tasks or queries depending on how the
prompts were generated. For our synthetic dataset, all prompts are generated from a Markov chain
with a transition probability of 0.1 and a probability of 0.9 for remaining in the same state. This
means the tokens with the highest entropy are those that are part of a transition, and those tokens are
the most important for answering this query. As a result, we see that methods that use the negative
log-likelihood as a means for compression (Selective Context, LLMLingua, and LLMLingua Query)
perform well, even without conditioning on the query. An exception here is the performance of
LLMLingua Query, which we find has mixed performance compared to vanilla LLMLingua for token-
level prompt compression on our dataset. Please refer to Fig. 11 in App. F for results on all queries.

Effect of tokenization. Finally, the results of our ablation study on the effects of tokenization are
provided in Fig. 10 in App. F. Interestingly, the optimal curves are nearly identical, suggesting that
tokenization does not play a role in attaining the best possible trade-off. Furthermore, we see that, for a
fixed rate, the standard tokenization performance often matches or exceeds the performance of forced
tokenization. However, the standard tokenization approach does not allow for average rates below 0.6
due to the limited size of the prompts in our synthetic dataset, so the comparison is somewhat limited.
In particular, standard tokenization allows for compression of at most four tokens (but usually only
two or three tokens), whereas forced tokenization allows for compression of at most ten tokens.

Extension to natural language prompts. We have thus far shown the gap between current token-
level prompt compression algorithms and their optimal strategies for both the query-aware and query-
agnostic encoder on a synthetic dataset. Here, we extend our results to a small natural language
dataset curated with GPT-4 [38] (details in App. F.2.1). For natural language prompts, the number of
possible combinations of tokens grows too quickly, either by increasing the number of tokens in the
prompt or increasing the vocabulary size, to compute the full Dx. Instead, we rely on the observation

9

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

d
is

to
rt

io
n

1 - RougeL

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.02

0.04

0.06

0.08

0.10

0.12

1 - BertScore

Selective [11]

LLMLingua [12]

LLMLingua Query [13]

LLMLingua-2 [14]

QuerySelect

Adaptive QuerySelect

Optimal (Query-agnostic)

Optimal (Query-aware)

No Compression

Figure 5: Comparison among all prompt compression methods on our natural language dataset. We
show the rate-distortion trade-off for RougeL [23] (left) and BertScore [45] (right). Since a higher
RougeL and BertScore metric is better, we plot “1− the computed average distortion” so that a higher
rate should yield a lower loss. We discuss the choice of our metrics in App. F.2.2.

that current token-level prompt compression strategies simply remove tokens in place. With this
observation, the number of prompts to consider has the same growth rate as a prompt with a binary
alphabet. Please refer to App. E for more details. Although we cannot compute the true optimal
curves where every possible combination of tokens is considered, we can compute the optimal curves
for current prompt compression algorithms that do not generate new tokens. Fig. 8 shows that the
gap for this approximation is negligible on binary prompts.

The results of our extension to natural language prompts, presented in Fig. 5, show that both of our
proposed methods achieve the lowest distortion among all other prompt compression algorithms for
low rates. However, the gap between all algorithms and the optimal strategies is significant. We
posit the quality of the training data for LLMLingua-2-based methods accounts for the discrepancy
in how far away the best method is from the optimal strategies between binary (Fig. 1) and natural
language (Fig. 5) prompts. More specifically, the labels used for the binary synthetic dataset can be
determined algorithmically and are optimal, but GPT-4 is used to determine the labels for the natural
language dataset, which generally does not have a set of optimal “ground truth” labels. Remarkably,
the gap between feeding the prompt directly to the black-box LLM (no compression) and either
optimal prompt compression strategy is also large, and Fig. 5 shows that much lower distortion can
be achieved in roughly 70% and 40% fewer tokens for the query-aware and query-agnostic cases,
respectively. LLMLingua-2 methods are the only methods that achieve lower distortion than the
no compression result, albeit for higher rates. Finally, we present a few histograms of the rates
for QuerySelect and Adaptive QuerySelect in Fig. 15, which shows the greater range of rates that
Adaptive QuerySelect may choose from over QuerySelect.

Although we cannot compute the optimal rate-distortion curves on a dataset as large as NarrativeQA,
we did compute the curve for all existing methods to compare them on a larger-scale dataset. Those
results are provided in Fig. 16; they confirm that our proposed methods outperform all other methods
for rates below 0.5. We also display the average time to compress a prompt for each method in
Table 6. Since our methods are adapted from LLMLingua-2, they share the same runtime.

5 Conclusion

We have proposed a framework for understanding the prompt compression problem for black-box
target LLMs. With this framework, we defined and formulated the optimal distortion-rate trade-off as
a linear program, and devised an algorithm to solve this efficiently via its dual, for both query-agnostic
and query-aware settings. We compared the optimal curves with prompt compression methods in the
existing literature and adapt one of them, LLMLingua-2, to be query-aware and variable-rate; this
modified method, Adaptive QuerySelect, exhibits superior performance, sometimes even matching
the performance of the optimal query-aware strategy, on our synthetic dataset. As future work, it is
important to exhaustively study our proposed method on natural language datasets. Additionally, it is
worthwhile to pursue an approximation to the optimal curves for large-scale datasets to observe the
fundamental limit in that regime. We share preliminary results in that direction in App. G.3.

10

Acknowledgments

This work was partly supported by ARO Award W911NF2310062, ONR Award N000142412542,
and the 6G@UT center within WNCG at UT Austin. The work was also supported in part by the
Swiss National Science Foundation under Grant 200364. The authors would like to thank Ananda
Theertha Suresh for introducing them to the problem of prompt compression. AG would like to thank
Emre Telatar for helpful discussions on the problem formulation.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[2] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, page 611–626, New York, NY, USA, 2023. Association for Computing
Machinery.

[3] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

[4] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. 2023.

[5] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

[6] Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella
Biderman, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du,
Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan
Kocon, Jiaming Kong, Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri,
Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanisław
Woźniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing
RNNs for the transformer era. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

[7] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[8] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy
Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds,
Danny Hernandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah, and Jared Kaplan. A general language
assistant as a laboratory for alignment, 2021.

[9] Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context, 2022.

[10] David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
conditioning for controllability and toxicity reduction in language models. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5621–5634, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics.

[11] Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance
inference efficiency of large language models, 2023.

[12] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 13358–13376.
Association for Computational Linguistics, December 2023.

11

[13] Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and
Lili Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt
compression, 2023.

[14] Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei
Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression.
ArXiv preprint, abs/2403.12968, 2024.

[15] Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens.
2023.

[16] Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Conference on
Learning Representations, 2024.

[17] Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3829–3846,
Singapore, December 2023. Association for Computational Linguistics.

[18] Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor
Melis, and Edward Grefenstette. The narrativeqa reading comprehension challenge, 2017.

[19] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023.
arXiv:2307.03172.

[20] Tong Niu, Caiming Xiong, and Richard Socher. Deleter: Leveraging bert to perform unsuper-
vised successive text compression, 2019.

[21] Raphael Schumann, Lili Mou, Yao Lu, Olga Vechtomova, and Katja Markert. Discrete opti-
mization for unsupervised sentence summarization with word-level extraction. In Dan Juraf-
sky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 5032–5042, Online, July 2020.
Association for Computational Linguistics.

[22] Demian Ghalandari, Chris Hokamp, and Georgiana Ifrim. Efficient unsupervised sentence
compression by fine-tuning transformers with reinforcement learning. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1267–1280, Dublin,
Ireland, May 2022. Association for Computational Linguistics.

[23] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[24] T. Berger. Rate Distortion Theory: A Mathematical Basis For Data Compression. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1971.

[25] Claude E Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE Nat.
Conv. Rec, 4(142-163):1, 1959.

[26] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[27] Abbas El Gamal and Young-Han Kim. Network Information Theory. Cambridge University
Press, 2011.

[28] Bruce Hajek and Michael B Pursley. Evaluation of an achievable rate region for the broadcast
channel. IEEE Transactions on Information Theory, 25(1):36–46, 1979.

[29] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

12

[30] George B Dantzig. Linear programming. Operations research, 50(1):42–47, 2002.

[31] Aaron D Wyner and Jacob Ziv. The rate-distortion function for source coding with side
information at the decoder. IEEE Transactions on Information Theory, 22(1):1–10, 1976.

[32] Aaron D Wyner. The rate-distortion function for source coding with side information at the
decoder-II: General sources. Information and Control, 38(1):60–80, 1978.

