
Non-stationary Online Learning for Curved Losses:
Improved Dynamic Regret via Mixability

Yu-Jie Zhang 1 Peng Zhao 2 Masashi Sugiyama 1 3

Abstract
Non-stationary online learning has drawn much
attention in recent years. Despite considerable
progress, dynamic regret minimization has pri-
marily focused on convex functions, leaving the
functions with stronger curvature (e.g., squared
or logistic loss) underexplored. In this work, we
address this gap by showing that the regret can
be substantially improved by leveraging the con-
cept of mixability, a property that generalizes exp-
concavity to effectively capture loss curvature.
Let d denote the dimensionality and PT the path
length of comparators that reflects the environ-
mental non-stationarity. We demonstrate that an
exponential-weight method with fixed-share up-
dates achieves an O(dT 1/3P

2/3
T log T ) dynamic

regret for mixable losses, improving upon the best-
known O(d10/3T 1/3P

2/3
T log T ) result (Baby &

Wang, 2021) in d. More importantly, this improve-
ment arises from a simple yet powerful analyti-
cal framework that exploits the mixability, which
avoids the Karush–Kuhn–Tucker-based analysis
required by existing work.

1. Introduction
Non-stationary online learning, which investigates how to
learn from sequences of data in dynamic environments, has
attracted considerable attention recently (Besbes et al., 2015;
Zhang et al., 2018; Cutkosky, 2020; Baby & Wang, 2021;
Wei & Luo, 2021; Zhao et al., 2022; Li et al., 2024; Zhao
et al., 2024). A standard formulation for online learning is
the online convex optimization (OCO) (Hazan, 2016), which
involves a T -round process between the learner and the envi-
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ronment. At each round t ∈ [T ] := {1, . . . , T}, the learner
submits a prediction wt ∈ W from a convex set W ⊆ Rd,
while the environment simultaneously generates a convex
loss function ft : W → R. Then, the learner incurs a loss
of ft(wt) and observes the function ft for model update.
In non-stationary environments, the dynamic regret (Zinke-
vich, 2003), which compares the learner’s prediction with a
time-varying benchmark {ut}Tt=1,

D-REGT ({ut}Tt=1) =

T∑
t=1

ft(wt)−
T∑

t=1

ft(ut), (1)

is commonly used to evaluate algorithms and guide their
design. The dynamic regret (1) is usually called the “univer-
sal” dynamic regret as it holds for all comparator sequences.
The universal dynamic regret not only recovers static regret
by ut = u∗ ∈ argminw∈W

∑T
t=1 ft(w) for all t ∈ [T ],

but also provides the flexibility to compare against any time-
varying benchmark suited to the environment.

Over the years, dynamic regret minimization has been exten-
sively studied for convex losses. Zinkevich (2003) showed
that online gradient descent (OGD) with step size η > 0
achieves a dynamic regret bound of O((1 + PT )/η + ηT ),
which adapts to the path length

PT (u1, . . . ,uT ) =

T∑
t=2

∥ut − ut−1∥2,

reflecting the non-stationarity of the environments. Once the
path length is known, the step size can be optimally tuned to
η∗ = Θ(

√
(1 + PT )/T ). This choice yields the minimax

optimal dynamic regret bound of O(
√

T (1 + PT )). How-
ever, given the universality of the comparator sequence, the
path length is typically unknown, making optimal tuning
infeasible. This highlights a fundamental challenge in dy-
namic regret minimization: how to handle the uncertainty of
non-stationary environments. Zhang et al. (2018) addressed
this issue by proposing a two-layer method that performs a
grid search over possible path lengths, achieving the min-
imax optimal bound without knowledge of PT . Beyond
the minimax rate, the path-length based dynamic regret
bound has attracted lots of interest for achieving problem-
dependent bounds that adapts to the inherent hardness of the
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Table 1: Comparison on dynamic regret and other issues on typical curved loss functions. * denotes that the method is proper learning
when W is an L∞ ball. † indicates that the time complexity can be improved to O(log T ) with additional logarithmic factors in the regret.

Losses Method Regret Bound Proper Learning Time Complexity

Baby & Wang (2021, Theorem 1) Õ(1 + T 1/3P
2/3
T ) Yes O(T )†1-dim squared loss

(z − y)2 Corollary 1 Õ(1 + T 1/3P
2/3
T ) Yes O(T )

Baby & Wang (2022b, Theorem 5) Õ(d+ d10/3T 1/3P
2/3
T ) Yes O(T )†Least-squares regression

(w⊤x− y)2 Corollary 2 Õ(d+ dT 1/3P
2/3
T ) No O(T )

Baby et al. (2023, Theorem 3.1) Õ(d+ d10/3T 1/3P
2/3
T ) Yes O(T )Logistic regression

log(1 + e−yw⊤x) Corollary 3 Õ(d+ dT 1/3P
2/3
T ) No poly(T )

Baby & Wang (2022a, Theorem 10) Õ(d+ d10/3T 1/3P
2/3
T ) No (in general)∗ O(T )†General

exp-concave loss Theorem 3 Õ(d+ dT 1/3P
2/3
T ) Yes —

learning problem (Zhao et al., 2020; 2024), being parameter-
free (Cutkosky, 2020), and for unconstrained cases (Jacob-
sen & Cutkosky, 2023; Zhang et al., 2023b).

Despite considerable progress with convex functions, learn-
ing with curved losses for dynamic regret minimization
remains underexplored. In online learning, curvature is of-
ten captured by exp-concavity or strong convexity (Hazan
et al., 2007), which imposes specific conditions on the lower
bound of the Hessian matrix ∇2ft(w) of the loss. Key
examples of exp-concave losses include:

• squared loss; ft(w) = (w⊤xt − yt)
2;

• logistic loss: ft(w) = log(1 + exp(−ytw
⊤xt));

Here, xt ∈ Rd is the feature, and yt is the label for the
classification or regression tasks. For static regret mini-
mization, where the comparator is fixed over the time, the
online Newton step (ONS) achieves a logarithmic regret
bound of O( dη log T ) for η-exp-concave functions, while
OGD with step size η = Θ(1/t) ensures O( 1λ log T ) regret
for α-strongly convex functions (Hazan et al., 2007).

However, when it comes to the dynamic regret minimiza-
tion problem, the task becomes extremely challenging. To
our knowledge, even if PT were known, it would remain
unclear how to tune the step size of ONS or OGD to achieve
a faster dynamic regret rate than the convex case. A recent
breakthrough was achieved by Baby & Wang (2021) and
further extended in Baby & Wang (2022a;b); Baby et al.
(2023). The key is to introduce an offline optimal reference
sequence, the behavior of which can be further character-
ized through a careful analysis of the KKT condition. They
then demonstrate that a strongly adaptive algorithm—one
that guarantees low regret over any interval—can effectively
track this offline sequence, leading to a tight dynamic re-
gret bound. Specifically, their method achieves a dynamic
regret of Õ

(
max{d 10

3 T
1
3P

2
3

T , d}
)

for exp-concave losses.1

1Baby & Wang (2021; 2022a) defined the path length with the
L1 norm. Here, we express their results in terms of the L2 norm
by ∥x∥1 ≤

√
d∥x∥2 for better comparison.

Besides, a lower bound of Ω
(
max{d 1

3T
1
3P

2
3

T , d log T}
)

is established for the d-dimensional squared loss, which
is strongly convex and therefore exp-concave. While the
upper bound are nearly optimal in terms of T (up to loga-
rithmic factors), the O(d

10
3 ) dependence on dimensionality

for exp-concave losses exhibits a significant gap compared
with the lower bound. More importantly, the intricacy of
the KKT-based analysis makes it unclear how to extend
their framework to achieve improved dependence on the
dimensionality d or to extend it for general results, such as
obtaining problem-dependent bounds as the convex cases.

Our Results. This work offers a new perspective on achiev-
ing fast rates in dynamic regret minimization with curved
losses by leveraging mixability (Vovk, 2001; van Erven
et al., 2012) of the loss function, a concept closely related to
exp-concavity and fundamental in fast-rate static regret min-
imization. Our method is free from the involved KKT-based
analysis and enjoys improved regret on several curved loss
functions with better dependence on the dimensionality d.

In Section 3 and Section 4, we begin with the online predic-
tion problem, which is a specific kind of OCO problem with
the form ft(w) = ℓ(h(wt,xt), yt), where h is a predictive
function and ℓ is a certain loss. When the loss ℓ is mix-
able (see Definition 2) and improper learning is allowed, we
show that a continuous variant of Vovk’s aggregating algo-
rithm (Vovk, 2001) with fixed-share updates attains a nearly
optimal dynamic regret bound of Õ

(
max{dT 1

3P
2
3

T , d}
)
.

As shown in Table 1, our approach covers several impor-
tant curved losses. For the 1-dimensional squared loss, it
matches the dynamic regret bound of Baby & Wang (2021)
under proper learning, where the learner’s predictions al-
ways lie within the feasible decision set. It also extends
to the least-squares and logistic regression, two key exam-
ples of exp-concave online learning. Since both losses are
also mixable, our method improves upon the best-known
results (Baby & Wang, 2022b; Baby et al., 2023) by achiev-
ing a more favorable dependence on the dimensionality d.
Importantly, the dynamic regret bound is derived via a rela-
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tively simple yet effective decomposition based on the mix
loss, which circumvents the need for a technically involved
analysis of the KKT conditions. Nevertheless, while our
method offers improvements in regret, it relies on improper
learning, in contrast to the proper learning methods of Baby
& Wang (2022b) for the least-square regression and Baby
et al. (2023), which deals with the generalized linear models.

In Section 5, we further demonstrate the flexibility of our ap-
proach by extending it to the general OCO with exp-concave
losses. We show that by incorporating an additional projec-
tion step, one can achieve the nearly optimal dynamic regret
of Õ

(
max{dT 1

3P
2
3

T , d}
)

under proper learning. While the
projection introduces non-trivial computational challenges,
our result shows that one can attain a nearly optimal bound
via proper learning over arbitrary convex and bounded do-
main for general exp-concave losses, a guarantee previously
known only for specific losses such as the squared and lo-
gistic losses (Baby & Wang, 2022b; Baby et al., 2023).

Finally, we note that our method is based on the continu-
ous exponential-weight (EW) update, which offers sharper
regret guarantees than gradient-based methods but are of-
ten computationally more demanding. For the squared
losses and least-squares regression, we have narrowed this
gap by showing that a practical implementation attains the
same O(T ) per-round cost as the follow-the-leading-history
(FLH) procedure in Baby & Wang (2021, Fig. 2). While
FLH can be further accelerated to O(log T ) per round via
a geometric covering over the base-learners (Hazan & Se-
shadhri, 2009), extending this speed-up to the EW frame-
work remains open. More generally, EW methods are
sometimes surprisingly effective in many challenging online
learning problems. However, improving their computational
efficiency remains non-trivial, as in the case of bandit con-
vex optimization (Ito, 2020; Bubeck et al., 2021).

2. Preliminaries
This section introduces mixability (Vovk, 2001), a property
of losses that ensures fast rates in both statistical and online
learning. The concept was initially studied in the predic-
tion with expert advice setting and was shown to yield a
constant static regret bound (Vovk, 1998). Later, it has also
proved useful for static regret minimization in online opti-
mization (Vovk, 2001; van der Hoeven et al., 2018) and for
excess risk minimization in statistical learning (van Erven
et al., 2012). We introduce the basic concepts here. Readers
are referred to Cesa-Bianchi & Lugosi (2006, Chapter 3)
and van Erven et al. (2015) for more details.

2.1. Mixability and Exp-concavity

Before introducing mixability, we review the related concept
of exp-concavity (Hazan et al., 2007).

Definition 1 (Exp-concavity). Let η > 0. A function f :
W → R is η-exp-concave over W if the function e−ηf(w)

is concave for any w ∈ W . The condition is equivalent to

f (wexp) ≤ −1

η
ln
(
Ew∼P

[
e−ηf(w)

])
, (2)

for any distribution P over W and wexp = Ew∼P [w].

