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Abstract

Attention based Transformer networks have not only revolutionized Natural Language
Processing but have also achieved state-of-the-art results for tabular data modeling. The
attention mechanism, in particular, has proven to be highly effective in accurately modeling
categorical variables. Although deep learning models recently outperform tree-based models,
they often lack a complete comprehension of the individual impact of features because of
their opaque nature. In contrast, additive neural network structures have proven to be
both predictive and interpretable. Within the context of explainable deep learning, we
propose Neural Additive Tabular Transformer Networks (NATT), a modeling framework
that combines the intelligibility of additive neural networks with the predictive power of
Transformer models. NATT offers inherent intelligibility while achieving similar performance
to complex deep learning models. To validate its efficacy, we conduct experiments on multiple
datasets and find that NATT performs on par with state-of-the-art methods on tabular data
and surpasses other interpretable approaches.

1 Introduction

Deep neural networks (DNNs) have emerged as one of the most powerful and versatile tools in AI, with
remarkable abilities in modeling complex, high-dimensional problems and recognizing intricate patterns in
non-tabular data. They have shown exceptional performances on tasks such as image classification (Yu et al.,
2022; Dosovitskiy et al., 2020), text classification (Huang et al., 2021; Lin et al., 2021), audio classification
(Nagrani et al., 2021), time-series forecasting (Zhou et al., 2022; Zeng et al., 2022) and many more. However,
for the most common data type in real world applications, tabular data, DNNs were still outperformed
by tree based methods as XGBoost (Chen et al., 2015) or LightGBM (Ke et al., 2017). In recent years,
however, the transformer architecture (Vaswani et al., 2017) allowed for an increase in performances of
tabular deep learning methods. Huang et al. (2020), Gorishniy et al. (2021) and Arik and Pfister (2021)
introduced architectures that were on par with state-of-the-art tree based models and outperformed baseline
Multi-layer perceptrons. Gorishniy et al. (2022) introduced a model that even outperformed gradient boosting
methods on a majority of popular tabular benchmark datasets. In addition to their increased predictive
performance, attention based models for tabular data are semi-interpretable, by providing further insights
through individual feature importances obtained from the attention layer(s). While main feature effects
cannot be clearly identified or visually interpreted, the single feature importance can be abstracted from the
attention layers in the transformer, allowing for a pseudo-feature significance.

While these models are incredibly powerful in predictive terms, true interpretability is still lost in their
black-box nature. This ultimately limits their applicability as especially tabular data needs fully interpretable
model structures to be applied in domains such as health care, finance or insurance. Explainability in
these black-box models is often achieved with post-hoc analyses on the sample level with existing methods
resorting to model-agnostic methods. Locally Interpretable Model Explanations (LIME) (Ribeiro et al.,
2016), Shapley values (Shapley, 1953) or layer wise relevance propagation (LRP) (Bach et al., 2015) and
their extensions (Sundararajan and Najmi, 2020) try to explain model predictions via local approximation
and feature importance. Sensitivity-based approaches (Horel and Giesecke, 2020), exploiting significance
statistics, can only be applied to single-layer feed-forward neural networks and can hence not be used to model
complex non-linear effects. Although those approaches might be able to indicate how individual predictions
are generated, they do not provide a global and complete picture of the underlying decision making process.
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Recently, neural networks are making a push towards feature level interpretability by adopting the additive
model structures from Generalized Additive Models (GAMs) (Hastie, 2017). GAMs use basis functions that
transform features into higher dimensional space that allows feature effects to capture non-linearity. Neural
Additive Models (NAMs) (Agarwal et al., 2021) proposed the neural counterpart to GAMs and inspired
multiple adaptations which will be introduced in Section 2. One downside of these adaptions is that they
treat all features identically, independent of the underlying data type. Numerical features are modeled
the same way as categorical features, which leads to parameter-dense networks that can loose their easy
interpretability. We introduce Neural Additive Tabular Transformer (NATT) Networks, a model class that
leverages the additivity constraint from GAMs and NAMs and implements transformer based embeddings for
increased predictive performance while also allowing for an interpretable way to model categorical features.
The contributions of the paper are as follows:

• We propose a novel model structure that incorporates categorical feature embeddings into an additive
model architecture. This allows for the joint learning of all feature embeddings and shape functions.

• We demonstrate that NATTs outperform interpretable baselines as well as state-of-the art neural
and tree-based boosting methods without loss of intelligibility.

