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Mechanisms for Aggregated Individual Reporting Should Be Established for
Post-Deployment Evaluation

Anonymous Authors1

Abstract

The need for developing model evaluations be-
yond static benchmarking is now well-understood,
bringing attention to post-deployment auditing
and evaluation. At the same time, concerns about
the concentration of power in deployed AI sys-
tems have sparked a keen interest in “democratic”
or “public” AI. In this work, we bring these two
ideas together by proposing mechanisms for ag-
gregated individual reporting (AIR), a framework
for post-deployment evaluation that relies on indi-
vidual reports from the public. AIRs allow those
who interact with a specific, deployed (AI) system
to report when they feel that they may have expe-
rienced something problematic; these reports are
then aggregated over time, with the goal of evalu-
ating the relevant system in a fine-grained manner.
This position paper argues that individual experi-
ences should be understood as an integral part
of post-deployment evaluation, and that the
scope of our proposed aggregated individual
reporting mechanism is a practical path to that
end. On the one hand, individual reporting can
identify substantively novel insights about safety
and performance; on the other, aggregation can be
uniquely useful for informing action. From a nor-
mative perspective, the post-deployment phase
completes a missing piece in the conversation
about “democratic” AI. As a pathway to imple-
mentation, we provide a workflow of concrete
design decisions and pointers to areas requiring
further research and methodological development.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Workshop on Models of
Human Feedback for AI Alignment at the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
In the third week of April 2025, OpenAI quietly pushed
an update to GPT-4o, the model that powers the ChatGPT
product by default. Online, the complaints started rolling
in: The newest update was annoying and introduced bugs;
it overpromised and underdelivered. More frighteningly, it
encouraged users to stop taking their medications, validated
conspiracy theories, and worse. By April 29, around one
week later, OpenAI had rolled back the change (OpenAI,
2025b).

In this case, the unstructured feedback of individual users
was essential. OpenAI was unable to identify ahead of time
that this “personality” update was problematic—in part be-
cause it is hard to anticipate the richness of usage patterns,
and therefore failure modes. Users thought the problems
were egregious enough that it motivated them to share on-
line; enough users tweeted about the same problem that
OpenAI noticed. This ChatGPT personality problem was
serious, widespread, and was therefore caught even in the ab-
sence of a formal system to collect feedback. But what other,
subtler, non-Twitter-viral patterns might be happening—and
how might we find out?

In this work, we formalize aggregated individual reporting
(AIR) as a general framework for understanding the real-
world impact of an AI system in a structured, intentional,
and thorough manner.1 At a high level, an AIR allows those
who interact with a specific AI system to submit feedback
(reports) when they believe they have experienced harm due
to the system. The mechanism aggregates these reports over
time, with the goal of building collective knowledge about
the contours of system behavior. Intuitively, one person
having one bad experience does not by itself necessarily
imply a system-level problem. On the other hand, if many
reports of similar experiences begin to accumulate, then
perhaps there may be an important underlying issue that
requires action.

Our framework relies on two crucial beliefs: first, that those
1Throughout this paper, we will often use “AIR” as a stand-in

for “aggregated individual reporting mechanism” for concision and
clarity, and to distinguish the full mechanism from its components
(aggregation and individual reporting).
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interacting with the system have unique and valuable per-
spectives on its failure modes, and second, that they ought
to be able to express those perspectives in a nontrivial way.
This position paper argues that post-deployment evalua-
tion must account for individual experiences—and that
aggregated individual reporting mechanisms, as we define
in this work, are a practical pathway to doing so.

We do not claim to originate the concept of individual re-
porting. In fact, we are inspired by the existence of similar
reporting mechanisms in other domains, like the Vaccine
Adverse Events Reporting System (VAERS) (Shimabukuro
et al., 2015), the Aviation Safety Reporting System (ASRS)
(Beaubien & Baker, 2002), and various medical reporting
systems (Wu et al., 2002). We are also heavily influenced by
calls to incorporate end-user expertise in algorithm evalua-
tions (e.g., Shen et al. (2021); DeVos et al. (2022); Lam et al.
(2022)) and to shift power towards the public (e.g., Kalluri
(2020); Feffer et al. (2023)). Moreover, while several recent
policy directives mandate the consideration of public feed-
back with specific reference to post-deployment monitoring
(e.g., the EU AI Act (European Parliament, 2024), the UN
General Assembly’s first AI resolution (Assembly, 2024),
and Biden’s now-repealed executive order (Biden, 2023)),
they are, by nature, only high level. By presenting a high-
level structure for AIRs, we aim to offer a shared language
as starting point for conversation across subfields and do-
mains, and to concretize what effective implementation of
this policy might look like.

The remainder of this paper is organized as follows. In
Section 2, we define our idealized version of an AIR mech-
anism, and contextualize our definition with the current
state-of-the-art for post-deployment evaluation and audit-
ing for AI systems. In Section 3, we argue that individual
reporting effectively identifies “unknown unknowns,” and
that aggregation enables downstream action. In Section 4,
we elaborate on the normative case for individual report-
ing, placing our proposal in the context of recent calls for
“democratic” AI. Section A describes more granular design
decisions as well as associated open research questions. We
conclude by discussing of key challenges for successful
real-world deployment in Section 5.

2. Defining aggregated individual reporting
We begin by describing our idealized vision of a mechanism
for aggregated individual reporting, illustrated in Figure 1.
This definition is intentionally broad, so as to cover a wide
range of potential applications—see Section A for more
granular details that describe various potential implementa-
tions. Even with this broad scope, we note that, to the best
of our knowledge, (public or non-proprietary) AIRs for AI
systems are not currently in mainstream use.

2.1. Defining an idealized individual reporting
mechanism

Our understanding of an AIR mechanism begins with three
key entities.

