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ABSTRACT

Dense associative memory, a fundamental instance of modern Hopfield networks,
can store a large number of memory patterns as equilibrium states of recurrent
networks. While the stationary-state storage capacity has been investigated, its
dynamical properties have not yet been discussed. In this paper, we analyze the
dynamics using an exact approach based on generating functional analysis. We
show results on convergence properties of memory retrieval, such as the conver-
gence time and the size of the attraction basins. Our analysis enables a quantitative
evaluation of the convergence time and the storage capacity of dense associative
memory, which is useful for model design. Unlike the traditional Hopfield model,
the retrieval of a pattern does not act as additional noise to itself, suggesting that
the structure of modern networks makes recall more robust. Furthermore, the
methodology addressed here can be applied to other energy-based models, and
thus has the potential to contribute to the design of future architectures.

1 INTRODUCTION

1.1 BACKGROUND

Dense associative memory (Krotov & Hoptield, 2016), a model for storing binary patterns, was
proposed and shown to significantly improve the storage capacity of the traditional Hopfield model
(Hopfield, M987). While it can be regarded as a rediscovery of the many-body Hopfield model
(Gardner, T9%7; Abboff & Arian, [Y87), it exhibits slightly different properties. On the other hand,
extensions of dense associative memory, such as the Hopfield layer, have been actively developed
to enable dense associative memory to store real-valued patterns (Demircigil et all, POT7; Ramsauer
ef—all, P021). Hopfield models with such large memory capacities, including these variants, are
referred to as modern Hopfield networks, which have gained increasing attention and have even
inspired Transformer architectures (Hooveref all, PO23).

The equilibrium properties of the Hopfield layer have been analytically studied, including evalu-
ations of its storage capacity (LCucibello-& Mézard, 2074). Since the Hopfield layer can reach a
near-equilibrium state in almost a single update step, its dynamical properties have not been consid-
ered a significant issue. In contrast, dense associative memory, like the traditional Hopfield model,
requires some iterative updates to reach a stationary state. However, its dynamical behavior has not
been investigated so far. As a result, fundamental aspects such as the attraction basin, namely, how
far from a stored pattern can the initial state be for the system to still successfully recall it, still
remain unclear.

While the dynamical properties of dense associative memory have not been investigated, those of the
traditional Hopfield model have been extensively analyzed. In this paper, we analyze the dynamical
properties of dense associative memory using generating functional analysis, an asymptotic theory
in the large-system limit, which has been widely used in those studies.

1.2 CONTRIBUTIONS

Our main contributions are as follows:



» Asymptotically exact dynamical analysis. — We provide, for the first time, an asymptotically
exact analysis of the dynamics of dense associative memory in the large-system limit using
generating functional analysis (GFA).

* Quantitative characterization of convergence. — Our analysis yields explicit results on con-
vergence properties of memory retrieval, including convergence time and the size of attrac-
tion basins, thereby enabling quantitative evaluation of stability and storage capacity.

* Novel insight into robustness of modern Hopfield networks. — We demonstrate that, unlike
the traditional Hopfield model, retrieval does not introduce additional self-noise, suggesting
that the architecture of modern networks makes recall more robust.

* General methodology for energy-based models. — The proposed framework is not limited
to dense associative memory. It can be applied to other energy-based models, providing
theoretical tools for the design of robust and scalable architectures.

1.3 RELATED WORKS

Gardner and Abbott independently introduced a Hopfield model with many-body interactions, which
is essentially equivalent to dense associative memory, and analyzed its equilibrium properties using
the replica method to evaluate its storage capacity. The difference between their models and the
dense associative memory proposed by Krotov and Hopfield lies in the presence or absence of self-
coupling terms. While this difference does not affect the order of the storage capacity, it does
influence the constant factor. Additionally, Lucibello and Mézard analyzed the equilibrium proper-
ties of the Hopfield layer using the replica method and obtained its storage capacity (Cuncibello"&
Meézard, 2074)). So far, no analysis of the dynamical behavior of the modern Hopfield model has
been reported. On the other hand, there has been extensive research on the dynamics of the tradi-
tional Hopfield models. For example, the papers (Gardner_ef all, T987; Crisanti & Sompolinskyl,
[9%7; T9RY; Rieger et all, T9KR) and our previous papers provide exact analysis based on GFA.

2 PRELIMINALIES

2.1 NOTATIONS

Throughout this paper, vectors are denoted by boldface, e.g., , and are assumed to be column
vectors unless otherwise stated. () and ()(*) represent the ¢-th element of the vector x. Matrices
are denoted by an upper case symbol, e.g., A, and AT denotes the transpose of a matrix A.

2.2 DENSE ASSOCIATIVE MEMORY

The dense associative memory is one of the recurrent neural network models to store and recall a
large number of patterns as fixed points of the dynamics. The energy of dense associative memory

is given by
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where h; € {%1} denotes the state of the i-th unit, and &' denotes the i-th element of the -
th pattern. Each &/ independently takes the value +1 with equal probability 1/2. Introducing a
nonlinear function F', such as a power function, makes memory patterns become deeper minima in
the energy landscape and reduces interference between different memory patterns. This is because
the nonlinearity suppresses weaker overlaps during the recall process. In this paper, we restrict

ourselves to the case
x’ﬂ
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It should be noted that since the coefficient 1/(2N™1) does not affect the performance, so it is
equivalent to setting F'(x) = z™. The update rule is defined by the difference of two energies before
and after state transitions. We keep only the leading term in the argument of the sgn function in the



update rule, which gives
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where sgn (z) denotes the sign function that takes 1 if z > 0, and —1 otherwise. In the case of
n = 2 the network reduces to the parallel dynamics version of traditional Hopfield model, i.e.,
hgtﬂ) = sgn (Ej\le Jijh§t)) and J;; = + ZLM:I &'¢l. By focusing on the leading terms for a
given function F', we can treat arbitrary activation functions. However, note that in the case of the
exponential function, all terms in the power-series expansion have the same order.

