
DYNAMICAL PROPERTIES OF DENSE ASSOCIATIVE MEMORY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Dense associative memory, a fundamental instance of modern Hopfield networks,
012 can store a large number of memory patterns as equilibrium states of recurrent
013 networks. While the stationary-state storage capacity has been investigated, its
014 dynamical properties have not yet been discussed. In this paper, we analyze the
015 dynamics using an exact approach based on generating functional analysis. We
016 show results on convergence properties of memory retrieval, such as the conver-
017 gence time and the size of the attraction basins. Our analysis enables a quantitative
018 evaluation of the convergence time and the storage capacity of dense associative
019 memory, which is useful for model design. Unlike the traditional Hopfield model,
020 the retrieval of a pattern does not act as additional noise to itself, suggesting that
021 the structure of modern networks makes recall more robust. Furthermore, the
022 methodology addressed here can be applied to other energy-based models, and
023 thus has the potential to contribute to the design of future architectures.

1 INTRODUCTION

1.1 BACKGROUND

030 Dense associative memory (Krotov & Hopfield, 2016), a model for storing binary patterns, was
031 proposed and shown to significantly improve the storage capacity of the traditional Hopfield model
032 (Hopfield, 1982). While it can be regarded as a rediscovery of the many-body Hopfield model
033 (Gardner, 1987; Abbott & Arian, 1987), it exhibits slightly different properties. On the other hand,
034 extensions of dense associative memory, such as the Hopfield layer, have been actively developed
035 to enable dense associative memory to store real-valued patterns (Demircigil et al., 2017; Ramsauer
036 et al., 2021). Hopfield models with such large memory capacities, including these variants, are
037 referred to as modern Hopfield networks, which have gained increasing attention and have even
038 inspired Transformer architectures (Hoover et al., 2023).

039 The equilibrium properties of the Hopfield layer have been analytically studied, including eval-
040 uations of its storage capacity (Lucibello & Mézard, 2024). Since the Hopfield layer can reach a
041 near-equilibrium state in almost a single update step, its dynamical properties have not been consid-
042 ered a significant issue. In contrast, dense associative memory, like the traditional Hopfield model,
043 requires some iterative updates to reach a stationary state. However, its dynamical behavior has not
044 been investigated so far. As a result, fundamental aspects such as the attraction basin, namely, how
045 far from a stored pattern can the initial state be for the system to still successfully recall it, still
remain unclear.

046 While the dynamical properties of dense associative memory have not been investigated, those of the
047 traditional Hopfield model have been extensively analyzed. In this paper, we analyze the dynamical
048 properties of dense associative memory using generating functional analysis, an asymptotic theory
049 in the large-system limit, which has been widely used in those studies.

1.2 CONTRIBUTIONS

051 Our main contributions are as follows:

- Asymptotically exact dynamical analysis. – We provide, for the first time, an asymptotically exact analysis of the dynamics of dense associative memory in the large-system limit using generating functional analysis (GFA).
- Quantitative characterization of convergence. – Our analysis yields explicit results on convergence properties of memory retrieval, including convergence time and the size of attraction basins, thereby enabling quantitative evaluation of stability and storage capacity.
- Novel insight into robustness of modern Hopfield networks. – We demonstrate that, unlike the traditional Hopfield model, retrieval does not introduce additional self-noise, suggesting that the architecture of modern networks makes recall more robust.
- General methodology for energy-based models. – The proposed framework is not limited to dense associative memory. It can be applied to other energy-based models, providing theoretical tools for the design of robust and scalable architectures.

1.3 RELATED WORKS

Gardner and Abbott independently introduced a Hopfield model with many-body interactions, which is essentially equivalent to dense associative memory, and analyzed its equilibrium properties using the replica method to evaluate its storage capacity. The difference between their models and the dense associative memory proposed by Krotov and Hopfield lies in the presence or absence of self-coupling terms. While this difference does not affect the order of the storage capacity, it does influence the constant factor. Additionally, Lucibello and Mézard analyzed the equilibrium properties of the Hopfield layer using the replica method and obtained its storage capacity (Lucibello & Mézard, 2024). So far, no analysis of the dynamical behavior of the modern Hopfield model has been reported. On the other hand, there has been extensive research on the dynamics of the traditional Hopfield models. For example, the papers (Gardner et al., 1987; Crisanti & Sompolinsky, 1987; 1988; Rieger et al., 1988) and our previous papers provide exact analysis based on GFA.

2 PRELIMINALIES

2.1 NOTATIONS

Throughout this paper, vectors are denoted by boldface, e.g., \mathbf{x} , and are assumed to be column vectors unless otherwise stated. $x^{(t)}$ and $(\mathbf{x})^{(t)}$ represent the t -th element of the vector \mathbf{x} . Matrices are denoted by an upper case symbol, e.g., A , and A^\top denotes the transpose of a matrix A .

2.2 DENSE ASSOCIATIVE MEMORY

The dense associative memory is one of the recurrent neural network models to store and recall a large number of patterns as fixed points of the dynamics. The energy of dense associative memory is given by

$$H = - \sum_{\mu=1}^M F \left(\sum_{i=1}^N \xi_i^\mu h_i \right), \quad (1)$$

where $h_i \in \{\pm 1\}$ denotes the state of the i -th unit, and ξ_i^μ denotes the i -th element of the μ -th pattern. Each ξ_i^μ independently takes the value ± 1 with equal probability $1/2$. Introducing a nonlinear function F , such as a power function, makes memory patterns become deeper minima in the energy landscape and reduces interference between different memory patterns. This is because the nonlinearity suppresses weaker overlaps during the recall process. In this paper, we restrict ourselves to the case

$$F(x) = \frac{x^n}{2N^{n-1}}. \quad (2)$$

It should be noted that since the coefficient $1/(2N^{n-1})$ does not affect the performance, so it is equivalent to setting $F(x) = x^n$. The update rule is defined by the difference of two energies before and after state transitions. We keep only the leading term in the argument of the sgn function in the

108 update rule, which gives
109

$$110 \quad h_i^{(t+1)} = \operatorname{sgn} \left[\sum_{\mu=1}^M F \left(+\xi_i^\mu + \sum_{j \neq i}^N \xi_j^\mu h_j \right) - \sum_{\mu=1}^M F \left(-\xi_i^\mu + \sum_{j \neq i}^N \xi_j^\mu h_j \right) \right] \quad (3)$$

$$113 \quad = \operatorname{sgn} \left[\sum_{\mu=1}^M \xi_i^\mu n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j \right)^{n-1} + (\text{small order terms}) \right], \quad (4)$$

116 where $\operatorname{sgn}(x)$ denotes the sign function that takes 1 if $x \geq 0$, and -1 otherwise. In the case of
117 $n = 2$ the network reduces to the parallel dynamics version of traditional Hopfield model, i.e.,
118 $h_i^{(t+1)} = \operatorname{sgn}(\sum_{j=1}^N J_{ij} h_j^{(t)})$ and $J_{ij} = \frac{1}{N} \sum_{\mu=1}^M \xi_i^\mu \xi_j^\mu$. By focusing on the leading terms for a
119 given function F , we can treat arbitrary activation functions. However, note that in the case of the
120 exponential function, all terms in the power-series expansion have the same order.
121

122 2.3 OUTLINE OF GENERATING FUNCTIONAL ANALYSIS 123

124 We apply the generating functional analysis (GFA) to investigate dynamical properties of the dense
125 associative memory. GFA has been applied to the model which is described using realizations of
126 random variables (DeDominicis, 1978). This method allows us to analyze the asymptotic dynamical
127 behavior in the infinitely large system, using the generating functional, which is the dynamical
128 equivalent of the characteristic function in statistics.
129

130 In GFA formalism, we consider the joint probability distribution over the states of all units at all
131 time steps, from the start of the iteration up to some prescribed time, which can be taken sufficiently
132 large. This joint probability is referred to as the *path probability*. From the path probability, we can
133 calculate various expectation values such as the *overlap*, which is the direction cosine between the
134 states of the units and the memory pattern being recalled via the *generating functional* which can be
135 regarded as an analogue of the characteristic function. Table 1 shows the representative analysis for
136 dynamical properties of traditional and modern Hopfield models.
137

Paper	Model	Method	Update	Retarded SI
Amari & Maginu (1988)	traditional	S/N	parallel	ignored
Okada (1995)	traditional	hierarchical S/N	parallel	ignored
Rieger et al. (1988)	traditional	generating functional	asynchronous	treated
Coolen & Sherrington (1994)	traditional	dynamical replica	asynchronous	treated
Düring et al. (1998)	traditional	generating functional	parallel	treated
this paper	modern	generating functional	parallel	treated

143 Table 1: Relationship to existing dynamical analyses for Hopfield models.
144
145

146 3 ANALYSIS 147

148 First, the path probability is defined and used to describe the generating functional, after which the
149 expectation over the memory patterns appearing in the generating functional is evaluated.
150

151 3.1 PATH PROBABILITY 152

153 Let vectors $\mathbf{h}^{(t)} = (h_1^{(t)}, \dots, h_N^{(t)})^\top \in \{\pm 1\}^N$ be the states of all units at time t and let the initial
154 state be $\mathbf{h}^{(0)}$. The updating rule, obtained by retaining only the leading term, is expressed as follows:
155

$$156 \quad h_i^{(t+1)} = \operatorname{sgn}(u_i^{(t)}), \quad (5)$$

$$157 \quad u_i^{(t)} = \sum_{\mu=1}^M \xi_i^\mu n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j^{(t)} \right)^{n-1} + \theta_i^{(t)}, \quad (6)$$

158 for all $i \in \{1, \dots, N\}$ and $t \in \{0, \dots, T-1\}$. The variable $u_i^{(t)}$ is referred to as a *local field*.
159 The parameter $\theta_i^{(t)}$ is called an *external field* (or an *threshold*). The dynamics of the system are
160

162 characterized by how the output of each unit changes in response to infinitesimal variations in the
 163 local field. To evaluate such changes, the external field $\{\theta_i^{(t)}\}$ are introduced. The average derivative
 164 of the outputs with respect to the external field is referred to as the response function, which serves
 165 as one of fundamental measures for describing the dynamics. After evaluating the response function,
 166 all $\{\theta_i^{(t)}\}$ are set to zero.
 167

168 In this paper, we consider parallel dynamics, in which the states of all units are updated simultaneously.
 169 The updating rule of the dense associative memory for the variable $\mathbf{h}^{(t+1)}$ at time t can be
 170 given by the following probability distribution:

$$171 \quad p[\mathbf{h}^{(t+1)} | \mathbf{h}^{(t)}] = \prod_{i=1}^N \delta[h_i^{(t+1)}; \operatorname{sgn}(u_i^{(t)})], \quad (7)$$

174 where $\delta[m; n]$ denotes the Kronecker's delta that takes 1 if $m = n$ and 0 otherwise. This dynamics
 175 represents Markovian dynamics. The path probability $p[\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}]$ is given as the products of
 176 the probability distribution of the updating rule:
 177

$$178 \quad p[\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}] = p[\mathbf{h}^{(0)}] \prod_{t=0}^{T-1} p[\mathbf{h}^{(t+1)} | \mathbf{h}^{(t)}], \quad (8)$$

181 where $p[\mathbf{h}^{(0)}] = \prod_{i=1}^N p[h_i^{(0)}]$ denotes the initial state distribution. Since the same memory patterns
 182 are included at every time step, the states of the units at different times are correlated.
 183

185 3.2 GENERATING FUNCTIONAL

187 The path probability depends on all memory patterns ξ^1, \dots, ξ^M . We define the generating functional
 188 as follows.
 189