[33] Tsachy Weissman and Abbas El Gamal. Source coding with limited-look-ahead side information
at the decoder. IEEE Transactions on Information Theory, 52(12):5218–5239, 2006.

[34] Hirosuke Yamamoto. Wyner-Ziv theory for a general function of the correlated sources (cor-
resp.). IEEE Transactions on Information Theory, 28(5):803–807, 1982.

[35] Eric Lei, Hamed Hassani, and Shirin Saeedi Bidokhti. Neural estimation of the rate-distortion
function with applications to operational source coding. IEEE Journal on Selected Areas in
Information Theory, 3(4):674–686, 2022.

[36] Yibo Yang, Stephan Eckstein, Marcel Nutz, and Stephan Mandt. Estimating the rate-distortion
function by wasserstein gradient descent. In ICML 2023 Workshop Neural Compression: From
Information Theory to Applications, 2023.

[37] Heasung Kim, Hyeji Kim, and Gustavo De Veciana. Estimation of rate-distortion function for
computing with decoder side information. In First ’Learn to Compress’ Workshop @ ISIT 2024,
2024.

[38] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg
Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew
Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fe-
dus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Lo-
gan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie
Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstan-
tinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Ma-
teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob
McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vin-
nie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pan-
tuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov,
Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,

13

David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Kata-
rina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2024.

[39] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[40] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing
large language models across training and scaling. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2020.

[42] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[43] Sebastian Ruder, Anders Sgaard, and Ivan Vuli. Unsupervised cross-lingual representation
learning. In Preslav Nakov and Alexis Palmer, editors, Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts, pages 31–38, Florence,
Italy, July 2019. Association for Computational Linguistics.

[44] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023.

[45] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert, 2020.

[46] John von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100(1):295–320, 1928.

[47] Stephen Simons. Minimax Theorems and Their Proofs, pages 1–23. Springer US, Boston, MA,
1995.

[48] R. Gray. Conditional rate-distortion theory. Technical report, Stanford University, 1972.

[49] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

14

Appendix

The appendix is organized as follows:

1. In App. A, we provide a complete summary of the notation used throughout the paper.
2. In App. B, we formally characterize the distortion-rate functions for the query-aware prompt

compression setting, analogous to the query-agnostic setting in Sec. 3.
3. In App. C, we prove the main result of the paper (Thm. 1) and give a detailed description of

the working of Algorithm 1.
4. In App. D, we provide an overview of the information theory literature on rate-distortion

theory, and explain how our model compares.
5. In App. E, we describe how Algorithm 1 can be used to approximately compute the distortion-

rate function for small natural language datasets.
6. In App. F, we provide details on the setup used for the experiments in Sec. 4.
7. In App. G, we have additional experimental results, including preliminary results on approx-

imating the optimal distortion-rate curve for large-scale natural language datasets in G.3.

A Notation

General. We use ≜ to signify a definition. For a set X , with xi ∈ X for i = 1, . . . , n, we
represent the sequence (x1, . . . , xn) by xn ∈ Xn, which is short for X × · · · × X . We use X ∗ to
denote

⋃
n≥1 Xn, the set of all nonempty finite-length sequences on X . In general, for y ∈ Xn,

we denote the length of y by len(y) = n. We denote the cardinality of a set X by |X |. We
use R+ to denote the set of nonnegative real numbers. For a set X = {x1, . . . , xk}, we use the
boldface (Ax)x∈X to denote the vector (Ax1

, . . . ,Axk
) indexed by elements of X . We also write

RX
+ = {(vx)x∈X : vx ∈ R+ for each x ∈ X}. We use 1 to denote the indicator function, which

takes the value 1 when its argument is true and 0 otherwise otherwise. The infimum and supremum
of a set of values is denoted using inf and sup respectively. We use 0 and 1 to denote the vector of
appropriate dimension with all elements equal to 0 and 1 respectively.

Probability. We deal with discrete probability distributions on finite sets, for which we use calli-
graphic letters to denote the set (e.g. X), uppercase letters to denote the random variable (r.v., e.g.
X) and lowercase letters to denote samples of the r.v. (e.g. x). The set of all probability distribu-
tions on the set X is denoted by P(X). The probability distribution of the r.v. X on X is denoted by
PX ∈ P(X), and we say X ∼ PX . For a (measurable) function f , the expectation of the r.v. f(X)
is denoted by EX∼PX

[f(X)], or E [f(X)], with the subscripts dropped when the distribution and/or
r.v.’s are clear from context. The degenerate probability distribution with mass 1 at x ∈ X is repre-
sented by δx ∈ P(X). Conditional probabilities from X to Y are denoted as PY |X , and for each
x ∈ X , we denote the distribution on Y as PY |X(·|x).

Problem-setup-specific notation. In our model, we use V to refer to the vocabulary of the prompt.
We use the uppercase letters X to refer to the prompt, M to refer to the compressed prompt, Q to
refer to the query and Y to refer to the answer as random variables (and corresponding calligraphic
and lowercase letters to denote the set and samples of the r.v. respectively). We use PŶ to refer to the
output distribution of the LLM, which is modeled as the function ϕLLM. For a given prompt x, we
useMx to refer to the set of possible compressed prompts, which is the set of all sequences of length
smaller than len(x). To denote the distortion measure, we use d, which can be either the log loss dlog
or the 0/1 loss d0/1. We denote the query-agnostic distortion-rate function at rate R by D∗(R). The
average query-aware distortion-rate function is denoted by D̄∗(R), and the conditional query-aware
distortion-rate function for query q ∈ Q is given by D∗

q (R).

B Extensions to query-aware prompt compression

As mentioned in Sec. 3.2 and Sec. 3.3, analogous definitions and results can be obtained for the
query-aware setting as well. The difference is that the compressor has access to the query in addition

15

to the prompt. Thus, the compressor comp is a possibly random function from X × Q toM. For
the query Q, the compressor maps the prompt X to the compressed prompt M = comp(X,Q) with
len(M) ≤ len(X). The user provides the input [M,Q] to the LLM, which produces the output
distribution PŶ = ϕLLM(M,Q). Just as in the query-agnostic setting, two quantities of interest are

(1) the (average) rate E
[
len(M)
len(X)

]
, and (2) the distortion E [dlog(Y, ϕLLM(M,Q))],

with both expectations taken with respect to the joint distribution PMXQY . Since different queries
may require different amounts of information to be preserved during compression, it is also of
interest to define the (conditional) rate and distortion for the specific query q as E

[
len(M)
len(X)

]
and

E [dlog(Y, ϕLLM(M, q))] respectively, with both expectations taken with respect to the joint distribu-
tion PMXY |Q(·|q).
The rate-distortion problem for query-aware prompt compression can be also formulated similarly to
(3). We model comp as a random mapping PM |XQ from X ×Q toM. Then, the (average) distortion-
rate function at rate R is the smallest distortion that can be achieved by a query-aware compressor
with rate at most R, given by

D̄∗(R) = inf
PM|XQ

E
[
dlog

(
Y, ϕLLM(M,Q)

)]

s.t. PM |XQ is a compressor, and

E
[
len(M)

len(X)

]
≤ R,

(5)

with both expectations taken with respect to the joint distribution PMXQY = PM |XQPXQY induced
by the compressor. The condition “PM |XQ is a compressor” is short for (1) for each x ∈ X and
q ∈ Q,

∑
m∈M PM |XQ(m|x, q) = 1, (2) PM |XQ(m|x, q) = 0 if len(m) > len(x), and (3) if

len(m) = len(x), then PM |XQ(m|x, q) = 0 unless m = x. Similarly, the (conditional) distortion-
rate function at rate R is the smallest distortion that can be achieved by a query-aware compressor for
query q at rate at most R, given by

D∗
q (R) = inf

PM|XQ(·|·,q)
E
[
dlog

(
Y, ϕLLM(M,Q)

)]

s.t. PM |XQ(·|·, q) is a compressor, and

E
[
len(M)

len(X)

]
≤ R,

(6)

with both expectations taken with respect to PMXY |Q(·, ·, ·|q).
Just like the query-agnostic setting, note that both (5) and (6) are linear programs, as the objective
and constraints are all linear in PM |XQ and PM |XQ(·|·, q) respectively. We obtain explicit linear
programs analogous to (LP) by defining constants D̄q

x and R̄q
x ∈ RMx

+ for the average distortion-rate
function and Dq

x and Rq
x ∈ RMx

+ for the conditional distortion-rate functions, for each x ∈ X and
q ∈ Q, similarly to (4).