2.3  OUTLINE OF GENERATING FUNCTIONAL ANALYSIS

We apply the generating functional analysis (GFA) to investigate dynamical properties of the dense
associative memory. GFA has been applied to the model which is described using realizations of
random variables (DeDominicis, T978). This method allows us to analyze the asymptotic dynamical
behavior in the infinitely large system, using the generating functional, which is the dynamical
equivalent of the characteristic function in statistics.

In GFA formalism, we consider the joint probability distribution over the states of all units at all
time steps, from the start of the iteration up to some prescribed time, which can be taken sufficiently
large. This joint probability is referred to as the path probability. From the path probability, we can
calculate various expectation values such as the overlap, which is the direction cosine between the
states of the units and the memory pattern being recalled via the generating functional which can be
regarded as an analogue of the characteristic function. Table 1 shows the representative analysis for
dynamical properties of traditional and modern Hopfield models.

Paper Model Method Update Retarded SI
Amari & Maginu (T988) traditional ~ S/N parallel ignored
Okada (T995) traditional  hierarchical S/N parallel ignored
Rieger et al] (T98X) traditional  generating functional  asynchronous treated
Coolen & Sherringfor] (1994)  traditional  dynamical replica asynchronous treated
Diring et al] (T99¥) traditional  generating functional parallel treated
this paper modern generating functional parallel treated

Table 1: Relationship to existing dynamical analyses for Hopfield models.

3 ANALYSIS

First, the path probability is defined and used to describe the generating functional, after which the
expectation over the memory patterns appearing in the generating functional is evaluated.

3.1 PATH PROBABILITY

Let vectors h(Y) = (hgt), e h%))—'— € {£1}" be the states of all units at time ¢ and let the initial
state be (%), The updating rule, obtained by retaining only the leading term, is expressed as follows:
B = sen (uf?), )
M 1 N ) n—1 (
® _ (t t)
o= e ) el ©
=1 J#i

foralli € {1,--- ,N}andt € {0,---,T — 1}. The variable u\" is referred to as a local field.
The parameter th) is called an external field (or an threshold). The dynamics of the system are



characterized by how the output of each unit changes in response to infinitesimal variations in the

local field. To evaluate such changes, the external field { 62@} are introduced. The average derivative
of the outputs with respect to the external field is referred to as the response function, which serves
as one of fundamental measures for describing the dynamics. After evaluating the response function,

all {91@} are set to zero.

In this paper, we consider parallel dynamics, in which the states of all units are updated simultane-
ously. The updating rule of the dense associative memory for the variable A(**1) at time ¢ can be
given by the following probability distribution:

N
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where 6[m; n] denotes the Kronecker’s delta that takes 1 if m = n and 0 otherwise. This dynamics
represents Markovian dynamics. The path probability p[h(o), cee h(T)] is given as the products of
the probability distribution of the updating rule:
T—1
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where p[h(?)] = vazl p[hl(.o)] denotes the initial state distribution. Since the same memory patterns
are included at every time step, the states of the units at different times are correlated.

3.2 GENERATING FUNCTIONAL

The path probability depends on all memory patterns &1, --- , €M, We define the generating func-
tional as follows.

Definition 1. The generating functional Z 1)) is defined as

T
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where we have introduced the generating variables 1) = (wﬁt), e %))T c RY and we write
= (O ... D) for shorthand.

Here, i denotes the imaginary unit. ie., i = \/—1. We here assumed that the generating func-
tional is self-averaging, namely, in the large-system limit, i.e., IV is sufficiently large, the generating
functional is concentrated on its average over the memory patterns £, --- , €M and the typical be-
haviour of the model only depends on the statistical properties of the memory patterns. In GFA, the
expectation values of interest are calculated from derivatives with respect to some elements of the
generating variables, e.g.,
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where 1 — 0 denotes wg’” — 0 for all ¢ and ¢, and the bracket (- - -} denotes the average over
the path probability, i.e., {((---)) = Zh<0),-~»,h(T>e{i1}N plh® ... R(M)](--). Introducing the
definition of the local field using the Dirac delta function, the generating functional can be rewritten



as follows:
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Assuming that the pattern £ is being recalled, we separate the local field in the generating func-
tional into a signal term including the recalling pattern and a noise term including other patterns
£2,... €M, Using the Fourier integral form of Dirac delta function, the generating functional be-
comes
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Only the last part involves all non-recalled patterns &2, - - - , €. By straightforward calculation of
the expectation over these patterns, the generating functional is found to depend on five types of
averages. Accordingly, we introduce the following macroscopic parameters:
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into the generating functional using the Dirac delta function, where the functions m*) is referred to
as the overlap. The generating functional can be calculated as follows.

Lemma 1. By averaging over the memory patterns, the generating functional is given by
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where A(¢, k) = (2)2 k! B(¢ — k)2, and B(m) = 1,,:even (m — 1)!1.

