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Abstract

Understanding the high-density crowd dynamics of urbanization plays an important role in
architectural design and urban planning, preventing the occurrence of crowd crush. Most
traditional methods rely on formulas designed based on expert knowledge, which are in-
flexible and incomplete to model complex real-world crowd trajectories. To address the
issue, recent studies propose to simulate crowds via data-driven models. However, these
models fail to learn the inherent symmetry of high-density crowd trajectories, leading to
insufficient generalization ability. For example, existing models can not predict left-to-right
trajectories by learning right-to-left trajectories, even though they share similar patterns.
In this work, we propose a novel Equivariant Graph Learning framework for high-density
crowd dynamic modeling, called CrowdEGL. It utilizes an additional objective to encourage
models to predict the transformed output given the input under the same transformation.
We summarize three types of transformation groups, which are determined by the symme-
try of environments. To explicitly incorporate these augmented data, a multi-channel GNN
is employed to learn the latent graph embedding of pedestrian patterns. Finally, to model
dense crowd interactions, future positions of original and transformed inputs are obtained by
multiple independent graph decoders. Extensive experiments on 8 datasets from 5 different
environments show that CrowdEGL outperforms existing models by a large margin.

1 Introduction

The increasing population and resulting urbanization have led to a significant rise in crowd density, par-
ticularly in urban areas such as metro stations, stadiums, and exhibition centers (Sindagi & Patel, 2018).
Therefore, understanding high-density crowd dynamics is essential for applications in public safety (Johans-
son et al., 2008). Specifically, given the initial states (locations, velocities, etc.) of crowds, our objective is
to forecast their future state by modeling interactions among pedestrians and the impact of environments.
Such forecasting is crucial for crowd management (Xu et al., 2014), architectural design, and urban planning.
Otherwise, without proper and sufficient safety measures, the gathering of large crowds in confined spaces
can lead to stampede incidents, causing injuries and fatalities. For example, Seoul Halloween crowd crush in
2022 killed 159 people and 196 others were injured (contributors, 2023); In 2023 Freedom City Mall crush,
crowds rushing to see a firework display got stuck in a narrow corridor and killed 10 people (Atuhaire, 2023).
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(b)  Trajectory Equivariance
Rotation

(a) High-density Crowds

Figure 1: (a) Illustration of high-density crowds at a 90°crossing, which contains dense interactions; (b)
Rotation equivariance of pedestrian trajectory. They enter through the four entrances to reach the opposite
exits. Trajectories starting from different entrances are indicated by different colors.

Early crowd modeling approaches (Yang et al., 2020) rely on formulas designed based on human prior
knowledge. Among them, the Boids algorithm (Reynolds, 1987) is a representative model, which simulates
crowd dynamics through three fundamental rules: separation, alignment, and cohesion. Another widely
used method is the social force model (Helbing & Molnar, 1995) which characterizes interactions among
individuals, obstacles, and destinations as different types of forces (repulsive or attractive) and utilizes
Newtonian mechanics to update their behaviors. However, these assumptions are incomplete and overly
restrictive to model real-world crowd dynamics, which are inherently complex and heterogeneous (Moussaïd
et al., 2011). Therefore, recent works (Shi et al., 2023; Zhang et al., 2022; Yu et al., 2023) have employed
data-driven models to obtain more realistic crowd trajectories and demonstrate promising performance.
In particular, they treat individuals, obstacles, and destinations as nodes and construct graphs based on
their distance. Graph Neural Networks (GNNs) (Gilmer et al., 2017) are then employed to encode their
interactions, and a Multilayer Perceptron (MLP) decoder is commonly used to predict the future states of
the crowd.

Nevertheless, current GNNs (Shi et al., 2023; Sanchez-Gonzalez et al., 2020; Gilmer et al., 2017) are insuf-
ficient to capture internal symmetries of the physical world (Cohen & Welling, 2016; Walters et al., 2021;
Xu et al., 2023), thus they fail to generalize in different directions. Figure 1 displays high-density crowd
trajectories in a 90°crossing. Pedestrians enter the crossing from four entrances and aim to exit from the
opposite exits. In such highly crowded situations, we can observe that pedestrian trajectories demonstrate
specific rotational symmetries. For instance, if the initial states of pedestrians are rotated by 180°, the crowd
trajectories would rotate in an analogous way, known as rotation equivariance. With reduced individual free-
dom of movement, the interactions among pedestrians, as well as the interactions between pedestrians and
environments, are nearly invariant to such rotations. Regardless of this inductive bias, GNNs are inadequate
to learn the real crowd dynamics and tend to overfit the observed trajectories (See Figure 5).

Although multiple GNNs (Satorras et al., 2021; Han et al., 2022a; Huang et al., 2022) have been proposed to
predict physical dynamics with strictly equivariant under a given group action, it remains non-trivial to design
symmetric crowd dynamic models because of the following challenges: (1) Dense interactions. In high-
density circumstances, crowd interactions occur with great frequency, so that pedestrians are often forced to
take detours or even change their intended destinations (Cao et al., 2017); (2) Imperfectly symmetric.
Due to the effects of varying human psychology and physiology, they might not react completely the same to
nearby pedestrians and the environment, breaking the symmetry of crowd trajectories to a certain degree;
(3) Finite group actions. Existing equivariant GNNs (Han et al., 2022b) leverage the complete symmetry
of the Euclidean space, ensuring their outputs will rotate/translate/reflect in the same way as the inputs.
Such constraint is too strong for crowd dynamic modeling (Dangovski et al., 2022; Wang et al., 2022). For
instance, in Figure 1, a 100°rotation of crowds would violate the boundary condition and thus be invalid.