• Our experimental results demonstrate that NATTs outperform their baseline counterpart, the
Neural Additive Model (NAM), by an average of ˜5% across multiple datasets and are on par with
state-of-the-art black-box models when accounting for feature interactions.

• We demonstrate that NATT seamlessly incorporates pairwise or higher order feature interactions
and find that NA2TT achieves superior performance compared to the interpretable baselines.

2 Related work

The interpretability of deep neural networks has been a long-standing challenge in the field of Artificial
Intelligence. While these models have achieved impressive accuracy in various tasks, their lack of transparency
has limited their real-world applicability in some areas. This issue has led researchers to explore different
approaches to increase the interpretability of these models, including generating feature-level interpretability.

One promising approach in this direction is the translation of Generalized Additive Models (GAMs) into a
neural framework. This idea was first introduced by Potts (1999) and expanded by de Waal and du Toit
(2007) in the late 90s and early 2000s. However, the previous approaches didn’t use backpropagation and had
limitations in their predictive power and interpretability.

In recent years, researchers have made significant progress in this field by introducing more flexible and
effective approaches. One of these approaches is Neural Additive Models (NAMs), which were first introduced
by Agarwal et al. (2021). NAMs use Deep Neural Networks (DNNs) instead of smooth shape functions from
GAMs. This approach has led to several extensions, including adaptations of the additive model structure
using different types of shape functions such as gradient boosted trees (Chang et al., 2021) or piecewise
polynomials (Dubey et al., 2022).

Several approaches have been proposed to account for feature interactions (Kim et al., 2022; Tsang et al.,
2018; Enouen and Liu, 2022). Wang et al. (2021) introduced Pie-GAMs, which are NAMs that incorporate a
fully connected black-box Multi-Layer Perceptron (MLP) trained only on the residuals of a first NAM model
not including feature interactions.

Luber et al. (2023) introduced extremely parameter sparse networks, leveraging basis expansion methods.
Radenovic et al. (2022) switched the basis expansions for neural basis expansions, keeping the overall model
structure from Agarwal et al. (2021) intact.

Additionally, researchers have considered the problem of distributional regression, which is essential in
many real-world scenarios. Rügamer et al. (2023; 2021) introduced semi-structured distributional regression,
combining the advances of deep neural networks with structured regressions. Thielmann et al. (2023)
introduced Neural Additive Models for Location Scale and Shape (NAMLSS), the extension of NAMs for
distributional regression.
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3 Methodology

Let D = {(x(i), y(i))}n
i=1 be the training dataset of size n and y denote the target variable that can be

arbitrarily distributed. Each input x = (x1, x2, . . . , xJ) contains J features. Given a link function g(·), that
connects the linear predictor to the expected value of the response variable, accommodating different types of
data distributions, a GAM in its fundamental form can be expressed as:

g(E [y]) = β0 +
J∑

j=1
fj(xj), (1)

where β0 denotes the global intercept or bias term and fj : R → R denote the univariate shape functions
corresponding to input feature xj and capturing the feature main effects. This model structure allows for
easy interpretation of the feature effects as the shape functions can be visualized. In classical GAMs, the
shape functions fj are smooth functions, e.g. polynomial splines. However, while being parameter sparse and
interpretable, classical GAM smoothers lack the predictive power of current deep neural networks. Switching
splines for e.g. Multi Layer Perceptrons (Agarwal et al., 2021) or decision trees (Chang et al., 2021) thus has
shown to create extremely powerful yet interpretable models.

Independent of the type of shape functions, pairwise feature interactions can be integrated:

g(E [y]) = β0 +
J∑

j=1
fj(xj) +

∑
j,k:j ̸=k

fjk(xj , xk), (2)

where fjk : R2 → R denote the feature interactions between input features xj and xk. Using neural networks
as shape functions not only allows to model pairwise feature interactions (GA2Ms), but higher order features
interactions (GAJMs). These interactions can e.g. be modeled using a fully connected MLP (Kim et al.,
2022; Wang et al., 2021). Depending on the shape function and the corresponding optimization method,
regularization techniques, e.g. feature dropout as introduced by Agarwal et al. (2021) are used to account for
identifiability.