Proposition 2 (Query-aware primal LPs). The (average) distortion-rate function for query-aware
prompt compression (5) is given by the solution to

D̄∗(R) = inf
(zx,q∈RMx

+)
x∈X ,q∈Q

∑

x∈X ,q∈Q
D̄q

x
⊤zx,q

s.t.
∑

x∈X ,q∈Q
R̄q

x
⊤zx,q ≤ R,

1⊤zx,q = 1, ∀x ∈ X , q ∈ Q.

(avg-cond-LP)

16

The (conditional) distortion-rate function for query-aware prompt compression for query q (6) is
given by the solution to

D∗
q (R) = inf

(zx∈RMx
+)

x∈X

∑

x∈X
Dq

x
⊤zx

s.t.
∑

x∈X
Rq

x
⊤zx ≤ R,

1⊤zx = 1, ∀x ∈ X .

(cond-LP)

For each x ∈ X ,Mx denotes the set of all possible compressed prompts associated to x, i.e., the
set of all possible token sequences of length at most len(x), the vectors zx,q ∈ RMx

+ for q ∈ Q and
zx ∈ RMx

+ are the optimization variables respectively and the constants D̄q
x, R̄

q
x,D

q
x,R

q
x ∈ RMx

+
are given by

D̄q
x,m ≜ PXQ(x, q)E [dlog(Y, ϕLLM(m, q))] and R̄q

x,m ≜ PXQ(x, q)
len(m)

len(x)
, m ∈Mx, (7)

Dq
x,m ≜ PX|Q(x|q)E [dlog(Y, ϕLLM(m, q))] and Rq

x,m ≜ PX|Q(x|q)
len(m)

len(x)
, m ∈Mx, (8)

with the expectation taken with respect to PY |MXQ(·|m,x, q).

Proof. This follows immediately from (5) and (6) by defining the constants D̄q
x, R̄

q
x,D

q
x,R

q
x ∈ RMx

+
for each x ∈ X and q ∈ Q as given in (7) and (8) and taking zx,q and zx to be PM |XQ(·|x, q)
respectively,. We use the fact that PM |XQ(m|x, q) = 0 when len(m) > len(x) to reduce the
dimension of zx,q and zx fromM toMx.

Remark 1. An interesting phenomenon here that does not occur in the query-agnostic setting is the
comparison between the average and conditional distortion-rate functions, i.e., D̄∗(R) and D∗

q (R) for
q ∈ Q. One possible way to “average” the conditional distortion-rate functions would be to simply
compute EQ∼PQ

[
D∗

Q(R)
]
, but we always have D̄∗(R) ≤ EQ∼PQ

[
D∗

Q(R)
]
. This is because the

latter averages the distortion-rate functions over PQ at a fixed value of the rate, i.e., the prompt for
each query is forced to be compressed to the same rate R. For D̄∗(R), on the other hand, only the
average rate over the queries is required to be R. This allows the compressor to set a higher rate for
“difficult queries” that have higher distortion values, and use a lower rate for queries that have lower
distortion values in general. This is exactly the phenomenon we exploit in designing the variable-rate
compression scheme Adaptive QuerySelect in Sec. 4.1, which outperforms other existing schemes in
our experiments.

Just as in the query-agnostic setting, it is useful to compute and solve the dual linear programs instead
of directly solving the linear programs above.
Theorem 2 (Query-aware dual LPs). The (average) distortion-rate function for query-aware prompt
compression (5) is given by the solution to the dual of the linear program (avg-cond-LP), i.e.,

D̄∗(R) = sup
λ≥0

−λR+

∑

x∈X ,q∈Q
min

m∈Mx

[
D̄q

x,m + λR̄q
x,m

]

 . (avg-cond-dual-LP)

The (conditional) distortion-rate function for query-aware prompt compression for query q (6) is
given by the solution to the dual of the linear program (cond-LP), i.e.,

D∗
q (R) = sup

λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[
Dq

x,m + λRq
x,m

]
}
. (cond-dual-LP)

Proof. (Conditional) This follows trivially by simply observing that the linear program in (cond-LP)
is identical to that in (LP), except that Dx and Rx are replaced by the (conditional) query-aware
versions Dq

x and Rq
x respectively. Henc, by Thm. 1 the solution to (cond-LP) is given by (dual-LP)

with Dx and Rx replaced by the (conditional) query-aware versions Dq
x and Rq

x respectively, which
gives (cond-dual-LP).

17

(Average) In addition to replacing Dx and Rx from (LP) by the (average) query-aware versions
D̄q

x and R̄q
x respectively, we also have that the optimization variables are given by zx,q for each

pair (x, q) ∈ X × Q as opposed to simply zx for each x ∈ X . Hence, by Thm. 1 the solution to
(avg-cond-LP) is given by (dual-LP) with Dx and Rx are replaced by the (average) query-aware
versions D̄q

x and R̄q
x respectively and X replaced by X ×Q. This gives (avg-cond-dual-LP) exactly,

and we are done.

Note that both (avg-cond-dual-LP) and (cond-dual-LP) are of the same form as (dual-LP), with some
minor differences. For a given q ∈ Q, the conditional distortion-rate function D∗

q (R) is identical
to the query-unaware distortion-rate function D∗

q (R) with (Dx,Rx) replaced by (Dq
x,R

q
x), and

hence can be solved by running Algorithm 1 with the input
{
R, (Dq

x)x∈X , (Rq
x)x∈X

}
. For the

average distortion-rate function D̄∗(R), in addition to replacing Dx and Rx by D̄q
x and R̄q

x, we
also have that X is replaced by X × Q, hence D̄∗(R) is obtained by running 1 with the input{
R, (Dq

x′)x′∈X ′ , (R
q
x′)x′∈X ′

}
, where X ′ ≜ X ×Q and x′ runs over all pairs (x, q).

C The dual linear program: proof and solution

C.1 Derivation of the dual linear program

Proof of Thm. 1. We start from the linear program (LP) and construct its dual. Recall that (LP) is
given by

D∗(R) = inf
(zx∈RMx

+)
x∈X

∑

x∈X
D⊤

x zx

s.t.
∑

x∈X
R⊤

x zx ≤ R,

1⊤zx = 1, ∀x ∈ X .

Introduce the Lagrange multipliers λ ≥ 0 to handle the inequality constraint and µx ∈ R for each
x ∈ X to handle the equality constraints. Then, the above equation is equivalent to

D∗(R) = inf
(zx∈RMx

+)
x∈X

{∑

x∈X
D⊤

x zx + sup
λ≥0

λ

(∑

x∈X
R⊤

x zx −R

)
+
∑

x∈X

[
sup
µx∈R

µx

(
1⊤zx − 1

)]
}
.

To see why this equivalence holds, observe that the terms supλ≥0 λ
(∑

x∈X R⊤
x zx −R

)
and

supµx∈R µx

(
1⊤zx − 1

)
are both 0 when (zx)x∈X is in the feasible set of (LP) and +∞ otherwise.

Let µ ≜ (µx)x∈X ∈ RX , then we can simplify the above expression by rearranging terms, to obtain

D∗(R) = inf
(zx∈RMx

+)
x∈X

sup
µ∈RX ,
λ≥0

{∑

x∈X
(Dx + λRx + µx1)

⊤
zx − λR−

∑

x∈X
µx

}
.

Note that the objective
∑

x∈X (Dx + λRx + µx1)
⊤
zx − λR−

∑
x∈X µx is linear in (zx)x∈X and

in (µ, λ), and the minimization and maximization are both over convex sets. Hence, by the minmax
theorem [46, 47], we can switch their order without affecting the equality, i.e.,

D∗(R) = sup
µ∈RX ,
λ≥0

inf
(zx∈RMx

+)
x∈X

{∑

x∈X
(Dx + λRx + µx1)

⊤
zx − λR−

∑

x∈X
µx

}
.

If, for some x, there is a component of the vector Dx + λRx + µx1 ∈ RMx that is negative, then
letting that component of zx go to infinity, we have that the inner infimum is −∞. On the other hand,
if every component of Dx + λRx + µx1 is nonnegative for every x, then the infimum is simply 0,
attained by setting zx = 0. Hence, the above equation reduces to

D∗(R) = sup
µ∈RX ,
λ≥0

− λR−
∑

x∈X
µx

18

s.t. Dx,m + λRx,m + µx ≥ 0 for every m ∈Mx and x ∈ X .

For a given x, the constraint Dx,m + λRx,m + µx ≥ 0 for all m ∈ Mx is equivalent to −µx ≤
minm∈Mx (Dx,m + λRx,m). Letting νx ≜ minm∈Mx (Dx,m + λRx,m) + µx and ν ≜ (νx)x∈X ,
the constraint is simply that νx ≥ 0 for all x, or equivalently, ν ∈ RX

+ . Hence, the above equation
can be written as

D∗(R) = sup
ν∈RX

+ ,
λ≥0

−λR+
∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)−
∑

x∈X
νx.