First, the evaluated system determines the scope of the AIR
mechanism. For example, this could be a general-purpose
model like ChatGPT or Claude; a product that scribes in-
person doctors’ appointments; or a predictive algorithm that
several banks use for making loan decisions. Reports are
submitted about the evaluated system. Second, the eval-
uated system induces an affected population. This could
include users of ChatGPT, or their loved ones; patients and
healthcare workers; or loan applicants. Reports are sub-
mitted by members of the affected population. Finally, the
AIR mechanism is orchestrated by a mechanism adminis-
trator, which is the organizational entity that collects and
aggregates the reports. The administrator makes key deci-
sions like determining the scope of the evaluated system
and the affected population, as well as various implemen-
tation details as discussed in Section A. The mechanism
administrator could be first-party, i.e. the same organization
that operates the evaluated system (e.g., OpenAI collecting
reports for ChatGPT); second-party, i.e. an organizational
user of the evaluated system (e.g., a hospital system col-
lecting reports about an AI scribe product); or third-party,
i.e. an external organization (e.g., a government body or
activist nonprofit collecting reports about a loan allocation
algorithm). This taxonomy matches prior work in the AI
audit space (e.g., Raji et al. (2022)).

AIR mechanisms comprise the following components in-
volving these entities.

(1) Individual reporting: Reports are submitted by mem-
bers of the affected population about specific experi-
ences with the evaluated system.

(2) Aggregation for evaluation: Reports are aggregated and
interpreted over time. The goal of such aggregation is
evaluation: to understand or describe the behavior of
the evaluated system in a fine-grained manner.

(3) Evaluation-conditional action: The aggregated evalu-
ation supports downstream action. That is, there are
evaluation outcomes where, if and when the reports
are consistent with those outcomes, the mechanism
administrator takes associated action.

Ensuring that reports are tied to the evaluated system makes
it possible for the aggregation to generate specific insights
about system behavior; this specificity allows for down-
stream action, in that it explicitly describes some (undesir-
able) property of the system that has emerged. The temporal
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Figure 1. The components of our framework and how they interact.

component is critical—continuous evaluations make it pos-
sible to understand changing use cases and experiences over
time, and moreover, to identify problems (and take action)
quickly as they arise.

In Figure 2, we give four examples of AIR mechanisms. In
the first row, we show how VAERS, an existing reporting
system, implements the criteria of our framework. The sec-
ond row presents a hypothetical problem setting following
an example in Dai et al. (2025), and the third and fourth
rows highlight speculative examples for applications of AIR
mechanisms. As these examples indicate, AIRs can be es-
tablished for various systems (in fact, the evaluated system
need not be algorithmic at all); moreover, the implementa-
tion of the mechanism depends closely on the type of harm
that an AIR is designed to surface.

2.2. Current state-of-the-art in post-deployment
evaluation

The idealized definition given in Section 2.1 excludes most
prominent systems that currently exist for crowdsourcing
and post-deployment monitoring for AI. Generally speak-
ing, existing systems appear to fall into three categories:
third-party collections of real-world problems with AI sys-
tems; general approaches to post-deployment evaluation;
and targeted flaw disclosure approaches like bug bounties
and red-teaming. We briefly clarify the relationship of aggre-
gated individual reporting mechanisms to these approaches.

In the first category are several well-known incident
databases and risk repositories, which include the web-
site incidentdatabase.ai, where incident submis-
sions are available to the public (McGregor, 2021); the
OECD’s AI Incidents and hazards Monitor (AIM), which
is an automated system that scrapes all AI-related news
headlines globally (OECD, 2023); and the MIT AI
Risk Repository, which tags individual incidents from
incidentdatabase.ai with additional metadata from
the Risk Repository framework (Slattery et al., 2024) and is
available to download as a Google sheet. While the exact
implementation of each database is slightly different, the
high-level commonality is that they tend to collect discrete,
externally-submitted incidents. These incidents are typically
news events that were related in some way to any deployed
AI system, with a general focus on examples of misuse.2 As
a result, these collections of incidents are much broader than
individual interactions that can become descriptive of model
behavior at a more granular level; in fact, aggregation of
these incidents happens only to the extent of tabulating the
approximate frequency of these discrete news events across
impact category and severity.

2For instance, at time of writing, the most recent incident at
incidentdatabase.ai is that the New Orleans police depart-
ment used banned facial-recognition software (Incident 1075). The
harm being described in this incident is about NOPD’s usage of
a particular system, rather than a specific instance or individual
experience of that system’s failure.
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Figure 2. Examples of how AIRs could be set up for a variety of applications. Here, we elide the corresponding aggregation methods
in order to focus on the application itself; note, however, that the “evaluation conditions” are aggregate system failures rather than
per-report problems.

The second category includes most current approaches to
post-deployment monitoring or evaluation; here, we high-
light the approaches that are most closely related. For under-
standing real-world usage of Claude, Anthropic has devel-
oped a system called Clio, which applies k-means cluster-
ing to a fixed batch of chat transcripts, then post-hoc labels
the clusters with Claude (Tamkin et al., 2024). Unlike the
incident databases described above, Clio is specific to an
evaluated system (Claude)—and, notably, the goal of Clio is
specifically to identify “unknown unknowns” in usage pat-
terns. However, the collection of all chats is quite different
from individually-submitted reports that highlight problem-
atic behavior, and thus Clio captures different insights than
an AIR would. Moreover, at least according to public infor-
mation, Clio operates on static batches of transcripts, so it is
unknown how or whether it can identify trends that develop
over time. For large language models in general, Chatbot
Arena has become a popular evaluation platform for rank-
ing multiple LLMs (Chiang et al., 2024). While Chatbot
Arena does rely on real-time, crowdsourced feedback, the
goal of their evaluations is primarily to compare LLMs (by
generating a ranking), rather than conducting fine-grained
evaluations that could later inform downstream action; more-

over, the form of feedback afforded by the platform is rather
limited as a “report.”