Independent of the type of shape functions, however, all of these models have in common that they fit one
shape function per feature main effect for all continuous or binary features. Categorical features, however,
are either a) one-hot encoded – leading to each category being represented by an independent shape function
(see, e.g., Agarwal et al., 2021; Radenovic et al., 2022; Enouen and Liu, 2022; Chang et al., 2021), b) target
encoded (Chang et al., 2021; Popov et al., 2019) – such that dependencies between different categorical
features cannot be captured and information may be lost if there are different categories with the same mean
value of the target variable (Zeng et al., 2022), or c) label encoded (Nori et al., 2019) – which is problematic
when the categories lack a natural ordering. Datasets containing a lot of categorical variables, or variables
with a lot of categories can thus lead to increased model sizes and hardly interpretable feature effects due to
the excessive amount of shape functions.

Arik and Pfister (2021), Huang et al. (2020), Hollmann et al. (2022) and most recently Gorishniy et al.
(2022) demonstrated the advantages that transformer based embeddings can have for modeling categorical
features. Let x ≡ (xcat, xcont) denote the categorical and numerical (continuous) features, respectively with
xcont ∈ Rc. Further, let x

(i)
j(cat) denote the j-th categorical feature of the i-th observation. In order to preserve

interpretability and allow for complex feature interactions, we adapt (1) to:

g(E [y]) = β0 +
J∑

j=1
fj(xj(cont)) + f(cat)(H(Eϕ(xcat))), (3)

where H(·) denotes a sequence of transformer layers, creating the feature embeddings for the categorical
features. The parametric embeddings Eϕ(xcat) are the input of the first transformer layer. H(·) returns
the contextualized embeddings {h1, h2, . . . , hj} that are subsequently fed into the shape function, f(cat) :
R(d×j+c) → R. d denotes the number of classes of categorical feature j and c denotes the number of categories,
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which is added to the MLP input dimension to account for missing values. The contextual embeddings,
{h1, h2, . . . , hj}, are thus jointly learned with the shape function, f(cat).
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Figure 1: NATT model architecture and visually interpretable output. The continuous feature are visually
interpretable thorugh the plotting the output of the independt feature networks. The categorical feature
importance can be analyzed via the [cls] token in the Transformer architecture.
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To embed each categorical feature into a column embedding we follow Huang et al. (2020). Our architecture
for the categorical features comprises a column embedding layer, a stack of L Transformer layers and a
Multilayer Perceptron. The Transformer layers follow the classical architecture (Vaswani et al., 2017) and are
comprised of multi-head self-attention layers and position-wise feed-forward layers. An embedding lookup
table eϕj

(·) is created for each categorical feature, xj(cat). For the j-th categorical feature with dj classes, the
embedding table eϕj

(·) has (dj + 1) embeddings with the additional dimension accounting for missing values.
The set of embeddings for all categorical features is denoted by Eϕ(xcat) = {eϕ1(x1), eϕ2(x2), . . . , eϕj

(xj)}.
Thus, the embedding for the encoded value xj(cat) = k ∈ [0, 1, 2, . . . , dj ] is equal to eϕj (xj(cat)) =

[
cϕj , wϕkj

]
.

cϕj
∈ Rl denotes a unique identifier that distinguishes the classes from different columns. wϕkj

∈ Rdj−α

and the dimension, α, is a tuneable hyper-parameter just like the number of neurons in fully connected
dense layers. To account for interpretability of the categorical variables, multiple adaptations are possible.
Appending a [cls] token to the column embedding and feeding the [cls] into the shape function f(cat)
similarly to Gorishniy et al. (2021), or leveraging sequential attention as done by Arik and Pfister (2021)
could ensure interpretability and leave the overall model structure intact, without loss of generalizability or
performance.

Note, that depending on the data structures, one could learn different feature embeddings and fit separate
shape functions for different categorical features. However, as visually interpreting categorical features is not
sufficiently meaningful, fitting one shape function for all categorical variables suffices. Additionally, jointly
learning a single embedding vector for all categorical features, captures all possible interaction effects between
all categorical variables while maintaining interpretable. Adapting for pairwise feature interactions between
the continuous features as well as the continuous and categorical features represented in (2) would lead to:

g(y) = β0 +
J∑

j=1
fj(xj(cont)) + f(cat)(H(Eϕ(xcat))) +

∑
j,k:j ̸=k

fjk(xj(cont), xk(cont))

+
J∑

j=1
fj(cat)(xj(cont), (H(Eϕ(xcat)))), (4)

where fj(cat) : R(d×j+c+1) → R accounts for the feature interaction between continuous feature j and all
categorical features. Note, that the input dimension of fj(cat) is increased by 1, as the transformer output
and the continuous feature are concatenated to form the input vector of the shape function.