A proof is given in Appendix Bl. Here, 1.onqition denotes the indicator function that takes 1 if the
condition is true, and 0 otherwise. It can be obtained by evaluating the leading terms after taking
the expectation over the memory patterns, using combinatorial arguments. The order of the number
of memory patterns is determined by the balance between the magnitude of the signal originating
from the retrieved pattern and that of the noise originating from the non-retrieved patterns. From the
analysis in Lemma [, the number of memory patterns M is required to scale as M = O(N""1) for

non-trivial analysis. This corresponds to the generating functional being of order e©(N), Therefore,
we set

M = o, N" L. (20)
Further details are given in Appendix Al

The generating functional is dominated by a saddle-point in the large-system limit. Averaging
over the random variables, we will move to a saddle-point problem (Copsor, 1965) in the limit
N — o0. The saddle point condition gives values of the macroscopic parameters. Hereafter, we

choose the factorised distribution p[h(?)] = Hfil p[hl(.o)] = Hz A+ mO)sR©;¢] + 41 -
0)5[R(); —&;]} as an initial state distribution, where m(®) denotes an initial overlap. The fac-

torised initial overlap allows the generating functional to decompose into independent single-unit
contributions.

4 MAIN RESULTS

The behavior of this model differs significantly between the case n = 2 and the case n > 3. Since
the case n = 2 has already been extensively studied, we focus only on the case n > 3 in this paper.
GFA provides an exact solution as an asymptotic analysis in the large-system limit N — co. Using
the saddle point method to evaluate the integral in the averaged generating functional, one can obtain
the following proposition.

Proposition 1. For a given initial state distribution p[h(o)] and n > 3, the overlap m', the corre-
lation function C () and the response function Gt are given by
o)
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where {f(h))) denotes the average defined as

m)) = Ee [ Doy f(h)pln®) Hé[ #0: sgn (n(m @) 4 (TR)O 40400 ) |,
h
(22)

which is referred to as the effective path measure. The random vector v follows a multivariate
normal distribution with mean 0 and covariance matrix R = (R(t’t/)), where the (t,t')-element is
n—1
R®Y) =p2q, Z Aln —1,k)(CEHEOYE, (23)
k=0
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Figure 1: Recalling process of Krotov’s dense associative memory with F'(z) = 2™ and n = 3. Left:
computer simulations, 100 trials, N = 1024. Right: theory.

The matrix T is given by I' = D o G. The (t,t')-elements of D and G are D) and Gt
respectively. Each element of the matrix D = (D(t’t')) is defined as

n—2
D) =p2(n — 1)%a, > A(n — 2,k)(CH)*. (24)
k=0

The operator o denotes the Hadamard (elementwise) product.

The proof sketch is given in Appendix B. The term (I'h)(*) in the effective path measure represents
a retarded self-interaction. The retarded self-interaction means the magnitude of the influence that
returns to a unit itself after propagating through other units. Due to this retarded self-interaction, the
state at the next time step depends in a complex way on the past states. On the other hand, unlike
in the traditional Hopfield model, i.e., the case of n = 2, the noise variance does not depend on the
overlap, and it does not increase even when the overlap becomes large. As a result, it is considered
that the phenomenon, in which the system begins to recall correctly but eventually fails to complete
it, becomes less likely to occur.

5 DISCUSSION

5.1 NUMERICAL ANALYSIS AND COMPUTER SIMULATIONS

In this paper we considered Krotov’s dense associative memory. Since the noise variance depends
on n, we normalize the constant a, by setting o, = (2n — 3)!la,, where «, is referred to as the



=3 (T=50)

(T=50)
-1.0 10- -1.0
04 . .
0.2 . :
0.0 .

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1.0-
0.9 -
0.8 -
0.7 -
0.6 -
EOS
0.4 -
0.3-
0.2 -
0.1-

!
as
(a) T = 50.
n=3 (=100
10 ( ) 1.0
038
0.6
0.4
0.2
0.0
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
! !
as as
(b) T = 100.
. n=3 (T=200) L N =3 (T =200) i,
) 0.9-
. -0.8 0.8- 0.8
0.7-
) 0.6 0.6- 0.6
. OE 0.5-
) 0.4 0.4- 0.4
) 0.3-
. 0.2 0.2- 0.2
) 0.1-
0.0 0.0
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
! !
as as
(©) T = 200.

Figure 2: Overlap with the retrieved pattern m = &' - h/N after T = 50, 100, 200 iterations for
Krotov’s dense associative memory with F'(z) = 2™ and n = 3. Left: computer simulations, 100
trials, N = 512. Right: theory. Red lines: attraction basin obtained by the approximate dynamics
discussed in Sec. B2.

loading rate. The storage capacity a’c,n is defined as the largest loading rate at which the overlap
remains positive.

The result of Proposition [ can be numerically analyzed using the Monte Carlo method. Figure [
shows the numerical analysis for the case n = 3, together with the results of computer simulations.
In Fig. @ (a) — (d), the graphs on the left display the simulation results for N = 1024 with 100
trials. The vertical axis represents the overlap, while the horizontal axis represents the number of
iteration steps. The graphs on the right in Fig. [ (a) — (d) correspond to the numerical analysis of



the overlap based on Proposition [l. Although finite-size effects become significant near the basin
of attraction, it can be confirmed that the theoretical values agree well with the simulation results
even for relatively small-scale experiments. It can be theoretically confirmed that, when retrieval is
successful, convergence is attained within several tens of iterations.