Observe that only the first two terms depend on λ, and only the last term depends on ν. This lets us
optimize over λ and ν separately, to give

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)

}
+ sup

ν∈RX
+

(
−
∑

x∈X
νx

)

= sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

(Dx,m + λRx,m)

}
,

since supν∈RX
+

(
−
∑

x∈X νx
)
= − infν∈RX

+

∑
x∈X νx = −

∑
x∈X infνx≥0 νx = 0, and we are

done.

C.2 Proof and illustration of Algorithm 1

In this section, we explain each step of Algorithm 1 in detail. In doing so, we prove that the algorithm
does indeed solve (dual-LP), i.e., computes

D∗(R) = sup
λ≥0

{
−λR+

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m]

}
.

We also use an artificial example as described below to show the working of the algorithm, in
particular lines 1–9. For convenience, the algorithm is repeated verbatim below, without comments:

Algorithm 1: To compute the distortion-rate function via the dual linear program (dual-LP)
1 Input: R, (Dx)x∈X , (Rx)x∈X ; Output: D∗(R), the distortion-rate function at rate R;

2 for x ∈ X do
3 FindM(x)

env ⊆Mx such that {(Rx,m,Dx,m)}
m∈M(x)

env
are on the lower-left convex boundary of

{(Rx,m,Dx,m)}m∈Mx
;

4
{
m

(x)
1 ,m

(x)
2 , . . . ,m

(x)
kx

}
←M(x)

env ordered such that R
x,m

(x)
kx

> · · · > R
x,m

(x)
1

;

5 for i = 1, . . . , kx − 1 do λ
(x)
i ←

D
x,m

(x)
i

−D
x,m

(x)
i+1

R
x,m

(x)
i+1

−R
x,m

(x)
i

;

6 λ
(x)
0 ← +∞; λ(x)

kx
← 0; Λ(x) ←

{
λ
(x)
0 , λ

(x)
1 , . . . , λ

(x)
kx−1, λ

(x)
kx

}
;

7
{
λ̃0, . . . , λ̃k

}
←
⋃

x∈X Λ(x) with +∞ = λ̃0 > λ̃1 > · · · > λ̃k−1 > λ̃k = 0 ;

8 for x ∈ X do
9 for j = 1, . . . , k do Find i ∈ {1, . . . , kx} :

(
λ
(x)
i , λ

(x)
i−1

)
⊇
(
λ̃j , λ̃j−1

)
; set m̃(x)

j ← m
(x)
i ;

10 for j = 1, . . . , k do
11 if

∑
x∈X R

x,m̃
(x)
j

> R then λj ← λ̃j−1 else λj ← λ̃j ;

12 Dj ← −λjR+
∑

x∈X

[
D

x,m̃
(x)
j

+ λjRx,m̃
(x)
j

]
;

13 Return maxj=1,...,k Dj ;

19

Consider the following artificial example with X = {α, β}. Let (Rα,Dα) and (Rβ ,Dβ) be as
given by the blue points in the scatter plots over m ∈ Mα and m ∈ Mβ respectively in Fig. 6. In
our example, we have |Mα| = 11 and |Mβ | = 8. The following observation is crucial: recall the
definitions of Rx and Dx,

Dx,m ≜ PX(x)E [dlog(Y, ϕLLM(m,Q))] and Rx,m ≜ PX(x)
len(m)

len(x)
, m ∈Mx,

with the expectation computed with respect to PQY |MX(·, ·|m,x). For a fixed value of x, the positive
real numbers Dx,m can be arbitrary, but Rx,m must be an integral multiple of the constant PX(x)

len(x) .
Hence, for a given x, Rx,m takes at most len(x) possible values. This turns out to be extremely
beneficial in the first step, namely identifying the points on the lower-left convex boundary.

Rα,m

Dα,m

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

−λ
(α)
1

−λ
(α)
2

m
(α)
1

m
(α)
2

m
(α)
3

Rβ,m

Dβ,m

0.2

0.2

0.4

0.4

0.6

0.6

−λ
(β)
1

m
(β)
1

m
(β)
2

Figure 6: Scatter plots showing the points {(Rα,m,Dα,m)}m∈Mα and {(Rβ,m,Dβ,m)}m∈Mβ

in blue. The associated lower-left convex boundariesM(α)
bd = {m(α)

1 ,m
(α)
2 ,m

(α)
3 } andM(β)

bd =

{m(β)
1 ,m

(β)
2 } are in red; λ(α)

1 , λ(α)
2 and λ

(β)
1 are the magnitudes of the slopes of the associated line

segments.

For x ∈ X , lines 2–3 of the algorithm identify the kx points m(x)
1 , . . . ,m

(x)
kx

that lie on the lower-
left convex boundary of {(Rx,m,Dx,m)}m∈Mx

. The lower-left convex boundaries are given by the
red lines and the points lying on the boundary are outlined in red. Observe that kα = 3 and kβ = 2.
The quantities computed in line 5 are simply the magnitudes of the slopes of the line segments on
the boundary. A simple computation gives the result of line 6 of the algorithm in our example to
be Λ(α) = {+∞, 1.5, 0.5, 0} and Λ(β) = {+∞, 1, 0}. Clearly, for a given value of x ∈ X and λ ∈[
λ
(x)
j , λ

(x)
j−1

)
, we have that m(x)

i minimizes Dx,m + λRx,m over all m ∈Mx, by virtue of the fact

that these points come from the lower-left convex boundary. Hence, for λ ∈
[
λ
(x)
j , λ

(x)
j−1

)
, we have

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m] =
∑

x∈X

[
D

x,m
(x)
j

+ λR
x,m

(x)
j

]
.

We cannot simplify this further in its current state since λ in the above expression depends on x. Hence,
we must remove the dependence of the range

[
λ
(x)
j , λ

(x)
j−1

)
on x. To do so, observe that each Λ(x) is

a partition of R+ on which m
(x)
i is the minimizer of Dx,m + λRx,m. Line 7 of the algorithm simply

constructs the union of all these partitions, with k elements, denoted by the λ̃ variables; here we have
k = 4 and the union is {+∞, 1.5, 1, 0.5, 0}. For each x, the minimizer on each interval

[
λ̃j , λ̃j−1

)

of the finer partition is known exactly to be one of the m
(x)
i ’s; lines 8–9 associate to each interval

the corresponding minimizer, given by m̃
(x)
j . There is no computation involved in these steps, only

notational rewriting. The corresponding values obtained for our example are given in the table below
(with λ̃0 = +∞); observe that m̃(x)

j minimizes Dx,m + λRx,m over m ∈Mx for λ ∈
[
λ̃j , λ̃j−1

)
.

At this point, we have for λ ∈
[
λ̃j , λ̃j−1

)
,

∑

x∈X
min

m∈Mx

[Dx,m + λRx,m] =
∑

x∈X

[
D

x,m̃
(x)
j

+ λR
x,m̃

(x)
j

]

20

Table 1: The outputs produced by lines 7–9 of Algorithm 1 with (Rα,Dα) and (Rβ ,Dβ) as given
in Fig. 6.

j λ̃j m̃
(α)
j m̃

(β)
j

1 1.5 m
(α)
1 m

(β)
1

2 1 m
(α)
2 m

(β)
1

3 0.5 m
(α)
2 m

(β)
2

4 0 m
(α)
3 m

(β)
2

=
(∑

x∈X D
x,m̃

(x)
j

)
+ λ

(∑
x∈X R

x,m̃
(x)
j

)
.

Hence, the right-hand side of (dual-LP) is simply

max
j=1,...,k

sup
λ∈[λ̃j ,λ̃j−1)

{(∑
x∈X D

x,m̃
(x)
j

)
+ λ

(∑
x∈X R

x,m̃
(x)
j
−R

)}

= max
j=1,...,k

{(∑
x∈X D

x,m̃
(x)
j

)
+ sup

λ∈[λ̃j ,λ̃j−1)

λ
(∑

x∈X R
x,m̃

(x)
j
−R

)}
,

where the first equality follows since
{
λ̃j

}k
j=0

is a partition of R+. Consider the term

supλ∈[λ̃j ,λ̃j−1)
λ
(∑

x∈X R
x,m̃

(x)
j
−R

)
. If R

x,m̃
(x)
j

> R, this supremum occurs in the

limit as λ → λ̃j−1, otherwise it is achieved at λ = λ̃j . Hence, defining λj to
be λ̃j−1 or λ̃j accordingly as in line 11, we have that the above expression is simply

maxj=1,...,k

{(∑
x∈X D

x,m̃
(x)
j

)
+ λj

(∑
x∈X R

x,m̃
(x)
j
−R

)}
, which is exactly what line 13 re-

turns. Hence, we have that the algorithm correctly computes the distortion-rate function D∗(R).