3.1 Interpretability

Figure 2: Shape function learned by NATT to predict
rental prices in Amsterdam. The rental prices increase
near the city center, depicted in the longitude graph.

One of the key advantages of GAMs is that the learned
shape functions can be easily visualized. NATT inherits
this feature from GAMs and the shape functions for all
numerical variables are interpretable (see Figures 2, FIG-
URE LABEL). For real world data, NATT can accurately
detect e.g. jumps in Longitude and Latitude for rental
prices in Amsterdam near the city center (see Figure 3).

Visual interpretation of categorical features, however, is
often not very informative. One-hot encoding can lead
to an excessive amount of shape functions. Especially for
large tabular datasets with a lot of categorical features.
One-hot encoding would require GAMs to fit each category
with a separate shape function (e.g., Radenovic et al., 2022;
Agarwal et al., 2021; Enouen and Liu, 2022). That leads
to an increased amount of shape functions, that firstly
need to be modeled and secondly need to be analyzed
for interpretation. Label encoding can lead to ordinal
interpretations in categories where no natural ordering is
present thus impeding the intelligibility of the model. Target encoding can lead to problematic interpretations,
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Figure 3: NATT Attention scores for the features
Marital Status and Gender for the Adult dataset.

Figure 4: Categorical feature importances for the
Adult dataset retrieved from the attention layers.

especially for categories with very few observations, as the encoding for these categories may be unreliable or
unstable.

NATT can leverage multiple interpretable transformer structures to account for interpretable categorical
features and remain fully intelligible across continuous features. Using [cls] tokens, NATT can use the
attention maps to weight the average attention scores of the [cls] token with the overall importance of
the encoded categorical features. The importance scores for the continuous features, as well as for all the
combined categorical features, can be obtained due to the additivity constraint following a similar method as
described in Agarwal et al. (2021).

Figure 5: NATT attention scores for the features Marital Status, Race and Gender for the Adult dataset.

Thus, the importance for the categorical features over n samples and L attention heads is given by:

I = ω(cat)
1
n

n∑
i=1

 1
Hheads × L

∑
h,l

pi,h,l

 ,

where ω(cat) ∈ [0, 1] is the importance of all categorical variables, h is the running index of the attention
heads, l denotes the l−th layer and i denotes the i−th sample. pi,h,l thus denotes the h-th attention map for
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the [cls] token from the forward pass of the l-th layer for sample i. Averaging over all samples and weighting
with the overall categorical importance thus returns the average importance scores for every category.

Additionally, feature interactions between the categorical variables are always implicitly modeled. Attention
scores for all possible categorical combinations can be extracted by summing not over all samples in Equation
(5) but by summing only over the samples where the interaction of interest appears. Pairwise categorical
feature interactions can thus easily be visualized (see Figure 3). Even higher order feature interactions can
be subtracted by filtering the corresponding samples respectively (see Figure 5).

4 Experiments

4.1 Simulation study

For a small simulation study, we simulate 5000 observations with 2 continuous variables and 4 categorical
variables (see Supplemental Material 7.4 for details). We train 100 models for 100 epochs each and visualize
the learned shape functions for the continuous features in Figure 2a-2b. Both data generating functions are
adequately captured by NATT.

(a) f1(X1) (b) f2(X2) (c) Categorical

Figure 6: Shape functions and categorical feature importance learned by NATT for the simulation study. 100 models
are fit and each trained model is visualized in red. The data generating function is visualized in black.

To test whether continuous feature interactions are adequately recognized, we use the same data generating
process but add f1(X1) × f2(X2) to y. We visualize a random draw from multiple model fits and find that
the complicated interaction patterns are adequately disentangled by NATT.

Figure 7: True feature interaction effect Figure 8: NATT predicted feature interaction effect.

For categorical feature importance, our simulation consistently yields robust estimations (see Figure 2c). We
find an average rank correlation of 0.76 between the true importance and the estimated importance scores
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over 100 fits which is comparable to XGboost with 0.79. Additionally, we compute the Kendall Tau score for
demonstrating that NATT accurately detects the correct ordering of feature importance, compared to the
overall effect the categorical features have on the dependent variable. We find a Kendall Tau score of 0.6
(compared to 0.0 for random ordering) and an accuracy of 65% for the ordering.