The mixability (Vovk, 2001) is weaker than exp-concavity
that only requires the existence of a model wmix that satisfies
the inequality (2) instead of the specific formulation of wexp.

Definition 2 (Mixability). Let η > 0. A loss function
f : W → R is η-mixable if for any distribution P over the
W , there always exists a mapping h : P 7→ wmix such that

f(wmix) ≤ −1

η
ln
(
Ew∼P

[
e−ηf(w)

])
. (3)

The coefficient η in exp-concavity and mixability essentially
characterizes the curvature of the loss function. A larger
η corresponds to a stronger curvature, which in turn leads
to better regret guarantees. Moreover, any η-mixable loss
remains η′-mixable for any 0 < η′ ≤ η.

A comparison of (2) and (3) shows that the key distinction
lies in how the prediction is constructed from the distribution
P . Under exp-concavity, the prediction is explicitly defined
as wexp = Ew∼P [w], whereas mixability merely requires
the existence of some model wmix. Therefore, exp-concavity
is a special case of mixability; any η-exp-concave function
over W is at least η-mixable over W because the mixability
condition (3) holds with wmix = wexp.

2.2. Examples of Mixable Loss

Here are two important examples of mixable loss.

Example 1 (Squared Loss). For any yt ∈ [−B,B],

fsq(z, yt) = (z − yt)
2

is 1/(2B2)-mixable over z ∈ R while it is 1/(2(B +D)2)-
exp-concave over z ∈ [−D,D].

Example 2 (Logistic Loss). For any yt ∈ {−1, 1},

flr(z, yt) = log
(
1 + exp(−zyt)

)
is 1-mixable over z ∈ R while it is exp(−D)-exp-concave
over z ∈ [−D,D].

These two losses are two important examples arising in
online prediction where the learner sequentially predicts a
label yt based on observed input data (Vovk & Zhdanov,
2008). To highlight the core ideas of our approach, we
initially focus on this supervised setting in Section 3 and
Section 4. We then extend our method to the general online
convex optimization (OCO) framework in Section 5.
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Algorithm 1 Fixed-share For Continuous Space

Input: mixability coefficient η and parameter µ ∈ [0, 1].
1: Initialize w0 ∈ W as any point in the domain W and

P̃1 = P1 = N (w0, Id) as a Gaussian distribution.
2: for t = 1, 2, . . . , T do
3: The learner submits the prediction zt that satisfies

ℓ(zt, yt) ≤ −1

η
ln
(
Eu∼Pt

[
e−ηft(u)

])
, (4)

without having access to the loss function ft.
4: The learner observes the loss function ft for time t.
5: The learner updates the distributions by

P̃t+1(u) ∝ Pt(u) exp(−ηft(u)),∀u ∈ Rd; (5)

Pt+1(u) = (1− µ)P̃t+1(u) + µN0(u), (6)

where N0 = N (w0, Id) is a Gaussian distribution.
6: end for

3. Proposed Method for Online Prediction
This section focuses on the online prediction problem. We
begin by a generic framework for learning with mixable
losses in the setting, followed by its theoretical analysis and
an equivalent formulation for implementation.

3.1. Problem Setup

Online prediction is a special case of OCO, where the learner
proceeds with data pairs (xt, yt), with xt ∈ X ⊂ Rd de-
noting the feature and yt ∈ R the label. At each round t,
the learner first observes xt and then produces a prediction
zt ∈ R. After that, th learner incurs a loss ℓ(zt, yt) and
subsequently observes the label yt to update the prediction.

As a natural extension of prior work on static regret min-
imization (Rakhlin et al., 2015; Mayo et al., 2022), our
goal is to minimize dynamic regret with respect to a se-
quence of time-varying models in a given hypothesis space
H = {x 7→ h(w,x) | w ∈ W}, where h : W ×X → Y is
a fixed predictive model and W ⊂ Rd denotes the parameter
space. For instance, in the case of linear prediction, we have
h(w,x) = w⊤x. The dynamic regret is then defined as

D-REGT ({ut}Tt=1) =

T∑
t=1

ℓ(zt, yt)−
T∑

t=1

ℓ(h(ut,xt), yt),

where u1, . . . ,uT ∈ W are time-varying model parame-
ters. Online prediction be cast as standard OCO by setting
ft(u) = ℓ(h(u,xt), yt), though we allow improper learn-
ing, where the prediction zt may fall outside the hypothesis
space H (Shalev-Shwartz & Ben-David, 2014, Remark 3.2).
Besides, we have the following assumptions.
Assumption 1 (Bounded Domain). The parameter space

W ⊆ Rd is convex and compact with diameter at most D,
i.e., ∥w −w′∥2 ≤ D for all w,w′ ∈ W .

Assumption 2 (Smoothness). The function ft(w) =
ℓ(h(w,xt), yt) is β-smooth for any w ∈ Rd and t ∈ [T ].

Assumption 3 (Mixability). The loss function ℓ(z, y) is
η-mixable over z ∈ Rd for any y ∈ Y .

3.2. Generic Framework

Our method is an exponential-weight method with the fixed-
share update over the continuous space. Instead of maintain-
ing a model parameter wt ∈ W and predict zt = h(wt,xt),
we maintain a distribution Pt of the model parameter over
Rd. The prediction zt is made based on Pt that satisfies the
mixability condition (4). Under Assumption 3 and accord-
ing to the definition of mixability, a predictor satisfying (4)
always exists. For the online prediction problem, Vovk
(2001, Eq. (11) and (12)) or Cesa-Bianchi & Lugosi (2006,
Proposition 3.3) provided a general optimization framework
for constructing such predictors. In the cases of squared loss
and logistic loss, closed-form expressions for the predictor
zt are available. Further details are provided in Section 4.

The update procedure of the distribution Pt is summarized
in Algorithm 1, where we initialize it with a Gaussian distri-
bution P1 = N (w0, Id) at the first iteration. At each itera-
tion t, the distribution Pt+1 is obtained by the exponential-
weight update (5), followed by the fixed-share step (6). Al-
gorithm 1 attains the following dynamic regret bound. Its
proof sketch is given in Section 3.3.

Theorem 1. Under Assumption 1, 2 and 3, for any ut ∈ W ,
Algorithm 1 with µ = 1/T ensures

D-REGT ({ut}Tt=1) ≤ O
(
d log T · (1 + T

1
3P

2
3

T )
)
,

where PT =
∑T

t=2 ∥ut − ut−1∥2 is the path length.

For mixable losses, Theorem 1 shows an Õ(d+dT
1
3P

2
3

T ) dy-

namic regret bound, which improves the Õ
(
d+d

10
3 T

1
3P

2
3

T

)
dynamic regret bound established based on the notion of
exp-concavity (Baby & Wang, 2022a), by reducing the de-
pendence on dimensionality from O(d

10
3 ) to O(d). As will

be clear in Section 4, the improvement holds for loss func-
tions for the least-squares regression and the logistic regres-
sion, which are both mixable and exp-concave.

Notably, Algorithm 1 does not require prior knowledge of
the path length PT , which quantifies the environmental non-
stationarity. At first glance, this might seem surprising since,
in the convex setting, existing approaches typically require
a two-layer online ensemble to handle the uncertainty of
the unknown PT (Zhao et al., 2024). The key distinction
lies in the fact that our algorithm maintains a distribution Pt

rather than a single prediction wt. This enables the use of
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a Gaussian comparator Qt in our analysis, which automat-
ically adapts to non-stationary environments by virtually
adjusting its variance as shown in Section 3.3. From an
algorithmic perspective, we further show in Section 3.4 that
our fixed-share method can be interpreted as, and is actually
algorithmically equivalent to, a two-layer online ensemble.

3.3. Analysis of Algorithm 1

This part provides a proof sketch for Theorem 1, analyzing
the dynamic regret of Algorithm 1 by leveraging the notion
of mixability. Our analysis avoids the reliance on the tech-
nically involved KKT conditions as used in Baby & Wang
(2021) and the subsequential works (Baby & Wang, 2022a).
An exception is Zhang et al. (2023a), who studied the on-
line covariate shift adaptation problem using the logistic
loss and analyzed its dynamic regret without requiring KKT
conditions. However, their analysis is restricted to a specific
kind of comparator, defined as the minimizer of an unknown
risk function, and additionally assumes the realizability of
the comparators, which is not required by our method.

Proof Sketch. Let P ∈ P be a probability distribution and
P is a set of all measurable distributions. The core concept
of our analysis is the mix loss mt : P → R

mt(P ) = −1

η
ln
(
Eu∼P

[
exp

(
− ηft(u)

)])
.

Let zt be the final prediction at round t. The dynamic regret
can be decomposed into three terms:

D-REGT ≤
T∑

t=1

ℓ(zt, yt)−
T∑

t=1

mt(Pt)︸ ︷︷ ︸
(A) mixability gap

(7)

+

T∑
t=1

mt(Pt)−
T∑

t=1

Eu∼Qt
[ft(u)]︸ ︷︷ ︸

(B) mixability regret

+

T∑
t=1

Eu∼Qt
[ft(u)]−

T∑
t=1

ft(ut)︸ ︷︷ ︸
(C) comparator gap

.

The first term is the mixability gap, which measures the gap
between the original loss and the mix loss. The second term
is the “mixability regret”, which is the regret in terms of the
mix loss mt(Pt) and the expected loss over the sequence
{Qt}Tt=1. The third term is called the “comparator gap” as
it is the gap between the expected loss and the loss of ut.

We note that the distribution Qt only appears in the analysis
and can be arbitrarily chosen to make the bound as tight
as possible. Specifically, we choose Qt = N (ut, σ

2Id) as
the Gaussian distribution with the mean ut and covariance
σ2Id, where σ > 0 is a parameter to be specified later.

1 Bounding mixability gap. By (4) in Algorithm 1, the
mixability gap is non-positive. Therefore, we can upper
bound it by 0 and proceed with the second and third terms.

2 Bounding mixability regret. We establish the following
lemma for the mixability regret when comparing against the
time-varying distribution {Qt}Tt=1.

Lemma 1. Let Qt = N (ut, σ
2Id) be a Gaussian distribu-

tion. The update rule (5) and (6) with µ = 1/T ensures

T∑
t=1

mt(Pt)−
T∑

t=1

Eu∼Qt
[ft(u)] ≤

1

η

(
2 + KL(Q1∥P1)

)
+

1

η

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du,

where KL(P∥Q) = Eu∼P [ln (P (u)/Q(u))].

Given the Gaussinality of the distribution Qt and the initial
distribution P̃1 = N (w0, Id), several mathematical manip-
ulations presented in Appendix A.3 show that

term (B) ≲
d log(ηT ) · PT /σ + dσ2T + d log(1/σ)

η
,

where ≲ hides constants independent of d, σ, T and η.

3 Bounding comparator gap. Then, we move on to the
comparator gap. Owing to the smoothness of ft, we have

Eu∼Qt [ft(u)− ft(ut)]

≤ Eu∼Qt

[
⟨∇ft(ut),u− ut⟩+

β

2
∥u− ut∥2

]
=

βdσ2

2
,

where the equality is by the Gaussinality of the distribution
Qt. Therefore, we have

term (C) =

T∑
t=1

(
EQt [ft(u)]− ft(ut)

)
≤ βdσ2T

2
. (8)

Combining the results. By combining the upper bounds
for term (B) and term (C), we achieve

D-REGT ≲
1

η

(
d log(ηT ) · PT

σ
+ ηdTσ2 + d log

( 1
σ

))
.

Since the parameter σ only appears in the analysis, we can
freely tune it to make the above dynamic regret bound tight.

• When PT ≤
√
1/T , we choose σ =

√
1/T to obtain

D-REGT ≤ O(d log T ).

• When PT ≥
√

1/T , we set σ = Θ(P
1
3

T T− 1
3 ) to obtain

D-REGT ≤ O
(
d log T · T 1

3

(
1 + P

2
3

T

))
.