Figure D illustrates the overlap after 50, 100, and 200 iterations by color while the red solid lines rep-
resent the boundary of the basin of attraction assessed by an approximate dynamics discussed below.
If the dynamics had fully converged the region where the overlap remains finite would represent the
basin of attraction, suggesting ozc 3 ~ (.33. However, Fig. [ shows a gradual decay of the overlap
with increasing ¢, indicating that a, 5 is at most about 0.3. Indeed, while the computer simulation
results for N = 512 exhibit almost no dependence on 7" due to finite-size effects (left panels of Fig.
D), the DMFT results shown in the right panels of Fig. D indicate a gradual shrinkage of the region
with large m as T increases. Consistently, static analyses based on the replica method (Mézard
ef all, T987) give smaller values ar, ; ~ 0.252 under the rephca symmetric ansatz, which is con-
s1stent with the approximate dynamics shown below, and ac 3 =~ 0.266 under the 1-step replica
symmetry breaking ansatz as shown in Appendix O. In similar systems, slow dynamics are known
to occur near the phase boundary between the crystal and glassy phases (Krzakala & Zdehorova,
2011, which corresponds here to the retrieval success/failure transition. Therefore, the true basin of
attraction is narrower than what is shown in Fig. [, but we conjecture that accurately determining it
is challenging due to the presence of slow dynamics. A similar situation arises for n > 4 as well.

5.2 CONNECTION TO RELATED ANALYSES

From the exact solution obtained via the generating functional analysis, we obtain the following
approximated result when self-coupling is neglected.

Corollary 1. Neglecting the retarded self-interaction term as an approximation, i.e., setting I' = O,

we obtain
(t)yn—1
mtD — orf ((m)), (25)
(2n — 3)! 2au;,

where erf (z) := \F fo e=*"dz denotes the error function, and m®) is the initial overlap.

In this approximation, the equilibrium state of the dynamics can be simply obtained by setting
m(*) = m, and the resulting fixed-point equation corresponds to the equilibrium analysis by n-body
Hopfield model. Although the coefficients differ, this is due to the fact that the energy function
is not the same as that in Krotov’s model. The storage capacity that obtained by the fixed-point
equation of this approximated dynamics, i.e., m = erf (m"~1/(1/(2n — 3)!! 2a,,)), gives that of
the equilibrium analysis derived by the replica method.

We here consider the differences between Krotov’s dense associative memory and the n-body Hop-
field model independently proposed by Gardner and Abbott. The energy function of the n-body
Hopfield model is defined by

H=- \/ﬂNn 1 Z Z el &8 hyhy, - hy,. (26)
u=1j1#joF - Fjn

The values of the variables ji, - - - , j, are all distinct. This is the main difference from the Krotov’s
dense associative memory. Using the same way to Krotov’s method, the corresponding update rule
of the n-body Hopfield model is given as

M N
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We have the exact result in the same way to obtain Proposition [l. Let M = «,, N"~! again. Ne-
glecting the retarded self-interaction term as an approximation, i.e., setting I' = O, we obtain

m® = erf ((m(tl))nl> (28)
(n—1)!2a,



The stationary equation, i.e., setting m(*) = m, is equivalent to the result derived by Abbott (Abhofi
& Arian, T987). The detail is available in Appendix O.

6 CONCLUSION

We performed an asymptotically exact analysis of the dynamical behaviour of dense associative
memory using generating functional analysis (GFA) in the large-system limit. The analysis revealed
the presence of a retarded self-coupling term, indicating that the next state of the system depends in
a complex manner on all past states. We also confirmed that this property cannot be captured by a
method based on the signal-to-noise analysis. In the traditional Hopfield model, i.e., n = 2, it was
found that the system exhibits a noise variance that depends intricately on non-recalled patterns. In
contrast, for n > 3, the noise variance due to non-recalled patterns does not depend on the overlap
with the recalled pattern. As a result, the phenomenon observed in the classical Hopfield model,
namely, the increase in noise variance upon successful retrieval, is mitigated. Thus, it arises only
from the retarded self-interaction. As a result, the recall process becomes simpler than the traditional
Hopfield model.

Assuming the existence of a stationary state, we can also consider a macroscopic fixed-point equa-
tion from the GFA equations. Due to the presence of the self-coupling term, this result must differ
from that of existing equilibrium analysis. This difference comes from the fact that, for models with
n > 3, the system does not satisfy the detailed balance condition.

In this work, we provided an exact dynamical analysis of dense associative memory using the gen-
erating functional analysis, and verified the theoretical predictions with numerical experiments. Our
results clarify how higher-order interactions, namely, n > 3, suppress the increasing of crosstalk
noise due to the recalling pattern itself, thereby stabilizing recall dynamics and enhancing memory
capacity. This contrasts with the classical Hopfield model, where self-retrieval inevitably introduces
additional noise. These findings offer a quantitative framework to evaluate the stability and storage
capacity of associative memory models, which is useful for guiding model design. While our exper-
iments were limited to relatively small system sizes and specific interaction orders, the analytical
methodology is general and can be applied to a broader class of energy-based models. This ap-
proach can be extended to modern Hopfield networks, memory-augmented architectures, and other
energy-based formulations will provide further insights into the design of robust and scalable mem-
ory systems. In this context, the simplicial Hopfield networks can also be analyzed within the same
framework. We are currently working on analyzing cases where the function F' introduced into the
energy is exponential, as well as the case where memory patterns are biased (Bielmeier & Friedland,
P079).
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APPENDICES

A  PROOF OF LEMMA [0

We first calculate the expectation value of the noise term of all non-recalled patterns, which is the
last part in (I4). Using the Taylor expansion, we obtain