4.2 Datasets

We validate the effectiveness of our model on 8 machine learning benchmark datasets for both classification
and regression. We perform 5-fold cross validation on all datasets and report the average performance as
well as the standard deviations. For the classification tasks we report the Area under the curve (AUC). For
the regression tasks we report the root mean squared error (RMSE). Preprocessing is performed as done
by Agarwal et al. (2021). We use the Vanilla implementation of NATT as described in Section 3 and thus
even leave room for improvement by adapting more refined architectures (Gorishniy et al., 2021; Arik and
Pfister, 2021). See the supplemental material for improved performances when leveraging [cls] tokens during
prediction.

Classification datasets. We report performance on the Adult dataset for predicting a persons income
(Kohavi et al., 1996), the Titanic dataset retrieved from Kaggle, for predicting the survival of titanic
passengers, the Churn dataset retrieved from Kaggle, covering whether a customer left a bank or not, and
the Insurance dataset.

Regression datasets. We report performances on another Insurance dataset (Lantz, 2019), 2 AirBnB
datasets with data from the cities of Munich and Amsterdam. Lastly we include the Abalone dataset
retrieved from the UCI (Dua and Graff, 2017) as a dataset with only a single categorical variable and 3
categories. See the supplemental material for information about the datasets.

4.3 Baselines

Table 1: Comparison between NATT and a NAM for 4
classification and 4 regression datasets. The evaluation
metrics are AUC and RMSE. We express the performance
improvement of the NATT over the NAM as a percentage.
The results are based on 5-fold cross-validation.

Dataset NAM NATT Gain (%)Classification
AUC ↑

Titanic 84.9 86.5 1.9
Adult 91.0 91.4 0.4
Insurance 91.4 91.6 0.2
Churn 85.1 85.2 0.1
Dataset Baseline NAM NATT Gain (%)Regression

RMSE ↓
Insurance 0.208 0.191 8.2
Munich 0.060 0.052 13.3
Amsterdam 0.042 0.037 11.9
Abalone 2.25 2.24 0.4

Average Increase: 4.9

We train the following state-of-the-art inter-
pretable models as well as state-of-the-art black-
box models: Gradient Boosted Trees (XG-
Boost): Popular decision tree based gradient
boosting, often outperforming DNNs on tabu-
lar data. We use the implementation provided
by Chen and Guestrin (2016).
Deep Neural Network (DNN): Unre-
stricted fully connected deep neural network
trained with either a mean squared error loss
function (regression) or cross entropy (classifi-
cation).
Tabular Transformer Networks (Tab-
Transformer): A tabular transformer network
followed by a fully connected MLP as intro-
duced by Huang et al. (2020).
Neural Additive Models (NAMs): Linear
combination of DNNs as described in Equa-
tion (1) and presented by Agarwal et al. (2021).
Note that NA2Ms do not scale to account for all
feature interactions (Dubey et al., 2022). Pair-
wise interactions are thus only implemented
between the numerical features.
Explainable Boosting Machines (EBMs):
State-of-the-art Generalized Additive Models
leveraging shallow boosted trees (Nori et al.,
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2019).
Neural Generalized Additive Model (NodeGAM): State-of-the-art Generalized Additive Models
leveraging Neural Oblivious Decision Trees (Chang et al., 2021).

For neural network approaches, we take the same hyperparameters across all methods to provide a more
consistent comparison and orientate on the benchmarks performed by Radenovic et al. (2022). For NodeGAM
and EBM we use default values. All chosen hyperparameter settings allow to recover or even exceed
performances reported in the literature (Chang et al., 2021; Huang et al., 2020; Thielmann et al., 2023).

4.4 Results

Table 2: Number of Parameters for NAMs vs.
NATT

Model Classification
Adult Titanic Insur. Churn

NAM 127K 102K 127K 111K
NATT 110K 79K 110K 68K

Model Regression
Insur. Munich Amst. Abalone

NAM 96K 325K 299K 86K
NATT 66K 106K 106K 92K

NATT outperforms NAMs on all datasets as shown in Ta-
ble 1. We use the baseline model architecture for NATT as
well as NAMs and do not account for feature interactions.
Additionally, we demonstrate that NATT consistently out-
perform NAMs while remaining more parameter-sparse
when using similar NAM architectures to Radenovic et al.
(2022) and using much parameter sparser architectures
than Agarwal et al. (2021). In our experiments, we de-
crease the amount of parameters in NATT in comparison
to NAMs as defined by Radenovic et al. (2022); Dubey
et al. (2022); Agarwal et al. (2021) by more than 40% (see
Table 7). We use identical architectures for all numerical
features for NAMs and NATT. The parameter difference
can thus be attributed to the way the categorical features
are modeled in the NAM.