D Connections to information theory literature

Rate-distortion theory is an area of information theory introduced by Shannon [25] to study the
fundamental limits of source compression. The simplest rate-distortion setup is shown in Fig. 7a: We
are given a source which generates samples X1, . . . , Xn independently and identically distributed
(i.i.d.) according to the distribution PX on the set X . We are also given a reconstruction alphabet
X̂ , which may or may not be equal to X . The goal is to compress Xn to a sequence of k elements
from an alphabet V , such that a reconstruction onto X̂n is as “faithful” as possible, while keeping
k as small as possible (in the information theory literature, V = {0, 1} typically). The fidelity of
representation is quantified by a distortion function d : X × X̂ → [0,∞]. For example, the problem
of compressing images with p real-valued pixels into bit sequences can be cast in this formulation by
taking X = X̂ = Rp, V = {0, 1}, and the squared-loss distortion function d(x, x̂) = ∥x− x̂∥22.

Formally, the goal is to construct an encoder enc : Xn → Vk and a decoder dec : Vk → X̂n such
that: (1) the rate k/n, and (2) the (average) distortion E [d(Xn,dec(enc(Xn))], are both as small
as possible. We say that the rate-distortion pair (R,D) is achievable for the source PX under the
distortion function d if there exists an (enc,dec) pair with rate at most R and average distortion at
most D. If the pair (R,D) is achievable, then clearly, for R̃ ≥ R and D̃ ≥ D, the pair (R̃, D̃) is also
achievable. Thus, the quantity of interest to us is the lower boundary of the set of achievable (R,D)
pairs. This is given by the distortion-rate function D∗, which is defined as follows: the distortion-rate
function at rate R is the smallest distortion D such that the pair (R,D) is achievable, or equivalently,

D∗(R) ≜ inf{D ≥ 0 | (R,D) is achievable} (9)
= inf{D ≥ 0 | there exists (enc,dec) with rate ≤ R and distortion ≤ D}.

Note that the distortion-rate function depends on the source PX and the choice of distortion measure.
Closed form expressions are known in some cases, the reader is encouraged to refer to classical

21

texts on information theory [24, 26, 27] for examples. It is important to note that the distortion-rate
function is a fundamental limit; no choice of encoder and decoder can give a lower rate and a lower
distortion. Thus, the distortion-rate function characterizes the Pareto-optimal front of the trade-off
between rate and distortion. It is more common in the information theory literature to define the rate-
distortion function R∗(D), which is the smallest rate R such that the pair (R,D) is achievable. The
two functions trace the same curve when plotted on the same two-dimensional plane.

Several variants of this problem can be defined by introducing the notion of side-information,
where we have i.i.d. samples (X1, Q1), . . . , (Xn, Qn) of a pair of correlated random variables
(X,Q) ∼ PXQ ∈ P(X ×Q). A natural question to ask is what improvement is possible in terms
of the rate-distortion trade-off for Xn when either the encoder or decoder or both have access to
this side-information Qn, which is correlated with X . If only the encoder has access to Qn, then
no improvement can be obtained. If both the encoder and decoder have access to Qn as shown in
Fig. 7c and studied by Gray [48], then, clearly, an improvement is possible. Surprisingly, we can
obtain nontrivial improvements when the decoder has access to Qn as shown in Fig. 7b and studied
by Wyner and Ziv [31, 32].

enc decXn M
X̂n

(a) No side-information [25]

enc decXn M
X̂n

Qn

(b) Side-information at only the decoder [31, 32]

enc decXn M
X̂n

Qn

(c) Side-information at the encoder and the decoder [48]

enc decXn M
Ẑn

Qn

(d) For function computation, Z = f(X,Q) [34]

Figure 7: Rate-distortion models of compression.

These models resemble our setups for query-aware and query-agnostic prompt compression respec-
tively, with a key difference being that the decoder in our problem is the pretrained LLM, which is
fixed. An rate-distortion setup that is closer to our problem in this sense is that of compression for
function computation, introduced by [34]. Here, the goal is to recover an estimate Ẑn that is close to
Zn, with Zi = f(Xi, Qi) for some desired function f . At first glance, it might appear that this setup
is exactly our model for prompt compression, but this turns out to be false — the desired output is an
estimate of f(X,Q), but the decoder can be designed to compute any arbitrary function of M and Q.
In prompt compression, we have the constraint that the function computed by the decoder is fixed to
be ϕLLM, in addition to requiring that the output be close to some function of X and Q. Thus, our
model for prompt compression actually corresponds to a rate-distortion problem for function compu-
tation with side-information with a fixed decoder, which has not been studied before, to the best of
our knowledge. The distortion-rate function D∗(R) for this setup is given by (LP) and (dual-LP). A
closed form expression for D∗(R) cannot be obtained without making further assumptions on ϕLLM;
nonetheless, D∗(R) can be computed for any ϕLLM by solving Algorithm 1.

E Extension to natural language datasets

As discussed in Sec. 4.2, we also use Algorithm 1 to compute the distortion-rate function for a small
natural language dataset. The decisive bottleneck in running Algorithm 1 turns out to be obtaining
Dx for each x ∈ X , i.e., the input to the algorithm. We require one inference call for each possible
compressed prompt m ∈ Mx to compute Dx for a particular prompt x and query. TakingMx to
be all sequences of length smaller than len(x), we see that that the size ofMx is

∑len(x)−1
i=1 |V|i,

where V is the vocabulary of the LLM. The model used in our experiments, Mistral 7B Instruct v0.2
[39], has |V| = 32,000. Clearly, it is then virtually impossible to consider prompts with more than
2 tokens, and in fact, makes it difficult to consider even medium length prompts (50 tokens) for a
vocabulary of size more than 2.

22

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

d
is

to
rt

io
n

Log loss, All

Log loss, Pruned

0/1 loss, All

0/1 loss, Pruned

Figure 8: Query-agnostic distortion-rate curves plotted for log loss and 0/1 loss distortion measures.
The curves marked with a ‘diamond’ are computed using all possible shorter sequences, while those
marked with an ‘×’ are computed using only pruned versions of the original prompt. They are
nearly identical, which suggests that a good approximation to the optimal distortion-rate curve can be
obtained by considering pruned prompts only.

A key first step towards extending our algorithm for natural language prompts is the observation that all
prompt compression methods in the literature work by pruning tokens, i.e., (1) they are non-generative,
i.e., work by removing tokens from the original prompt and therefore do not generate any new tokens,
and (2) they preserve the order of the tokens as they appear in the input sequence. Hence, to compute
the fundamental limit for the schemes that compress the prompt by pruning, it is enough to consider
Mx to be the sequences that are obtained from x by removing some number of (not necessarily
contiguous) tokens. Then, we have |Mx| = 2len(x), irrespective of the vocabulary size |V|.
In Fig. 8, we observe that the distortion-rate curves obtained by restrictingMx to be only those
sequences obtained from x from via pruning, are nearly identical to the original curves, where we
takeMx to be all shorter sequences. This suggests two things: (1) there is no fundamental drawback
to considering compression schemes are not generative, i.e., work by pruning the original prompt,
and (2) we can approximate the optimal distortion-rate function reasonably well by considering only
pruned versions of the prompt as possible compressed prompts. Thus, in principle, we can replicate
experiments with natural language prompts of the same lengths (4 to 10) as the binary prompts in our
experiments above, with the same computational cost. However, it is difficult to identify sufficiently
rich natural language prompts of such short lengths for which compression is a reasonable problem,
and hence, use binary prompts (generated from a Markov chain, to model the dependence between
tokens) with natural language queries (since there is no computational restriction on the vocabulary
of the queries) to run experiments such as those in Sec. 4.2 and App. F at scale.

Nonetheless, to illustrate that we can get meaningful results by considering such “pruned” compressed
prompts, we generate a small natural language dataset using GPT-4 [38], as described in App. F.2.1.