We complete the proof by combining the two cases.
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Remark 1 (Technical Discussion). The mixability-based
analysis was first developed for the prediction with expert
advice (PEA) problem (Vovk, 1998), where the prediction
domain W is a finite set. In the PEA setting, our analysis
with fixed-share updates closely relates to that of Cesa-
Bianchi et al. (2012b), which established a dynamic regret
bound for the fixed-share method with convex losses. Al-
though their arguments also apply to exp-concave losses, the
later extension (Cesa-Bianchi et al., 2012a) only achieved
a switching regret bound, a specific case of dynamic regret
where the comparator sequence is piecewise stationary. In
the OCO setting, van der Hoeven et al. (2018, Lemma 1) an-
alyzed the exponential-weight method but primarily focused
on the mixability regret term with respect to an unspecified
and fixed Q. Technically, our results not only extend prior
work with time-varying distributions Qt, but also establish
a path-length bound by carefully selecting Qt and analyzing
the fixed-share method in continuous spaces. Our work ad-
dresses a gap in the literature by providing dynamic regret
guarantees for mixable losses in the OCO setting.

3.4. An Equivalent Implementation

The implementation of our method involves two key aspects:
(i) how to update the distribution Pt and (ii) how to predict
zt based on Pt satisfying (4). This subsection provides an
equivalent update rule for Pt, which has a more explicit
form for implementation and helps us to better understand
the mechanism of the algorithm. The construction of zt will
be discussed in Section 4.

The key observation is that the fixed-share Algorithm 1 with
fixed parameter µ is essentially equivalent to the follow-
the-leading-history-type (FLH-type) algorithm (Hazan &
Seshadhri, 2009) as summarized in Algorithm 2. The equiv-
alence was first made in the PEA problem (Adamskiy et al.,
2016), and here we show the results also extend to the con-
tinuous space, which leads to a more clear way of updating
distribution Pt. The FLH-type method is summarized in
Algorithm 2 and illustrated in Figure 1.

Conceptually, our method is essentially an online ensemble
method (Zhao et al., 2024) consisting of two parts:

• Multiple Base-learners run over different time inter-
vals. For each time i, we will invoke a new base-learner
Bi with the initial distribution P

(i)
i = N (w0, Id).

Then, at the following time t > i, the distribution
is updated by the exponential-weight update (9).

• Meta-learner assigns a weight to each base-learner to
aggregate their predictions. For the new base-learner
Bt+1, the weight is set to µ and for the existing base-
learners, the weights are updated by the Hedge method
over the “mix loss” as shown in (10). The distribution
Pt+1 is obtained by a weighted combination of the
distributions of the base-learners.

Algorithm 2 Follow-the-Leading-History

Input: mixability coefficient η and parameter µ ∈ [0, 1].
1: Invoke the first base-learner B1 with the initial decision

distribution P
(1)
1 = N (w0, Id).

2: Initialize base-learner pool H1 = {B1}, set weight
p
(1)
1 = 1 and set P1(w) = P

(1)
1 (w).

3: for t = 1, 2, . . . , T do
4: The learner submits the prediction zt that satisfies (4).
5: The learner observes the loss function ft for time t.
6: For all base-learner Bi ∈ Ht, we update by

P
(i)
t+1(u) ∝ P

(i)
t (u) exp(−ηft(u)),∀u ∈ Rd. (9)

7: Initialize a new base-learner Bt+1 whose decision
distribution is P (t+1)

t+1 = N (w0, Id).
8: Update the weight for each base-learner Bi ∈ Ht by

p̃
(i)
t+1 ∝ p

(i)
t · E

u∼P
(i)
t

[exp(−ηft(u)]. (10)

9: Update the weight for existing base-learner by

p
(i)
t+1 =

{
(1− µ) · p̃(i)t+1 for Bi ∈ Ht

µ for Bt+1.
(11)

10: Update the base-learner pool: Ht+1 = Ht ∪ {Bt+1}.
11: Obtain Pt+1(u) =

∑
Bi∈Ht+1

p
(i)
t+1P

(i)
t+1(u).

12: end for

t =1 t =2 t =3 t =4 t =5

Pt =
∑

i∈Ht
p
(i)
t · P (i)

t

update p
(i)
t by (10), (11)

meta-learner

update P
(i)
t by (9)

active base-learner

Figure 1: An illustration of Algorithm 2, an alternative implemen-
tation of the fixed share method.

The following theorem establishes the equivalence between
Algorithm 1 and Algorithm 2.

Theorem 2. The sequence of distributions {Pt}Tt=1 re-
turned by the fixed-share algorithm (Algorithm 1) is iden-
tical to that of the FLH-type algorithm (Algorithm 2) with
the same sequence of input loss functions {ft}Tt=1 and the
same parameter setting of µ.

An interesting connection between Algorithm 2 and the
method of Baby & Wang (2021; 2022a) is that both ap-
proaches employ the FLH-type algorithm to bound dynamic
regrets. However, their roles in the analyses differ substan-
tially. In the previous work, the strongly adaptive regret
guarantee of the FLH-type algorithm is pivotal for tracking
the offline optimal sequence, whereas our analysis exploits a

6
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fixed-share update formulation combined with mixability ar-
guments, thereby offering a fresh perspective to achieve the
nearly optimal dynamic regret bound. Furthermore, from
a computational perspective, although Algorithm 2 aggre-
gates a set of log-concave distributions—a task typically
more computationally more intensive than updating a set
of models wt as in previous work—we show that for the
squared loss, the distribution update can be performed in a
closed form. This results in a computation cost that is of the
same order as that of Baby & Wang (2021; 2022a) for these
losses, but with an improved dependence on d.

4. Instantiation to Different Curved Losses
Now, we are ready to apply the generic algorithmic frame-
work to different loss functions. We first consider the simple
1-dimensional squared loss for algorithmic illustration and
then extend to the least-squares regression and logistic re-
gression. We provide a comparison with the results by Baby
& Wang (2021; 2022a) at the end of this section.

4.1. Instantiation to 1-Dimensional Squared Loss

The generic algorithmic framework can be directly applied
to the 1-dimensional squared loss ft(z) = (z − yt)

2 as it
is 2-smooth and 1/(2B2) mixable for any yt ∈ [−B,B].
Even better, we can construct the prediction zmix

t with the
greedy forecaster (Cesa-Bianchi & Lugosi, 2006). Specifi-
cally, given a distribution Pt defined over Z = R, we can
construct zmix

t that satisfies the mixability condition (4) by

zmix
t =

[
msq(Pt,−B)−msq(Pt, B)

4B

]
B

, (12)

where we define [z]B = min{max{z,−B}, B} the func-
tion that clips the value z to the interval [−B,B]. In the
above, the mix loss is defined by

msq(Pt, y) = −2B2 ln

( ∑
Bi∈Ht

p
(i)
t · E

z∼P
(i)
t

[
e−

(z−y)2

2B2

])
,

where P (i)
t is the distribution maintained by the base-learner

Bi and p
(i)
t is the weight from the meta-learner. A direct

application of Theorem 1 leads to the following corollary.
Corollary 1. For the squared loss ft(z) = (z − yt)

2 with
yt ∈ [−B,B], set µ = 1/T and w0 = 0 in Algorithm 1.
The prediction zmix

t ensures
T∑

t=1

ft(z
mix
t )−

T∑
t=1

ft(ut) ≤ Õ(1 + T
1
3P

2
3

T ),

where Pt =
∑T

t=2 |ut − ut−1| is the path length.

Implementations. Since the squared loss is quadratic,
the distribution P

(i)
t is Gaussian, allowing for a closed-

form update rule for both P
(i)
t and p

(i)
t . Consequently, the

prediction zmix
t can also be computed in a closed form. Since

our method requires maintaining t base learners at time t,
the total time complexity for updating P

(i)
t+1 and p

(i)
t+1 and

then aggregating them via (12) is O(t) per round. This
computation cost is of the same order as the FLH method
used by Baby & Wang (2021, Figure 2).

4.2. Instantiation to Least-Squares Regression

This subsection shows the fixed-share algorithm is also ap-
plicable to least-squares regression with the loss ft(w) =
(w⊤xt − yt)

2. We assume that the feature vector xt ∈ Rd

is bounded as ∥xt∥2 ≤ L and the label yt ∈ [−B,B]. The
basic observation is that the loss function ft is essentially
the 1-dimensional squared loss ℓsq(z, yt) = (z − yt)

2 with
z = w⊤xt, which is 1/(2B2)-mixable. Therefore, for any
distribution Pt defined over Rd, we can construct the pre-
diction zmix

t for the least-squares regression following the
same rule as (12) with the mix loss m(y, Pt) defined as

−2B2 ln

( ∑
Bi∈Ht

p
(i)
t · E

w∼P
(i)
t

[
e−

(w⊤xt−y)2

2B2

])
. (13)

The aggregated prediction zmix
t has the following guarantee

for the least-squares regression.
Corollary 2. For the squared loss ft(w) = (w⊤xt − yt)

2

with ∥xt∥2 ≤ L and yt ∈ [−B,B], set µ = 1/T and
w0 = 0. The mix prediction zmix

t (13) ensures

T∑
t=1

ℓsq(z
mix
t , yt)−

T∑
t=1

ft(ut) ≤ Õ(d+ dT
1
3P

2
3

T ),

where PT =
∑T

t=2 ∥ut − ut−1∥2 is the path length of the
comparator sequence with ∥ut∥2 ≤ D.

Implementations. Similar to 1-dimensional squared loss,
the distribution P

(i)
t is a multivariate Gaussian distribution

and we have a close form update rule for zmix
t . The method

can be also implemented in O(t) time for each iteration t.

4.3. Instantiation to Logistic Regression

Given that logistic loss ℓlr(z, y) = log(1 + exp(−yz)) is
1-mixable for any z ∈ Rd and y ∈ {−1, 1}, the generic
algorithmic framework is also applicable here as the case
of least squares. Specifically, for any given distribution Pt

over Rd, one can construct the mix prediction by

zmix
t = σ−1

( ∑
Bi∈Ht

p
(i)
t · E

w∼P
(i)
t

[σ(w⊤xt)]

)
, (14)

where σ(z) = 1/(1+exp(−z)) is the sigmoid function and
σ−1(z) = ln

(
z

1−z

)
is the inverse function of the sigmoid.

We have the following corollary for the logistic loss case.

7



Non-stationary Online Learning with Curved Loss: Improved Dyanmic Regret via Mixability

Corollary 3. For the logistic loss ft(w) = log(1 +
exp(−yw⊤x)) with ∥x∥2 ≤ L and yt ∈ {+1,−1}, set
µ = 1/T and w0 = 0. The mix prediction zmix

t ensures

T∑
t=1

ℓlr(z
mix
t , yt)−

T∑
t=1

ft(ut) ≤ Õ(d+ dT
1
3P

2
3

T ),

where PT =
∑T

t=2∥ut − ut−1∥2 is the path length of any
comparator sequence such that ∥ut∥2 ≤ D.

Implementations. For the logistic loss, the main com-
putation cost is to calculate the term E

u∼P
(i)
t

[σ(w⊤xt)],
which appears both in the weight update (10) and final pre-
diction (14). We do not have a closed-form expression for
this term. However, we can exploit the log-concavity of
the density of P (i)

t and apply a sampling technique to facil-
itate computation in polynomial time (Foster et al., 2018,
Appendix B). To further accelerate the computation, one
might consider using the technique of Jézéquel et al. (2021),
which approximates the logistic loss using a second-order
surrogate. In such a case, P (i)

t is Gaussian and sampling
can be performed efficiently. However, due to the two-layer
structure of the method, it is challenging to directly extend
the method here. We leave the computation cost for the
logistic loss as a future work.

4.4. More Comparison with Related Work

In this subsection, we provide a detailed comparison be-
tween our results and best-known prior results, with a par-
ticular emphasis on the three main cases of the curved loss.