Moreover, NATT allows for better scaling when including
feature interactions than NAMs. For instance, building feature interactions for all possible pairwise feature
interactions on the Adult dataset when using one-hot encoding would result in more than 4500 shape functions
in classical NAM approaches. Thus, fitting a NA2M for such datasets would require an additional feature
interaction selection step (Enouen and Liu, 2022). Even shared basis functions across all shape functions as
proposed by Radenovic et al. (2022) may encounter recursion problems for larger datasets. Therefore, the
results presented for NA2Ms in this section only consider feature interactions between all numerical features.

Table 3: Average Rank table for interpretable models over all datasets. NATT and NA2TT perform best
considering other interpretable methods.

Model avg. Rank
NATT 1.1
NAM 3.5
NodeGAM 2.4
EBM 3.0
NA2TT 1.6
NA2M 3.6
NodeGA2M 2.6
E2BM 2.1

Overall, we can validate the findings from Huang et al. (2020) and Gorishniy et al. (2022): Incorporating
transformer embeddings when analyzing tabular data can improve the overall model prediction. However, we
still find that XGBoost slightly outperforms TabTransformers by a slight margin of 5:3 on the benchmark
datasets. Among all interpretable models, i.e., NATTs, NAMs, NodeGAMs and EBMs, NATT performs best
in its base version achieving the lowest overall average rank over all datasets (see Table 3). When accounting
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Table 4: Regression Table

RMSE ↓
Model Insurance Munich Amsterdam Abalone
XGBoost 0.165 (±0.008) 0.053 (±0.016) 0.039 (±0.014) 2.30 (±0.05)
DNN 0.183 (±0.014) 0.110 (±0.045) 0.076 (±0.008) 2.13 (±0.06)
TabTransformer 0.212 (±0.013) 0.049 (±0.10) 0.038 (±0.014) 2.56 (±0.10)

NAM 0.208 (±0.015) 0.060 (±0.016) 0.042 (±0.014) 2.25 (±0.09)
NodeGAM 0.194 (±0.040) 0.054 (±0.017) 0.038 (±0.015) 2.25 (±0.08)
EBM 0.194 (±0.004) 0.053 (±0.017) 0.041 (±0.014) 2.27 (±0.06)
NATT 0.191 (±0.011) 0.052 (±0.017) 0.037 (±0.014) 2.24 (±0.08)

NA2M 0.205 (±0.016) 0.056 (±0.015) 0.042 (±0.013) 2.11 (±0.05)
NodeGA2M 0.194 (±0.040) 0.051 (±0.017) 0.037 (±0.015) 2.13 (±0.05)
E2BM 0.145 (±0.004) 0.048 (±0.017) 0.041 (±0.014) 2.22 (±0.05)
NA2TT 0.149 (±0.009) 0.047 (±0.019) 0.036 (±0.015) 2.10 (±0.06)

Table 5: Classification Benchmarks

AUC ↑
Model Adult Titanic Insurance Churn
XGBoost 92.9 (±0.5) 85.6 (±4.6) 92.8 (±0.3) 84.6 (±1.6)
DNN 90.6 (±0.5) 84.1 (±8.0) 90.5 (±0.4) 83.7 (±1.3)
TabTransformer 91.0 (±0.5) 86.1 (±4.0) 91.1 (±0.4) 84.6 (±1.2)

NAM 91.1 (±0.3) 84.9 (±4.3) 91.4 (±0.4) 85.1 (±1.1)
NodeGAM 91.5 (±0.4) 82.8 (±8.6) 91.6 (±0.5) 85.1 (±1.4)
EBM 90.9 (±0.5) 86.2 (±3.5) 91.1 (±0.4) 85.0 (±0.9)
NATT 91.4 (±0.3) 86.5 (±3.7) 91.6 (±0.3) 85.2 (±1.4)

NA2M 91.4 (±0.3) 85.8 (±4.0) 91.4 (±0.5) 85.9 (±1.4)
NodeGA2M 91.6 (±0.3) 84.9 (±2.0) 91.7 (±0.4) 86.6 (±1.5)
E2BM 91.9 (±0.3) 86.8 (±4.6) 92.0 (±0.4) 86.1 (±1.4)
NA2TT 91.5 (±0.3) 87.0 (±4.0) 91.6 (±0.3) 86.9 (±1.6)

for feature interactions, our method (NA2TT) and boosting E2BM improve in performance, while others
benefit comparably less.