Finally, we note that flaw disclosure mechanisms, e.g., as
outlined in Longpre et al. (2025), are an important start-
ing point, but are insufficient for our goals. That is, an
aggregated individual reporting mechanism can—and likely
should—include much of the flaw disclosure machinery out-
lined in Longpre et al. (2025), but a flaw disclosure system
by itself would not necessarily qualify as an AIR. In the
context of our definition, flaw disclosure systems may some-
times satisfy the first condition (individual reporting), but do
not include the other criteria (aggregation for evaluation and
downstream action). Thus, our specific proposal is explic-
itly narrower.3 This can be seen when considering concrete

3Regarding the specific manuscript presented in Longpre et al.
(2025), the contribution of our work is distinct, but complementary.
We are explicitly focused on public reporting and understanding
its benefits, as in Sections 3 and 4 (whereas non-expert reports
are are only briefly mentioned in their work); we also emphasize
methodological problems and directions for the AI research com-
munity (Section A). We refer readers to their manuscript for a
thorough legal and policy overview and a taxonomy of current flaw
disclosure methods, which our manuscript excludes.
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instantiations of flaw disclosure mechanisms, such as bug
bounties for algorithmic problems and red-teaming. The
former is typically focused on resolving bugs on a per-report
level, rather than understanding problems and taking action
on an aggregate level (e.g., as discussed in (Kenway et al.,
2022), with the bias-bounty mechanism of Globus-Harris
et al. (2022) as a rare exception); the latter often focuses on
evaluations at the pre-deployment phase, and solicits partic-
ipation from predefined groups rather than all members of
the affected population (e.g., Ahmad et al. (2025)).

We see our proposal as complementary to all of these ap-
proaches, which are useful and important parts of the AI
evaluation ecosystem. AIRs, as we have defined them, en-
able distinct types of evaluations beyond what is already
covered by these approaches—but cannot, by themselves,
supersede these efforts.

3. Aggregated individual reporting enables
actionable harm discovery

In this section, we argue that AIRs, as outlined in Section
2.1, have concrete benefits beyond what existing systems
can provide. Prior work, especially in human-computer
interaction, has documented a desire for ways to enable
auditing and evaluation of algorithmic systems from a wider
population. For example, user-driven auditing (e.g., Shen
et al. (2021); DeVos et al. (2022); Deng et al. (2023); Lam
et al. (2022)) has been studied as a means for eliciting user
feedback that identifies problems with an algorithmic sys-
tem beyond centralized evaluations. Shared concerns and
challenges presented by these works, which have primarily
involved small-scale case studies, include aggregating and
interpreting feedback, and using feedback to drive down-
stream action. In fact, Ojewale et al. (2025) explicitly call
for the development of “tools for harm discovery” and “par-
ticipatory methods” as a pathway towards accountability.

Our framework seeks to formalize some these intuitions,
and each component of our definition in 2.1 plays a specific
role: individual reports enable harm discovery by surfacing
unknown unknowns, while aggregation is a prerequisite to
making them actionable.

3.1. Individual reports surface unknown unknowns

In domains where reporting systems are well-established, it
is widely understood that reports contain useful information
that may otherwise never be identified (e.g., see (Beaubien &
Baker, 2002) for a decades-old review in aviation, and (Wu
et al., 2002) for health). In our vision of individual reporting,
however, the affected population is a much wider set of
people, beyond domain experts and practitioners. What
kinds of insights might we expect to see from their reports?

Prior work suggests that audit-style feedback from “end

users” draws from their prior beliefs and experiences, and
can reveal clusters of shared problems (including some that
were previously unknown or unaccounted for), as well as
identify meaningful disagreement across users (Lam et al.,
2022; DeVos et al., 2022). For concreteness, we will focus
here on social media platforms like Twitter/X as as case
studies for (informal) individual reporting.

The Twitter app is of course not a purpose-built reporting
system, and there is therefore no aggregation mechanism
dedicated to explicitly making sense of report content. How-
ever, individuals frequently take to social media to share
their experiences with specific algorithms. Shen et al. (2021)
term this phenomenon “everyday algorithm auditing,” and
show how social media platforms enable an organic, in-
formal process for both raising awareness and validating
problems raised by initial reports. In their analysis, they
highlight that “everyday audits” leverage the lived expe-
rience (e.g., cultural background) and situated knowledge
(e.g., application contexts) of everyday users.

Returning to the motivating example at the beginning of this
paper, the analysis of Shen et al. (2021) is largely consistent
with the patterns that can be seen from posts about Chat-
GPT sycophancy. For example, users noted performance
degradation even in quantitative tasks (Ho, 2025; Laura,
2025), reflecting situated knowledge with respect to users’
expectations in specific domain applications; more serious
posts highlighted scenarios where ChatGPT validated flat-
earth and conspiracy beliefs (fortheloveoftheworld, 2025),
reflecting both lived experience and situated knowledge.

A subtly distinct pattern from that arose in reports about
sycophancy, compared to trends identified by Shen et al.
(2021), is reports that reflect user creativity—rather than
realistic practical usage—in a way that can be thought of as
informal “red teaming.” For example, users showed exam-
ple output responses when given prompts about math and
“pickle rick” (Williawa, 2025), monologues by unsavory
fictional characters (Bharath, 2025), as well as genuinely-
safety critical responses elicited intentionally (Reviews,
2025; Frye, 2025).

Importantly, the sycophancy case study also reflects a limi-
tation of relying on social media as a vehicle for “reporting.”
The types of problems that can be identified via these “re-
ports,” somewhat by definition, are those that are amenable
to virality. In fact, the methodology of the taxonomy in Shen
et al. (2021) also relied on prior knowledge of cases that
were “high-profile” on social media. Sycophancy is a prime
example of a virality-friendly problem: It appeared to affect
all users across use cases and backgrounds, so that various
users felt empowered to share their particular experience
that reflected the underlying problem. Moreover, it was easy
to produce content that illustrated sycophancy, but was also
(e.g.) highly humorous or inflammatory. However, many
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serious model flaws are not so “clickworthy”; some failures
might only affect a small slice of users, and in ways that
cannot be constructed as a popular tweet. More systematic
approaches, therefore, are necessary.