• For the 1-dimensional squared loss, our result matches
the nearly optimal guarantee as Baby & Wang (2021,
Theorem 1) and both methods are proper. However,
our analysis does not rely on the KKT condition.

• For the least-squares regression and logistic regres-
sion, we improve the best-known results of Õ(d +

d
10
3 T

1
3P

2
3

T ) in Baby & Wang (2022a;b) and Baby et al.
(2023) with better dependence on d. For these two
cases, Algorithm 1 is inherently improper, as its predic-
tions extend beyond the linear function class. This is
less favorable compared to the specific algorithms de-
signed for the least-square regression (Baby & Wang,
2022b) and the logistic regression (Baby et al., 2023),
which ensure proper learning.

We note that the path length in Baby & Wang (2021; 2022a)
is defined via the L1 norm. We present their results in the
L2 norm for better comparison through ∥x∥1 ≤

√
d ∥x∥2,

∀x ∈ Rd. The reliance on the L1 norm in their analy-
sis seems to stem from the inherent intricacy of handling
KKT conditions. For the L1 norm, the analysis in the d-
dimensional case is closely connected to the 1-dimensional

case, as it can be proceeded in a coordinate-wise manner. In
contrast, applying the KKT-based analysis to the L2 norm
without introducing additional dependence on d remains
unclear. Our mixability-based analysis offers a more direct
way to obtaining path length bounds with the L2 norm.

Limitations of Algorithm 1 and Improvements. Although
Algorithm 1 achieves improved dynamic regret without rely-
ing on KKT-based analysis, there remain several directions
for improvement. First, regarding the time complexity, our
method matches the O(T ) complexity of prior work for the
squared losses. However, the KKT-based methods (Baby
& Wang, 2021; 2022a) can reduce the complexity further
to O(log T ) by leveraging a geometric covering of base-
learners (Hazan & Seshadhri, 2009), at the expense of addi-
tional logarithmic factors in the regret. Incorporating this
idea into the fixed-share update is a promising direction.
Moreover, the guarantee provided by Algorithm 1 relies on
the smoothness of the function ft and on allowing improper
learning. In contrast, the smoothness condition is not re-
quired in Baby & Wang (2022a), and the works by Baby &
Wang (2022b); Baby et al. (2023) eliminated the need of im-
proper learning for online prediction with the linear model,
where the loss has a specific form. In Section 5, we improve
our method further by removing the assumptions on smooth-
ness and improper learning, though the computational issue
will become more challenging.

5. Extension to General OCO
This section extends our method to the general OCO without
requiring a specific structure of the online function as in
Section 3.1. Instead, we only assume the loss functions ft
are exp-concave (and thus mixable) over the domain W . By
using a projection step and learning with a surrogate loss,
our method achieves a nearly optimal regret bound under
proper learning and is free from the smoothness assumption.

Besides Assumption 1 on the boundedness if the feasible
domain W , this section requires the following conditions.

Assumption 4 (Exp-concave). The online function ft is
η-exp-concave over the domain W for all t ∈ [T ].

Assumption 5 (Bounded Gradient). The norm of the gradi-
ent of the loss function is bounded by G, i.e., ∥∇ft(w)∥2 ≤
G for any w ∈ W and t ∈ [T ].

A key obstacle in extending Algorithm 1 to the general OCO
setting is that it requires the loss function to be mixable over
Rd, a condition often satisfied in online prediction but not
in general OCO. In the latter case, exp-concavity is a more
standard assumption, which only guarantees mixability over
a bounded domain W . This makes it challenging to con-
struct a prediction wt that has a negative mixability gap, i.e.,
ft(wt) ≤ − 1

η ln
(
Eu∼Pt [exp(−ηft(u))]

)
.
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Algorithm 3 Projected Fixed-share with Surrogate Loss

Input: exp-concavity coefficient η, loss parameter γ and
fixed-share parameter µ ∈ [0, 1].

1: Initialize w0 ∈ W as any point in W and P̃1 = P1 =
N (w0, Id) as a Gaussian distribution.

2: for t = 1, 2, . . . , T do
3: The learner submits wt = Ew∼Pt

[w] and constructs
the surrogate loss f̃t as (18).

4: For all u ∈ Rd, the learner updates the by

P ′
t+1(u) ∝ Pt(u) exp(−γf̃t(u)/2); (15)

P̃t+1(u) = argminQ∈M KL(Q∥P ′
t+1) , (16)

where P is a set of distributions defined as (19).
5: Then, the distribution is updated by the fixed share

Pt+1(u) = (1− µ)P̃t+1(u) + µN0(u), (17)

where N0 = N (w0, Id) is a Gaussian distribution.
6: end for

To address this issue, we introduce two algorithmic mod-
ifications as summarized in Algorithm 3. Our approach
remains an exponential-weight method with fixed-share up-
dates, but the distribution Pt is now updated with a surrogate
loss (15), and a projection step (16) is incorporated.

Surrogate Loss. Let gt = ∇ft(wt). Instead of using the
original loss, we learn with the surrogate loss defined by

f̃t(w) = g⊤
t (w −wt) +

γ

2

(
g⊤
t (w −wt)

)2
, (18)

where the coefficient is defined as γ = min{1/(4GD), η}.
It is known that the regret in terms of the surrogate loss
is always an upper bound for the original loss: ft(wt) −
ft(ut) ≤ f̃t(wt)− f̃t(u) for any wt,u ∈ W (Hazan, 2016,
Lemma 4.2) for exp-concave losses. Hence, it suffices for
us to analyze the dynamic regret of the surrogate loss.

The surrogate loss plays a key role in eliminating the smooth-
ness assumption. In Section 3.3, smoothness was used to
control the comparator gap. Since the surrogate loss is
quadratic, we can directly upper-bound this term by

term (C) ≤ Eu∼Qt
[f̃t(u)− f̃t(ut)] ≤ dσ2γ∥gt∥22/2,

where we choose Qt = N (ut, σ
2Id). The above inequality

naturally leads to a similar result to (8) in Section 3.3 when
the norm of the gradient is bounded as Assumption 5.

Projection Step. The remaining challenge is that f̃t is not
mixable over Rd, making it hard to bound the mixability gap.
However, we show that such a negative mixability gap can
still be ensured if Pt lies in a carefully designed distribution
set M , as guaranteed by the projection step (16).

Specifically, we choose the set M as the family of all Gaus-
sian mixtures whose component means and covariances are
uniformly bounded. Let S ≜

{
Σ ∈ Sd++ | 1

T ≤ λmin(Σ) ≤
λmax(Σ) ≤ 1

}
be a set of symmetric positive-definite (SPD)

matrices with bounded eigenvalues, where Sd++ is the set
of all SPD matrices. Further denote by Θ ≜ W × S the
admissible parameter space for the component Gaussians
and let θ = (w,Σ) ∈ Θ. We define the constraint set as

M ≜

{∫
θ∈Θ

N (w,Σ)dπ(θ) | π ∈ P(Θ)

}
, (19)

where P(Θ) is the set of all probability measures on Θ. As
detailed in Appendix C, the set is convex and closed in total
variation, therefore a minimizer in the projection step always
exists (Csiszár, 1975, Theorem 2.1). Moreover, since any
P ∈ M has its mean in W , we have wt = EPt [w] ∈ W ,
which ensures a proper prediction.

Lemma 7 in Appendix C shows that one can ensure a nega-
tive mixability gap for the surrogate loss, i.e.,

f̃t(Ew∼Pt
[w]) ≤ − 2

γ
ln
(
Eu∼Pt

[exp(−γf̃t(u)/2)]
)
,

which leads to the following guarantee for Algorithm 3.

Theorem 3. Under Assumptions 1, 4 and 5, Algorithm 3
with µ = 1/T ensures

D-REGT ≤ O
(
d log T · (1 + T

1
3P

2
3

T )
)
,

for any comparator sequence u1, . . . ,uT ∈ W .

The proof of Theorem 3 is presented in Appendix C. The-
orem 3 shows that our method achieves a nearly optimal
dynamic regret for the general OCO with exp-concave func-
tions. Notably, the result holds under proper learning and is
free from the smoothness assumption.

6. Conclusion
This paper presented a novel perspective on learning with
curved loss functions in non-stationary environments. Build-
ing on the concept of mixability, we proposed a simple yet
versatile framework that achieves an improved dynamic re-
gret bound with better dependence on d. Our analytical
framework also offers additional potential, as it allows the
selection of different families of distributions Pt and refer-
ence distributions Qt for the fixed-share method, possibly
enabling the algorithm to adapt to various geometric prop-
erties of the space. From a computational perspective, we
provided efficient implementations for the squared loss. A
future direction is to develop computationally more efficient
methods for the logistic loss and the general OCO setting.

9



Non-stationary Online Learning with Curved Loss: Improved Dyanmic Regret via Mixability

Acknowledgements
Peng Zhao was supported by NSFC (62361146852) and the
Xiaomi Foundation. MS was supported by the Institute for
AI and Beyond, UTokyo. The authors would like to thank
Yu-Xiang Wang for the insightful and helpful discussions.
Yu-Jie Zhang thanks Zhiyuan Zhan and Yivan Zhang for
their helpful discussions on the projection set. We also thank
the anonymous reviewers for their valuable comments and
suggestions, which helped improve this paper.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adamskiy, D., Koolen, W. M., Chernov, A. V., and Vovk,

V. A closer look at adaptive regret. Journal of Machine
Learning Research, 17:23:1–23:21, 2016.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in exp-
concave online learning. In Proceedings of the 34th Con-
ference on Learning Theory (COLT), pp. 359–409, 2021.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in proper
online learning with strongly convex losses and beyond.
In Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 1805–
1845, 2022a.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in LQR
control. In Advances in Neural Information Processing
Systems 35 (NeurIPS), pp. 24879–24892, 2022b.

Baby, D., Xu, J., and Wang, Y.-X. Non-stationary contextual
pricing with safety constraints. Transactions on Machine
Learning Research, 2023, 2023.

Besbes, O., Gur, Y., and Zeevi, A. J. Non-stationary stochas-
tic optimization. Operations Research, 63(5):1227–1244,
2015.

Bubeck, S., Eldan, R., and Lee, Y. T. Kernel-based methods
for bandit convex optimization. Journal of the ACM, 68
(4), 2021.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Cesa-Bianchi, N., Gaillard, P., Lugosi, G., and Stoltz,
G. A new look at shifting regret. ArXiv preprint,
arXiv:1202.3323, 2012a.

Cesa-Bianchi, N., Gaillard, P., Lugosi, G., and Stoltz, G.
Mirror descent meets fixed share (and feels no regret). In
Advances in Neural Information Processing Systems 25
(NIPS), pp. 989–997, 2012b.

Csiszár, I. I-divergence geometry of probability distributions
and minimization problems. The Annals of Probability,
pp. 146–158, 1975.

Csiszár, I. and Matus, F. Information projections revisited.
IEEE Transactions on Information Theory, 49(6):1474–
1490, 2003.

Cutkosky, A. Parameter-free, dynamic, and strongly-
adaptive online learning. In Proceedings of the 37th
International Conference on Machine Learning (ICML),
pp. 2250–2259, 2020.

Foster, D. J., Kale, S., Luo, H., Mohri, M., and Sridharan, K.
Logistic regression: The importance of being improper. In
Proceedings of the 31st Conference on Learning Theory
(COLT), pp. 167–208, 2018.

Hazan, E. Introduction to Online Convex Optimization.
Foundations and Trends in Optimization, 2(3-4):157–325,
2016.

Hazan, E. and Seshadhri, C. Efficient learning algorithms
for changing environments. In Proceedings of the 26th
International Conference on Machine Learning (ICML),
pp. 393–400, 2009.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2-3):169–192, 2007.

Ihara, S. Information Theory for Continuous Systems. World
Scientific, 1993.

Ito, S. An optimal algorithm for bandit convex optimization
with strongly-convex and smooth loss. In Proceedings
of the 23rd International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 2229–2239, 2020.