190 **Definition 1.** *The generating functional $\bar{Z}[\psi]$ is defined as*

$$192 \quad \bar{Z}[\psi] = \mathbb{E}_{\xi^1, \dots, \xi^M} \left[\sum_{\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)} \in \{\pm 1\}^N} p[\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}] \exp \left(-i \sum_{t=0}^T \mathbf{h}^{(t)} \cdot \psi^{(t)} \right) \right], \quad (9)$$

195 where we have introduced the generating variables $\psi^{(t)} = (\psi_1^{(t)}, \dots, \psi_N^{(t)})^\top \in \mathbb{R}^N$ and we write
 196 $\psi = (\psi^{(0)}, \dots, \psi^{(T)})$ for shorthand.
 197

198 Here, i denotes the imaginary unit. i.e., $i = \sqrt{-1}$. We here assumed that the generating functional
 199 is self-averaging, namely, in the large-system limit, i.e., N is sufficiently large, the generating
 200 functional is concentrated on its average over the memory patterns ξ^1, \dots, ξ^M and the typical be-
 201 haviour of the model only depends on the statistical properties of the memory patterns. In GFA, the
 202 expectation values of interest are calculated from derivatives with respect to some elements of the
 203 generating variables, e.g.,
 204

$$205 \quad \lim_{\psi \rightarrow 0} \frac{\partial \bar{Z}[\psi]}{\partial \psi_i^{(t)}} = \mathbb{E}_{\xi^1, \dots, \xi^M} [\langle -i h_i^{(t)} \rangle], \quad (10)$$

$$208 \quad \lim_{\psi \rightarrow 0} \frac{\partial^2 \bar{Z}[\psi]}{\partial \psi_i^{(t)} \partial \psi_{i'}^{(t')}} = \mathbb{E}_{\xi^1, \dots, \xi^M} [\langle -h_i^{(t)} h_{i'}^{(t')} \rangle], \quad (11)$$

$$211 \quad \lim_{\psi \rightarrow 0} \frac{\partial^2 \bar{Z}[\psi]}{\partial \psi_i^{(t)} \partial \theta_{i'}^{(t')}} = \mathbb{E}_{\xi^1, \dots, \xi^M} [\langle -i \frac{\partial h_i^{(t)}}{\partial \theta_{i'}^{(t')}} \rangle], \quad (12)$$

213 where $\psi \rightarrow 0$ denotes $\psi_i^{(t)} \rightarrow 0$ for all i and t , and the bracket $\langle \dots \rangle$ denotes the average over
 214 the path probability, i.e., $\langle (\dots) \rangle = \sum_{\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)} \in \{\pm 1\}^N} p[\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}] (\dots)$. Introducing the
 215 definition of the local field using the Dirac delta function, the generating functional can be rewritten

216 as follows:

$$\begin{aligned}
218 \quad \bar{Z}[\psi] = & \mathbb{E}_{\xi^1, \dots, \xi^M} \left[\sum_{\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}} \int_{\mathbb{R}^T} d\mathbf{u} p[\mathbf{h}^{(0)}] \left(\prod_{t=0}^{T-1} \prod_{i=1}^N \delta[h_i^{(t+1)}; \text{sgn}(u_i^{(t)})] \right) e^{-i \sum_{t=0}^T \mathbf{h}^{(t)} \cdot \psi^{(t)}} \right. \\
219 \quad & \times \left. \left(\prod_{t=0}^{T-1} \prod_{i=1}^N \delta(u_i^{(t)} - \sum_{\mu=1}^M \xi_i^\mu \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j^{(t)} \right)^{n-1} - \theta_i^{(t)}) \right) \right]. \quad (13)
\end{aligned}$$

224 Assuming that the pattern ξ^1 is being recalled, we separate the local field in the generating functional into a signal term including the recalling pattern and a noise term including other patterns ξ^2, \dots, ξ^M . Using the Fourier integral form of Dirac delta function, the generating functional becomes

$$\begin{aligned}
229 \quad \bar{Z}[\psi] = & \sum_{\mathbf{h}^{(0)}, \dots, \mathbf{h}^{(T)}} \int_{\mathbb{R}^T} d\mathbf{u} \delta \hat{\mathbf{u}} p[\mathbf{h}^{(0)}] \left(\prod_{t=0}^{T-1} \prod_{i=1}^N \delta[h_i^{(t+1)}; \text{sgn}(u_i^{(t)})] \right) e^{-i \sum_{t=0}^T \mathbf{h}^{(t)} \cdot \psi^{(t)}} \\
230 \quad & \times \exp \left[i \sum_{t=0}^T \sum_{i=1}^N \hat{u}_i^{(t)} (u_i^{(t)} - \theta_i^{(t)}) \right] \left(\mathbb{E}_{\xi^1} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \hat{u}_i^{(t)} \xi_i^1 n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^1 h_j^{(t)} \right)^{n-1} \right] \right) \\
231 \quad & \times \left(\mathbb{E}_{\xi^2, \dots, \xi^M} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \sum_{\mu=2}^M \hat{u}_i^{(t)} \xi_i^\mu n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j^{(t)} \right)^{n-1} \right] \right) \quad (14)
\end{aligned}$$

238 Only the last part involves all non-recalled patterns ξ^2, \dots, ξ^M . By straightforward calculation of 239 the expectation over these patterns, the generating functional is found to depend on five types of 240 averages. Accordingly, we introduce the following macroscopic parameters:

$$\begin{aligned}
242 \quad m^{(t)} = & \frac{1}{N} \sum_{i=1}^N \xi_i h_i^{(t)}, \quad k^{(t)} = \frac{1}{N} \sum_{i=1}^N \xi_i \hat{u}_i^{(t)}, \\
243 \quad q^{(t,t')} = & \frac{1}{N} \sum_{i=1}^N h_i^{(t)} h_i^{(t')}, \quad Q^{(t,t')} = \frac{1}{N} \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')}, \quad K^{(t,t')} = \frac{1}{N} \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')}, \quad (15)
\end{aligned}$$

248 into the generating functional using the Dirac delta function, where the functions $m^{(t)}$ is referred to 249 as the *overlap*. The generating functional can be calculated as follows.

251 **Lemma 1.** *By averaging over the memory patterns, the generating functional is given by*

$$253 \quad \bar{Z}[\psi] = \int d\mathbf{m} d\hat{\mathbf{m}} d\mathbf{k} d\hat{\mathbf{k}} d\mathbf{q} d\hat{\mathbf{q}} d\mathbf{Q} d\hat{\mathbf{Q}} d\mathbf{K} d\hat{\mathbf{K}} \exp \left[N(\Psi + \Phi + \Omega) + O(\log N) \right], \quad (16)$$

255 where

$$\begin{aligned}
257 \quad \Psi = & i \sum_{t=0}^{T-1} \left\{ \hat{m}^{(t)} m^{(t)} + \hat{k}^{(t)} k^{(t)} - k^{(t)} n(m^{(t)})^{n-1} \right\} \\
258 \quad & + i \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \left\{ \hat{q}^{(t,t')} q^{(t,t')} + \hat{Q}^{(t,t')} Q^{(t,t')} + \hat{K}^{(t,t')} K^{(t,t')} \right\}, \quad (17)
\end{aligned}$$

$$\begin{aligned}
263 \quad \Phi = & \frac{1}{N} \log \sum_{\mathbf{h}} \int d\mathbf{u} d\hat{\mathbf{u}} p[\mathbf{h}^{(0)}] \left(\prod_{t=0}^{T-1} \prod_{i=1}^N \delta[h_i^{(t+1)}; \text{sgn}(u_i^{(t)})] \right) \\
264 \quad & \times E_{\xi} \exp \left[-i \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \sum_{i=1}^N \left\{ \hat{q}^{(t,t')} h_i^{(t)} h_i^{(t')} + \hat{Q}^{(t,t')} \hat{u}_i^{(t)} \hat{u}_i^{(t')} + \hat{K}^{(t,t')} h_i^{(t)} \hat{u}_i^{(t')} \right\} \right. \\
265 \quad & \left. + i \sum_{t=0}^{T-1} \sum_{i=1}^N \hat{u}_i^{(t)} \{ u_i^{(t)} - \hat{k}^{(t)} - \theta_i^{(t)} \} - i \sum_{t=0}^{T-1} \sum_{i=1}^N h_i^{(t)} \hat{m}^{(t)} \xi_i - i \sum_{t=0}^{T-1} \sum_{i=1}^N h_i^{(t)} \psi_i^{(t)} \right], \quad (18)
\end{aligned}$$

$$\begin{aligned} \Omega = & -\frac{1}{2}n^2 \frac{M}{N^{n-1}} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \left\{ (n-1)^2 \left[\sum_{k=0}^{n-2} A(n-2, k) (q^{(t,t')})^k \right] K^{(t',t)} K^{(t,t')} \right. \\ & \left. + \left[\sum_{k=0}^{n-1} A(n-1, k) (q^{(t,t')})^k \right] Q^{(t',t)} \right\} + O(N^{-1}). \end{aligned} \quad (19)$$

where $A(\ell, k) = \binom{\ell}{k}^2 k! B(\ell - k)^2$, and $B(m) = \mathbf{1}_{m:even} (m - 1)!!$.

A proof is given in Appendix A. Here, $1_{\text{condition}}$ denotes the indicator function that takes 1 if the condition is true, and 0 otherwise. It can be obtained by evaluating the leading terms after taking the expectation over the memory patterns, using combinatorial arguments. The order of the number of memory patterns is determined by the balance between the magnitude of the signal originating from the retrieved pattern and that of the noise originating from the non-retrieved patterns. From the analysis in Lemma 1, the number of memory patterns M is required to scale as $M = O(N^{n-1})$ for non-trivial analysis. This corresponds to the generating functional being of order $e^{O(N)}$. Therefore, we set

$$M = \alpha_n N^{n-1}. \quad (20)$$

Further details are given in Appendix A.

The generating functional is dominated by a saddle-point in the large-system limit. Averaging over the random variables, we will move to a saddle-point problem (Copson, 1965) in the limit $N \rightarrow \infty$. The saddle point condition gives values of the macroscopic parameters. Hereafter, we choose the factorised distribution $p[\mathbf{h}^{(0)}] = \prod_{i=1}^N p[h_i^{(0)}] = \prod_{i=1}^N \left\{ \frac{1}{2}(1 + m^{(0)})\delta[h_i^{(0)}; \xi_i] + \frac{1}{2}(1 - m^{(0)})\delta[h_i^{(0)}; -\xi_i] \right\}$ as an initial state distribution, where $m^{(0)}$ denotes an *initial overlap*. The factorised initial overlap allows the generating functional to decompose into independent single-unit contributions.

4 MAIN RESULTS

The behavior of this model differs significantly between the case $n = 2$ and the case $n \geq 3$. Since the case $n = 2$ has already been extensively studied, we focus only on the case $n \geq 3$ in this paper. GFA provides an exact solution as an asymptotic analysis in the large-system limit $N \rightarrow \infty$. Using the saddle point method to evaluate the integral in the averaged generating functional, one can obtain the following proposition.