3.2. Aggregation for actionability and accountability

We now argue that, beyond individual reporting, aggrega-
tion is necessary to make use of the information contained in
reports. Not all potential problems with an evaluated system
are inherently statistical; in many cases, however, individual
experiences can only be understood in the context of aggre-
gated evaluations. For example, if the goal is to identify
subgroups that disproportionately experience harm, as in
Dai et al. (2025), then individual reports become significant
insofar as they can be described statistically; similarly, par-
ticipants in DeVos et al. (2022) study mention uncertainty
about whether particular algorithmic behaviors ought to be
considered examples of harm, especially in the absence of
knowledge about how others experienced the system.

For areas where report databases (often called “incident
databases”) are already established as a component of safety
monitoring, it is well-understood that that focusing on rec-
tifying individual incidents is limited. Instead, the goal
should be instead to find high-level patterns that can inform
future procedural changes; in these fields, learning from
reports has indeed been effective for shaping future practice
(Macrae, 2016; Jacobsson et al., 2012; Robinson, 2019).

Despite this, many reporting systems do not include in-
tentional aggregation as a core component; these systems
appear to have had limited impact beyond the scope of re-
ports themselves. On the other hand, the few examples
of successful action from crowdsourced information have
involved aggregation, suggesting that aggregation is a neces-
sary (though potentially not sufficient) condition for taking
high-level action from reports. In the remainder of this
section, we discuss several case studies of crowdsourced
or public reporting feedback, and the extent to which they
were successfully spurred concrete action.

CFPB Consumer Complaints, VAERS, and different
levels of actionability. The U.S. Consumer Finance Pro-
tection Bureau (CFPB) maintains a Consumer Complaint
Database to which members of the public are eligible to
submit. The CFPB itself does not directly analyze or ad-
dress these complaints Consumer Financial Protection Bu-
reau (2012); instead, it acts as an intermediary, passing the
complaints to the relevant financial institutions and mandat-
ing direct responses from the financial institution (Littwin,
2015). Though the complaints submitted by individuals do
actually receive responses from the responsible parties (i.e.
banks), the emphasis is on directly addressing individual
incidents, rather than the problems that emerge when con-

sidering them all collectively. In this way, the Consumer
Complaint Database resembles the incident databases de-
scribed in Section 2.2 and the flaw disclosure framework
from Section 2.1.

To the best of our knowledge, insights from the CFPB
complaint database as a whole has not triggered further
enforcement or legislative action; this is perhaps unsur-
prising, given the emphasis on actionability for individual
complaints, rather than at in aggregate. Several academic
works have found problematic trends by analyzing com-
plaints collectively (e.g., Bastani et al. (2019); Ayres et al.
(2013); Haendler & Heimer (2021)); thus, this focus on
per-complaint resolution is a design choice, not an inherent
limitation of the data itself.

On the other hand, the VAERS database is continually mon-
itored explicitly for aggregate-level harm. For VAERS, the
event of concern is not any individual report of an adverse
event. Rather, the concern is whether reports for particular
vaccines occur with abnormally high frequency; examples
of clinically-relevant side effects initially discovered via
VAERS abound (Shimabukuro et al., 2015; Singleton et al.,
1999).

Beyond initial identification, another important usage of
VAERS has been post-hoc investigation of problems that
were originally flagged via case study. For instance, it is
now well-known that the COVID-19 vaccines induced an
elevated risk of myocarditis, but only in younger men; how-
ever, in the early stages of vaccine rollout, the conversation
was limited to various healthcare providers noticing, via case
study, that myocarditis appeared to be a common occurrence
overall (Mouch et al., 2021; Larson et al., 2021; Marshall
et al., 2021). A more holistic understanding of the issue,
including that myocarditis appeared to be limited to younger
men, was attained only after post-hoc analysis of VAERS
reports (Witberg et al., 2021; Oster et al., 2022). This, in
fact, was one motivating example for the method proposed
in Dai et al. (2025): if VAERS reports about myocarditis
had been analyzed with a disaggregation over demographic
identity, then VAERS reports could have directly confirmed
the affected subgroup more quickly.

ChatGPT sycophancy, “spiritual delusions”, and the lim-
itations of informal aggregation. We conjecture that one
reason that the ChatGPT sycophancy problem resulted in
decisive change was that the Twitter timeline algorithm, and
the platform’s affordances of likes and retweets, served as a
quasi-aggregation scheme. The brief dominance of tweets
highlighting sycophancy on the timeline showed that this
was a problem that impacted a wide range of users, and that
there was general agreement that the behavior was problem-
atic. In a move that is remarkably unique for tech companies,
this culminated in explicit action by OpenAI to roll back

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

the new model deployment, and to initiate some discussion
of what went wrong (OpenAI, 2025b;a). In some sense, it
was “lucky” that this particular safety problem happened
to have been friendly for virality; in general, there is no
guarantee that quasi-reports to social media are necessarily
seen, or taken seriously, by those who have control over the
evaluated system.

It is instructive, here, to make a comparison to some
approximately-contemporaneous Reddit threads, which de-
tailed severe mental health crises due to what appear to be
ChatGPT-caused “spiritual delusions” (first referenced in
Klee (2025); the more recent Hill (2025) describes similar
phenomenons). Notably, many cases mentioned had been
ongoing for weeks, and therefore could not be entirely at-
tributed to the late-April update. There has been no blog
post that explicitly addresses these problems—and, indeed,
no reason to think one might be forthcoming, based on the
company’s statements in the reported articles.

As for why this might be the case, the obvious reason is
that the “spiritual delusion” problem is likely more com-
plex than the sudden increase in sycophancy, which was
easily addressed by a rollback. However, we speculate that
perhaps one additional factor in the lack of decisive, publi-
cized action from OpenAI is that, overall, the “aggregation
mechanism” of Reddit was much less powerful than on Twit-
ter. The conversation about long-run psychological impact
did surface beyond Reddit, where the posts were originally
made, to reported features in major national magazines.
However, both Reddit as a platform and reported stories as a
format emphasize individual-level narratives, which are less
compelling as indictments of systematic behavior patterns.