Jacobsen, A. and Cutkosky, A. Unconstrained online learn-
ing with unbounded losses. In Proceedings of the 40th
International Conference on Machine Learning (ICML),
pp. 14590–14630, 2023.
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A. Omitted Proofs for Section 3
A.1. Useful Lemmas

Lemma 2. Assume the loss function ft(u) is convex and β-smooth. Let Pt be the distribution returned by the fixed-share

update (6). Then, for any µ ∈ [0, 1], we have lnPt(u) ≤ d
2 ln

(
ηβt
2π

)
.

Proof of Lemma 2. The lemma can be proved by the equivalence between the fixed-share-type method (Algorithm 1) and
the FLH-type method (Algorithm 2). Specifically, according to Theorem 2, the distribution Pt returned by the fixed-share
update (6) can be written as

Pt(u) =
∑

Bi∈Ht

p
(i)
t P

(i)
t (u), ∀u ∈ Rd,

where p
(i)
t ∈ [0, 1] is the weight such that

∑
Bi∈Hi

p
(i)
t = 1. The distribution P

(i)
t (u) is updated via (9) and can be further

expressed as

P
(i)
t (u) =

exp
(
− F

(i)
t (u)

)∫
u∈Rd exp

(
−F

(i)
t (u)

)
du

,∀u ∈ Rd and Bi ∈ Ht. (20)

In the above, we denote by F
(i)
t (u) = 1

2∥u − w0∥22 + η
∑t−1

s=i fs(u). Let v∗
t,i = argminu∈Rd F

(i)
t (u). Given the loss

function ft is β-smooth, the first-order optimality condition implies

F
(i)
t (u) ≤ F

(i)
t (v∗

t,i) +
1 + ηβt

2
∥u− v∗

t,i∥22, ∀u ∈ Rd and Bi ∈ Ht.

Then, the denominator in (20) can be lower bounded by∫
u∈Rd

exp
(
− F

(i)
t (u)

)
du ≥ exp(−F

(i)
t (v∗

t,i)
)
·
∫
u∈Rd

exp

(
−1 + ηβt

2
∥u− v∗

t,i∥22
)
du

= exp
(
− F

(i)
t (v∗

t,i)
)
·
(

2π

ηβt

)d/2

. (21)

For all u ∈ Rd and Bi ∈ Ht, plugging (21) into (20) yields

P
(i)
t (u) ≤ exp

(
F

(i)
t (v∗

t,i)− F
(i)
t (u)

)
·
(

ηβt
2π

)d
2 ≤

(
ηβt
2π

)d
2
.

where the last inequality is due to the optimality of v∗
t,i. Given Pt(u) is a weighted combination of P (i)

t (u) and P
(i)
t (u) ≥

0,∀u ∈ Rd , we have maxu∈Rd Pt(u) ≤ maxBi∈Ht,u∈Rd P
(i)
t (u) ≤ (ηβt/(2π))

d
2 . We complete the proof by taking

logarithm on both sides.

Lemma 3. Let P = N (up, σ
2Id) be a Gaussian distribution with mean up ∈ Rd and covariance matrix σ2Id and Q =

N (uq, σ
2Id). Besides, define N = N (w0, λ

2Id). Then, let W = {u ∈ Rd | P (u) ≥ Q(u)}. Suppose ∥up −w0∥2 ≤ D
and ∥uq −w0∥ ≤ D. Then, we have∫

u∈W
(P (u)−Q(u)) ln

(
1

N(u)

)
du ≤

(
d ln(2πλ2)

2
+

D

λ2

)
∥P −Q∥1 +

2dσ2

λ2
,

where ∥P −Q∥1 =
∫
w∈Rd |P (u)−Q(u)|du.

Proof of Lemma 3. Let z = u− up. We define the shifted distribution P ′(z) = N (0, σ2Id), Q′(z) = N (uq − up, σ
2Id)

and N ′ = N (w0 − up, σ
2Id). To prove the lemma, it is equivalent to provide an upper bound for∫

z∈W′
(P ′(z)−Q′(z)) ln

(
1

N ′(z)

)
dz, (22)

12
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where W ′ = {z ∈ Rd | P ′(z) ≥ Q′(z)} is the shifted region. According to the definition of multivariate Gaussian
distribution N ′(z) = 1√

(2πλ2)d
exp(− 1

2λ2 ∥z− (w0 − up)∥22). The term (22) can be equally written as:

d

2
ln(2πλ2)

∫
z∈W′

(P ′(z)−Q′(z)) dz︸ ︷︷ ︸
TERM (A)

+
1

2λ2

∫
z∈W′

(P ′(z)−Q′(z)) · ∥z− (w0 − up)∥22dz︸ ︷︷ ︸
TERM (B)

.

Denote by ∥P ′ −Q′∥1 =
∫
z∈Rd |P ′(z)−Q′(z)|dz. TERM (A) can be directly bounded by

TERM (A) ≤ d ln(2πλ2)

2
∥P ′ −Q′∥1 =

d ln(2πλ2)

2
∥P −Q∥1. (23)

As for TERM (B), define a d-dimensional ball centered around a ∈ Rd with radius R > 0 as B(a, R) = {z ∈ Rd |
∥z− a∥2 ≤ R}. We can further partition the region W ′ into two parts W ′

in = W ′ ∩ B(w0 − up, 2D) and W ′
out = W ′/W ′

in.
We have the following decomposition:

TERM (B) =
1

2λ2

∫
z∈W′

in

(P ′(z)−Q′(z)) · ∥z− (w0 − up)∥22dz

+
1

2λ2

∫
z∈W′

out

(P ′(z)−Q′(z)) · ∥z− (w0 − up)∥22dz

≤ 2D2

λ2
∥P −Q∥1 +

1

2λ2

∫
z∈W′

out

(P ′(z)−Q′(z)) · ∥z− (w0 − up)∥22dz

≤ 2D2

λ2
∥P −Q∥1 +

2

λ2

∫
z∈W′

out

P ′(z) · ∥z∥22dz, (24)

where the first inequality is due to ∥z − (w0 − up)∥2 ≤ 2D for any z ∈ W ′
in. The second inequality holds since

∥z− (w0 − up)∥2 ≤ ∥z∥2 +D ≤ 2∥z∥2 for any z ∈ W ′
out.

We can further bound the last term in (24) by

2

λ2

∫
z∈W′

out

P ′(z) · ∥z∥22dz ≤ 2

λ2

∫
Rd

P ′(z)∥z∥22dz =
2

λ2
EXi∼N (0,1)

[
σ2

d∑
i=1

X2
i

]
=

2dσ2

λ2
(25)

where the first inequality is due to the fact W ′
out ⊂ Rd. The last second equality is because one can show that the random

variable z ∈ Rd follows the same distributions as z ∼
∑d

i=1 σXiei, where Xi
i.i.d.∼ N (0, 1) and ei ∈ Rd is the one-hot

vector with the i-th element being 1 and others 0. The last equality follows by EXi∼N (0,1)[X
2
i ] = 1. Plugging (25) into (24),

we obtain

TERM (B) ≤ D

λ2
∥P −Q∥1 +

2dσ2

λ2
.

We complete the proof by combining the upper bound for TERM (A) and TERM (B).

A.2. Proof of Lemma 1

Proof of Lemma 1. Recall the definition of mix loss

mt(P ) = −1

η
ln
(
Eu∼P

[
e−ηft(u)

])
.

By the exponential weights update rule in (5), we know that

ln

(
Pt(u)

P̃t+1(u)

)
= ln

(
EPt

[
e−ηft(u)

]
e−ηft(u)

)
= ln

(
EPt

[
e−ηft(u)

])
+ ηft(u),

13
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which implies − 1
ηEu∼Qt

[
ln
(

Pt(u)

P̃t+1(u)

)]
= mt(Pt)− Eu∼Qt [ft(u)] by taking an expectation of both sides with respect to

u ∼ Qt and rearranging the terms. Summing this equality over t ∈ [T ] gives:

T∑
t=1

mt(Pt)−
T∑

t=1

Eu∼Qt
[ft(u)]

= − 1

η

T∑
t=1

Eu∼Qt

[
ln

(
Pt(u)

P̃t+1(u)

)]

=
1

η

T∑
t=1

(
KL(Qt∥Pt)− KL(Qt∥P̃t+1)

)
≤ 1

η
KL(Q1∥P1) +

1

η

T∑
t=2

(
KL(Qt∥Pt)− KL(Qt−1∥P̃t)

)
=

1

η
KL(Q1∥P1) +

1

η

T∑
t=2

(KL(Qt∥Pt)− KL(Qt−1∥Pt)) +
1

η

T∑
t=1

Eu∼Qt−1

[
ln

(
P̃t(u)

Pt(u)

)]
, (26)

where both the second and last equalities are by the definition of the KL-divergence. In (26), the gap between the
KL-divergence terms can be expressed as

1

η

T∑
t=2

(KL(Qt∥Pt)− KL(Qt−1∥Pt))

=
1

η

T∑
t=2

(
Eu∼Qt

[
ln

(
1

Pt(u)

)]
− Eu∼Qt−1

[
ln

(
1

Pt(u)

)])

=
1

η

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du, (27)

where the first equality is due to the definition of the KL divergence such that KL(Q∥P ) = Eu∼Q

[
ln
(
Q(u)/P (u)

)]
and

Eu∼Qt
[lnQt(u)] = Eu∼Qt−1

[lnQt−1(u)] for Gaussian distribution with the same mean. Furthermore, according to the
fixed-share update rule (6), we know that Pt(u) = µN0(u) + (1− µ)P̃t(u). Consequently, the final term in (26) can be
bounded as

1

η
ln

(
P̃t(u)

Pt(u)

)
=

1

η
ln

(
P̃t(u)

(1− µ)P̃t(u) + µN0(u)

)
≤ 1

η
ln

(
1

1− µ

)
≤ 2

Tη
, (28)

where the last term is by the setting µ = 1/T . Plugging (27) and (28) into (26) yields

T∑
t=1

mt(Pt)−
T∑

t=1

Eu∼Qt [ft(u)] ≤
1

η

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du+

2 + KL(Q1∥P1)

η
,

which completes the proof.

A.3. Proof of Theorem 1

Proof. The core concept in our analysis is the mix loss, which has been used to analyze static regret in the prediction-
with-expert-advice problem (Vovk, 1998) and in online convex optimization (van der Hoeven et al., 2018). Here, we show
the critical role of mix loss in analyzing universal dynamic regret. For a probability distribution P ∈ P , the mixed loss
mt : P → R is defined as

mt(P ) = −1

η
ln
(
Eu∼P

[
e−ηft(u)

])
, (29)

where η is the mixability parameter.

14
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Then, the dynamic regret can be decomposed into three terms as follow

D-REGT =

T∑
t=1

ℓt(zt, yt)−
T∑

t=1

ft(ut)

=

T∑
t=1

ℓt(zt, yt)−mt(Pt)︸ ︷︷ ︸
TERM (A)

+

T∑
t=1

mt(Pt)−
T∑

t=1

Eu∼Qt [ft(u)]︸ ︷︷ ︸
TERM (B)

+

T∑
t=1

Eu∼Qt [ft(u)]−
T∑

t=1

ft(ut)︸ ︷︷ ︸
TERM (C)

, (30)

where we choose Qt = N (ut, σ
2Id) as a Gaussian distribution with mean ut ∈ Rd and covariance matrix σ2Id. In the

above, the TERM (A) is usually called the mixability gap, measuring the difference between the online function and the
mixed loss. We call the TERM (B) the mixability regret, measuring the difference between the mixed loss and the loss
measured on the expected comparators distributions. The TERM (C) is called the comparator gap, measuring the difference
between the expected comparators distributions and the true comparators.

In the following, we will analyze the upper bound of each term, respectively.