Proposition 1. For a given initial state distribution $p[h^{(0)}]$ and $n \geq 3$, the overlap $m^{(t)}$, the correlation function $C^{(t,t')}$, and the response function $G^{(t,t')}$ are given by

$$m^{(t)} = \langle\!\langle \xi h^{(t)} \rangle\!\rangle, \quad C^{(t,t')} = \langle\!\langle h^{(t)} h^{(t')} \rangle\!\rangle, \quad G^{(t,t')} = \mathbf{1}_{t>t'} \frac{\partial \langle\!\langle h^{(t)} \rangle\!\rangle}{\partial \theta^{(t')}}, \quad (21)$$

where $\langle\langle f(\mathbf{h}) \rangle\rangle$ denotes the average defined as

$$\langle\!\langle f(\mathbf{h}) \rangle\!\rangle = \mathbb{E}_\xi \int \mathcal{D}\mathbf{v} \sum_{\mathbf{h}} f(\mathbf{h}) p[h^{(0)}] \prod_{t=0}^{T-1} \delta \left[h^{(t+1)}; \operatorname{sgn} \left(\xi n (m^{(t)})^{n-1} + (\Gamma \mathbf{h})^{(t)} + \mathbf{v}^{(t)} + \boldsymbol{\theta}^{(t)} \right) \right], \quad (22)$$

which is referred to as the effective path measure. The random vector v follows a multivariate normal distribution with mean $\mathbf{0}$ and covariance matrix $R = (R^{(t,t')})$, where the (t,t') -element is

$$R^{(t,t')} = n^2 \alpha_n \sum_{k=0}^{n-1} A(n-1, k) (C^{(t,t')})^k. \quad (23)$$

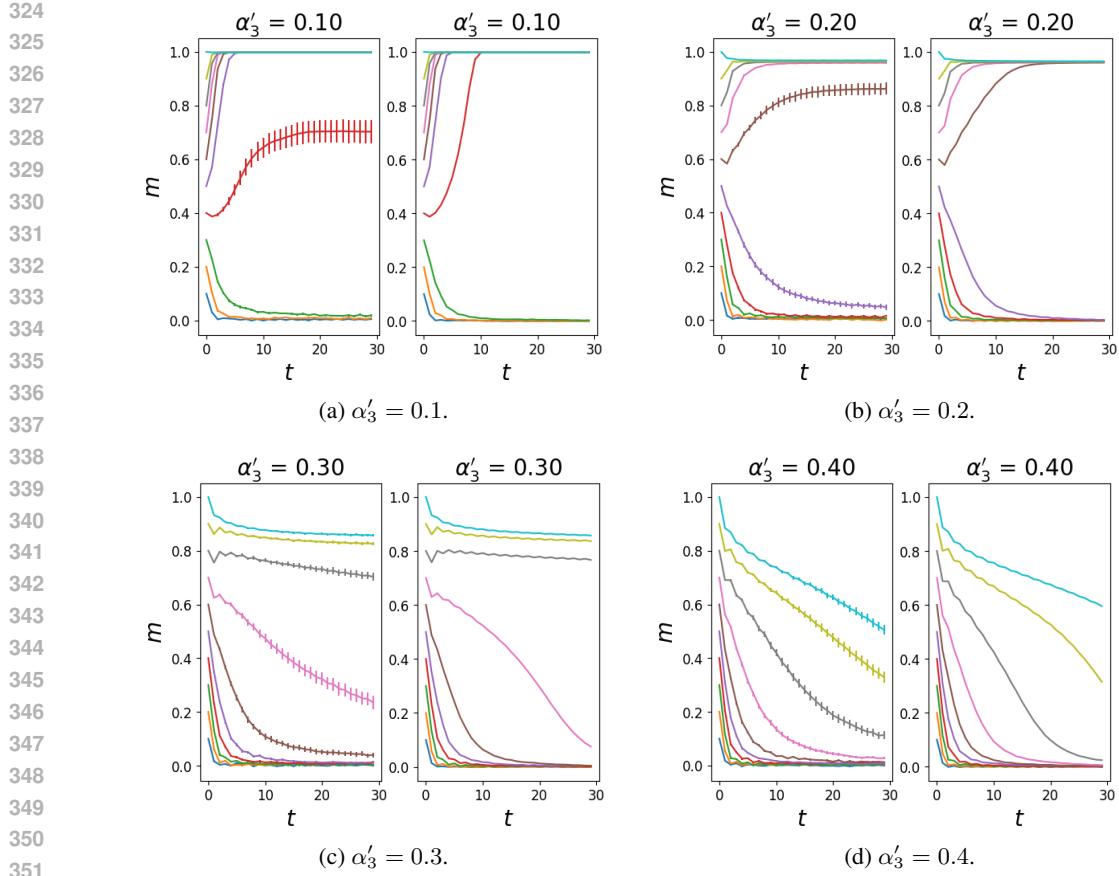


Figure 1: Recalling process of Krotov's dense associative memory with $F(x) = x^n$ and $n = 3$. Left: computer simulations, 100 trials, $N = 1024$. Right: theory.

The matrix Γ is given by $\Gamma = D \circ G$. The (t, t') -elements of D and G are $D^{(t, t')}$ and $G^{(t, t')}$, respectively. Each element of the matrix $D = (D^{(t, t')})$ is defined as

$$D^{(t, t')} = n^2(n-1)^2 \alpha_n \sum_{k=0}^{n-2} A(n-2, k) (C^{(t, t')})^k. \quad (24)$$

The operator \circ denotes the Hadamard (elementwise) product.

The proof sketch is given in Appendix B. The term $(\Gamma h)^{(t)}$ in the effective path measure represents a *retarded self-interaction*. The retarded self-interaction means the magnitude of the influence that returns to a unit itself after propagating through other units. Due to this retarded self-interaction, the state at the next time step depends in a complex way on the past states. On the other hand, unlike in the traditional Hopfield model, i.e., the case of $n = 2$, the noise variance does not depend on the overlap, and it does not increase even when the overlap becomes large. As a result, it is considered that the phenomenon, in which the system begins to recall correctly but eventually fails to complete it, becomes less likely to occur.

5 DISCUSSION

5.1 NUMERICAL ANALYSIS AND COMPUTER SIMULATIONS

In this paper we considered Krotov's dense associative memory. Since the noise variance depends on n , we normalize the constant α_n by setting $\alpha'_n = (2n-3)!!\alpha_n$, where α'_n is referred to as the

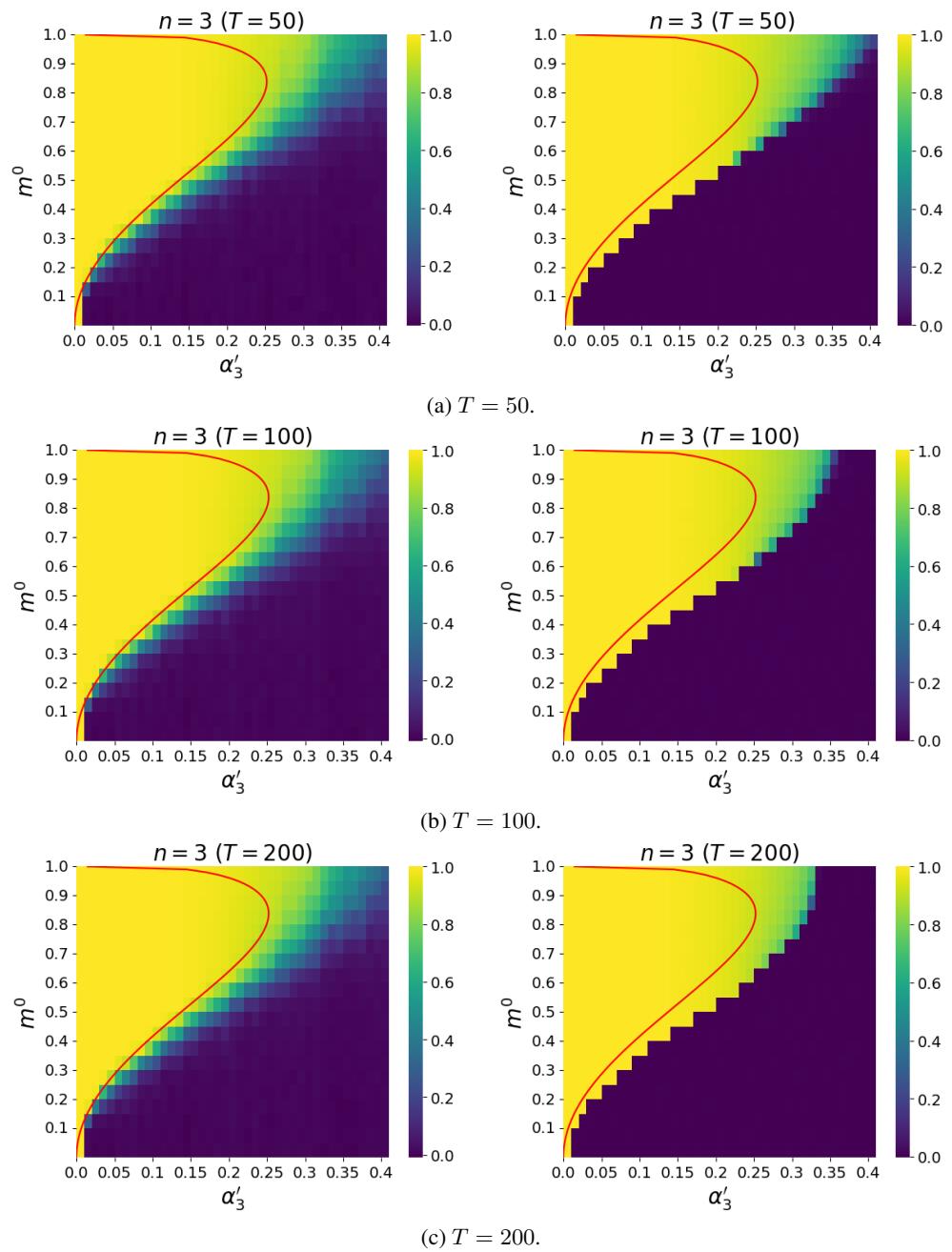


Figure 2: Overlap with the retrieved pattern $m = \xi^1 \cdot h/N$ after $T = 50, 100, 200$ iterations for Krotov's dense associative memory with $F(x) = x^n$ and $n = 3$. Left: computer simulations, 100 trials, $N = 512$. Right: theory. Red lines: attraction basin obtained by the approximate dynamics discussed in Sec. 5.2.

loading rate. The storage capacity $\alpha'_{c,n}$ is defined as the largest loading rate at which the overlap remains positive.

The result of Proposition 1 can be numerically analyzed using the Monte Carlo method. Figure 1 shows the numerical analysis for the case $n = 3$, together with the results of computer simulations. In Fig. 1 (a) – (d), the graphs on the left display the simulation results for $N = 1024$ with 100 trials. The vertical axis represents the overlap, while the horizontal axis represents the number of iteration steps. The graphs on the right in Fig. 1 (a) – (d) correspond to the numerical analysis of

432 the overlap based on Proposition 1. Although finite-size effects become significant near the basin
 433 of attraction, it can be confirmed that the theoretical values agree well with the simulation results
 434 even for relatively small-scale experiments. It can be theoretically confirmed that, when retrieval is
 435 successful, convergence is attained within several tens of iterations.