Targeted crowdsourcing and the value of statistical evi-
dence. Finally, we discuss two systems that crowdsourced
targeted surveys of specific algorithmic systems. While
the scope of these surveys were narrower—meant to dis-
cover average rates of pre-specificed metrics, rather than
general evaluation—they are notable because their aggrega-
tions provided concrete statistical evidence for individual
experiences.

In 2020 and 2021, Mozilla led a study using a browser ex-
tension called RegretsReporter, which crowdsourced infor-
mation about the experience of Youtube recommendations
(McCrosky & Geurkink, 2021). The study found that that
recommendations from the Youtube algorithm were dispro-
portionately responsible for serving content that users regret-
ted seeing (and violated terms of service)—and moreover,
that non-English speakers were most seriously affected.4

While Youtube never publicly disclosed whether specific
algorithmic changes were made in response (a weakness we

4The latter is also an example of crowdsourced data finding
new, non-obvious insights, as discussed in 3.1.

discuss in Section 5), the company did directly address the
report in public statements (Klar, 2021; Lawler, 2021; The
Next Web, 2021).

Perhaps more optimistically, Fairfare is a system that crowd-
sources information on rideshare wages, with the goal of
understanding the extent to which drivers were being un-
derpaid as well as overall average pay rates (Calacci et al.,
2025). This information not only empowered drivers to or-
ganize, but also led to legislative impact that was motivated
by statistics computed via Fairfare.

More broadly, statistical evidence—in contrast to, e.g., anec-
dotal accounts—is especially useful as a means for pres-
suring organizations or institutions to make change (Recht,
2025). For example, business leaders are more amenable
to making decisions that appear “data-driven,” rather than
responsive to anecdotal experiences (H. Davenport, 2014).
Statistical evidence is also treated differently in litigation
contexts (see, e.g., (Espeland & Vannebo, 2007)). The ques-
tion of what kinds of statistical evidence are considered
acceptable will depend on the particular application context,
and not all harms are inherently statistical. At the very least,
however, the language of statistics can empower individu-
als by validating their experiences. Both RegretsReporter
and Fairfare were simply formalizing folk intuitions that
Youtube users and rideshare drivers individually already
had—but the collection and aggregation of data made it
impossible to dismiss those perspectives as individual expe-
riences of one-off anomalies.

4. Aggregated individual reporting as a
pathway towards “democratic” AI

In this section, we take a brief detour from practical benefits
to discuss the normative underpinnings of our proposal.5

In recent years, the recognition that modern AI systems
both require and accelerate the concentration of power has
spurred a flurry of research on how AI systems might be de-
signed through quasi-democratic processes—“participatory”
(Birhane et al., 2022; Delgado et al., 2023; Gilman, 2023),
“pluralistic” (Dai & Fleisig, 2024; Sorensen et al., 2024a;b),
“collective” (Huang et al., 2024), and so on. Methodological
research in these directions focus almost exclusively on the
development phase, and rarely consider how “the public”
might engage with AI systems post-deployment—despite
calls for increasing the power of “the public” from more
conceptual work (e.g. (Feffer et al., 2023)).

The “democracy” analogy relies on a rough analogy be-

5While of course the normative and practical cannot be fully
disentangled—indeed, Estlund’s core thesis about democracy is
that it is practically effective exactly because it is normatively de-
sirable, and vice versa (Estlund, 1997)—the arguments we present
in this section are those that rely on conceptual foundations.
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tween AI systems and governmental bodies (about which
democracy is classically theorized). For instance, these
works commonly ask, how might “democratic” inputs shape
the model spec or training objectives? Implicit in this ques-
tion is an analogy to the same way that “democratic” inputs
determine the outcome of an election.

We argue that such an analogy, while not incorrect, is incom-
plete. A key tenet of democracy is consent of the governed:
the ability for members of the public to express their will
about governance, and a process for those expressions of
will to have meaningful bearing on future outcomes.6 Cru-
cially, such consent is not a singular event; instead, it is
an ongoing process that, theoretically, must continue for
as long as the governing body remains in power (Bertram,
2023; Gourevitch & Rousseau, 2018). Democratic legiti-
macy derives not just from the fact that citizens can shape
the parameters of their government’s future actions, but also
from their ability to provide input on ongoing action—to
revoke consent.

A critical ingredient for a “democratic” approach to AI,
therefore, is the ability for members of the public to col-
lectively raise issues with systems after they have already
been deployed. In the same way that a democratic govern-
ing body (a kratos) requires input from its citizens (demos)
to continue effective governance, those who operate an AI
system cannot fully understand the real-world behavior of
their system without the input of those who have interacted
with it. And, in the same way that the demos ought to have
its concerns be heard by its kratos, those who interact with
possibly-consequential systems also deserve for their con-
cerns to be taken seriously, and systematically, by those who
build the systems.

In other words, “democratic AI” is not just a design problem;
it is an accountability problem. Our framework seeks to
take a step towards this by not only offering the ability for
individuals to provide feedback—via reporting—but also
providing an avenue for them to be heard. As a starting point,
aggregation is a lens through which (e.g.) the owners of
the evaluated system can understand and interpret feedback
(“helping the state see,” in the sense of Scott (1998), by
surfacing details that centralized evaluations are unable to
understand). More theoretically, aggregated reports also
have the potential to develop and shape the “general will,”
in the sense of Rousseau, from a collection of expressions
of “individual wills” (Gourevitch & Rousseau, 2018).

From a more concrete perspective, one recent work that
seeks to place AI governance mechanisms in the context
of “democratic” processes is the Democracy Levels frame-
work of Ovadya et al. (2024). This framework rests on a
conception of “democratic processes” as involving a remit

6This is, e.g., canonically expressed in Locke (1988).

(scope), constituent population, and an output decision; the
hierarchy of “levels” corresponds to the extent to which the
outcomes of this process have binding power over the AI
system being governed.