1 Bounding mixability gap. According to (4) in Algorithm 1, the mixability gap is at most 0.

2 Bounding mixability regret. Lemma 1 shows that the mixability is upper bounded by

TERM (B) ≤ 1

η

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du︸ ︷︷ ︸

TERM (B-I)

+
2 +KL(Q1∥P1)

η︸ ︷︷ ︸
TERM (B-II)

, (31)

Analysis for Term (B-I): For upper bounding TERM (B-I), the main challenge lies in the unboundedness of the logarithmic
term ln(1/Pt(u)). This issue arises because the probability density Pt(u) can become arbitrarily small even with the
fixed-share update. To address this issue, we decompose the space Rd into:

W(1)
t = {u ∈ Rd | Qt(u) < Qt−1(u) and Pt(u) > 1};

W(2)
t = {u ∈ Rd | Qt(u) > Qt−1(u) and Pt(u) < 1},

and the region Wt = Rd/W(1)
t ∪W(2)

t . For points u ∈ W , we have
(
Qt(u)−Qt−1(u)

)
ln
(
1/Pt(u)

)
≤ 0, implying that

the integral term over Wt is non-positive.

Denote by ∥Qt − Qt−1∥1 =
∫
u∈Rd |Qt(u) − Qt−1(u)|du the total variation of the distributions Qt and Qt−1. For the

integral over region W(1)
t , We have∫

u∈W(1)
t

(
Qt(u)−Qt−1(u)

)
ln

(
1

Pt(u)

)
du =

∫
u∈W(1)

t

(
Qt−1(u)−Qt(u)

)
ln (Pt(u)) du

≤d

2
ln

(
ηβt

2π

)
· ∥Qt −Qt−1∥1, (32)

where the inequality holds due to Lemma 2 such that lnPt(u) ≤ d
2 ln

(
ηβt
2π

)
for u ∈ Rd.

As for the integral over the region W(2)
t , we have Qt(u) > Qt−1(u) and µN0(u) ≤ Pt(u) ≤ 1 due to the fixed-share

update rule (6). Then, we can bound the integral term by∫
u∈W(2)

t

(
Qt(u)−Qt−1(u)

)
ln

(
1

Pt(u)

)
du ≤

∫
u∈W(2)

t

(
Qt(u)−Qt−1(u)

)
ln

(
1

µN0(u)

)
du

≤
(
d ln(2π)

2
+D + ln

( 1
µ

))
∥Qt −Qt−1∥1 + 2dσ2, (33)
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where the last line holds due to Lemma 3. We obtain the upper bound for TERM (B-I) by combining (32) and (33) and taking
the summation from t = 2 to T :

TERM (B-I) ≤ 1

η

(
d

2
ln(ηβT ) +D + lnT

) T∑
t=2

∥Qt −Qt−1∥1 +
2dσ2T

η
. (34)

The total variation of the distributions Qt and Qt−1 can be further bounded by

∥Qt −Qt−1∥1 ≤
√

1

2
KL(Qt∥Qt−1) =

∥ut − ut−1∥2
σ

, (35)

where the first inequality is due to the Pinsker’s inequality and the last equality is due to the close form expression of KL
divergence of two Gaussian distribution as shown by Lemma 10. Combining (34) and (35), we obtain

TERM (B-I) ≤ 1

η

(
d ln(ηβT )

2
+D + lnT

)
PT

σ
+

2dσ2T

η
,

where PT =
∑T

t=2∥ut − ut−1∥2 is the path length.

Analysis for Term (B-II): Since Q1 = N (u1, σ
2Id) and P1 = N (w0, Id) are both Gaussian distributions, Lemma 10 in

Appendix D shows

TERM (B-II) =
2

η
+

1

η
KL(Q1∥P1) ≤

1

η

(
2 + d ln

(
1

σ

)
+

dσ2

2
+

D2

2

)
. (36)

Then, we obtain the upper bound for TERM (B) by combining the above results as

TERM (B) ≤ 1

η

(
d ln(ηβT )

2
+D + lnT

)
PT

σ
+

dσ2(4T + 1)

2η
+

D2 + 2

η
+

d

η
ln

(
1

σ

)
. (37)

3 Bounding comparator gap. Since the loss function is β-smooth, we have

ft(u) ≤ ft(ut) + ⟨∇ft(ut),u− ut⟩+
β

2
∥u− ut∥2.

Then, taking an expectation over Qt for both sides, we have

Eu∼Qt
[ft(u)] ≤ ft(ut) +

β

2
Eu∼Qt

∥u− ut∥2 ≤ ft(ut) +
βdσ2

2
.

which implies

TERM (C) =

T∑
t=1

Eu∼Qt
[ft(u)]−

T∑
t=1

ft(ut) ≤
βdσ2T

2
. (38)

Plugging (37) and (38) into the decomposition (30), we have:

D-REGT ≤ 1

η

(
d ln(βηT )

2
+D + lnT

)
PT

σ
+

(
(4 + ηβ)T + 1

2η

)
dσ2 +

D2 + 2

η
+

d

η
ln

(
1

σ

)
.

We can further bound the above regret bound by considering different value of PT .

Case 1: PT ≤
√

1
T . We can choose σ =

√
1/T to obtain D-REGT ≤ O(d log T ).

Case 2: PT ≥
√

1
T . We select σ = P

1
3

T (DT )−
1
3 ≤ 1 to obtain D-REGT ≤ O

(
d log T · T 1

3P
2
3

T + d log T
)
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A.4. Proof of Theorem 2

Proof of Theorem 2. We denote by P fs
t the distribution maintained by Algorithm 1 and P flh

t the distribution maintain by
Algorithm 2. To prove the theorem, it is equivalent to show P fs

t = P flh
t for all t ∈ [T ]. For the update rule of P fs

t , we have P̃ fs
t+1(u) =

P fs
t (u) exp(−ηft(u))

E
u∼P fs

t
[exp(−ηft(u))]

.

P fs
t+1(u) = (1− µ)P̃ fs

t+1(u) + µN0(u).
(39)

We show that the update rule of P flh
t is equivalent to the above update rule. Recall P flh

t (u) =
∑

Bi∈Ht
p
(i)
t P

(i)
t (u), where

p
(i)
t and P

(i)
t is the weights and distribution of the i-th base-learner respectively. Let us define

P̃ flh
t+1(u) =

∑
Bi∈Ht

p̃
(i)
t+1P

(i)
t+1(u),

where p̃
(i)
t+1 and P

(i)
t+1 is defined as (10) and (9), respectively. We have

P̃ flh
t+1(u) =

∑
Bi∈Ht

p̃
(i)
t+1 · P

(i)
t+1(u)

=
∑

Bi∈Ht

p
(i)
t · E

u∼P
(i)
t

[exp(−γft(u))]∑
Bi∈Ht

p
(i)
t · E

u∼P
(i)
t

[exp(−ηft(u))]
· P

(i)
t (u) exp(−ηft(u))

E
u∼P

(i)
t

[exp(−ηft(u))]

=

∑
Bi∈Ht

p
(i)
t · P (i)

t (u) exp(−ηft(u))∑
Bi∈Ht

p
(i)
t · E

u∼P
(i)
t

[exp(−ηft(u))]
=

P flh
t (u) exp(−ηft(u))

Eu∼P flh
t
[exp(−ηft(u))]

.

Besides, we can further rewrite the distribution P flh
t+1 as

P flh
t+1(u) =

∑
Bi∈Ht+1

p
(i)
t+1P

(i)
t+1(u) = (1− µ)

∑
Bi∈Ht

p̃
(i)
t+1P

(i)
t+1(u) + µN0(u) = (1− µ)P̃ flh

t+1(u) + µN0(u).

Therefore, we can conclude that the distribution maintain by Algorithm 2 can be equivalently updated by P̃ flh
t+1(u) =

P flh
t (u) exp(−ηft(u))

E
u∼P flh

t
[exp(−ηft(u))]

.

P flh
t+1(u) = (1− µ)P̃ fs

t+1(u) + µN0(u),

which is identical to (39). We complete the proof by the setting P fs
1 = P flh

1 = N0.

B. Omitted Details for Section 4
This part provides omitted details in Section 4, including the detailed implementation of our method for squared loss and
proofs of the statements in this section.

B.1. Implementations for Squared Loss

Given the squared loss is quadratic and the initial distribution is Gaussian, we have close form update rule for P (i)
t and p

(i)
t .

Proposition 1. The distributions P
(i)
t+1 for the base-learner Bi are Gaussian distribution N (wt+1,i, B

2σ2
t+1,i) for all

t = 1, . . . , T − 1, whose means and variance are given by

wt+1,i =
wt,i + σ2

t,iyt

1 + σ2
t,i

and σ2
t+1,i =

σ2
t,i

σ2
t,i + 1

As for the meta-algorithm, due to the Gaussinality of P (i)
t , the update of the weight p(i)t in (10) is given by

p̃
(i)
t+1 ∝ 1√

1 + σ2
t,i

· exp

(
− (wt,i − yt)

2

2B2(σ2
t,i + 1)

)
.
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Proof of Proposition 1. According to the update rule (9), we have

P
(i)
t+1(w) ∝ P

(i)
t (w) · e−

1
2B2 (w−yt)

2

∝ exp

(
− 1

2B2

(
(w − wt,i)

2

σ2
t,i

+ (w − yt)
2

))

∝ exp

(
− 1

2B2

((
1

σ2
t,i

+ 1

)
w2 − 2

(
wt,i

σ2
t,i

+ yt

)
w + const

))
.

This represents a Gaussian distribution with updated parameters:

σ2
t+1,i =

(
1

σ2
t,i

+ 1

)−1

=
σ2
t,i

σ2
t,i + 1

,

wt+1,i = σ2
t+1,i

(
wt,i

σ2
t,i

+ yt

)
=

wt,i + σ2
t,iyt

σ2
t,i + 1

.

Therefore, P (i)
t+1 is Gaussian with mean wt+1,i and variance B2σ2

t+1,i, as claimed.

B.2. Useful Lemmas

Lemma 4 (Mixability of Squared Loss). For any yt ∈ [−Y, Y ], the squared loss function ℓsq(z, yt) = 1
2 (z − yt)

2 is
1

2Y 2 -mixable over the decision space Z = R.

Proof of Lemma 4. According to Vovk (2001), the squared loss is 1
2Y 2 -mixable over the decision space Z = [−Y, Y ], i.e.,

for any y ∈ [−Y, Y ] and P ′ over [−Y, Y ], there exists a prediction z′ such that

ℓsq(z
′, y) ≤ −2Y 2 ln

(
Ew∼P ′

[
e−

1
2Y 2 ℓsq(w,y)

])
. (40)

To prove the lemma, we observe that for any distribution P over R and any y in the interval [−Y, Y ], the always exists a
distribution P ′ defined over [−Y, Y ] satisfies that

−2Y 2 ln
(
Ez∼P

[
e−

1
2Y 2 ℓsq(z,y)

])
≥ −2Y 2 ln

(
Ez∼P ′

[
e−

1
2Y 2 ℓsq(z,y)

])
,

where P ′ is a modified distribution that shifts the probability mass of P outside the interval [−Y, Y ] to the boundary
points. Specifically, P ′ retains the same density as P within (−B,B), while at the boundaries, it is defined as: P ′(Y ) =
P (Y ) +

∫
[Y,∞)

P (z)dz and P ′(−Y ) = P (−Y ) +
∫
(−∞,−Y ]

P (w)dw. According to (40), there exists a prediction z′ such
that

ℓt(z
′, y) ≤ −2Y 2 ln

(
Ez∼P ′

[
e−

1
2Y 2 ℓsq(z,y)

])
≤ −2Y 2 ln

(
Ez∼P

[
e−

1
2Y 2 ℓsq(z,y)

])
,

thereby indicating the mixability over R.

B.3. Proof of Corollary 1

Proof of Corollary 1. To prove the corollary, it is sufficient to show that the prediction (12) satisfies the mixability inequal-
ity (3). We show (3) is essentially the greedy forecaster (Cesa-Bianchi & Lugosi, 2006, Section 3.4) for squared loss, which
always ensures non-positive mixability gap.