Tables 4 and 5 show the results of all models over all datasets, divided into three categories: Black-box models,
interpretable additive models, and interpretable additive models accounting for pairwise feature interactions.
The best model of each category is marked bold. Notably, the baseline NATT version performs comparably to
a black-box XGBoost model and outperforms a fully connected Deep Neural Network on almost all datasets.

5 Conclusion

In this paper, we present NATT, a novel model architecture that offers interpretability. Our experiments
demonstrate that NATT outperforms other neural interpretable methods across various datasets. While
the additivity constraint ensures easy interpretation, this interpretation comes at a price. Throughout all
interpretable models, we experience a performance trade-off in terms of predictive power. Full black-box
models are still more performant than their glass-box counterparts. However, we demonstrate that NATT is
a further step in the direction of closing that gap. Additionally, we find that when accounting for feature
interactions, NA2TT as well as E2BM and NodeGA2M are on par with black-box models. Throughout our
benchmarks, we find that NATT only performs around 0.4% worse than the best black-box benchmark models.
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It is important to note that NATT’s architecture allows further adaptations especially in the realms of
modeling interactions. One potential approach is to leverage the trained transformer embeddings and train
pairwise tensor-product feature interactions on the residuals using the second-to-last output layer of the shape
functions. This strategy has the potential to greatly improve the performance of NATT, as it would allow for
the joint learning and pre-training of the embeddings, leveraging the findings from Gorishniy et al. (2022).

6 Limitations and Future Work

A primary limitation of the current work is its focus on tabular data. Extending the presented approach to
account for high dimensional input data such as documents or images is a key direction for further integrating
interpretability into the domain of Deep Learning. By leveraging the transformer architecture for tabular
features, NATT demonstrates the possibilities of integrating different network structures and shape functions
into a single modeling framework. Through multiple experiments the generalizability of the structure is
demonstrated. The interpretability of NATT, while being much more interpretable than black-box models,
still lacks the inherent statistical inference of classical GAMs. Adaptations to include significance statistics
could be a further step towards Deep Learning models being deployed in high risk domains. Accounting
for the underlying data distributions can already be accounted for, by extending NATT to account for all
distributional parameters, as similarly done by Thielmann et al. (2023) (see Supplemental Material 7.1).
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7 Supplemental Material for NATT

7.1 Beyond the mean: Location Scale and Shape

NATT is easily adaptable to account for arbitrarily many distributional parameters. Given a distribution with
K distributional parameters, a small architecture adaptation lets NATT become Neural Additive Tabular
Transformer Networks for Location Scale and Shape (NATTLSS). Similar to NAMLSS (Thielmann et al.,
2023), we let each shape function have a K-dimensional output, with output k = 1, 2, . . . , K accounting for
distributional parameter k.

The loss function gets adapted from e.g. the mean squared error, to the corresponding negative log-likelihood,
which is dependent on the distributional parameters. Hence, NATTLSS minimizes − log (L(θ|y)). Possible
parameter interactions between the k-parameters are accounted for in the feature dependent shape-functions.
Each distributional parameter is hence modeled by:

h(θ(k)) = β
(k)
0 +

J∑
j

f
(k)
j (xj(cont)) + f

(k)
(cat)(H

(k)(Eϕ(xcat))), (5)

Figure 9: NATTLSS prediction vs. the prediction of a
simple MLP for a normally distributed response variable.

where the superscript (k) denotes the k−th distri-
butional parameter. h(·) thus denotes a parameter
specific output layer activation or link function. E.g.
a Softplus activation to account for the variance
parameter in a normal distribution as the variance
must be positive. β

(k)
0 denotes the parameter spe-

cific intercept. f
(k)
j : R → R denote the parameter-

feature shape functions for the continuous features
and f

(k)
(cat) : R(d×j+c+1) → R denotes the parameter-

feature shape functions for the categorical features.
H(k) denotes the transformer layers, which are distri-
butional parameter-specific. Leveraging pre-trained
transformer networks, could allow to use a global
H(·) over all parameters, however, jointly learning
the feature embeddings for each distributional param-
eter is a more straight-forward architecture. Figure
9 demonstrates the advantages that NATTLSS can
have over a simple NAM approach. While the over-
all predictive power might be similar, NATTLSS is
much more faithful to the underlying data distribu-
tion and also accounts for the aleatoric uncertainty
in the data.