T—1 N M
Ee>.. gMexp[—zZZZA(%“ ( Zf“h) } (29)
t=0 1

=1 p=2 _]751

M 1 T-1 N e o\ n3
_ : A () e wy (t
~[Tee{ie (<X Sl (5 Z& h ) ) +0( e )| (30)

pn=2 t=0 i=1

n2(M — 1) T-1T-1 N O ) T-1T—-1 N N ). (t) n3M
exp{ oN2(n—1) < Zuz ;M +Z ZZZ >+O<N3(n—1)>:|’
t=0 t'=0 i=1 t=0 t/=0 i=1 i'#1
(31)

where

N N N N
t) t t t
N, =E, [Z Z Z Z € EiEp 1h( hgn) 1h§ )”'h;ﬁ)l]’

1 i jn—l#ijﬁéi' j;_ﬁéi'

N N
N, =E¢ |:£z£z Z Z Z Z fjl"'gjn—lgji"'gjll 1h§i h§i 1h§t)” h;i)l]

J1Fi Jn— 1#1 71#1 n,ﬁéi'

Since £€2,--- , €M are independent, we can drop the index p. It should be noted that any term in A}
and N3 that contains an odd number of identical index from the same pattern has zero expectation,
because all &1, - - -,y are independent and have zero mean.

We calculate V7. The leading term in A can be obtained by calculating the summations in the
case where the 2(n — 1) variables are grouped into pairs, each pair taking the same value. We
have to do this for all possible partitions. We must distinguish three types of pairings: (i) between
two primed variables, (ii) between two unprimed variables, and (iii) between a primed and an un-
primed variable. Note that depending on the type of pair, the time parameter differs. Therefore,
the leading term can be obtained by counting the number of ways to partition the 2(n — 1) indices,
i€, J1, s Jn—1,J1," " »Jn_1, into n — 1 pairs in which indices take the same value while each
different pairs takes different values.

We here consider two sets of indices: the set of unprimed indices J = {j1, - ,j¢} and the set
of primed indices J' = {j1,--- ,j;}. First, we consider the number of ways to divide 2/ indices,
including ¢ unprimed indices and ¢ primed indices, into ¢ pairs. Let A(¢, k) be the number of ways
to have exactly k& unprimed-primed pairs in £ total pairs, which is given by

Al ) = ( ; )2 K B(L — k), (32)

where B(m) is the number of ways where m /2 unprimed-unprimed pairs and m /2 primed-primed
pairs are made using 2m indices, consisting of m unprimed indices and m primed indices:

B(m) = lm:even ﬁ ( T; ) ( m2— 2 ) ( g ) = Lzeven (m— 1. (33)

Note that 3¢ _, A(4, k) = B(2¢) holds.
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Using the quantity A(¢, k) and the identity (hl(-t))2 = 1, we obtain

N N
M =Ef{ > S GGGy B D 3
Jis s Jn—17FE 1, dn _ F
n—1 1 N , k
—Nn1 ZA(n—1,k)<NZh§“h§”> +O(N™3). (35)
k=0 j=1
=O(NY)

Next, we calculate N>. For notational simplicity,let ( - |;,—i)(---) be an operator to substitute
ji=i"into (---),andlet (3_; _; ;- )(---) be an operator for summing (- - -) over ji # i, # i'. It
should be noted that each of jq, - - - , j,,—1 can take the value ¢/, and conversely, each of 51, -+ , jI_;
can take the value 4. Foralli € {1,--- ,N}and ¢ € {1,--- , N}\{i}, we have

szEg[&'&"(' + Z >( + Z )
Ji=t Gyt A Jn-1= g

+Z~)

Ji;él/ﬂél ]n 1*7’ 757, ,F1
§j1 U Ejn—lfj{ 6.77l 1h§? o h;i)—l h_g? ) h.gi) 1:| (36)

() (e
(z )z )

jn1:1/>
j;_lzi )

J1FY F Jp_a 7V, Fl
SRR TR T ARt A B B

_ 2 (1) (t)
SIS >
4j1;"'>477L727é7;x7é7;/ ]’iv"'vij,,z?ﬁi/v?ﬁi
In—2 jl In—o

gjl o gjn—2§j{ . g];,ghﬁ) h(t) h(t ) h(t ) :| + O(Nn74) (38)

n—2 N k
=(n— 1) KR N2 N A(n - 2,k) Gf SRl )) TO(N™™).  (39)
j=1

k=0

=O(N°)

Substituting (BY) and (BY) into (BIl), we obtain the expectation value of the noise term of all non-
recalled patterns as follows:

-1 N M —1
Ega’_..,sMexp{ ZZZ@E &n ( Zg*‘ “) ] (40)
t=0 i=1 p=2 VE)
1 TL2M T—-1T-1
_eXP[—Q'Nn_z
t=0 t'=0
n—2
(n—1) ( Zh“ “)( <“a§f')>2An—2k< Zh“’h“)
k=0
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§>

(32

N k
5t “(”> S -1 (NZ W) o} @1

k=0

dq®*)s (Nq(t’t/) - Z hEt)hgt'))}
=1

<
[

-T T /OO
Lt=0¢' =0 —°
T T

y /oo dQ(tt)5<NQtt) Zhl(_t)ﬁz(_t/)>:|
‘= Ot/ 0vT° i=1
-T T o /

x HH/ k5 ( Kw_zhg%gwﬂ
-t=0t'= o0 i=1

1 T-17-1 .
Xexp{ 3 N" — Z{ K6 g t)ZAn,Q k)<( ))

t=0 t'=0 k—0
n—1 k

+Q(t’t/) ZA(n— 17k) (q(t’t/)) +O(N_1)}:| (42)

-T T N
> o dgt t')
= d(tt 588 [ g (it hth(t)

I/ o (v -3
T T .00 Q /

<1111 / Q" ’/ = exp{ié(t’t ) (NQW ) - Zhg%gt >) H
“t=0¢/=0" T =1
-T T N

dK &) e , o

x H H / dK ) / o exp{lq(t’t ) (NK(t’t ) — Z hgt)ul(-t )> H

Lt=0t/= ]
T— - n—2 k
X exp [—2 N Z Z{ (n — 1 K t’)K(t’,t) Z A(n —2,k) (q(t’t/)>
t=0 ¢ k=0
+Q(t’t,)ZA("—1 k) ( “”) +O(N )H 43)
k=0
by using (I3).