Like the works mentioned above, the examples given in
the Democracy Levels framework are primarily about pre-
deployment rules and guidelines. However, we argue that
mechanisms fo aggregated individual reporting can be seen
as an almost direct stand-in their understanding of a “demo-
cratic process”: the constituent population can be seen as
our affected population, the remit can be thought of as our
evaluated system, and the decision can be thought of the
evaluation computed from the aggregated reports.7 In fact,
the mechanisms we propose can be direct drop-ins to their
“levels”—for instance, in Level 0, aggregated reports have
no impact; in Level 1, reports are accepted but do not nec-
essarily affect the deployed system; in Level 2, the results
of aggregated evaluation directly imply a default response
action.

Finally, we note that, in political theory, the very notion of
a “public” is a complex and contested notion. For instance,
user-led audits have been proposed as pathways to develop-
ing counterpublics, where individuals that are marginalized
with respect to (or otherwise in opposition to) the wider
“public” come together to collectively build knowledge and
take action (Fraser, 1990; Baik & Sridharan, 2024; Shen
et al., 2021; DeVos et al., 2022). Our discussion in this sec-
tion has not explicitliy considered the distinction between a
hegemonic “public” as opposed to marginalized “counter-
publics,” instead generally emphasizing the value of giving
voice to a generic public. We leave discussion of this dis-
tinction to future work; we expect that whether AIRs do
empower counterpublics will depend on the details of how
practical implementation plays out.

5. Discussion
This work seeks to establish aggregated individual reporting
as a conceptual framework for post-deployment evaluation
of AI systems. There are several well-founded criticisms of
aggregated individual reporting; nevertheless, we see these
concerns as important considerations for carefully designing
and improving AIRs, rather than reasons that they should
not be attempted at all.

5.1. Limitations of aggregated individual reporting

We see two major categories of failure modes for AIRs:
those arising from crowdsourced reporting as a data source,

7One interesting difference is that their definition of “demo-
cratic process” assumes a one-time event that can be initiated by
various discrete triggers, whereas we think of our mechanism as
continuous.
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and those arising from organizational challenges.

(1) Reporting is a fundamentally-flawed source of data.
By design, feedback collected by AIRs is “one-sided,” in
the sense that, and moreover, relies on usage or adoption at
scale.

(1a) Individual reports would be too noisy or too biased
(e.g., by reports attempting to “game” the system) as to be
unusable. This is a serious concern, especially given the
existence of (online) crowd behaviors like review bombing
(Payne, 2024), and the varying quality of complaints about
content moderation algorithms. Anecdotally, for instance,
user feedback about moderation is often about explicit con-
tent.

(1b) People may not submit reports even if the mechanism
technically exists—e.g., if reporting is too burdensome, or
if affected populations are unaware of the option to report.
Encouraging sufficient participation is also a common chal-
lenge across applications that are rely on eliciting data from
the public (e.g., study recruitment and retention (Koo et al.,
2005)).

Handling both of these concerns is partially an empirical
question (in what ways would a reporting system for evalu-
ating AI induce different behaviors? What kinds of report
affordances affect incentives?) that can only be understood
by analyzing a real-world implementation. On the other
hand, as mentioned in A.2, there are also various research
communities that can and should contribute towards these
problems.

(2) Organizational challenges may complicate the path-
way to downstream action or accountability. One key
premise of our proposal is that reports can be empowering
because they can effect action, rather than languishing in an
online database. However, for this to happen, there are orga-
nizational and institutional problems that must be addressed
beyond technical and methodological challenges.

(2a) Model developers may not be incentive-aligned as 1st-
party operators. Even if problems with the evaluated system
are identified, the system developer is not necessarily bound
to address them. Though Mozilla’s Youtube Regrets study
was discussed earlier as a positive example of aggregation
(McCrosky & Geurkink, 2021), Youtube never explicitly ac-
knowledged the study as influencing specific choices about
their recommendation algorithm. On the other hand, a first-
party administrator could evade accountability by avoiding
disclosure of findings from the AIR system.

(2b) Running an AIR mechanism as a 3rd-party may be
unsustainable. Many third-party audits are foundation-
funded (e.g., RegretsReporter by Mozilla), and the path
to long-term financial viability is uncertain, which means

that many 3rd-party auditors simply cease to exist. For ex-
ample, the previously-lauded UberCheats browser extension
(Marshall, 2021) no longer exists; the system that became
Fairfare (Calacci et al., 2025) was originally known as the
DriversSeat app (Driver’s Seat Cooperative, 2024), but it is
unclear whether prior data from DriversSeat was ever used.

These are critical concerns about ideal patterns of imple-
mentation, especially when considering which institutions
ought to play what roles. We cannot guarantee a priori that
these failure modes can be avoided, but we hope that by
emphasizing the role of organizational factors in A.1, we
can encourage intentional decisionmaking in this regard.

5.2. Calls to action

Despite these limitations, we believe that aggregated indi-
vidual reporting, as we have defined in this work, is a natural
component of the post-deployment evaluation ecosystem.
Recent events—and ongoing research—have illustrated that
individuals have unique contributions to understanding the
contours of AI system behavior. The constellations of
individual experience are an invaluable resource not just
for model development, but for understanding potentially-
unintended societal consequences of already-deployed sys-
tems.

Our main call to action, therefore, is for AIRs to be built—
and the data collected by them to be analyzed. Academic
researchers should develop the methodological innovations
and empirical analyses necessary for effective implementa-
tion; this is an interdisciplinary challenge that spans several
subfields of computer science (and beyond), including not
just AI/ML but also statistics, human-computer interaction,
and law and policy. Activists and industry practitioners
should begin exploring development of these systems. Poli-
cymakers should work in collaboration with the aforemen-
tioned stakeholders to understand what kinds of legal or
policy leverage may be useful.

To translate the AIR approach from a hypothetical strategy
to reality, it is essential for the area to mature; addressing the
wide range of design and methodological issues outlined in
this position is just the first step in coalescing a community
to make progress towards this goal. But, at the same time,
it is impossible to wait for all the hypothetical kinks to be
smoothed: the success of AIRs is a fundamentally empirical
question. We believe that it is worth trying to find out.
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A. Towards implementation: practical details and open research questions
We now turn to discussing design decisions that must be made, either implicitly or explicitly, in the implementation of any
AIR; each step also naturally gives rise to various multidisciplinary research questions. In Figures 3 and 4, we outline the
relevant questions in detail.