Similar to Thielmann et al. (2023) we could adapt the network architecture, such that each shape function
has a k-dimensional output layer, f

(k)
(cat) : R(d×j+c+1) → Rk and f

(k)
j : R → Rk. The overall model output

would thus also be k-dimensional, with the k-th dimension accounting for the k-th distributional parameter.
Thus, the adaptation to location scale and shape can be achieved with the same amount of shape functions
as the mere mean prediction.

7.2 Datasets

We evaluated NATT’s performance on multiple datasets, all having varying characteristics. NATT also
perform well on smaller datasets, a property which could be furthermore increased by leveraging pre-trained
networks for the transformer parts and fine-tuning the shape function, f(cat). For datasets with fewer
categorical features, e.g. Abalone and Churn, the performance differences between NAM and NATT are not
as large as for datasets with more categories (Munich, Amsterdam). Surprisingly, the differences for the
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Adult dataset with the most categorical features are also comparably small, which can be attributed to the
overall smaller effect the categorical variables have on the target variable.

Table 6: Statistics of the benchmark datasets.

Dataset No. Samples No. Features No. Categorical No. Categories Task
Insurance 1338 6 3 8 Regression
Abalone 4177 8 1 3 Regression
Munich 4568 10 2 29 Regression
Amsterdam 6998 10 2 26 Regression
Adult 48842 13 8 102 Classification
Churn 10000 10 2 5 Classification
Titanic 627 10 9 19 Classification
Insurance 32561 13 8 102 Classification

7.2.1 Preprocessing

We implement the same preprocessing for all used datasets and only adjust it to specifically optimize it for
different model architectures. We standard normalize the target variables for the regression problems. We
closely follow Gorishniy et al. (2021) in their preprocessing steps and use the preprocessing also implemented
by Agarwal et al. (2021). All numerical variables are scaled between -1 and 1. In contrast to Gorishniy et al.
(2021) we do not implement quantile smoothing, as one of the biggest advantages of neural models is the
capability to model jagged shape functions. Where needed, the categorical features are one-hot encoded (e.g.
not for TabTransformer or NATT). We use 5-fold cross-validation and report mean results as well as the
standard deviations over the folds.

7.3 NATT: Further Results

The reported benchmarks in section 4.3 for NATT are all performed with the Vanilla NATT architecture.
Leaving the overall model structure intact, appending the [cls] tokens to the column embedding and
subsequently only feed the [cls] tokens into the shape function f(cat) leads to very similar, and on average
even a little bit better results. Therefore, by obtaining interpretable attention maps from the categorical
features, we can further enhance performance.

Table 7: NATT performances when appending [cls] tokens to the column embeddings and using the [cls]
tokens as inputs for the shape function f(cat).

Classification
Adult Titanic Insur. Churn

NATT 91.4 (±0.3) 87.3 (±3.5) 91.6 (±0.3) 85.1 (±1.2)

Regression
Insur. Munich Amst. Abalone

NATT 0.191 (±0.011) 0.048 (±0.017) 0.037 (±0.013) 2.21 (±0.07)

7.4 Data generating process

In this data generation process, we aim to create a synthetic dataset with both categorical and continuous
variables. The dataset consists of a target variable y, two continuous variables X1 and X2, and four categorical
variables Categorical1, Categorical2, Categorical3, and Categorical4. We generate a dataset with a total
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of 5000 data points. The continuous features are simulated as:

f1(X1) = 5 sin(X1)
5

f2(X1) = −2(X2 − 3)2

5

Categorical features are simulated by assigning a categorical expression to each sample. Each expression
corresponds to a specific numerical value. Consequently, we can assess the importance of each categorical
feature based on its average impact on the dependent variable, y. A higher numerical difference between
categorical expressions, along with a greater numerical effect on y, indicates a higher overall feature importance.

Categorical1 =


1.5 if = A

−1.5 if = B

0.0 if = C

Categorical2 =


0.0 if = Y es

−0.75 if = No

0.75 if = Maybe

Categorical3 =


0.0 if = Miami

0.2 if = NewY ork

0.2 if = Chicago

Categorical4 =


1.0 if = Bachelors

1.0 if = Masters

0.0 if = PhD

Thus, we randomly draw 5000 samples for each categorical variable, draw X1 and X2 from uniform distributions
between the values 1 and 10 and 2 and 4.

y = f1(X1) − f2(X2) + Categorical1 + Categorical2 + Categorical3 + Categorical4
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