436 Figure 2 illustrates the overlap after 50, 100, and 200 iterations by color while the red solid lines
 437 represent the boundary of the basin of attraction assessed by an approximate dynamics discussed below.
 438 If the dynamics had fully converged, the region where the overlap remains finite would represent the
 439 basin of attraction, suggesting $\alpha'_{c,3} \simeq 0.33$. However, Fig. 1 shows a gradual decay of the overlap
 440 with increasing t , indicating that $\alpha'_{c,3}$ is at most about 0.3. Indeed, while the computer simulation
 441 results for $N = 512$ exhibit almost no dependence on T due to finite-size effects (left panels of Fig.
 442 2), the DMFT results shown in the right panels of Fig. 2 indicate a gradual shrinkage of the region
 443 with large m as T increases. Consistently, static analyses based on the replica method (Mézard
 444 et al., 1987) give smaller values $\alpha'_{c,3} \simeq 0.252$ under the replica symmetric ansatz, which is con-
 445 sistent with the approximate dynamics shown below, and $\alpha'_{c,3} \simeq 0.266$ under the 1-step replica
 446 symmetry breaking ansatz as shown in Appendix D. In similar systems, slow dynamics are known
 447 to occur near the phase boundary between the crystal and glassy phases (Krzakala & Zdeborová,
 448 2011), which corresponds here to the retrieval success/failure transition. Therefore, the true basin of
 449 attraction is narrower than what is shown in Fig. 2, but we conjecture that accurately determining it
 450 is challenging due to the presence of slow dynamics. A similar situation arises for $n \geq 4$ as well.

451 5.2 CONNECTION TO RELATED ANALYSES

452 From the exact solution obtained via the generating functional analysis, we obtain the following
 453 approximated result when self-coupling is neglected.

454 **Corollary 1.** *Neglecting the retarded self-interaction term as an approximation, i.e., setting $\Gamma = O$,
 455 we obtain*

$$456 \quad 457 \quad 458 \quad 459 \quad m^{(t+1)} = \operatorname{erf} \left(\frac{(m^{(t)})^{n-1}}{\sqrt{(2n-3)!!} 2\alpha_n} \right), \quad (25)$$

460 where $\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$ denotes the error function, and $m^{(0)}$ is the initial overlap.

461 In this approximation, the equilibrium state of the dynamics can be simply obtained by setting
 462 $m^{(t)} = m$, and the resulting fixed-point equation corresponds to the equilibrium analysis by n -body
 463 Hopfield model. Although the coefficients differ, this is due to the fact that the energy function
 464 is not the same as that in Krotov's model. The storage capacity that obtained by the fixed-point
 465 equation of this approximated dynamics, i.e., $m = \operatorname{erf}(m^{n-1}/(\sqrt{(2n-3)!!} 2\alpha_n))$, gives that of
 466 the equilibrium analysis derived by the replica method.

467 We here consider the differences between Krotov's dense associative memory and the n -body Hop-
 468 field model independently proposed by Gardner and Abbott. The energy function of the n -body
 469 Hopfield model is defined by

$$470 \quad 471 \quad 472 \quad H = -\frac{1}{\sqrt{2n!N^{n-1}}} \sum_{\mu=1}^M \sum_{j_1 \neq j_2 \neq \dots \neq j_n}^N \xi_{j_1}^\mu \xi_{j_2}^\mu \dots \xi_{j_n}^\mu h_{j_1} h_{j_2} \dots h_{j_n}. \quad (26)$$

473 The values of the variables j_1, \dots, j_n are all distinct. This is the main difference from the Krotov's
 474 dense associative memory. Using the same way to Krotov's method, the corresponding update rule
 475 of the n -body Hopfield model is given as

$$476 \quad 477 \quad 478 \quad h_i^{(t+1)} = \operatorname{sgn} \left[\sum_{\mu=1}^M \xi_i^\mu \frac{1}{N^{n-1}} \sum_{j_1 \neq \dots \neq j_{n-1} \neq i}^N \xi_{j_1}^\mu \dots \xi_{j_{n-1}}^\mu h_{j_1}^{(t)} \dots h_{j_{n-1}}^{(t)} \right]. \quad (27)$$

479 We have the exact result in the same way to obtain Proposition 1. Let $M = \alpha_n N^{n-1}$ again. Ne-
 480 glecting the retarded self-interaction term as an approximation, i.e., setting $\Gamma = O$, we obtain

$$481 \quad 482 \quad 483 \quad m^{(t)} = \operatorname{erf} \left(\frac{(m^{(t-1)})^{n-1}}{\sqrt{(n-1)!} 2\alpha_n} \right). \quad (28)$$

486 The stationary equation, i.e., setting $m^{(t)} = m$, is equivalent to the result derived by Abbott (Abbott
487 & Arian, 1987). The detail is available in Appendix C.
488

489 **6 CONCLUSION**
490

491 We performed an asymptotically exact analysis of the dynamical behaviour of dense associative
492 memory using generating functional analysis (GFA) in the large-system limit. The analysis revealed
493 the presence of a retarded self-coupling term, indicating that the next state of the system depends in
494 a complex manner on all past states. We also confirmed that this property cannot be captured by a
495 method based on the signal-to-noise analysis. In the traditional Hopfield model, i.e., $n = 2$, it was
496 found that the system exhibits a noise variance that depends intricately on non-recalled patterns. In
497 contrast, for $n \geq 3$, the noise variance due to non-recalled patterns does not depend on the overlap
498 with the recalled pattern. As a result, the phenomenon observed in the classical Hopfield model,
499 namely, the increase in noise variance upon successful retrieval, is mitigated. Thus, it arises only
500 from the retarded self-interaction. As a result, the recall process becomes simpler than the traditional
501 Hopfield model.

502 Assuming the existence of a stationary state, we can also consider a macroscopic fixed-point equa-
503 tion from the GFA equations. Due to the presence of the self-coupling term, this result must differ
504 from that of existing equilibrium analysis. This difference comes from the fact that, for models with
505 $n \geq 3$, the system does not satisfy the detailed balance condition.

506 In this work, we provided an exact dynamical analysis of dense associative memory using the gen-
507 erating functional analysis, and verified the theoretical predictions with numerical experiments. Our
508 results clarify how higher-order interactions, namely, $n \geq 3$, suppress the increasing of crosstalk
509 noise due to the recalling pattern itself, thereby stabilizing recall dynamics and enhancing memory
510 capacity. This contrasts with the classical Hopfield model, where self-retrieval inevitably introduces
511 additional noise. These findings offer a quantitative framework to evaluate the stability and storage
512 capacity of associative memory models, which is useful for guiding model design. While our exper-
513 iments were limited to relatively small system sizes and specific interaction orders, the analytical
514 methodology is general and can be applied to a broader class of energy-based models. This ap-
515 proach can be extended to modern Hopfield networks, memory-augmented architectures, and other
516 energy-based formulations will provide further insights into the design of robust and scalable mem-
517 ory systems. In this context, the simplicial Hopfield networks can also be analyzed within the same
518 framework. We are currently working on analyzing cases where the function F introduced into the
519 energy is exponential, as well as the case where memory patterns are biased (Bielmeier & Friedland,
520 2025).

521 **REFERENCES**
522

523 L. F. Abbott and Yair Arian. Storage capacity of generalized networks. *Physical Review A*, 36(10):
524 5091–5094, 1987.
525

526 Shun-ichi Amari and Kenjiro Maginu. Statistical neurodynamics of associative memory. *Neural*
527 *Networks*, 1(1):63–73, 1988.
528

529 S. Bielmeier and G. Friedland. Effects of feature correlations on associative memory capacity. In
530 *Proceedings of New Frontiers in Associative Memory workshop at ICLR 2025*, 2025.

531 A. C. C. Coolen and David Sherrington. Order-parameter flow in the fully connected hopfield model
532 near saturation. *Physical Review E*, 49(3):1921–1934, 1994.
533

534 E. T. Copson. *Asymptotic Expansions*. Cambridge University Press, 1965.
535

536 Andrea Crisanti and Haim Sompolinsky. Dynamics of spin systems with random asymmetric bonds:
537 Langevin dynamics and a spherical model. *Physical Review A*, 36:4922–4939, 1987.
538

539 Andrea Crisanti and Haim Sompolinsky. Dynamics of spin systems with randomly asymmetric
bonds: Ising spins and glauber dynamics. *Physical Review A*, 37:4865–4874, 1988.

540 C. DeDominicis. Dynamics as a substitute for replicas in systems with quenched random impurities.
541 *Physical Review B*, 18:4913–4919, 1978.
542

543 M. Demircigil et al. On a model of associative memory with huge storage capacity. *Journal of*
544 *Statistical Physics*, 168:288–299, 2017.

545 A. Düring, A. C. C. Coolen, and David Sherrington. Phase diagram and storage capacity of sequence
546 processing neural networks. *Journal of Physics A: Mathematical and General*, 31(43):8607–8621,
547 1998.

548 Elizabeth Gardner. Multiconnected neural network models. *Journal of Physics A: Mathematical*
549 *and General*, 20:3453–3464, 1987.

551 Elizabeth Gardner, Bernard Derrida, and Paul Mottishaw. Zero temperature parallel dynamics for
552 infinite range spin glasses and neural networks. *Journal de Physique*, 48:741–755, 1987.

553 Benjamin Hoover, Yiming Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau,
554 Mohammed J. Zaki, and Dmitry Krotov. Energy transformer. In *Advances in Neural Information*
555 *Processing Systems 36*, 2023.

557 John J. Hopfield. Neural networks and physical systems with emergent collective computational
558 abilities. *Proceedings of the National Academy of Sciences*, 79:2554–2558, 1982.

559 Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recognition. In *Advances*
560 *in Neural Information Processing Systems 29*, 2016.

562 Florent Krzakala and Lenka Zdeborová. On melting dynamics and the glass transition. ii. glassy
563 dynamics as a melting process. *The Journal of Chemical Physics*, 134(3):034513, 01 2011. ISSN
564 0021-9606. doi: 10.1063/1.3506843. URL <https://doi.org/10.1063/1.3506843>.

565 Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. *Physical*
566 *Review Letters*, 132:077301, 2024.

568 Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro. *Spin glass theory and beyond: An In-*
569 *roduction to the Replica Method and Its Applications*, volume 9. World Scientific Publishing
570 Company, 1987.

571 M. Okada. A hierarchy of macrodynamical equations for associative memory. *Neural Networks*, 8
572 (6):833, 1995.

573

574 Hubert Ramsauer, Markus Widrich, Milena Pavlovic, Michael Kopp, Günter Klambauer, Johannes
575 Brandstetter, Sepp Hochreiter, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Thomas Adler,
576 Lukas Gruber, Michael Holzleitner, Geir Kjetil Sandve, Vegard Greiff, and Daniel Kreil. Hopfield
577 networks is all you need. In *International Conference on Learning Representations*, 2021.