A.1. Concrete design decisions

Here, we overview the high-level categories of design decisions and some implications of those choices. While these
decisions are interdependent—reporting affordances also affect what aggregation methods would be effective, as well as
what types of evaluations are available—there are a wide range of ways in which these decisions could be made, depending
on context.

Within this section, we use Dai et al. (2025) as a running example of a methodological proposal that is largely consistent
with our framework; this work proposes individual reporting for post-deployment fairness auditing, and provides algorithms
that are specific to this task.

Organizational decisions. The first core set of decisions that must be made are organizational: what entity will take the
role of mechanism administrator, and what relationship will it have to the evaluated system? This decision affects what
kinds of problems the mechanism hopes to identify (i.e., the end-goal of the evaluation) as well as the nature of available
downstream action.

A first-party administrator will have the fullest information about the evaluated system (e.g., when particular feature rollouts
or updates were made), and be able to quickly gather additional data that may become relevant in order to contextualize
information raised by reports. Since the first-party administrator has control over the evaluated system, the organization can
also directly make changes in reponse to evaluation results. However, a first-party administrator may also inadvertently
restrict the scope of the system, or intentionally choose to ignore the evaluation. On the other end of the spectrum, a
third-party administrator would have nearly no additional information beyond what is included among reports, and cannot
directly update or improve the system. However, such an organization could bring external leverage to the evaluated system,
e.g. via media or legal pressure.

Dai et al. (2025) is developed under an assumption that the goal would be to identify the subgroups that are harmed, but,
as a primarily methodological work, it does not specify what organizational entity would be the administrator, or what
downstream action might look like.

Reporting affordances. What information is included in a report, and how do reporters experience the process of
reporting? Examples of potential report formats can be seen in the fourth column of Figure 2, as well as the the flaw
disclosure worksheet in Longpre et al. (2025). For the algorithm proposed by Dai et al. (2025), the only information
collected in a report is demographic information about the reporter; however, one could naturally imagine that reports could
include more information depending on the application, such as medical history (for a vaccine or pharmaceutical system) or
financial background information (for a loan allocation system).

Reporting behavior. Due to the nature of reporting data it is, intrinsically, essential to understand reporting behavior:
what factors affect the decision to submit a report, and, crucially, in what ways might reports be correlated to the target of
evaluation? Do different subpopulations report at different rates? Do different types of issues lead to different reporting
behaviors? In Dai et al. (2025), the choice is to commit to a set of (quantitative) assumptions about the extent to which
reporting rates can vary, and incorporate those assumptions into the design of the algorithm.

Aggregation method and evaluation condition. Given the affordances offered to reporters, what method will be ued to
interpret them over time—that is, how are evaluation results computed? Given that method, what specific results would
define the evaluation condition (i.e. trigger for downstream action)? Methods should be sequential, or at least explicitly
consider a temporal component (e.g., via sequences of batched data). This is because AIRs should be accessible to reporters
at any time (rather than within the scope of a centralized study with a defined start and end date), as well as the classic
distribution shift problem: users’ needs in relation to an evaluated system will change over time, as will the system itself. In
Dai et al. (2025), the method is formalized as a sequential hypothesis test with type-I error control. Therefore, the evaluation
result that triggers action is exactly when the “null hypothesis” of no overrepresented subgroups can be rejected at level α.
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Design decision Options and examples Example research questions 

Organizational 

Mechanism 
administrator 
& relation to 
evaluated 
system

• First-party: same org (e.g. OpenAI for ChatGPT)
• Second-party: user of evaluated system (e.g., hospital system for AI 

scribe product)
• Third-party: External org (e.g., government or activist nonprofit)

• What arrangement is “optimal” or 
incentive-compatible? 

• How do individuals within these 
organizations conceive of pathways 
to impact?

Scope of 
“affected 
population”

• System users (e.g., ChatGPT users)
• System users and those close to them (e.g. friends/family of ChatGPT 

users)
• System users and non-users affected by system usage (e.g., healthcare 

workers and patients)  

• How does the inclusion of different 
“user roles” affect the substance of 
report content?  

Individual reporting (Reports are submitted by members of the affected population about specific experiences with the evaluated system)

Publicizing 
the reporting 
mechanism 

• Reporting option directly available at or after each system interaction 
(e.g., “submit report” available in UI, or sent as part of follow-up)

• Advertisements on social media about the opportunity to submit reports  

• What pathway is the most effective? 
• How do publicity methods affect 

who submits reports and why? 

Handling 
reporting 
behavior 

• Submitted reports are taken “as is” with the understanding that 
reporting 

• Assumptions are made about reporting behavior (e.g., that 
heterogeneity in reporting rates is not too extreme)

• Side information (outside of submitted reports) is sought in order to
characterize reporting behavior (e.g., choosing some subset of reports to 
“verify”)

• Who is more likely to report, and 
why? What topics/types of problems 
are more likely to generate reports, 
and why? 

• How can we model and detect 
disparate rates of reporting for 
various reasons?  How can we draw 
inferences that account for or are 
robust to uncertainties in reports?  

Report 
content and 
affordances

• About specific one-off interactions (e.g., “I said X and the model 
responded Y”) 

• About longer-run series of interactions (e.g., “over the last 2 weeks, the 
model has been telling my partner that they are a ‘chosen one’”) 

• May or may not contain sufficient “state” to completely reproduce the 
problem (e.g., real chat transcript may or may not be available)

• May or may not contain additional contextual information about the 
reporter or impacted party (e.g., demographics, context on usage, 
location, timestamp, etc.) 

• May or may not include information about believed severity, 
justification, or proposed solution (e.g., “this was a minor problem that 
could worsen”; “this was problematic due to X”; “it would have been 
better if Y happened instead”)

• How do different affordances in 
report format enable reports about 
different types of harm? 

• How can we quantitatively process 
different types of information, 
including rich unstructured data 
like free text, and incorporate them 
into a quantitative (possibly-
statistical) aggregation? 