The signal term that includes the recalling pattern £' can be rearranged as

T-1 N el
Eslexp[—zzz el n( Zg h@) ]

t=0 i=1 j#i
T-1,q4 XN ® 1 N » n—1
— ; ~ () 1 14.(2 1
_Eﬁl exp [—ZN tE:O (N ig_l U; gz) n(N jEZl fj hj + O(N )) :|

_ [lf[/zdmw(;( Nm® Zf h(t))]
[H/ k(t)(g( NE® _ qut))}

T-1

n—1
X ]Esl exp |:—’LN Z k(t) <m(t) —+ O(N1)> :| (44)

N
L1/ [~ 25 el (0 -3t
™
=1
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[T [ S {0 (w0 - St )

T-1 n—1
x Eg1 exp [—iN > k® n(m(t) + O(N—1)> } . (45)

t=0
We here introduced the parameters of (I3) using the Dirac delta function and its Fourier integral

form of the Dirac delta function, i.e., §(z) = o= [~ dee'™ = ;L [*™ die®. We then arrive at
the generating functional of (I). Since the expectation over the non-recalled patterns has already

been taken, and only the recalling pattern remains in the expression. The signal term of (E3) is
e©(N)  On the other hand, the noise term of (E3) is eO(M/N 71_2). For non-trivial analysis, the signal

term and the noise term must be of the same order, namely, the number of the memory patterns M
must be O(N"~1),

B PROOF SKETCH OF PROPOSITION [

It should be noted that the normalization relation Z[0] = 1 plays an important role in the elimination
of spurious solutions to the saddle-point equations. The terms in the averaged generating functional
can be split into three related parts. The first one is a signal part. The second one is a static noise
part due to the random variables within the model. The last one is retarded self-interaction due to
the influence of the state at the previous stage, which may be able to affect the present state. The
GFA allows us to treat the last part. After the analysis, it turns out that the system can be described
in terms of the following three quantities:

N
1
m® =Eer . em [<N > 53h§“>] : (46)
=1

N
0 =re e[ (v )]
i=1
N o)
: 1 < Oh;
t,t) 7
el >_]Esl,,,_,gMKNZ;%@,)H, (48)
1= K3

where these are referred to as the overlap, the correlation function, and the response function, respec-
tively. One can deduce the meaning of macroscopic parameters by differentiating the averaged gen-

erating functional with respect to the external field 9( ) and generating functions 1/)( ). The averaged
generating functional Z[t)] is dominated by a saddle- -point for N — oo. Using the normalization
identity Z[0] = Eg1 ... ¢ (1) = 1, one can have derivatives of the averaged generating functional:

A
o 9411 _ Si(h®)y,,
p—0 awl@

. O*Z ) )7 () O )
@y~ 0w (WA = (L= 8 (W) ()
.
lim M = =03 (hDa")); — (1= 63,40 ) ()i (2 5 (49)
»—0 3%@)392@ ) ' ;
oy 221 _ ia®y, = o
Pp—0 301(7‘/)
0*Z[y]

il . N By, —
1/’1210 ae(t)ao(/t/) - 51, < u >Z - 07

15



where ( ); denotes the average that is defined by

Z/dudzl w;(h,w,w)f(h,u, )
__ h

(f(h,u,a)); = (50)
Z/dudﬁ w;(h, w, @)
h
with
T-1
wi(h @) =p{1)( T 60+ sgn ()] )
t=0
T—-1T-1
X exp [ZZZ{Q(” ROBED 4 Qg 1 KD p)q0
t=0 ¢’
T-—1
+i Z i {u® —kOg — 90y — iy h<5>m<t>] (51)
t=0 t=0 saddle

The average ((- - - )); is referred to as a single-unit measure. Here, evaluation f|s,qd1e denotes an
evaluation of function f at the dominating saddle-point. Substituting (B9) into (IM) — (I2), we then
have

Eer ... e (BD) = (R®),,
e (WOREY = 6,0 (ROREDY, (1 = 6, ) (WD) (R, (52)

E€17.,,7€NI<87(Z;/)> = _Z'(Sz,z <h(t) (t )>

In the large-system limit, the averaged generating functional will be evaluated by the dominating
saddle-points of the exponent ® + ¥ + (2. We can now derive the saddle- point equations by differ-

entiation with respect to the integral variables m®, m®), k®) k®) ¢ttt Q) Ot
K@) and K1), The saddle-point equations will involve the overlap m(t), the correlation C'(*:)

and the response function G (s:s") Tt should be noted that causality, i.e.,
a(ht)
ao(t/) - b

should hold for ¢ < ¢’. Therefore GWt) =0 for t < t'. Using causality and the identities (29) and

(B2), the straightforward differentiation of ® + ¥ 4 {2 with respect to the integral variables leads us
to the following saddle-point equations:

(53)

1 ~
® o) By ) ) _ ®) — p(m(®n—1
m = = Eﬁ (h; (gp'\y, m\ =0, k 0, k n(m™)" 0 (54)

N
gt = o) — Z h(t h(t)h(t Y, Gt =0, (55)
Q(tyt') -0 Q(tvt ) — fi,R(tﬁt ) (56)
) 2 )
A(h® gt / /
K(t,t ) G(t t _ t>f’ ge(t) >>7 K(t,t ) — D(t,t )G(t ,t)7 (57)
where
n—1
R =n?a,, Y A(n— 1, k)(CH)E, (58)
k=0
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n—2
D) = n?(n— 1)%a,, > A(n — 2,k)(CH). (59)
k=0

Substituting the solutions of the saddle-point equation into the single-unit measure, we obtain the
effective path measure. We then arrive at Proposition .