578 Heiko Rieger, Michael Schreckenberg, and Jürgen Zittartz. Glauber dynamics of the little-hopfield
579 model. *Zeitschrift für Physik B*, 72:523–529, 1988.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 APPENDICES
595
596
597
598

599 A PROOF OF LEMMA 1
600
601
602

603 We first calculate the expectation value of the noise term of all non-recalled patterns, which is the
604 last part in (14). Using the Taylor expansion, we obtain

605
$$\mathbb{E}_{\xi^2, \dots, \xi^M} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \sum_{\mu=2}^M \hat{u}_i^{(t)} \xi_i^\mu n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j^{(t)} \right)^{n-1} \right] \quad (29)$$
606
607

608
$$= \prod_{\mu=2}^M \mathbb{E}_{\xi^\mu} \left\{ 1 + \frac{1}{2} \left(-i \sum_{t=0}^{T-1} \sum_{i=1}^N \hat{u}_i^{(t)} \xi_i^\mu n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^\mu h_j^{(t)} \right)^{n-1} \right)^2 + O\left(\frac{n^3}{N^{3(n-1)}}\right) \right\} \quad (30)$$
609
610

611
$$= \exp \left[-\frac{n^2(M-1)}{2N^{2(n-1)}} \left(\sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \sum_{i=1}^N \hat{u}_i^{(t)} \hat{u}_i^{(t')} \mathcal{N}_1 + \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \sum_{i=1}^N \sum_{i' \neq i}^N \hat{u}_i^{(t)} \hat{u}_{i'}^{(t')} \mathcal{N}_2 \right) + O\left(\frac{n^3 M}{N^{3(n-1)}}\right) \right], \quad (31)$$
612
613

614 where
615

616
$$\mathcal{N}_1 = \mathbb{E}_{\xi} \left[\sum_{j_1 \neq i}^N \dots \sum_{j_{n-1} \neq i}^N \sum_{j'_1 \neq i'}^N \dots \sum_{j'_{n-1} \neq i'}^N \xi_{j_1} \dots \xi_{j_{n-1}} \xi_{j'_1} \dots \xi_{j'_{n-1}} h_{j_1}^{(t)} \dots h_{j_{n-1}}^{(t)} h_{j'_1}^{(t')} \dots h_{j'_{n-1}}^{(t')} \right],$$
617
618

619
$$\mathcal{N}_2 = \mathbb{E}_{\xi} \left[\xi_i \xi_{i'} \sum_{j_1 \neq i}^N \dots \sum_{j_{n-1} \neq i}^N \sum_{j'_1 \neq i'}^N \dots \sum_{j'_{n-1} \neq i'}^N \xi_{j_1} \dots \xi_{j_{n-1}} \xi_{j'_1} \dots \xi_{j'_{n-1}} h_{j_1}^{(t)} \dots h_{j_{n-1}}^{(t)} h_{j'_1}^{(t')} \dots h_{j'_{n-1}}^{(t')} \right].$$
620
621
622

623 Since ξ^2, \dots, ξ^M are independent, we can drop the index μ . It should be noted that any term in \mathcal{N}_1
624 and \mathcal{N}_2 that contains an odd number of identical index from the same pattern has zero expectation,
625 because all ξ_1, \dots, ξ_N are independent and have zero mean.

626 We calculate \mathcal{N}_1 . The leading term in \mathcal{N}_1 can be obtained by calculating the summations in the
627 case where the $2(n-1)$ variables are grouped into pairs, each pair taking the same value. We
628 have to do this for all possible partitions. We must distinguish three types of pairings: (i) between
629 two primed variables, (ii) between two unprimed variables, and (iii) between a primed and an un-
630 primed variable. Note that depending on the type of pair, the time parameter differs. Therefore,
631 the leading term can be obtained by counting the number of ways to partition the $2(n-1)$ indices,
632 i.e., $j_1, \dots, j_{n-1}, j'_1, \dots, j'_{n-1}$, into $n-1$ pairs in which indices take the same value while each
633 different pairs takes different values.

634 We here consider two sets of indices: the set of unprimed indices $\mathcal{J} = \{j_1, \dots, j_\ell\}$ and the set
635 of primed indices $\mathcal{J}' = \{j'_1, \dots, j'_{\ell'}\}$. First, we consider the number of ways to divide 2ℓ indices,
636 including ℓ unprimed indices and ℓ primed indices, into ℓ pairs. Let $A(\ell, k)$ be the number of ways
637 to have exactly k unprimed-primed pairs in ℓ total pairs, which is given by

638
$$A(\ell, k) = \binom{\ell}{k}^2 k! B(\ell - k)^2, \quad (32)$$
639
640

641 where $B(m)$ is the number of ways where $m/2$ unprimed-unprimed pairs and $m/2$ primed-primed
642 pairs are made using $2m$ indices, consisting of m unprimed indices and m primed indices:

643
$$B(m) = \mathbf{1}_{m:\text{even}} \frac{1}{(m/2)!} \binom{m}{2} \binom{m-2}{2} \dots \binom{2}{2} = \mathbf{1}_{m:\text{even}} (m-1)!! \quad (33)$$
644
645

646 Note that $\sum_{k=0}^{\ell} A(\ell, k) = B(2\ell)$ holds.

648 Using the quantity $A(\ell, k)$ and the identity $(h_i^{(t)})^2 = 1$, we obtain
649

$$650 \quad \mathcal{N}_1 = \mathbb{E}_{\xi} \left[\sum_{j_1, \dots, j_{n-1} \neq i}^N \sum_{j'_1, \dots, j'_{n-1} \neq i}^N \xi_{j_1} \cdots \xi_{j_{n-1}} \xi_{j'_1} \cdots \xi_{j'_{n-1}} h_{j_1}^{(t)} \cdots h_{j_{n-1}}^{(t)} h_{j'_1}^{(t')} \cdots h_{j'_{n-1}}^{(t')} \right] \quad (34)$$

$$653 \quad 654 \quad 655 \quad 656 \quad 657 \quad = N^{n-1} \underbrace{\sum_{k=0}^{n-1} A(n-1, k) \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^k}_{=O(N^0)} + O(N^{n-3}). \quad (35)$$

658 Next, we calculate \mathcal{N}_2 . For notational simplicity, let $(\cdot |_{j_1=i'})(\cdots)$ be an operator to substitute
659 $j_1 = i'$ into (\cdots) , and let $(\sum_{j_1 \neq i, \neq i'} \cdot)(\cdots)$ be an operator for summing (\cdots) over $j_1 \neq i, \neq i'$. It
660 should be noted that each of j_1, \dots, j_{n-1} can take the value i' , and conversely, each of j'_1, \dots, j'_{n-1}
661 can take the value i . For all $i \in \{1, \dots, N\}$ and $i' \in \{1, \dots, N\} \setminus \{i\}$, we have
662

$$663 \quad \mathcal{N}_2 = \mathbb{E}_{\xi} \left[\xi_i \xi_{i'} \left(\cdot \Big|_{j_1=i'} + \sum_{j_1 \neq i, \neq i'} \cdot \right) \cdots \left(\cdot \Big|_{j_{n-1}=i'} + \sum_{j_{n-1} \neq i, \neq i'} \cdot \right) \right. \\ 664 \quad \left. \left(\cdot \Big|_{j'_1=i} + \sum_{j'_1 \neq i', \neq i} \cdot \right) \cdots \left(\cdot \Big|_{j'_{n-1}=i} + \sum_{j'_{n-1} \neq i', \neq i} \cdot \right) \right. \\ 665 \quad \left. \xi_{j_1} \cdots \xi_{j_{n-1}} \xi_{j'_1} \cdots \xi_{j'_{n-1}} h_{j_1}^{(t)} \cdots h_{j_{n-1}}^{(t)} h_{j'_1}^{(t')} \cdots h_{j'_{n-1}}^{(t')} \right] \quad (36)$$

$$666 \quad 667 \quad 668 \quad = \binom{n-1}{1} \binom{n-1}{1} \mathbb{E}_{\xi} \left[\xi_i \xi_{i'} \right. \\ 669 \quad \left. \left(\sum_{j_1 \neq i, \neq i'} \cdot \right) \cdots \left(\sum_{j_{n-2} \neq i, \neq i'} \cdot \right) \left(\cdot \Big|_{j_{n-1}=i'} \right) \right. \\ 670 \quad \left. \left(\sum_{j'_1 \neq i', \neq i} \cdot \right) \cdots \left(\sum_{j'_{n-2} \neq i', \neq i} \cdot \right) \left(\cdot \Big|_{j'_{n-1}=i} \right) \right. \\ 671 \quad \left. \xi_{j_1} \cdots \xi_{j_{n-1}} \xi_{j'_1} \cdots \xi_{j'_{n-1}} h_{j_1}^{(t)} \cdots h_{j_{n-1}}^{(t)} h_{j'_1}^{(t')} \cdots h_{j'_{n-1}}^{(t')} \right] + O(N^{n-4}) \quad (37)$$

$$672 \quad 673 \quad 674 \quad 675 \quad 676 \quad 677 \quad 678 \quad = (n-1)^2 h_{i'}^{(t)} h_i^{(t')} \mathbb{E}_{\xi} \left[\sum_{j_1, \dots, j_{n-2} \neq i, \neq i'} \sum_{j'_1, \dots, j'_{n-2} \neq i', \neq i} \right. \\ 679 \quad \left. \xi_{j_1} \cdots \xi_{j_{n-2}} \xi_{j'_1} \cdots \xi_{j'_{n-2}} h_{j_1}^{(t)} \cdots h_{j_{n-2}}^{(t)} h_{j'_1}^{(t')} \cdots h_{j'_{n-2}}^{(t')} \right] + O(N^{n-4}) \quad (38)$$

$$680 \quad 681 \quad 682 \quad 683 \quad 684 \quad 685 \quad 686 \quad = (n-1)^2 h_{i'}^{(t)} h_i^{(t')} N^{n-2} \underbrace{\sum_{k=0}^{n-2} A(n-2, k) \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^k}_{=O(N^0)} + O(N^{n-4}). \quad (39)$$

687 Substituting (35) and (39) into (31), we obtain the expectation value of the noise term of all non-
688 recalled patterns as follows:
689

$$690 \quad \mathbb{E}_{\xi^2, \dots, \xi^M} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \sum_{\mu=2}^M \hat{u}_i^{(t)} \xi_i^{\mu} n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^{\mu} h_j^{(t)} \right)^{n-1} \right] \\ 691 \quad = \exp \left[-\frac{1}{2} \cdot \frac{n^2 M}{N^{n-2}} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \right. \\ 692 \quad \left. (n-1)^2 \left(\frac{1}{N} \sum_{i=1}^N h_i^{(t')} \hat{u}_i^{(t)} \right) \left(\frac{1}{N} \sum_{i'=1}^N h_{i'}^{(t)} \hat{u}_{i'}^{(t')} \right) \sum_{k=0}^{n-2} A(n-2, k) \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^k \right] \quad (40)$$

$$+ \left(\frac{1}{N} \sum_{i=1}^N \hat{u}_i^{(t)} \hat{u}_i^{(t')} \right) \sum_{k=0}^{n-1} A(n-1, k) \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^k + O(N^{-1}) \right\} \quad (41)$$

$$\begin{aligned}
&= \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dq^{(t,t')} \delta \left(Nq^{(t,t')} - \sum_{i=1}^N h_i^{(t)} h_i^{(t')} \right) \right] \\
&\times \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dQ^{(t,t')} \delta \left(NQ^{(t,t')} - \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')} \right) \right] \\
&\times \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dK^{(t,t')} \delta \left(NK^{(t,t')} - \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')} \right) \right] \\
&\times \exp \left[-\frac{1}{2} \cdot \frac{n^2 M}{N^{n-2}} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \left\{ (n-1)^2 K^{(t,t')} K^{(t',t)} \sum_{k=0}^{n-2} A(n-2, k) \left(q^{(t,t')} \right)^k \right. \right. \\
&\quad \left. \left. + Q^{(t,t')} \sum_{k=0}^{n-1} A(n-1, k) \left(q^{(t,t')} \right)^k + O(N^{-1}) \right\} \right] \tag{42}
\end{aligned}$$

$$\begin{aligned}
&= \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dq^{(t,t')} \int_{-\infty}^{\infty} \frac{d\hat{q}^{(t,t')}}{2\pi} \exp \left\{ i\hat{q}^{(t,t')} \left(Nq^{(t,t')} - \sum_{i=1}^N h_i^{(t)} h_i^{(t')} \right) \right\} \right] \\
&\times \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dQ^{(t,t')} \int_{-\infty}^{\infty} \frac{d\hat{Q}^{(t,t')}}{2\pi} \exp \left\{ i\hat{q}^{(t,t')} \left(NQ^{(t,t')} - \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')} \right) \right\} \right] \\
&\times \left[\prod_{t=0}^T \prod_{t'=0}^T \int_{-\infty}^{\infty} dK^{(t,t')} \int_{-\infty}^{\infty} \frac{d\hat{K}^{(t,t')}}{2\pi} \exp \left\{ i\hat{q}^{(t,t')} \left(NK^{(t,t')} - \sum_{i=1}^N h_i^{(t)} \hat{u}_i^{(t')} \right) \right\} \right] \\
&\times \exp \left[-\frac{1}{2} \cdot \frac{n^2 M}{N^{n-2}} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \left\{ (n-1)^2 K^{(t,t')} K^{(t',t)} \sum_{k=0}^{n-2} A(n-2, k) \left(q^{(t,t')} \right)^k \right. \right. \\
&\quad \left. \left. + Q^{(t,t')} \sum_{k=0}^{n-1} A(n-1, k) \left(q^{(t,t')} \right)^k + O(N^{-1}) \right\} \right], \tag{43}
\end{aligned}$$

by using (15).