Incentivizing 
and 
encouraging 
reports

• No additional incentive for reporters
• Financial compensation for reports that turn out to reflect what is later 

deemed to be a ‘true’ problem 
• Report affordances are designed to shape reporting behavior (e.g., 

intermediate report summaries are made visible to the public, so that 
reporters may be interested in contributing to the conversation about 
currently-leading concerns) 

• What motivates potential reporters 
to actually submit reports? 

• Are there concerns about 
misaligned incentives that might 
affect the ‘quality’ of reports? 

• Are there feedback loops that might 
arise? 

Figure 3. Organizational and interaction-focused questions.

A failed hypothesis test might, for instance, prompt further inquiry into the reported harm for a particular subgroup.
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Design decision Options and examples Example research questions 

Online aggregation (Reports are aggregated and interpreted over time; the goal is describing system behavior in a fine-grained manner)

Evaluation 
trigger (what 
evaluation 
seeks to 
identify, and 
what would 
trigger 
downstream 
action) 

• Set up with specific type of harm in mind; try to identify the specific 
harm as soon as possible if it does arise 

• Set up with a more unstructured approach; try to identify important 
trends that emerge over time, and allow 

• What methods can successfully 
achieve these goals in an online or 
quasi-online manner? How do they 
adapt to or handle changes over 
time?

• What methods can adapt to richer 
“hypotheses”?

• How can we balance batching data 
with handling true sequentiality?

Type of 
evidence as 
an output of 
aggregation

• A rigorous statistical guarantee is required (e.g., “with probability 1-α, 
the findings of the aggregation are significant…”) 

• More ad-hoc interpretation is sufficient (e.g., looking at the output of a 
clustering algorithm)

• What are the relative strengths and 
weaknesses of various types of 
evidence for the purpose of 
motivating downstream action?

• What are the tradeoffs involved in 
pursuing more vs. less “rigorous” 
outcomes? What methods strike a 
balance between data efficiency vs. 
validity of conclusion? 

Mechanism for action (Some evaluation results may trigger action; the mechanism administrator is responsible for doing so.) 

Types of 
action that 
can be taken 
once 
evaluation 
trigger is 
reached 

• First-party administrators: Rollback to prior model version (e.g., if new 
problems suddenly arise after new deployment)

• Second-party administrators: Revisit usage policy (e.g., internal 
guidelines for when a tool should be used or not) and/or provide 
feedback to owner of evaluated system 

• Third-party administrators: Build public pressure (e.g., via media) and/or 
action towards accountability (e.g., legal case against first-party) 

• All administrators: may use the evaluation trigger as a starting point for 
further investigation (e.g., additional data collection)  

• What kinds of evidence can compel 
action from an external third party?  

• How can closed systems be 
pressured to admit a reporting 
system? 

Ongoing 
contact with 
affected 
population

• Public notice of problem identified & changes made 
• Specific outreach to reporters who noticed the problem 

• To what extent does, and should, 
the reporting mechanism encourage 
long-term engagement from 
reporters? 

Figure 4. Methodology-focused questions.

A.2. Active research communities

Finally, we highlight some examples of existing lines of work within the AI research community—beyond auditing and
evaluation—that can effectively inform these design questions.8 While these examples are non-exhaustive, we hope to
illustrate that AIRs can benefit from a wide range of methodological and disciplinary perspectives.

Interaction design. From prior work, we know that the affordances that are available to users to share feedback affect the
content they share (e.g., social media platforms and virality-friendly content; see also discussion in (DeVos et al., 2022)
about the importance of platform affordances). What kinds of designs can encourage the most effective reporting feedback
(e.g., can facilitate long term engagement, as discussed in (Deng et al., 2023))? Are checklists, as formalized in Longpre
et al. (2025), sufficient? Should intermediate evaluation results be made public, and if so, how? E.g., if individuals see that
others have reported similar problems, does that encourage them to submit their own reports?

8While there are, of course, domain experts from other fields that have insights on the design and implementation of reporting systems,
we focus here on computer science-adjacent subfields.
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Reporting rates, incentives, and behavior. Empirical studies of existing reporting systems have shown that different
subgroups often report different types of problems at different rates (e.g. (Agostini et al., 2024; Liu & Garg, 2022; Liu et al.,
2024)); at the same time, these works also suggest the potential for statistical methods that can estimate or correct for varying
reporting rates. As the crowdsourcing experiments of Globus-Harris et al. (2024) suggest, participants can occasionally
be adversarial, and the details of mechanism implementation should be careful to incentivize “good” reporting behavior.
Prior work in motivations and incentives of users on online platforms also suggest avenues for study, both qualitatively (e.g.,
Malinen (2015)) and via theoretical models (e.g., Ghosh & McAfee (2011); Hu et al. (2023)).

Making sense of unstructured text. Prior work has highlighted the challenge of bridging qualitative and quantitative
insights (e.g., DeVos et al. (2022); Deng et al. (2023)). Recent methodological work to this end leverages developments in
LLMs (e.g., Rao et al. (2024); Movva et al. (2025); Tamkin et al. (2024); Chausson et al. (2025)), which may prove fruitful.
However, we note that even more classical NLP approaches (e.g. as in Robinson (2019); Ayres et al. (2013); Bastani et al.
(2019)) have shown to be effective when processing existing (natural-language) report data.

Sequential analysis and online decisionmaking. Statistics has studied sequential testing for decades (e.g., Wald’s SPRT
(Wald & Wolfowitz, 1948)). More recently, e-values (e.g., (Vovk & Wang, 2021)) have emerged as a popular framework for
sequential approaches; however, as (Dai et al., 2025) note, nontrivial extensions for settings more complex than a single
hypothesis are open technical problems. Thus, it may be fruitful to explore methods that loosen the stringency of a true
sequential hypothesis test, and/or that seek to reconcile the statistical approach with the text-based methods discussed
above. In particular, insights from the rich literature in multi-armed bandits and other approaches to online optimization and
decisionmaking may offer methodological contributions to handling sequentiality.
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