C PROOF SKETCH OF GARDNER’S MODEL

Using a similar way to Lemma [, the expectation value of the noise term of all non-recalled patterns
for the n-body Hopfield model is given by

— s = o W o
A(t) t t
Eg2 .. gm exp[—z E E E 3 N" ~— E ARERT S "'hjnl]
t=0 i=1 p=2 J1F e FIn 170

12y T2T-1 N /
exp{zNH_QZZ{nl ( Zh‘” “’)( Zhgf)aﬁf)>A(n2,n2)
t=0 t'= 1=1 /=1
1N()<>"_21N(><> 1o, 0,00\
t), (' ~(t) A (¢ t), (¢ -1
X(sz_;hj h; ) —|—<N;uz )A(n—l,n—l)(N;hj h; ) +O(N )H
(60)

where

A(t,0) = (g)Qél B(l—0)> = 0. 61)

Applying the same calculation, we arrive at (IX).

D SKETCH OF REPLICA COMPUTATION

In a general setting, suppose that the state variable s = (s;) is governed by a Hamiltonian H (s | r)
that depends on a predetermined random variable r. In this case, the thermal average

tr, se PH(sIT) 3
(s) = —Zw) Z(r) = tre BH(s|r) (62)

becomes a random quantity because it varies with the realization of r. Here, trx(---) denotes
summation or integration over all possible configurations of s.

The replica method is a technique used to evaluate the moments of the thermal average E,.[(s;)*] for
k=1,2,..., by means of the replica trick

E.[Z¥(r) (s;)F
E,[(s;)*] = lim M
v=0 K. [Z27(r)]
In practice, this reduces the problem to computing the v-th moment of the partition function

E,.[Z"(7)] for integers v = 1,2,... using the saddle point method, and then analytically contin-
uing the resulting expression to real values v € R under the assumption of a certain symmetry.

(63)

For the model defined by () and (I), we analyze its behavior using the replica method under the
assumption that M = «,, N™~!, and that only the overlap with the first pattern, m = &' - h/N,
is O(1) while the other overlaps, &* - h/N for u = 2,...,a, N "', remain typically O(N~1/2).
To this end, we introduce the rescaled variables u, = &* - h/Nl/2 forp =2,...,0, N"!, and
rewrite the Hamiltonian as

n—1

(64)

17



The corresponding partition function is thus given by

N1-n/2g an N "

7= exp | 01" (65)
h

2

and its v-th moment reads

Np
= Z Egl leXp(Q
hl,... k"

for natural numbers v = 1,2, .. ..

Evaluation of 75. The quantity 7> is evaluated using the following facts:

s The patterns £2, ..., &N ' are independently drawn from the uniform distribution over
{+1,—1}". Thus, Z, is obtained by averaging exp(Nlint Zgzl(u“)”) with respect

to a single pattern & (i.e. dropping the subscript u), and raising the result to the power
an anl

* For £ uniformly distributed over {+1,—1}", the central limit theorem implies
that u! ,u” follow a zero-mean multivariate normal distribution with covariance
Eelu®u ] N7the . h® =: qu.

* Forn > 3, the factor N'~"/2 vanishes as N — co. We therefore apply the Taylor expan-

exp< Z(ua)”>

. N1- n/25z

Nl—n/25
2

2
1-n/2
(N 52 ) +0O( N3 3n/2) (67)

to compute the Gaussian average.

Using these observations, we obtain

) 5 apN"—1
1 len QB v
Ty = 1 ZE. 1 y R a\n O N373n/2
= (143 | (X572 S0 | 0w
Na,,3?
= exp a8LB Eut . uv azb:(u“ub)2 + O(N?~/2)
Na,,[3?
~ exp aTnﬂEu17 v azb:(u“ub)% , (68)

which is valid for n > 3.

Evaluation of 7; and the subshell volume.

volume of the subshell of configurations h'!,...,

(a,b=1,...,v). Specifically, we insert the identity

1o</Hdma/quabH5£1 h* — Nm®) [[ 6(h"- h® — Nqas)

a<b

The contribution Z; is handled together with the
hY that satisfy fixed order parameters m® and ¢y

(69)
a<b
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into (BA). This leads to

Eer

eXp(Nﬁai )H (€' ho — )1

=1

- exp(j\;ﬁ Z(ma)"> X Egx lH (&L he — Nm“)] . (70)

a=1

Next, the subshell volume

Z H(sgl h* — Nm®) [ 6(h*- h® — Nqa) (71)

,hv a=1 a<b

is evaluated using the Fourier representations
1 100
5(€' R — Nm®) = 5 / ding exp g (€' h* — Nm?)] (72)
i —1300
1 200 R R u
§(h* - h® — Nqap) = % / dGap xp [Gap(R*- h* — Nqp)] - (73)

—100

Combining all contributions and applying the saddle-point method, we finally obtain

1 InEg[Z7] ~ extr B i(m“)” + anﬂ2E 1 Z(u“ub)2
N £ — 9 ] S ul..u

{ma)qub:'rha7éab}
a,b
- § qaanb - E ma

a<b
+InE, Z exp Z(jabh"’hb-l-z magh”) , (74)
hl,...,h <b a=1

where extrx { f(X)} generally stands for extremizing f(X) with respect to X.