To make sense of the computational complexity involved in computing the optimal distortion-rate
curve, consider the following toy example: suppose that the vocabulary size is 10, and that the lengths
of all prompts are 100. Then, the number of possible compressed prompts is of the order of 10100.
When restricted to compressed prompts obtained by simply “pruning” the input, this number reduces
to nearly 2100, which is still large. However, since the length of the compressed prompt is at most
100, the number of points on the lower-left convex envelope in Algorithm 1 is at most 100. Hence, the
major bottleneck is in computing the Dx quantities, which require 10100 inference calls. Once these
quantities are known, the complexity of Algorithm 1 itself is negligible, even for large vocabulary
sizes and prompt lengths. One option is to approximate the optimal curve as best as possible while
limiting the number of LLM inference calls made; we provide preliminary results in this direction in
App. G.3. To exactly compute the optimal curve while avoiding the 10100 inference calls requires
some assumptions to be made about ϕLLM and some structure on the generated outputs; we leave this
for future work.

23

F Experiment details

F.1 Synthetic data experiments

We provide additional details regarding our synthetic dataset and how we fine-tuned all models.
Experiments were run on three different machines, two of which are identical machines with an AMD
Ryzen Threadripper PRO 5975WX CPU (32 cores), 256 GB of system RAM, and 2x Nvidia RTX
4090 GPUs with 24 GB each. We also ran experiments on a DGX machine with an AMD EPYC
7742 64-Core Processor, 512 GB of system RAM, and 4x 80GB SMX4 A100 GPUs. The duration of
LLM fine-tuning on the synthetic dataset varies, depending on the model being fine-tuned. In general,
it takes 10 to 30 minutes for a single fine-tuning run. Running the code necessary to reproduce all
plots takes several hours.

We use code from the LLMLingua and Selective Context GitHub repos, which are released under the
MIT license. In our experiments, we use the following models: Mistral 7B Instruct v0.2 (Apache-
2.0), RoBERTa Base (MIT), and Pythia 1B deduped (Apache-2.0).

Each method requires a rate or threshold parameter r, for which we use r ∈
{0.04, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.96, 0.99, 1.0} in our experiments. However, the
length of the returned compressed prompt might not be faithful to this rate parameter, so for each r,
we report the average rate and average distortion on the examples in our validation dataset. LLMLin-
gua and LLMLingua Query have one additional parameter controlling the size of each segment the
prompt is broken into before compressing each segment. We found that using a segment size of 2
works best for our synthetic dataset.

F.2 Natural language experiments

We train our models on the same DGX system used in the synthetic dataset experiments. Unlike the
synthetic dataset experiments, however, we train these XLM RoBERTa Large (MIT license) models
with the single precision (float32) data format and use full fine-tuning rather than LoRA. We observed
non-negligible performance improvements with this configuration over bfloat16 with LoRA. As a
result, training took one to two hours and 30 GB of VRAM on a single A100. We used the same set
or rate and threshold parameters as done in the synthetic data experiments.

F.2.1 Small natural language dataset

Solving for the optimal rate-distortion curve requires a substantial amount of compute as mentioned in
App. E. To overcome this, we construct a synthetic dataset consisting of binary string prompts, natural
language queries, and numerical and yes/no answers. We show a few examples of the validation
partition of our synthetic dataset in Table 2.

Table 2: One example of each query from the validation set of our synthetic dataset
Prompt Query Answer
110011111 Count the number of 1s. 7
11111 Count the number of 0s. 0
00000111 Compute the parity. 1
11011111 What is the length of the longest

subsequence of 0s or 1s?
5

0110 Is the binary string a palindrome? Yes
1100111100 Count the number of transitions

from 0 to 1 and 1 to 0.
3

111111 Predict the next bit. 1

We curated a small natural language dataset to generate results shown in Fig. 5 by prompting GPT-4
[38] to provide short natural language prompts of 15 tokens or less, provide four questions about each
prompt, and give the answer. Afterward, we modified some of the questions and prompts slightly
when the generated prompt by GPT-4 was too long or the questions and answers contained too much
overlap with each other for a given prompt. In total, our dataset consists of ten prompts with four
questions each. A few examples of our dataset are shown in Table 3.

24

Table 3: One example of each prompt from our natural language dataset.
Prompt Query Answer
After dinner, the cat chased a mouse
around the house.

What was the cat doing? The cat was chasing
a mouse.

The dog barked loudly at the
passing mailman on a quiet street.

Where did the barking
occur?

On a quiet street.

After school, the child played with
toys in the cozy living room.

When was the child playing? After school.

At the art gallery, the artist painted
a colorful mural on the wall.

Where was the painting
done?

On the wall at the art
gallery.

F.2.2 Choice of distortion metric

The proper choice of distortion function is important to meaningfully measure the change in perfor-
mance (distortion) of the LLM as the rate is varied. Ideally, a distortion metric where two texts with
the “same meaning,” as would be determined by humans, achieve a “low distortion” is the gold stan-
dard, but this metric is unknown. This is a crucial open problem not just for our work but also for the
fair benchmarking of LLMs in general.

For our results on natural language, we report our results using the following distortion metrics (or
rather, “1−” these, since these are similarity metrics and we want a low distortion to mean high
similarity). rougeL [23] is a standard metric used to evaluate summaries, which does so by computing
the precision and recall between the tokens in the generated text and the reference texts. In contrast,
BertScore [45] computes contextualized embeddings for the generated tokens and reference tokens
and uses the pairwise cosine similarity among them to produce the final score. The authors of the
BertScore work highlight that their metric correlates better with human judgements than all other
metrics (rougeL included). Regardless, our results with these two metrics are in agreement with
each other, suggesting that a “good enough” metric may be sufficient. A popular approach in current
literature is to ask GPT4 to give a score on the similarity between generated and reference texts.
Although it has been shown that humans agree with GPT4’s evaluation more than the evaluation
of other humans [49], we are skeptical of this metric because it is not reproducible, and GPT4 has
biases that may result in unfair or inaccurate evaluations. Additionally, our theoretical framework is
general and does not assume any specific distortion function. In particular, it can also be used with
new distortion functions that better capture semantic notions when they are discovered.

F.3 LLM fine-tuning

F.3.1 Synthetic dataset

Given that our synthetic dataset of binary prompts is not naturally in the distribution of training data
of LLMs, we use Mistral 7B Instruct v0.2 [39] as our black-box model, and fine-tune it on tuples of
(prompt, query, answer). This is also known as “instruction fine-tuning;” we only compute the loss
over the answer.

Each prompt compression method requires an LLM as part of its compression algorithm; we fine-tune
Pythia 1B deduplicated [40] for Selective Context and LLMLingua-based methods. Selective Context
and LLMLingua only use negative log-likelihood scores over the prompt, so for these methods we
fine-tune with the next-word prediction over the prompts. For LLMLingua Query, we place the (query,
prompt, answer) tuple into context and then perform next token prediction over the entire context. We
place only the query and prompt into the context for the prompt compression step (inference time).

LLMLingua-2 methods require an additional label set for every prompt as ground-truth answers to
teach the model to predict which tokens should be kept. For our dataset, gathering the labels for each
prompt is deterministic if the query is known, so it is easy to assemble the label set for query-aware
LLMLingua-2 methods. For example, for the query “Is the binary string a palindrome?” we can
easily choose the shortest sequence of tokens from the input that is also a palindrome (if the answer is
“yes”) as the ground-truth compressed prompt. For QuerySelect and Adaptive QuerySelect, both of
which are query-aware, we put the query and prompt into context and then train the LLM to predict
which tokens to keep using the constructed label set. This process is less straightforward for query-

25

agnostic LLMLingua-2 since it is not clear how to assign the labels without the query. In this case,
we choose the ground-truth compressed prompt to consist of the highest entropy tokens. Given the
Markov chain from which our prompts were generated, these tokens contain the transitions between
bits. For all LLMLingua-2 methods, we fine-tune RoBERTa Base [41].

We conduct a grid search over a set of hyperparameters before fine-tuning the final model used
for each method. Specifically, we use the training set to fine-tune a model with all combinations
of hyperparameters, evaluate the final performance on each model with a test set, and choose the
combination of hyperparameters leading to the best performance. We then merge the train and test
set and train with the chosen hyperparameters and do a final evaluation on the validation, which is the
dataset used in the results of this paper.

All models are searched over the same learning rate {5e−6, 1e−5, 5e−5, 1e−4}, batch size {16, 32},
LoRA rank {16, 32, 64, 128}, and LoRA alpha {16, 32, 64, 128} hyperparameters. For the number
of training epochs, we search over {1, 2, 4} for Mistral 7B Instruct v0.2 and Pythia 1B deduplicated,
and {8, 12} for RoBERTa Base.

We report our final set of hyperparameters used to fine-tune the LLM used for each prompt compres-
sion method in Table 4.