The signal term that includes the recalling pattern ξ^1 can be rearranged as

$$\begin{aligned}
& \mathbb{E}_{\xi^1} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \hat{u}_i^{(t)} \xi_i^1 n \left(\frac{1}{N} \sum_{j \neq i}^N \xi_j^1 h_j^{(t)} \right)^{n-1} \right] \\
&= \mathbb{E}_{\xi^1} \exp \left[-i N \sum_{t=0}^{T-1} \left(\frac{1}{N} \sum_{i=1}^N \hat{u}_i^{(t)} \xi_i^1 \right) n \left(\frac{1}{N} \sum_{j=1}^N \xi_j^1 h_j^{(t)} + O(N^{-1}) \right)^{n-1} \right] \\
&= \left[\prod_{t=0}^T \int_{-\infty}^{\infty} dm^{(t)} \delta \left(N m^{(t)} - \sum_{i=1}^N \xi_i^1 h_i^{(t)} \right) \right] \\
&\quad \times \left[\prod_{t=0}^T \int_{-\infty}^{\infty} dk^{(t)} \delta \left(N k^{(t)} - \sum_{i=1}^N \xi_i^1 \hat{u}_i^{(t)} \right) \right] \\
&\quad \times \mathbb{E}_{\xi^1} \exp \left[-i N \sum_{t=0}^{T-1} k^{(t)} n \left(m^{(t)} + O(N^{-1}) \right)^{n-1} \right] \\
&= \left[\prod_{t=0}^T \int_{-\infty}^{\infty} dm^{(t)} \int_{-\infty}^{\infty} \frac{d\hat{m}^{(t)}}{2\pi} \exp \left\{ i \hat{m}^{(t)} \left(N m^{(t)} - \sum_{i=1}^N \xi_i^1 h_i^{(t)} \right) \right\} \right]
\end{aligned} \tag{44}$$

$$\begin{aligned} & \times \left[\prod_{t=0}^T \int_{-\infty}^{\infty} dk^{(t)} \int_{-\infty}^{\infty} \frac{d\hat{k}^{(t)}}{2\pi} \exp \left\{ i\hat{k}^{(t)} \left(Nk^{(t)} - \sum_{i=1}^N \xi_i^1 \hat{u}_i^{(t)} \right) \right\} \right] \\ & \times \mathbb{E}_{\xi^1} \exp \left[-iN \sum_{t=0}^{T-1} k^{(t)} n \left(m^{(t)} + O(N^{-1}) \right)^{n-1} \right]. \end{aligned} \quad (45)$$

We here introduced the parameters of (15) using the Dirac delta function and its Fourier integral form of the Dirac delta function, i.e., $\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\hat{x} e^{i\hat{x}x} = \frac{1}{2\pi i} \int_{-\infty}^{i\infty} d\hat{x} e^{i\hat{x}x}$. We then arrive at the generating functional of (16). Since the expectation over the non-recalled patterns has already been taken, and only the recalling pattern remains in the expression. The signal term of (45) is $e^{O(N)}$. On the other hand, the noise term of (43) is $e^{O(M/N^{n-2})}$. For non-trivial analysis, the signal term and the noise term must be of the same order, namely, the number of the memory patterns M must be $O(N^{n-1})$.

B PROOF SKETCH OF PROPOSITION 1

It should be noted that the normalization relation $Z[0] = 1$ plays an important role in the elimination of spurious solutions to the saddle-point equations. The terms in the averaged generating functional can be split into three related parts. The first one is a signal part. The second one is a static noise part due to the random variables within the model. The last one is retarded self-interaction due to the influence of the state at the previous stage, which may be able to affect the present state. The GFA allows us to treat the last part. After the analysis, it turns out that the system can be described in terms of the following three quantities:

$$m^{(t)} = \mathbb{E}_{\xi^1, \dots, \xi^M} \left[\left\langle \frac{1}{N} \sum_{i=1}^N \xi_i^1 h_i^{(t)} \right\rangle \right], \quad (46)$$

$$C^{(t,t')} = \mathbb{E}_{\xi^1, \dots, \xi^M} \left[\left\langle \frac{1}{N} \sum_{i=1}^N h_i^{(t)} h_i^{(t')} \right\rangle \right], \quad (47)$$

$$G^{(t,t')} = \mathbb{E}_{\xi^1, \dots, \xi^M} \left[\left\langle \frac{1}{N} \sum_{i=1}^N \frac{\partial h_i^{(t)}}{\partial \theta_j^{(t')}} \right\rangle \right], \quad (48)$$

where these are referred to as the *overlap*, the *correlation function*, and the *response function*, respectively. One can deduce the meaning of macroscopic parameters by differentiating the averaged generating functional with respect to the external field $\theta_i^{(t)}$ and generating functions $\psi_i^{(t)}$. The averaged generating functional $\bar{Z}[\psi]$ is dominated by a saddle-point for $N \rightarrow \infty$. Using the normalization identity $\bar{Z}[0] = \mathbb{E}_{\xi^1 \dots \xi^M} \langle 1 \rangle = 1$, one can have derivatives of the averaged generating functional:

$$\begin{aligned}
\lim_{\psi \rightarrow \mathbf{0}} \frac{\partial \bar{Z}[\psi]}{\partial \psi_i^{(t)}} &= -i \langle h^{(t)} \rangle_i, \\
\lim_{\psi \rightarrow \mathbf{0}} \frac{\partial^2 \bar{Z}[\psi]}{\partial \psi_i^{(t)} \partial \psi_{i'}^{(t')}} &= -\delta_{i,i'} \langle h^{(t)} h^{(t')} \rangle_i - (1 - \delta_{i,i'}) \langle h^{(t)} \rangle_i \langle h^{(t')} \rangle_{i'}, \\
\lim_{\psi \rightarrow \mathbf{0}} \frac{\partial^2 \bar{Z}[\psi]}{\partial \psi_i^{(t)} \partial \hat{\theta}_{i'}^{(t')}} &= -\delta_{i,i'} \langle h^{(t)} \hat{u}^{(t')} \rangle_i - (1 - \delta_{i,i'}) \langle h^{(t)} \rangle_i \langle \hat{u}^{(s')} \rangle_{i'}, \\
\lim_{\psi \rightarrow \mathbf{0}} \frac{\partial \bar{Z}[\psi]}{\partial \theta_i^{(t)}} &= -i \langle \hat{u}^{(t)} \rangle_i = 0, \\
\lim_{\psi \rightarrow \mathbf{0}} \frac{\partial^2 \bar{Z}[\psi]}{\partial \theta_i^{(t)} \partial \theta_{i'}^{(t')}} &= -\delta_{i,i'} \langle \hat{u}^{(t)} \hat{u}^{(t')} \rangle_i = 0,
\end{aligned} \tag{49}$$

810 where $\langle \cdot \rangle_i$ denotes the average that is defined by
811

$$812 \quad \langle f(\mathbf{h}, \mathbf{u}, \hat{\mathbf{u}}) \rangle_i := \frac{\sum_{\mathbf{h}} \int d\mathbf{u} d\hat{\mathbf{u}} w_i(\mathbf{h}, \mathbf{u}, \hat{\mathbf{u}}) f(\mathbf{h}, \mathbf{u}, \hat{\mathbf{u}})}{\sum_{\mathbf{h}} \int d\mathbf{u} d\hat{\mathbf{u}} w_i(\mathbf{h}, \mathbf{u}, \hat{\mathbf{u}})} \quad (50)$$

817 with

$$818 \quad w_i(\mathbf{h}, \mathbf{u}, \hat{\mathbf{u}}) = p[h^{(0)}] \left(\prod_{t=0}^{T-1} \delta[h^{(t+1)}; \operatorname{sgn}(u^{(t)})] \right) \\ 819 \quad \times \exp \left[-i \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \{ \hat{q}^{(s,s')} h^{(s)} \tilde{b}^{(s')} + \hat{Q}^{(s,s')} \hat{u}^{(s)} \hat{u}^{(s')} + \hat{K}^{(s,s')} h^{(s)} \hat{u}^{(s')} \} \right. \\ 820 \quad \left. + i \sum_{t=0}^{T-1} \hat{u}^{(t)} \{ u^{(t)} - \hat{k}^{(t)} \xi_i - \theta_i^{(t)} \} - i \sum_{t=0}^{T-1} h^{(s)} \hat{m}^{(t)} \right] \Big|_{\text{saddle}}. \quad (51)$$

827 The average $\langle (\dots) \rangle_i$ is referred to as a *single-unit measure*. Here, evaluation $f|_{\text{saddle}}$ denotes an
828 evaluation of function f at the dominating saddle-point. Substituting (49) into (10) – (12), we then
829 have

$$830 \quad \mathbb{E}_{\xi^1, \dots, \xi^M} \langle h_i^{(t)} \rangle = \langle h^{(t)} \rangle_i, \\ 831 \quad \mathbb{E}_{\xi^1, \dots, \xi^M} \langle h_i^{(t)} h_{i'}^{(t')} \rangle = \delta_{i,i'} \langle h^{(t)} h^{(t')} \rangle_i + (1 - \delta_{i,i'}) \langle h^{(t)} \rangle_i \langle h^{(t')} \rangle_{i'}, \\ 832 \quad \mathbb{E}_{\xi^1, \dots, \xi^M} \langle \frac{\partial h_i^{(t)}}{\partial \theta_{i'}^{(t')}} \rangle = -i \delta_{i,i'} \langle h^{(t)} \hat{u}^{(t')} \rangle_i. \quad (52)$$

837 In the large-system limit, the averaged generating functional will be evaluated by the dominating
838 saddle-points of the exponent $\Phi + \Psi + \Omega$. We can now derive the saddle-point equations by differ-
839 entiation with respect to the integral variables $m^{(t)}$, $\hat{m}^{(t)}$, $k^{(t)}$, $\hat{k}^{(t)}$, $q^{(t,t')}$, $\hat{q}^{(t,t')}$, $Q^{(t,t')}$,
840 $\hat{Q}^{(t,t')}$, $K^{(t,t')}$, and $\hat{K}^{(t,t')}$. The saddle-point equations will involve the overlap $m^{(t)}$, the correlation $C^{(t,t')}$
841 and the response function $G^{(s,s')}$. It should be noted that causality, i.e.,

$$843 \quad \frac{\partial \langle h^{(t)} \rangle}{\partial \theta^{(t')}} = 0, \quad (53)$$