As shown by Lemma 4, the squared loss is 1
2B2 -mixable over the decision space Z = R. Then, for any mixable loss,

Proposition 3.3 of Cesa-Bianchi & Lugosi (2006) shows that the greedy forecaster defined by

zmix = argmin
z∈R

sup
y∈[−B,B]

{
ℓsq(z, y)−msq(P, y)︸ ︷︷ ︸

mixability gap

}
, (41)
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always ensures non-negative mixability gap, where msq(P, y) = −2B2 ln
(
Ew∼P

[
e−

1
2B2 ℓsq(z,y)

])
is the mix loss. Fur-

thermore, as shown by Lemma 3 of Vovk (2001), the mixability gap ℓsq(z, y) −msq(P, y) is a convex function for any
y ∈ R give a fixed z. Therefore, the inner optimization problem in (41) always achieves its optimal value of y = B or
y = −B. Then, we can equivalently rewrite the above optimization problem as

argmin
z∈R

sup
y∈{−B,B}

{ℓsq(z, y)−msq(P, y)}. (42)

Then, it is sufficient to show the optimal solution of (42) is given as (12). Since msq(P, y) is constant when the value of y is
given, the optimization problem (42) can then be reformulated as:

arg min
z∈Rd

max{(z −B)2 −M1, (z +B)2 −M2},

where we define M1 = msq(P,B) and M2 = msq(P,−B). Further let g1(z) = (z−B)2−M1 and g2(z) = (z+B)2−M2.
The inner optimization problem admits the following closed-form solution:

h(z) = max{g1(z), g2(z)} =

{
g1(z), if z ≤ z†,

g2(z), otherwise,

where z† = M2−M1

4B . We now consider three separate cases on the behavior of h(z):

• When −B ≤ z† ≤ B: For z ∈ (−∞, z†], we have h(z) = g1(z), which is decreasing since z† ≤ B. For z ∈ [z†,∞),
we have h(z) = g2(z), which is increasing because z† ≥ −B. Therefore, h(z) attains its minimum at z = z†.

• When z† < −B: For the range z ∈ (−∞, z†], we have h(z) = g1(z) remains decreasing, and the minimum in this
interval is at z = z†. On z ∈ (z†,∞), the minimum of h(z) is at z = −B since h(−B) = g2(−B) = −M2. Under
the condition z† ≤ −B, one can verify that h(−B) ≤ h(z†), so the overall minimum is attained at z = −B.

• When z† > B By symmetry to the previous case, the minimum of h(z) occurs at z = B using the same reasoning.

Combining all three cases yields argminz∈Rd h(z) =
[
M2−M1

4B

]
B

, which completes the proof.

B.4. Proof of Corollary 2

Proof of Corollary 2. This corollary can be proved following the same arguments as Corollary 1. Specifically, the mix loss
for least-squares can be equivalently written as

mls(Pt, y) = −2B2 ln
(
Ew∼Pt

[
e−

1
2B2 (w⊤xt−y)2

])
= −2B2 ln

(
Ez∼PZ

t

[
e−

1
2B2 (z−y)2

])
.

where PZ
t is the distribution over R induced by Pt. Then, the arguments in the proof of Corollary 1 shows that the greedy

forecaster (41) constructed based on mls(P, y) ensures

ℓsq(z
mix
t , y) ≤ −2B2 ln

(
Ez∼PZ

t

[
e−

1
2B2 (z−y)2

])
= −2B2 ln

(
Ew∼Pt

[
e−

1
2B2 (w⊤xt−y)2

])
,

which indicates a non-positive mixability gap and one can ensures an O((lnT )
2
3P

2
3

T T
1
3 ) bound following the same argument

as Theorem 1.

B.5. Proof of Corollary 3

Proof of Corollary 3. We show the mixability gap is non-positive when we defined zmix
t as (14). Let σ(z) = 1/(1 +

exp(−z)). This can be shown by a direct calculation. In the case when y = +1, we have

ℓlr(z
mix
t ,+1) = log

(
1 + exp(−zmix

t )
)
= − ln

(
Ew∼Pt

[σ(w⊤xt)]
)
= − ln

(
Ew∼Pt

[e−ℓlr(w
⊤xt,+1)]

)
.

For the case y = −1, we have

ℓlr(z
mix
t ,−1) = log

(
1 + exp(zmix

t )
)
= log

(
1

1− Ew∼Pt
[σ(w⊤xt)]

)
= − ln

(
Ew∼Pt

[e−ℓlr(w
⊤xt,−1)]

)
.

Therefore, the mixability gap is exactly 0 for any yt ∈ {+1,−1}. We complete the proof by the same argument in the proof
of Theorem 1.
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C. Omitted Proofs for Section 5
C.1. Properties of the Set of Distributions M

This section provides several properties about the set (19) defined as

M ≜

{∫
θ∈Θ

N (w,Σ)dπ(θ) | π ∈ P(Θ)

}
, (43)

where Θ = W ×S and we denote by θ = (w,Σ). In the above, S ≜
{
Σ ∈ Sd++ | 1

T ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1
}

is a set
of symmetric positive-definite matrices with bounded eigenvalue and W ⊂ Rd is a convex and compact domain. We present
the following lemmas about the properties of the set.

Lemma 5. The set M is convex and closed in topology of the total variation distance.

Proof of Lemma 5. We first check the convexity of the set. Pick two distributions Pπ1
=
∫
θ∈Θ

N (w,Σ)dπ1(θ), Pπ2
=∫

θ∈Θ
N (w,Σ)dπ2(θ) in the set M and let λ ∈ [0, 1]. Set πλ = λπ1 + (1− λ)π2. Because πλ is a still probability measure

on Θ, it belongs to P(Θ). For every Borel set A ⊆ Rd,

Pπλ
(A) =

∫
Θ

N (w,Σ)(A)πλ(dθ) = λPπ1(A) + (1− λ)Pπ2(A),

so Pπλ
= λPπ1

+ (1− λ)Pπ2
∈ M . Hence M is convex.

Then, we check the set is closed in topology of the total variation distance. Denote by

g(u; θ) =
1√

(2π)d|Σ|
exp

(
−1

2
(u−w)⊤Σ−1(u−w)

)
the density function of the Gaussian distribution N (w,Σ) with θ = (w,Σ). We begin by choosing {Pn}n≥1 as an arbitrary
sequence within M such that Pn convergence to a distribution P∗ in total variable, i.e., ∥Pn − P∗∥TV → 0. Because each
Pn lies in M by definition, it can be written in mixture form as Pn =

∫
Θ
N (µ,Σ) dπn(θ) for some πn ∈ P(Θ).

Since the parameter set Θ = W × S is compact, every family of mixing measures {πn}n≥1 ⊂ P(Θ) is tight. By
Prokhorov’s theorem, one can extract a subsequence (πnk

)k≥1 of {πn}n≥1 and find a limit π ∈ P(Θ) such that

πnk
=⇒ π∗ in P(Θ) (weak convergence).

We can also define

Pnk
(u) =

∫
Θ

g(u; θ)dπnk
(θ) and Pπ∗(u) =

∫
Θ

gθ(u)dπ∗(θ).

Since the map θ 7→ g(u; θ) is continuous and bounded on the compact set Θ, we have

lim
k→∞

Pnk
(u) = Pπ∗(u) for all u ∈ Rd. (44)

In the next, we show the density Pnk
(u) and Pπ∗(u) is upper bounded by an integrable function ḡ(u). Specifically, let

[z]+ ≜ max{0, z} for any z ∈ R. For every u ∈ Rd we have

|Pnk
(u)| =

∫
Θ

g(u; θ) dπnk
(θ) ≤ ḡ(u) ≜

(
T
2π

)d/2
exp
[
− 1

2 [∥u∥2 −R] 2+

]
,

where R ≜ supw∈W∥w∥2 < ∞ because W is compact. The inequality follows from the bounds Id ≼ Σ−1 ≼ TId that
hold for every (w,Σ) ∈ Θ. The same argument gives |Pπ∗(u)| ≤ ḡ(u) for all u ∈ Rd. Therefore, we have

|Pnk
(u)− Pπ∗(u)| ≤ 2ḡ(u). (45)

We note the dominating function ḡ is integrable as it is constant on the ball C = {u ∈ Rd : ∥u∥2 ≤ R} and decays with a
Gaussian tail outside C, hence

∫
Rd ḡ(u) du < ∞∀u ∈ Rd.
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Combining the pointwise convergence (44) and the integrable domination (45), the dominated convergence theorem yields

lim
k→∞

∫
Rd

|Pnk
(u)− Pπ∗(u)|du = 0. (46)

Thus Pnk
→ Pπ∗ in L1(Rd). Because two probability measures with densities q1(u), q2(u) satisfy

∥Q1 −Q2∥TV =
1

2

∫
Rd

|q1(u)− q2(u)| du,

relation (46) implies

∥Pnk
− Pπ∗∥TV = 1

2∥Pnk
− Pπ∗∥L1

k→∞−−−−→ 0. (47)

By assumption, the original sequence {Pn}n≥1 converges in total variation to some limit P∗. Because total variation is a
metric, limits are unique; therefore P∗ = Pπ∗ . Finally, Pπ∗ has already been written as the Gaussian mixture generated by
the weak limit π∗ of the mixing measures, so Pπ∗ ∈ M . Consequently, every TV-convergent sequence in M remains in M ,
and the set is closed in the total-variation topology.

Lemma 6. For any distribution Pt ∈ M , we have maxu∈Rd ln(Pt(u)) ≤ d
2 ln

(
T
2π

)
.

Proof of Lemma 6. According to the definition of M , we have Pt =
∫
(w,Σ)∈Θ

N (w,Σ)dπt(θ) for some distribution πt on
Θ. Then, for any u ∈ Rd, the density can be bounded by

Pt(u) =

∫
(w,Σ)∈W×S

1√
(2π)d|Σ|

exp

(
−1

2
(u−w)⊤Σ−1(u−w)

)
dπt(θ)

≤
∫
(w,Σ)∈W×S

1√
(2π)d|Σ|

dπt(θ)

≤ max
(w,Σ)∈W×S

1√
(2π)d|Σ|

≤ 1√
(2π/T )d

where the first inequality is due to the fact that exp(−z) ≤ 1 for any z ≥ 0. The last inequality is due to the definition
of S ≜

{
Σ ∈ Sd++ | 1

T ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1
}

and the fact that λmin(Σ) ≥ 1/T for any Σ ∈ S. Then, we have

ln
(
Pt(u)

)
≤ ln

(
1√

(2π/T )d

)
≤ d

2 ln
(

T
2π

)
for any u ∈ Rd, which completes the proof.

C.2. Useful Lemmas

Lemma 7. Let f̃t(w) = g⊤
t (w−wt) +

γ
2

(
g⊤
t (w−wt)

)2
, where wt = Ew∼Pt

[w]. Under Assumptions 1 and 5, we have

f̃t(wt) ≤ − 2

γ
ln
(
Ew∼Pt

[
exp

(
− γ

2
f̃t(w)

)])
for any distribution Pt ∈ M when γ ≤ 1/(4GD) and wt ∈ W .