Table 4: Final set of hyperparameters used to train the LLM used in each prompt compression method.
Method Tokenization Epochs Batch

Size
Learning

Rate
LoRA
Rank

LoRA
Alpha

Selective Context Standard 1 16 5e-5 32 32

Selective Context Forced 1 16 5e-5 128 64

LLMLingua Standard 1 16 5e-5 32 32

LLMLingua Forced 1 16 5e-5 128 64

LLMLingua
Query

Standard 4 32 1e-4 128 128

LLMLingua
Query

Forced 4 16 1e-4 64 128

LLMLingua-2 Standard 12 32 1e-4 128 128

LLMLingua-2 Forced 12 32 1e-4 64 128

QuerySelect Standard 12 32 1e-4 128 128

QuerySelect Forced 12 32 1e-4 64 128

Adaptive
QuerySelect

Standard 12 32 1e-4 128 128

Adaptive
QuerySelect

Forced 12 32 1e-4 64 128

Black-box target
LLM

Standard 4 16 5e-5 16 16

Black-box target
LLM

Forced 4 16 5e-6 16 64

F.3.2 Natural language dataset

We use fine-tuned models available on Hugging Face for the Selective Context, LLMLingua, LLM-
Lingua Query, and LLMLingua-2 prompt compression methods; only QuerySelect and Adaptive
QuerySelect, our novel methods, require specialized fine-tuning starting from a pretrained XLM
RoBERTa Large [41] model. To fine-tune these models, we modify the LLMLingua-2 training code
available in the LLMLingua GitHub repository to accept (prompt, query) pairs as input and classify
which tokens of the prompt should be kept. Since the query uses additional context, and since the

26

max context window of XLM RoBERTA Large is 512 tokens, we shrink the window size dedicated
to the prompt to 384 tokens. We used the same hyperparameters used in the LLMLingua-2 paper
[14] for fine-tuning, i.e., learning rate 1e−5, batch size 10, epochs 10, and the Adam optimizer with
β1 = 0.9, β2 = 0.999, ϵ =1e−8, and weight decay 0.

The dataset used to train our models is a filtered version of Databricks Dolly 15k [44]. Our final
filtered dataset contains samples that meet the following conditions: (1) the context is non-empty,
(2) the context is between 50 and 5000 characters in length, and (3) the instruction has fewer than
360 characters. After filtering, the dataset contains 4.35k samples. The contexts of this dataset are
chunked into windows of 384 tokens, and we prompt GPT-4 to compress the context by asking it only
to keep the tokens necessary for responding to the provided instruction. This allows us to construct
a label set for the token classification problem of choosing which tokens to keep or remove. Our
dataset used for training consists of the instructions (queries), chunked contexts (prompts), and the
set of labels for the contexts. 95% of the samples in this dataset are used in the training dataset, and
the remaining 5% form the validation set. Table 5 shows the prompt we used for GPT-4, which is a
modified version of the prompt used in the LLMLingua-2 paper. All of our code used for constructing
the training dataset and training the models are modified from the LLMLingua GitHub repo. Our
modified code is available in the code release.

Table 5: Our prompt for GPT-4 to determine which tokens to remove. This prompt was used to
construct the dataset for training QuerySelect and Adaptive QuerySelect on natural language. This is
a slight modification from the prompt used in the LLMLingua-2 work [14].

System Prompt You are an excellent linguist and very good at compressing pas-
sages into short expressions by removing unimportant words,
while retaining as much information as possible.

User Prompt Compress some text to short expressions, such that you (GPT-
4) can answer the query based on the compressed text. Unlike
the usual text compression, I need you to comply with the 5
conditions below:
1. You can ONLY remove unimportant words.
2. Do not change the order of words.
3. Do not change the original words, e.g., ‘asking’→ ‘ask’ is

NOT OK; ‘current’→ ‘now’ is NOT OK.
4. Do not use abbreviations or emojis, e.g., ‘without’→ ‘w/o’ is

NOT OK; ‘as soon as possible’→ ‘ASAP’ is NOT OK.
5. Do not add new words or symbols, this is very impor-

tant. For example, ‘dedicate 3 hours to each chapter’→ ‘3
hours/chapter’ is NOT OK because you add new token ‘/’, just
compress it into ‘3 hours each chapter’. ’30 eggs plus 20 eggs
equals 50 eggs’→ ‘30+20=50’ is also NOT OK because you
add new symbols + and =; just compress it into ‘30 plus 20
equals 50’.

Compress the origin aggressively by removing words only. Please
output the compressed text directly. Compress the origin as short
as you can, while retaining ONLY the information needed to
answer the following query: {query}.
If you understand, please compress the following text:
{text_to_compress}
The compressed text is:

G Additional experimental results

G.1 Small-scale datasets

We provide the remainder of our empirical results below. Fig. 9 is similar to Fig. 1, but shows the result
when the prompt compression method uses standard tokenization rather than forced tokenization.
Fig. 10 shows a direct comparison between the trade-off for methods using standard and forced

27

tokenization. Fig. 11, Fig. 12, Fig. 13, and Fig. 14 show the rate-distortion trade-off curves for each
of the seven queries in our synthetic dataset. Fig. 11 shows forced tokenization with 0/1 loss, Fig. 12
shows forced tokenization with log loss, Fig. 13 shows standard tokenization with 0/1 loss, and
Fig. 14 shows standard tokenization with log loss.

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

5

6

A
ve

ra
ge

d
is

to
rt

io
n

Log loss

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0/1 loss

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal

Optimal (Query-aware)

No Compression

Figure 9: The distortion-rate curves of all prompt compression methods and the optimal strategy
attained by solving our dual LP formulation when standard tokenization is used for the prompt. All
methods are compared with the log loss (left) and 0/1 loss (right) metrics.

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Standard tokenization

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5

Forced tokenization

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal

Optimal (Query-aware)

No Compression

Figure 10: Performance comparison when standard tokenization (left) and forced tokenization
(right) is used on our synthetic dataset. Interestingly, the optimal performance is nearly equivalent
between the two, and, for a given rate, methods with standard tokenization match or improve upon
the performance of a method that forced separate tokenization of every bit. However, standard
tokenization results in compression of 1 to 4 tokens on our dataset, whereas forced tokenization
compresses up to 10 tokens, allowing for a greater range of rates.

G.2 NarrativeQA

We compare existing methods on the NarrativeQA [18] dataset. Specifically, we use the summaries
from the dataset as the prompt, and use the query and answer as given. Since the sizes of the prompts
are hundreds of tokens and approximately 3,500 samples, it is not feasible to compute the optimal rate-
distortion curve for this dataset. Instead, Fig. 16 showcases the performance of our proposed methods
over existing methods. In particular, Fig. 16 shows the same conclusion as Fig. 5: our proposed
methods are better for rates less than 0.5 and remain competitive for rates about 0.5. Table 6 shows the
average time required to compress a prompt on the NarrativeQA dataset and our curated small-scale
NLP dataset. Since our methods are adapted from LLMLingua-2, our methods share the same timings.

28

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

0.5
Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal (Query-aware)

No Compression

Figure 11: The rate-distortion trade-off of all methods on each individual query for forced tokenization
and 0/1 loss.

29

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal (Query-aware)

No Compression

Figure 12: The rate-distortion trade-off of all methods on each individual query for forced tokenization
and log loss.

30

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.1

0.2

0.3

0.4

Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.15

0.20

0.25

0.30

A
ve

ra
ge

d
is

to
rt

io
n

(0
/1

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal (Query-aware)

No Compression

Figure 13: The rate-distortion trade-off of all methods on each individual query for standard tokeniza-
tion and 0/1 loss.

31

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)
Count the number of 1s.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Count the number of 0s.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Compute the parity.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

What is the length of the longest subsequence of 0s or 1s?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Is the binary string a palindrome?

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0

1

2

3

4

5

Count the number of transitions from 0 to 1 and 1 to 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

d
is

to
rt

io
n

(l
og

lo
ss

)

Predict the next bit.
Common Legend

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Optimal (Query-aware)

No Compression

Figure 14: The rate-distortion trade-off of all methods on each individual query for standard tokeniza-
tion and log loss.