845 should hold for $t \leq t'$. Therefore $G^{(t,t')} = 0$ for $t \leq t'$. Using causality and the identities (49) and
846 (52), the straightforward differentiation of $\Phi + \Psi + \Omega$ with respect to the integral variables leads us
847 to the following saddle-point equations:

$$848 \quad m^{(t)} = \frac{1}{N} \sum_{i=1}^N \xi_i^1 \overline{\langle h_i^{(t)} \rangle} = \langle \langle \xi h^{(t)} \rangle \rangle, \quad \hat{m}^{(t)} = 0, \quad k^{(t)} = 0, \quad \hat{k}^{(t)} = n(m^{(t)})^{n-1}, \quad (54)$$

$$849 \quad q^{(t,t')} = C^{(t,t')} = \frac{1}{N} \sum_{i=1}^N \overline{\langle h_i^{(t)} h_i^{(t')} \rangle} = \langle \langle h^{(t)} h^{(t')} \rangle \rangle, \quad \hat{q}^{(t,t')} = 0, \quad (55)$$

$$850 \quad Q^{(t,t')} = 0, \quad \hat{Q}^{(t,t')} = -i \frac{1}{2} R^{(t,t')}, \quad (56)$$

$$851 \quad K^{(t,t')} = i G^{(t,t')} = \mathbf{1}_{t>t'} \frac{\partial \langle \langle h^{(t)} \rangle \rangle}{\partial \theta^{(t)}}, \quad \hat{K}^{(t,t')} = D^{(t,t')} G^{(t',t)}, \quad (57)$$

852 where

$$853 \quad R^{(t,t')} = n^2 \alpha_n \sum_{k=0}^{n-1} A(n-1, k) (C^{(t,t')})^k, \quad (58)$$

$$D^{(t,t')} = n^2(n-1)^2 \alpha_n \sum_{k=0}^{n-2} A(n-2,k) (C^{(t,t')})^k. \quad (59)$$

Substituting the solutions of the saddle-point equation into the single-unit measure, we obtain the effective path measure. We then arrive at Proposition 1.

C PROOF SKETCH OF GARDNER'S MODEL

Using a similar way to Lemma 1, the expectation value of the noise term of all non-recalled patterns for the n -body Hopfield model is given by

$$\begin{aligned}
& \mathbb{E}_{\xi^2, \dots, \xi^M} \exp \left[-i \sum_{t=0}^{T-1} \sum_{i=1}^N \sum_{\mu=2}^M \hat{u}_i^{(t)} \xi_i^\mu \frac{1}{N^{n-1}} \sum_{j_1 \neq \dots \neq j_{n-1} \neq i}^N \xi_{j_1}^\mu \dots \xi_{j_{n-1}}^\mu h_{j_1}^{(t)} \dots h_{j_{n-1}}^{(t)} \right] \\
&= \exp \left[-\frac{1}{2} \frac{n^2 M}{N^{n-2}} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} \left\{ (n-1)^2 \left(\frac{1}{N} \sum_{i=1}^N h_i^{(t')} \hat{u}_i^{(t)} \right) \left(\frac{1}{N} \sum_{i'=1}^N h_{i'}^{(t)} \hat{u}_{i'}^{(t')} \right) A(n-2, n-2) \right. \right. \\
&\quad \times \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^{n-2} + \left(\frac{1}{N} \sum_{i=1}^N \hat{u}_i^{(t)} \hat{u}_i^{(t')} \right) A(n-1, n-1) \left(\frac{1}{N} \sum_{j=1}^N h_j^{(t)} h_j^{(t')} \right)^{n-1} + O(N^{-1}) \left. \right\} \right], \tag{60}
\end{aligned}$$

where

$$A(\ell, \ell) = \binom{\ell}{\ell}^2 \ell! B(\ell - \ell)^2 = \ell!. \quad (61)$$

Applying the same calculation, we arrive at (28).

D SKETCH OF REPLICA COMPUTATION

In a general setting, suppose that the state variable $s = (s_i)$ is governed by a Hamiltonian $H(s | r)$ that depends on a predetermined random variable r . In this case, the thermal average

$$\langle s \rangle = \frac{\text{tr}_s s e^{-\beta H(s|r)}}{Z(r)}, \quad Z(r) = \text{tr}_s e^{-\beta H(s|r)}, \quad (62)$$

becomes a random quantity because it varies with the realization of r . Here, $\text{tr}_X(\dots)$ denotes summation or integration over all possible configurations of s .

The replica method is a technique used to evaluate the moments of the thermal average $\mathbb{E}_r[(s_i)^k]$ for $k = 1, 2, \dots$ by means of the replica trick.

$$\mathbb{E}_{\mathbf{r}}[\langle s_i \rangle^k] = \lim_{\nu \rightarrow 0} \frac{\mathbb{E}_{\mathbf{r}}[Z^\nu(\mathbf{r}) \langle s_i \rangle^k]}{\mathbb{E}_{\mathbf{r}}[Z^\nu(\mathbf{r})]}. \quad (63)$$

In practice, this reduces the problem to computing the ν -th moment of the partition function $\mathbb{E}_r[Z^\nu(r)]$ for integers $\nu = 1, 2, \dots$ using the saddle point method, and then analytically continuing the resulting expression to real values $\nu \in \mathbb{R}$ under the assumption of a certain symmetry.

For the model defined by (1) and (2), we analyze its behavior using the replica method under the assumption that $M = \alpha_n N^{n-1}$, and that only the overlap with the first pattern, $m = \xi^1 \cdot \mathbf{h}/N$, is $O(1)$ while the other overlaps, $\xi^\mu \cdot \mathbf{h}/N$ for $\mu = 2, \dots, \alpha_n N^{n-1}$, remain typically $O(N^{-1/2})$. To this end, we introduce the rescaled variables $u_\mu = \xi^\mu \cdot \mathbf{h}/N^{1/2}$ for $\mu = 2, \dots, \alpha_n N^{n-1}$, and rewrite the Hamiltonian as

$$H = -\frac{N}{2}m^n - \frac{N^{1-n/2}}{2} \sum_{\mu=2}^{\alpha_n N^{n-1}} u_\mu^n. \quad (64)$$

918 The corresponding partition function is thus given by
919

$$920 \quad 921 \quad 922 \quad Z = \sum_{\mathbf{h}} \exp \left(\frac{N\beta m^n}{2} + \frac{N^{1-n/2}\beta}{2} \sum_{\mu=2}^{\alpha_n N^{n-1}} u_{\mu}^n \right), \quad (65)$$

923 and its ν -th moment reads
924

$$925 \quad 926 \quad 927 \quad \mathbb{E}_{\xi}[Z^{\nu}] = \sum_{\mathbf{h}^1, \dots, \mathbf{h}^{\nu}} \underbrace{\mathbb{E}_{\xi^1} \left[\exp \left(\frac{N\beta}{2} \sum_{a=1}^{\nu} (m^a)^n \right) \right]}_{\mathcal{I}_1} \times \underbrace{\mathbb{E}_{\xi^2, \dots, \xi^{\alpha_n N^{n-1}}} \left[\exp \left(\frac{N^{1-n/2}\beta}{2} \sum_{\mu=2}^{\alpha_n N^{n-1}} \sum_{a=1}^{\nu} (u_{\mu}^a)^n \right) \right]}_{\mathcal{I}_2}, \quad (66)$$

928 for natural numbers $\nu = 1, 2, \dots$
929

930 **Evaluation of \mathcal{I}_2 .** The quantity \mathcal{I}_2 is evaluated using the following facts:
931

- 934 • The patterns $\xi^2, \dots, \xi^{\alpha_n N^{n-1}}$ are independently drawn from the uniform distribution over
935 $\{+1, -1\}^N$. Thus, \mathcal{I}_2 is obtained by averaging $\exp \left(\frac{N^{1-n/2}\beta}{2} \sum_{a=1}^{\nu} (u^a)^n \right)$ with respect
936 to a single pattern ξ (i.e. dropping the subscript μ), and raising the result to the power
937 $\alpha_n N^{n-1}$.
- 938 • For ξ uniformly distributed over $\{+1, -1\}^N$, the central limit theorem implies
939 that u^1, \dots, u^{ν} follow a zero-mean multivariate normal distribution with covariance
940 $\mathbb{E}_{\xi}[u^a u^b] = N^{-1} \mathbf{h}^a \cdot \mathbf{h}^b =: q_{ab}$.
- 941 • For $n \geq 3$, the factor $N^{1-n/2}$ vanishes as $N \rightarrow \infty$. We therefore apply the Taylor expansion
942

$$943 \quad 944 \quad \exp \left(\frac{N^{1-n/2}\beta}{2} \sum_{a=1}^{\nu} (u^a)^n \right) \\ 945 \quad 946 \quad = 1 + \frac{N^{1-n/2}\beta}{2} \sum_{a=1}^{\nu} (u^a)^n + \frac{1}{2} \left(\frac{N^{1-n/2}\beta}{2} \sum_{a=1}^{\nu} (u^a)^n \right)^2 + O(N^{3-3n/2}) \quad (67)$$

947 to compute the Gaussian average.
948

949 Using these observations, we obtain
950

$$951 \quad 952 \quad \mathcal{I}_2 = \left(1 + \frac{1}{2} \mathbb{E}_{u^1, \dots, u^{\nu}} \left[\left(\frac{N^{1-n/2}\beta}{2} \sum_{a=1}^{\nu} (u^a)^n \right)^2 \right] + O(N^{3-3n/2}) \right)^{\alpha_n N^{n-1}} \\ 953 \quad 954 \quad = \exp \left(\frac{N\alpha_n\beta^2}{8} \mathbb{E}_{u^1, \dots, u^{\nu}} \left[\sum_{a,b} (u^a u^b)^{2n} \right] + O(N^{2-n/2}) \right) \\ 955 \quad 956 \quad \simeq \exp \left(\frac{N\alpha_n\beta^2}{8} \mathbb{E}_{u^1, \dots, u^{\nu}} \left[\sum_{a,b} (u^a u^b)^{2n} \right] \right), \quad (68)$$

957 which is valid for $n \geq 3$.
958

959 **Evaluation of \mathcal{I}_1 and the subshell volume.** The contribution \mathcal{I}_1 is handled together with the
960 volume of the subshell of configurations $\mathbf{h}^1, \dots, \mathbf{h}^{\nu}$ that satisfy fixed order parameters m^a and q_{ab}
961 ($a, b = 1, \dots, \nu$). Specifically, we insert the identity
962

$$963 \quad 964 \quad 1 \propto \int \prod_{a=1}^{\nu} dm_a \int \prod_{a < b} dq_{ab} \prod_{a=1}^{\nu} \delta(\xi^1 \cdot \mathbf{h}^a - N m^a) \prod_{a < b} \delta(\mathbf{h}^a \cdot \mathbf{h}^b - N q_{ab}) \quad (69)$$

972 into (66). This leads to
973

$$\begin{aligned} 974 \quad & \mathbb{E}_{\xi^1} \left[\exp \left(\frac{N\beta}{2} \sum_{a=1}^{\nu} (m^a)^n \right) \prod_{a=1}^{\nu} \delta(\xi^1 \cdot \mathbf{h}^a - Nm^a) \right] \\ 975 \quad & = \exp \left(\frac{N\beta}{2} \sum_{a=1}^{\nu} (m^a)^n \right) \times \mathbb{E}_{\xi^1} \left[\prod_{a=1}^{\nu} \delta(\xi^1 \cdot \mathbf{h}^a - Nm^a) \right]. \end{aligned} \quad (70)$$