To proceed toward the limit ¥ — 0, we next impose an appropriate replica-symmetric (or symmetry-
broken) ansatz for the saddle-point parameters.

D.1 REPLICA SYMMETRIC SOLUTION

The replica-symmetric (RS) solution is obtained by imposing m® = m, qgp = q, Mg = M, Jop =
¢ in (Z4). Under this ansatz, the Gaussian average becomes

B, |3 ()| =vM,(1) + v(v — 1) Ma(q), (75)
a,b
where
[n/2] n )
M, (p) = TZ:O <2r) (n—2r)! ((2r — 1) pn T (76)

Furthermore, using a Gaussian integral identity, we obtain

Ee | > exp(qZh“hb+mZ§h“>

a<b
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_ e_wi/2/Dz Ee [(2 cosh(\/éz + mg))”}
_ i / D (2cosh(\/;jz+m§))y, (77)

where Dz = dze /2 /v/2m denotes the standard Gaussian measure.

To characterize the retrieval state—that is, a (local) minimum of the Hamiltonian H—we consider
the zero-temperature limit 5 — oo. In this limit, we introduce the rescaled parameters

F:ﬁ_2qA7 K:B_l’ﬁ’l, X:ﬁ(l—q) (78)
For the case n = 3, substituting these scalings into ([/4) yields

1
lim — lim 2lnEg[Z”]

1 . . 1
NEg [miin H|=- 5h—>nolo ﬂWEg [In 2] = — B=r00 BN v—0 Ov

327 F
=— extr m——i— a3X——X—Km+/Dz|sz+K| . (19
{m.x,F.K} [ 2 8 2

The value of m determined by the extremization means the typical overlap with the retrieved pattern
E¢[€' - h]/N. After performing the extremization, we obtain the fixed-point equation

m2 m2
m = erf(m) = erf<m> 5 (80)

which coincides with the fixed-point condition of the approximate algorithm given in (Z3) for n = 3.

D.2 1-STEP REPLICA SYMMETRY BREAKING SOLUTION

Under the one-step replica-symmetry-breaking (1RSB) ansatz, the replica indices 1, ..., v are di-
vided into v /x groups, each of size . The order parameters in (Z4) are set as

q1, if a and b belong to the same group,
Gab = . (8 1)
qo, otherwise,

and similarly for §,5. For m® and m,, we retain the RS conventions m® = m and m, = m.

Under this ansatz, the Gaussian average becomes

a, b\2n | __ K _ 25 Z_
Eut v Zb(u u’) =vM,(1)+ Im(m 1) My (qu) + = . (x 1) M, (q), (82)

where M, (p) is defined in (Z8).
‘We also obtain

Ee | Y exp <<jab PURAESTY gha>

a<b a=1
v/x

zefuql/z/pz UDy (2cosh(\/my+\/¢?oz+m)ﬂ RN

As before, to characterize the retrieval state—a local minimum of the Hamiltonian H—we consider
the zero-temperature limit 5 — oo. In this limit, we introduce the rescaled variables

FIZB_2d17 FOZB_QqAO7 K:B_l’l’h, Xzﬁ(l_q1)7 M:Bx (84)
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Figure 3: Typical values of overlap m = E¢[¢! - h] /N evaluated under the RS and 1RSB ansatzes.

For the case n = 3, substituting these definitions into (Z4) yields

1 . 1 .1 .9 ,
 Belmin H] = = lim Z5Eelln 7] = = Jim 75 lin o7 InEe(27]
m?> Qs Fix p
= t — =27 1-— 1—g))]|-—=2—-C(F — Foqo) - K
{vavCIoe,?l,rFo,K,H} { 2 * 8 [ X+N(9( q0)+6( Q(]))} 2 2 ( ! OCIO) m

+i/Dz ln{/Dy exp(u’\/Fl—Foy—i— \/Foz—i-KD}} (85)

The RS solution corresponds to a special case of the 1RSB solution, characterized by the constraints
@ =q0=4q, @1 =do=4¢.

Hence, the local stability of the RS solution can be examined by linearizing the 1RSB extremum
conditions with respect to the small perturbations

Aq:%—%v Aq:(jl_(j()a

around the RS saddle point. This procedure yields the stability condition
2
1> 9a3ﬁ2q/Dz {1 — tanhQ(\/éz + m)]
9 2
:9a3q/Dz (Mtanh(ﬁ(\/l?z—i—K))) . (86)

However, this condition is never satisfied in the zero-temperature limit. Indeed, one finds

Jim a% tanh((VF 2 + K)) =26(VF =z + K),

which causes the right-hand side of the stability condition (Bf) to diverge.

This demonstrates that the RS solution is always unstable at zero temperature, implying that replica-
symmetry breaking must be taken into account in order to obtain a correct description of the model
defined by () and ().

D.3 SOLUTIONS

We numerically performed the extremization of () and (83) for the case n = 3. The resulting
values of m are plotted versus a5 = 3avz in Fig. B. The figure shows that the storage capacity is
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estimated as

a3 =~ 0.252 under the RS ansatz,
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a3~ 0.266 under the IRSB ansatz.
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