Proof of Lemma 7. To prove the lemma, it is sufficient to show Ew∼Pt
[exp(−γf̃t(w)/2)] ≤ exp(−γf̃t(wt)/2) for the

distribution Pt ∈ M . Given the definition of M (19), the distribution Pt =
∫
(w,Σ)∈Θ

N (w,Σ)dπt(θ) is a Gaussian
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mixture model, where πt is a distribution on Θ corresponding to Pt. Then, we have

Ew∼Pt
[exp(−γf̃t(w)/2)] =

∫
(w,Σ)∈Θ

Eu∼N (w,Σ)[exp(−γf̃t(w)/2)]πt(dθ)

=

∫
(w,Σ)∈Θ

Eu∼N (w,Σ)

[
exp

(
γ

2
g⊤
t (wt − u)− γ2

4

(
g⊤
t (u−wt)

)2)]
πt(dθ)

≤
∫
(w,Σ)∈Θ

exp

(
γ

2
g⊤
t (wt −w)− γ2

4

(
g⊤
t (w −wt)

)2)
πt(dθ)

≤
∫
(w,Σ)∈Θ

(
1 +

γ

2
g⊤
t (wt −w)

)
πt(dθ)

= 1 +
γ

2
g⊤
t

(
wt −

∫
(w,Σ)∈Θ

Eu∼N (w,Σ)[u]πt(dθ)

)
= 1.

where first inequality is due to the Gaussian exp-concavity as shown in Lemma 12 in Appendix D under the condition
γ/2 ≤ 1/(5GD). The second inequality follows from the fact that ez−z2 ≤ 1 + z for any z ≥ − 2

3 . In our case, we set
z = −γ

2g
⊤
t (wt − w), which satisfies z ≥ − 2

3 under the condition on γ and the boundedness ∥wt − w∥2 ≤ D for all
wt,w ∈ W . The last inequality is due to

∫
(w,Σ)

Eu∼N (w,Σ)[u]dπt(θ) = EPt
[w] = wt.

One the other hand, due to the definition of the surrogate loss, we have exp
(
− γf̃t(wt)/2

)
= 1. We complete the proof by

plugging the equality into the above displayed inequality.

The following lemma is a counterpart to Lemma 1 that incorporates the projection step. It shows that a similar mixability
regret bound as Lemma 1 for the surrogate loss still holds.
Lemma 8. Let Qt = N (ut, σ

2Id) be a Gaussian distribution with mean ut ∈ W and covariance σ2Id ∈ Rd×d and define

m̃t(P ) = − 2

γ
ln
(
Ew∼Pt

[
exp

(
− γ

2
f̃t(w)

)])
.

Algorithm 3 with the update rule (15), (16) and (17) with µ = 1/T ensures that the mixability regret is bounded as
T∑

t=1

m̃t(Pt)−
T∑

t=1

Eu∼Qt [f̃t(u)] ≤
4 + 2KL(Q1∥P1)

γ
+

2

γ

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du,

where KL(P∥Q) = Eu∼P [ln (P (u)/Q(u))] refers to the Kullback-Leibler divergence.

Proof of Lemma 8. Following the same reasoning as in the proof of Lemma 1, according to the exponential-weight update
rule (15), we obtain

T∑
t=1

m̃t(Pt)−
T∑

t=1

Eu∼Qt
[f̃t(u)]

=
2

γ

T∑
t=1

(
KL(Qt∥Pt)− KL(Qt∥P ′

t+1)
)

≤ 2

γ

T∑
t=1

(
KL(Qt∥Pt)− KL(Qt∥P̃t+1)

)
≤ 2

γ
KL(Q1∥P1) +

2

γ

T∑
t=2

(
KL(Qt∥Pt)− KL(Qt−1∥P̃t)

)
=

2

γ
KL(Q1∥P1) +

2

γ

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du+

2

γ

T∑
t=1

Eu∼Qt−1

[
ln

(
P̃t(u)

Pt(u)

)]

≤ 2

γ
(2 + KL(Q1∥P1)) +

2

γ

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du
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where the first inequality follows from the generalized Pythagorean theorem for KL divergence. Specifically, since the
set M is convex and closed in the topology of total variation distance as shown in Lemma 5, the projection P̃t+1 =
argminP∈M KL(P∥P ′

t+1) exists according to Csiszár (1975, Theorem 2.1). Furthermore, Csiszár & Matus (2003)
shows that that for any Qt ∈ M , we have KL(Qt∥P ′

t+1) ≥ KL(Qt∥P̃t+1). The last second equality follow the same
reasoning in obtaining (27). The last inequality is due to the fixed-share step (17) with µ = 1/T , where one can show
Eu∼Qt−1

[
ln
(
P̃t(u)/Pt(u)

)]
≤ 2/T by the same arguments in obtaining (28).

C.3. Proof of Theorem 3

Proof of Theorem 3. For η-exp-concave loss function, Lemma 11 in Appendix D shows that the dynamic regret in terms of
the original loss can be upper bounded by that in terms of the surrogate loss as

D-REGT ≤
T∑

t=1

f̃t(wt)−
T∑

t=1

f̃t(ut)

=

T∑
t=1

f̃t(wt)− m̃t(Pt)︸ ︷︷ ︸
TERM (A)

+

T∑
t=1

m̃t(Pt)−
T∑

t=1

Eu∼Qt
[f̃t(u)]︸ ︷︷ ︸

TERM (B)

+

T∑
t=1

Eu∼Qt
[f̃t(u)]−

T∑
t=1

f̃t(ut)︸ ︷︷ ︸
TERM (C)

,

where m̃t(P ) = − 2
γ ln

(
Ew∼Pt

[
exp

(
− γ

2 f̃t(w)
)])

is the mix loss defined in terms of the surrogate loss.

1 Bounding mixability gap. For TERM (A), Lemma 7 shows the mixability gap is non-positive as TERM (A) ≤ 0.

2 Bounding mixability regret. As for TERM (B), we have

TERM (B) ≤ 4 + 2KL(Q1∥P1)

γ
+

2

γ

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du

≤ 2

γ

(
2 + d ln

(
1

σ

)
+

dσ2

2
+

D2

2

)
+

2

γ

T∑
t=2

∫
u∈Rd

(Qt(u)−Qt−1(u)) ln

(
1

Pt(u)

)
du (48)

where the first inequality is due to Lemma 8 in Appendix C.2, which serves as the counterpart to Lemma 1 when the
projection step is incorporated. The second inequality follows from the definitions Q1 = N (u1, σ

2Id) and P1 = N (w0, Id),
together with Lemma 10.

For the last term on the right-hand side of (48), we follow the same argument as in the proof of Theorem 1 and decompose
the integral into three regions: W(1)

t = {u ∈ Rd | Qt(u) < Qt−1(u) and Pt(u) > 1}, W(2)
t = {u ∈ Rd | Qt(u) >

Qt−1(u) and Pt(u) < 1}, and the remainder Wt = Rd \ W(1)
t ∪W(2)

t . Since
(
Qt(u)−Qt−1(u)

)
ln(1/Pt(u)) ≤ 0 for

all u ∈ Wt, the integral over this region is non-positive. Therefore, it suffices to bound the integrals over W(1)
t and W(2)

t .
For the integral over region W(1)

t , We have∫
u∈W(1)

t

(
Qt(u)−Qt−1(u)

)
ln

(
1

Pt(u)

)
du ≤ d

2
ln

(
T

2π

)
· ∥Qt −Qt−1∥1, (49)

where (49) holds by Pt = µN0 + (1− µ)P̃t ∈ M and maxu∈Rd ln(Pt(u)) ≤ d
2 ln

(
T
2π

)
as shown in Lemma 6.

As for the integral over the region W(2)
t , due to the fixed-share update rule (17), the same arguments in obtaining (33) in the

proof of Theorem 1 can be applied to show that∫
u∈W(2)

t

(
Qt(u)−Qt−1(u)

)
ln

(
1

Pt(u)

)
du ≤

(
d ln(2π)

2
+D + ln

( 1
µ

))
∥Qt −Qt−1∥1 + 2dσ2, (50)
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Then, plugging (49) and (50) back into (48) and further upper bound the total variation between Qt and Qt by the path-length
as shown in (35), we have

TERM (B) ≤ (d+ 2) lnT +D

γ
· PT

σ
+

dσ2(4T + 1)

γ
+

2D2 + 4

γ
+

2d

γ
ln

(
1

σ

)
. (51)

3 Bounding comparator gap. As for TERM (C), given the definition of the loss function f̃t, the comparator gap can be
directly calculated by

TERM (C) =

T∑
t=1

Eu∼Qt [f̃t(u)− f̃t(ut)]

=

T∑
t=1

Eu∼Qt

[
g⊤
t (u− ut)

]
+

γ

2
Eu∼Qt

[(
g⊤
t (u−wt)

)2 − (g⊤
t (ut −wt)

)2]
=

T∑
t=1

γ

2
Eu∼Qt

[
(
g⊤
t (u− ut)

)2
]

≤
T∑

t=1

γ∥gt∥22
2

· Eu∼Qt
[∥u− ut∥22]

≤
γdσ2

∑T
t=1∥gt∥22
2

≤ γdσ2G2T

2

where the third equality is due to Eu∼Qt
[u] = ut. The last second inequality is by Eu∼Qt

[∥u− ut∥22] ≤ (dσ2)/2.

Then, combining the upper bound for TERM (A), TERM (B) and TERM (C), we have

D-REGT ≤ (d+ 2) lnT +D

γ
· PT

σ
+ d

(
5

γ
+

γG2

2

)
σ2T +

2D2 + 4

γ
+

2d

γ
ln

(
1

σ

)
.

We can further bound the above regret bound by considering different value of PT .

Case 1: PT ≤
√

1
T . We can choose σ =

√
1/T to obtain D-REGT ≤ O(d log T ).

Case 2: PT ≥
√

1
T . We select σ = P

1
3

T T− 1
3 to obtain D-REGT ≤ O

(
d log T · T 1

3P
2
3

T + d log T
)

.

D. Technical Lemmas
In this section, we provide several useful lemmas used in the proof.

Lemma 9 (Theorem 1.8.1 of Ihara (1993)). Let Q = N (uq,Σq) be a d-dimensional Gaussian distribution. Then the
entropy of Q is given by

H(Q) =
d

2
ln(2πe) +

1

2
ln |Σq|.

Lemma 10 (Theorem 1.8.2 of Ihara (1993)). The Kullback-Leibler divergence between two d-dimensional Gaussian
distributions P = N (up,ΣP ) and Q = N (uq,Σq) is given by

KL(Q∥P ) =
1

2

(
ln

(
|Σp|
|Σq|

)
+Tr(ΣqΣ

−1
p ) + ∥up − uq∥2Σ−1

p
− d

)
.

Lemma 11 (Lemma 4.2 of Hazan (2016)). Let W ⊆ Rd be a convex and closed set. Suppose ∥u − v∥2 ≤ D holds
for any u,v ∈ W and ∥∇f(w)∥2 ≤ G holds for any w ∈ W . For any η-exp-concave loss, the following holds for all
γ ≤ min{1/(8GD), η/2} and w,u ∈ W:

f(w)− f(u) ≤ ∇f(w)⊤(w − u) + γ
(
∇f(w)⊤(w − u)

)2
.
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Lemma 12 (Lemma 10 of van Erven & Koolen (2016)). Let 0 < η ≤ 1
5GD . Consider a Gaussian distribution with

mean µ ∈ W and arbitrary symmetric positive-definite covariance Σ, where W ⊆ Rd is a convex and compact set. Let
ℓηt (w) = −η⟨gt,wt −w⟩+ η2(wt −w)⊤gtg

⊤
t (wt −w). Then,

Ew∼N (µ,Σ)

[
exp(−ℓηt (w))

]
≤ exp(−ℓηt (µ)),

where the domain W is bounded by D such that ∥w −w′∥2 ≤ D for all w ∈ W and ∥gt∥2 ≤ G.

25


	Introduction
	Preliminaries
	Mixability and Exp-concavity
	Examples of Mixable Loss

	Proposed Method for Online Prediction
	Problem Setup
	Generic Framework
	Analysis of Algorithm 1
	An Equivalent Implementation

	Instantiation to Different Curved Losses
	Instantiation to 1-Dimensional Squared Loss
	Instantiation to Least-Squares Regression
	Instantiation to Logistic Regression
	More Comparison with Related Work

	Extension to General OCO
	Conclusion
	Omitted Proofs for Section 3
	Useful Lemmas
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Omitted Details for Section 4
	Implementations for Squared Loss
	Useful Lemmas
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Omitted Proofs for Section 5
	Properties of the Set of Distributions M
	Useful Lemmas
	Proof of Theorem 3

	Technical Lemmas