980 Next, the subshell volume
981

$$\sum_{\mathbf{h}^1, \dots, \mathbf{h}^{\nu}} \prod_{a=1}^{\nu} \delta(\xi^1 \cdot \mathbf{h}^a - Nm^a) \prod_{a < b} \delta(\mathbf{h}^a \cdot \mathbf{h}^b - Nq_{ab}) \quad (71)$$

985 is evaluated using the Fourier representations
986

$$\delta(\xi^1 \cdot \mathbf{h}^a - Nm^a) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\hat{m}_a \exp[\hat{m}_a(\xi^1 \cdot \mathbf{h}^a - Nm^a)], \quad (72)$$

$$\delta(\mathbf{h}^a \cdot \mathbf{h}^b - Nq_{ab}) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\hat{q}_{ab} \exp[\hat{q}_{ab}(\mathbf{h}^a \cdot \mathbf{h}^b - Nq_{ab})]. \quad (73)$$

992 Combining all contributions and applying the saddle-point method, we finally obtain
993

$$\begin{aligned} 994 \quad & \frac{1}{N} \ln \mathbb{E}_{\xi} [Z^{\nu}] \simeq \underset{\{m_a, q_{ab}, \hat{m}_a, \hat{q}_{ab}\}}{\text{extr}} \left\{ \frac{\beta}{2} \sum_{a=1}^{\nu} (m^a)^n + \frac{\alpha_n \beta^2}{8} \mathbb{E}_{u^1, \dots, u^{\nu}} \left[\sum_{a,b} (u^a u^b)^{2n} \right] \right. \\ 995 \quad & \quad - \sum_{a < b} \hat{q}_{ab} q_{ab} - \sum_{a=1}^{\nu} \hat{m}_a m^a \\ 996 \quad & \quad \left. + \ln \mathbb{E}_{\xi} \left[\sum_{h^1, \dots, h^{\nu}} \exp \left(\sum_{a < b} \hat{q}_{ab} h^a h^b + \sum_{a=1}^{\nu} \hat{m}_a \xi h^a \right) \right] \right\}, \end{aligned} \quad (74)$$

1003 where $\text{extr}_X \{f(X)\}$ generally stands for extremizing $f(X)$ with respect to X .
1004

1005 To proceed toward the limit $\nu \rightarrow 0$, we next impose an appropriate replica-symmetric (or symmetry-
1006 broken) ansatz for the saddle-point parameters.
1007

1008 D.1 REPLICA SYMMETRIC SOLUTION

1011 The replica-symmetric (RS) solution is obtained by imposing $m^a = m$, $q_{ab} = q$, $\hat{m}_a = \hat{m}$, $\hat{q}_{ab} =$
1012 \hat{q} in (74). Under this ansatz, the Gaussian average becomes
1013

$$\mathbb{E}_{u^1, \dots, u^{\nu}} \left[\sum_{a,b} (u^a u^b)^{2n} \right] = \nu M_n(1) + \nu(\nu - 1) M_n(q), \quad (75)$$

1017 where
1018

$$M_n(\rho) = \sum_{r=0}^{\lfloor n/2 \rfloor} \binom{n}{2r} (n-2r)! ((2r-1)!!)^2 \rho^{n-2r}. \quad (76)$$

1022 Furthermore, using a Gaussian integral identity, we obtain
1023

$$\mathbb{E}_{\xi} \left[\sum_{h^1, \dots, h^{\nu}} \exp \left(\hat{q} \sum_{a < b} h^a h^b + \hat{m} \sum_{a=1}^{\nu} \xi h^a \right) \right]$$

$$\begin{aligned}
&= e^{-\nu\hat{q}/2} \int Dz \mathbb{E}_\xi \left[\left(2 \cosh \left(\sqrt{\hat{q}} z + \hat{m} \xi \right) \right)^\nu \right] \\
&= e^{-\nu\hat{q}/2} \int Dz \left(2 \cosh \left(\sqrt{\hat{q}} z + \hat{m} \xi \right) \right)^\nu, \tag{77}
\end{aligned}$$

where $Dz = dz e^{-z^2/2}/\sqrt{2\pi}$ denotes the standard Gaussian measure

To characterize the retrieval state—that is, a (local) minimum of the Hamiltonian H —we consider the zero-temperature limit $\beta \rightarrow \infty$. In this limit, we introduce the rescaled parameters

$$F = \beta^{-2} \hat{q}, \quad K = \beta^{-1} \hat{m}, \quad \chi = \beta(1 - q). \quad (78)$$

For the case $n = 3$, substituting these scalings into (74) yields

$$\begin{aligned} \frac{1}{N} \mathbb{E}_{\xi} \left[\min_{\hbar} H \right] &= - \lim_{\beta \rightarrow \infty} \frac{1}{\beta N} \mathbb{E}_{\xi} [\ln Z] = - \lim_{\beta \rightarrow \infty} \frac{1}{\beta N} \lim_{\nu \rightarrow 0} \frac{\partial}{\partial \nu} \ln \mathbb{E}_{\xi} [Z^{\nu}] \\ &= - \underset{\{m, \chi, F, K\}}{\text{extr}} \left\{ \frac{m^3}{2} + \frac{27\alpha\chi}{8} - \frac{F\chi}{2} - Km + \int Dz |\sqrt{F} z + K| \right\}. \quad (79) \end{aligned}$$

The value of m determined by the extremization means the typical overlap with the retrieved pattern $\mathbb{E}_\xi[\xi^1 \cdot h]/N$. After performing the extremization, we obtain the fixed-point equation

$$m = \operatorname{erf} \left(\frac{m^2}{\sqrt{6\alpha_3}} \right) = \operatorname{erf} \left(\frac{m^2}{\sqrt{2\alpha'_3}} \right), \quad (80)$$

which coincides with the fixed-point condition of the approximate algorithm given in (25) for $n = 3$.

D.2 1-STEP REPLICA SYMMETRY BREAKING SOLUTION

Under the one-step replica-symmetry-breaking (1RSB) ansatz, the replica indices $1, \dots, \nu$ are divided into ν/x groups, each of size x . The order parameters in (74) are set as

$$q_{ab} = \begin{cases} q_1, & \text{if } a \text{ and } b \text{ belong to the same group,} \\ q_0, & \text{otherwise,} \end{cases} \quad (81)$$

and similarly for \hat{q}_{ab} . For m^a and \hat{m}_a , we retain the RS conventions $m^a = m$ and $\hat{m}_a = \hat{m}$.

Under this ansatz, the Gaussian average becomes

$$\mathbb{E}_{u^1, \dots, u^\nu} \left[\sum_{a,b} (u^a u^b)^{2n} \right] = \nu M_n(1) + \frac{\nu}{x} x(x-1) M_n(q_1) + x^2 \frac{\nu}{x} \left(\frac{\nu}{x} - 1 \right) M_n(q_0), \quad (82)$$

where $M_n(\rho)$ is defined in (76).

We also obtain

$$\begin{aligned} & \mathbb{E}_\xi \left[\sum_{h^1, \dots, h^\nu} \exp \left(\hat{q}_{ab} \sum_{a < b} h^a h^b + \hat{m} \sum_{a=1}^\nu \xi h^a \right) \right] \\ &= e^{-\nu \hat{q}_1/2} \int Dz \left[\int Dy \left(2 \cosh \left(\sqrt{\hat{q}_1 - \hat{q}_0} y + \sqrt{\hat{q}_0} z + \hat{m} \right) \right)^x \right]^{\nu/x}. \end{aligned} \quad (83)$$

As before, to characterize the retrieval state—a local minimum of the Hamiltonian H —we consider the zero-temperature limit $\beta \rightarrow \infty$. In this limit, we introduce the rescaled variables

$$F_1 = \beta^{-2} \hat{q}_1, \quad F_0 = \beta^{-2} \hat{q}_0, \quad K = \beta^{-1} \hat{m}, \quad \chi = \beta(1 - q_1), \quad \mu = \beta x. \quad (84)$$

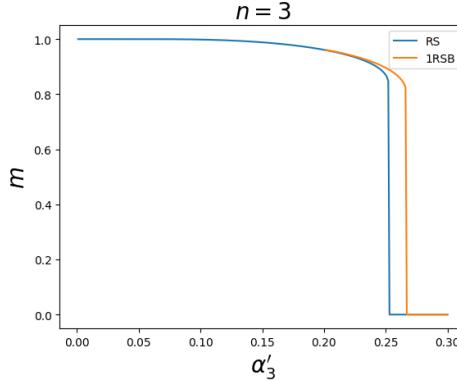


Figure 3: Typical values of overlap $m = \mathbb{E}_\xi[\xi^1 \cdot h]/N$ evaluated under the RS and 1RSB ansatzes.

For the case $n = 3$, substituting these definitions into (74) yields

$$\begin{aligned} \frac{1}{N} \mathbb{E}_\xi [\min_h H] &= - \lim_{\beta \rightarrow \infty} \frac{1}{\beta N} \mathbb{E}_\xi [\ln Z] = - \lim_{\beta \rightarrow \infty} \frac{1}{\beta N} \lim_{\nu \rightarrow 0} \frac{\partial}{\partial \nu} \ln \mathbb{E}_\xi [Z^\nu] \\ &= - \underset{\{m, \chi, q_0, F_1, F_0, K, \mu\}}{\text{extr}} \left\{ \frac{m^3}{2} + \frac{\alpha_3}{8} [27\chi + \mu(9(1 - q_0) + 6(1 - q_0^3))] - \frac{F_1\chi}{2} - \frac{\mu}{2}(F_1 - F_0q_0) - Km \right. \\ &\quad \left. + \frac{1}{\mu} \int Dz \ln \left[\int Dy \exp \left(\mu |\sqrt{F_1 - F_0} y + \sqrt{F_0} z + K| \right) \right] \right\}. \end{aligned} \quad (85)$$

The RS solution corresponds to a special case of the 1RSB solution, characterized by the constraints

$$q_1 = q_0 = q, \quad \hat{q}_1 = \hat{q}_0 = \hat{q}.$$

Hence, the local stability of the RS solution can be examined by linearizing the 1RSB extremum conditions with respect to the small perturbations

$$\Delta q = q_1 - q_0, \quad \Delta \hat{q} = \hat{q}_1 - \hat{q}_0,$$

around the RS saddle point. This procedure yields the stability condition

$$\begin{aligned} 1 &> 9\alpha_3\beta^2 q \int Dz \left[1 - \tanh^2 \left(\sqrt{\hat{q}} z + \hat{m} \right) \right]^2 \\ &= 9\alpha_3 q \int Dz \left(\frac{\partial}{\partial K} \tanh \left(\beta(\sqrt{F} z + K) \right) \right)^2. \end{aligned} \quad (86)$$

However, this condition is never satisfied in the zero-temperature limit. Indeed, one finds

$$\lim_{\beta \rightarrow \infty} \frac{\partial}{\partial K} \tanh \left(\beta(\sqrt{F} z + K) \right) = 2 \delta(\sqrt{F} z + K),$$

which causes the right-hand side of the stability condition (86) to diverge.

This demonstrates that the RS solution is always unstable at zero temperature, implying that replica-symmetry breaking must be taken into account in order to obtain a correct description of the model defined by (1) and (2).

D.3 SOLUTIONS

We numerically performed the extremization of (79) and (85) for the case $n = 3$. The resulting values of m are plotted versus $\alpha'_3 = 3\alpha_3$ in Fig. 3. The figure shows that the storage capacity is

1134
1135

estimated as

1136

$$\alpha'_{c,3} \simeq 0.252 \quad \text{under the RS ansatz,} \quad \alpha'_{c,3} \simeq 0.266 \quad \text{under the 1RSB ansatz.}$$

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187