32

0.0 0.2 0.4 0.6 0.8 1.0

Binned rates len(M)
len(X)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy

Average ratio: 0.27
QuerySelect

Adaptive QuerySelect

0.0 0.2 0.4 0.6 0.8 1.0

Binned rates len(M)
len(X)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy

Average ratio: 0.57
QuerySelect

Adaptive QuerySelect

0.0 0.2 0.4 0.6 0.8 1.0

Binned rates len(M)
len(X)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy

Average ratio: 0.77
QuerySelect

Adaptive QuerySelect

0.0 0.2 0.4 0.6 0.8 1.0

Binned rates len(M)
len(X)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy

Average ratio: 0.87
QuerySelect

Adaptive QuerySelect

Figure 15: Histograms of the rates for QuerySelect and Adaptive QuerySelect for a given average rate
from the left-side figure of Fig. 5. These figures show that Adaptive QuerySelect has a larger spread
of rates across the samples of the natural language dataset. In particular, Adaptive QuerySelect has
greater flexibility in choosing an appropriate rate for a given (prompt, query) pair.

Table 6: Average time required to compress a single prompt (seconds).
Method NarrativeQA Small NLP Dataset
Selective 1.043 0.049
LLMLingua 0.510 0.273
LLMLingua Query 1.060 0.530
LLMLingua-2 0.113 0.044
QuerySelect 0.114 0.043
Adaptive QuerySelect 0.114 0.043

33

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]
0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
ve

ra
ge

d
is

to
rt

io
n

1 - RougeL

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]

0.130

0.135

0.140

0.145

0.150

0.155

0.160

1 - BertScore

Selective

LLMLingua

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

No Compression

Figure 16: Comparison among all prompt compression methods on the NarrativeQA [18] summaries
dataset. We show the rate-distortion trade-off for RougeL [23] (left) and BertScore [45] (right).
Since a higher RougeL and BertScore metric is better, we plot “1− the computed average distortion”
so that a higher rate should yield a lower loss.

G.3 NarrativeQA Beam Search

As discussed in the Conclusion and App. E, computing the optimal rate-distortion curves for large-
scale datasets, where the prompts consist of hundreds or thousands of tokens, is intractable. The
difficulty lies in computing Dx, which requires an inference call for every possible compressed
prompt for a given prompt. Even for our curated small-scale dataset, whose largest prompt consists
of 15 tokens, it is not feasible to compute the “true” optimal curve outright. Instead, we considered
the set of compressed prompts constructed from in-place token removal from the original prompt,
which significantly reduced the number of inference calls in constructing Dx from

∑len(x)−1
i=1 |V|i

to 2len(x), where |V| is the size of vocabulary of the tokenizer and x ∈ X is the prompt. While this
approach does not yield the “true” optimal curve, it does provide an optimal curve to all existing
prompt compression methods since they all strategically remove tokens in place. Thus, we can still
establish the fundamental limit of existing methods!

However, when len(x) is a few hundred or thousand, as is the case for large-scale datasets, 2len(x) is
far too many inference calls to make Dx to be practical. Ideally, one can approximate the optimal
curve by finding an upper bound; to do this, we use beam search. Our search space is over all 2len(x)
binary masks (a binary mask, when applied to the prompt, forms a compressed prompt). Each mask
is assigned a distortion value by computing the distortion between the ground truth answer and the
generated answer when the black-box LLM is given the mask’s associated compressed prompt and
the query. Thus, we can construct the search tree over the binary masks and use beam search to find
masks with low distortion.

The search tree begins with the “all ones” mask at the root node (l = 0); each of the root node’s
children (l = 1) contains a bit flipped to 0 in precisely one of the len(x) positions. At the third level
(l = 2), each node inherits a 0 at the same position as its parent and then flips a 1 to a 0 so that each
mask at l = 2 has precisely two 0s. This pattern continues throughout the rest of the tree, resulting in
masks with l 0s at level l. Furthermore, the branching factor Fl of our beam search is the number of
children nodes a given node has at level l, is N − l. At level l, accounting for all nodes that are shared
among the parent nodes in level l − 1, there are

(
N
l

)
nodes, where N = len(x). As a sanity check,

this tree contains
∑N

k=0

(
N
k

)
= 2len(x) nodes in this tree, so all binary masks of length N are in the

tree. We can search every node in the tree as long as the beam width B is large enough to contain
every node at the broadest level of the tree. To achieve this, we need to set B = maxl

(
N
l

)
=
(

N
⌊N/2⌋

)
.

Recall that our purpose for using beam search is to drastically reduce the number of LLM inference
calls required for constructing Dx while retaining a competitive upper bound to the optimal curve.
The cost C associated with the beam search, which is the number of nodes visited in the tree (i.e., the
number of LLM inference calls) is

34

0.0 0.2 0.4 0.6 0.8 1.0

Average rate E
[

len(M)
len(X)

]

0.5

0.6

0.7

0.8

0.9
A

ve
ra

ge
d

is
to

rt
io

n

1 - RougeL

LLMLingua

Selective

LLMLingua Query

LLMLingua-2

QuerySelect

Adaptive QuerySelect

Beam Search (Query-agnostic)

Beam Search (Query-aware)

No Compression

Figure 17: Comparison between existing prompt compression methods (replicated here from Fig. 16)
and our approximation to the optimal rate-distortion curves via beam search on NarrativeQA.

C = B

N∑

l=0

Fl = B

N∑

l=0

(N − l) = B

N∑

k=0

k =
BN(N + 1)

2
. (10)

Note that, in this case, we search over C < |Mx| in (LP) compressed prompts, so beam search
will provide an upper bound. When N is large, checking O(BN2) nodes is a drastic reduction over
checking 2N nodes, but the growth rate is still too large. For example, running beam search on a
single prompt of just 100 tokens will require on the order of 106 LLM inference calls, or roughly 11.5
days if assuming a single inference call takes one second. To further reduce the number of checked
nodes, we can chunk the binary masks into spans of bits, and flip entire spans from 1 to 0 at each
level. With this approach, we can effectively control the length of the binary masks we search over,
which we call Neff, for a given budget/cost C. Solving (10) for N , we arrive at

Neff =
−1 +

√
1 + 8C

B

2

This approach allows us to choose the total number of LLM inference calls C per prompt that we will
spend on beam search for a particular beam width B. Since we are chunking the binary mask into
spans and then masking the spans as we search, we have reduced the search space and the resulting
tree will be smaller than the Neff = N case.

Fig. 17 compares existing methods to our beam search upper bounds for C = 4000 and B = 5.
Although LLMLingua-2-based methods can outperform the upper bound in the query-agnostic case
for most rates, the query-agnostic beam search approach shows room for improvement from existing
methods. Impressively, the gap between existing methods and the query-aware case is quite large,
even for the methods that use the query to compress the prompt.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly mention the assumptions under which we present our results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a section detailing the limitations of our approach and potential
approaches to remedy them in App. E.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our theoretical results in the main paper are Proposition 1 (proved in the main
paper) and Thm. 1 (proved in C.1, with proof sketch in the main paper); both are stated
with all required assumptions. We also provide an informal proof in the main paper that
Algorithm 1 computes the distortion-rate function; this is made formal in App. C.2.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our code with details on how to reproduce our results as supple-
mentary material, which will be made publicly available upon acceptance.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is available at https://github.com/acnagle/fundamental-
limits, with instructions to reproduce results as in the paper.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All details of our experimental setup can be found in Sec. 4.2 and App. F.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are not statistical in nature. All our plots are deterministic
and can be reproduced using the code provided in the supplementary material.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

36

https://github.com/acnagle/fundamental-limits
https://github.com/acnagle/fundamental-limits

Answer: [Yes]
Justification: Information on compute resources can be found in App. F.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not use human subjects or private data, our work has no direct societal
impact, and we appropriately reference all code that we have used for our experiments in
Sec. 4.2.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is foundational research, and though it has applications to the
practical problem of prompt compression, our focus is on understanding its fundamental
limits. There are no direct societal impacts of our work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data or models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets for which we are not the creators, including some code and models,
are properly cited and available under either the Apache-2.0 or MIT licenses. This informa-
tion is provided in App. F.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved.

37

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Background and related works
	Distortion-rate function for prompt compression
	A formal model for prompt compression
	Rate-distortion formulation for prompt compression
	Linear program formulation of the distortion-rate function

	Experiments
	Experimental setup
	Results

	Conclusion
	Notation
	Extensions to query-aware prompt compression
	The dual linear program: proof and solution
	Derivation of the dual linear program
	Proof and illustration of Algorithm 1

	Connections to information theory literature
	Extension to natural language datasets
	Experiment details
	Synthetic data experiments
	Natural language experiments
	Small natural language dataset
	Choice of distortion metric

	LLM fine-tuning
	Synthetic dataset
	Natural language dataset

	Additional experimental results
	Small-scale datasets
	NarrativeQA
	NarrativeQA Beam Search