In this work, we propose a novel Equivariant Graph Learning framework called CrowdEGL, encouraging
GNNs to learn a more practical imperfect equivariance property. Specifically, it achieves this objective via
an equivariance loss that is constructed based on data augmentation. It works as a regularization term so that
we can control the degree of equivariance. The augmented strategies are defined by cyclic groups (Suzuki,
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1986). We summarize them for various environments such as corridors and crossings. For example, for
the crowd at the crossing, we use the cyclic group of 90°rotations to describe its rotation equivariance.
Furthermore, to incorporate crowd trajectories that exhibit a high degree of similarity in behavior patterns,
we explicitly treat augmented data as input and propose a multi-channel message-passing GNN to learn latent
graph representations. Finally, to capture dense crowd interactions and allow the model to behave distinctly
in different directions, multiple independent GNNs are utilized as decoders. Extensive experiments on five
different crowded environments demonstrate that CrowdEGL has a better generalization ability over state-
of-the-art models and is beneficial for learning the symmetry of crowd dynamics. Our main contributions
are summarized as follows:

• We emphasize the significance of learning high-density crowd dynamics, which is challenging and crucial
for applications in human activity and society. We highlight the importance of symmetry for high-density
crowd trajectory prediction. To our knowledge, it is the first time equivariance is considered in data-driven
crowd simulation.

• We propose a novel and flexible equivariant learning framework to incorporate imperfect equivariance
in practical crowd trajectories to backbone GNNs, and design a multi-channel GNN to model common
pedestrian behavior patterns in different directions.

• We conduct extensive experiments to evaluate the performance of CrowdEGL on eight datasets of five
crowded environments. Experimental results show that it achieves significantly better generalization abil-
ity over the state-of-the-art models. Ablation studies demonstrate the effectiveness of our model designs.
To facilitate the research on high-density crowd modeling, we make our datasets and implementation
available at Supplementary Material.

2 Preliminary

2.1 Problem Definition

Different from existing studies (Alahi et al., 2016; Gupta et al., 2018; Kothari et al., 2022; Shi et al., 2021;
Yu et al., 2020) on urban open space (e.g., parks), in this work, we study trajectories in various bounded and
narrow environments that have extremely dense interactions. Therefore, we consider a challenging problem
setting that focuses on learning interactions of initial crowd states and forecasting their positions after a
fixed time interval. Compared to existing works (Shi et al., 2023; Zhang et al., 2022), we omit historical
states and destinations, which are employed to reflect pedestrian intentions but are not always available in
practice.

Specifically, as shown in Figure 1, we employ discretized obstacles to represent the environments (e.g., walls).
Then pedestrians and obstacles can be treated as nodes in a graph. At time t, each node i is represented
by: (1) geometric features including the position vector x

(t)
i ∈ R2 and the velocity vector v

(t)
i ∈ R2; (2)

non-geometric features such as the node type (pedestrian or obstacle), denoted by ui; (3) spatial connection
with others, where an edge eij is constructed via distance cutoff and the edge attributes (e.g., node distances)
are denoted by aij . For simplicity, we denote (x(t), v(t)) and (u, e = {eij}, a = {aij}) as dynamic crowd
states and graph features correspondingly. Formally, the crowd trajectory forecasting problem is defined as
follows:

Definition 2.1 (Crowd Trajectory Forecasting) Given the initial crowd states (x(t), v(t)) at time t and graph
(u, e, a), the objective is to predict the subsequent position x(t+∆t), where ∆t is the target time interval.

2.2 Graph Neural Networks

GNNs (Gilmer et al., 2017; Kipf & Welling, 2017; Xu et al., 2019; Zhao et al., 2024; Sun et al., 2023;
Tang et al., 2022) are neural models specifically designed to learn graph-structured data with complex
relationships and dependencies. Recently, they have shown great potential in simulating physical systems
such as fluid (Sanchez-Gonzalez et al., 2020; Li & Farimani, 2022) and molecular dynamics (Huang et al.,
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2022). They achieve this through iteratively propagating and updating information through the nodes and
edges. Let h

(l)
i be the l-th layer embedding of node i and m

(l)
ij denotes the l-th layer message embedding

between node i and j. The l-th GNN layer computes:

m
(l)
i = Agg({m

(l)
ij }j∈Ni), h

(l)
i = Combine(h(l−1)

i , m
(l)
i ), (1)

where Ni collects the neighbors of node i. The common choices of Agg function are Sum or Mean, while
that of Combine function is Multi-layer Perceptrons (MLPs). The final prediction is obtained by applying
several iterations of message passing. Most existing Equivariant GNNs (e.g., EGNN and GMN) and Graph
Neural Simulators such as GNS and CrowdSim are based on such a framework.

2.3 Equivariance

To improve model generalization, we force them to be equivariant, which refers to the property where the
output of a system changes in the same way as the input changes. Formally, equivariance is defined on a
specific group (Suzuki, 1986):

Definition 2.2 (Group) A group is a set of operations that satisfy: closure, associativity, the existence of
an identity element, and the existence of inverse elements for each element in the set.

For instance, a widely studied group is the Euclidean group, which includes translation, rotation, and
reflection. Given a group G, the definition of G − Equivariance is:

Definition 2.3 (G-Equivariance) A function f : X → Y , where X, Y ⊂ R2, is equivariant to group G, if
for any transformation g ∈ G,

f(g ◦ x) = g ◦ f(x), x ∈ X. (2)

The symmetry of the real world is not always continuous. We focus on discrete groups within finite elements.

3 Methodology

3.1 Overview

Figure 2 illustrates the overall framework of CrowdEGL. The high-level idea is to learn a latent graph rep-
resentation that is sensitive to a set of symmetric transformations. To achieve this property, CrowdEGL is
additionally trained to predict symmetric transformations of input. As shown in Figure 2, for crowd trajec-
tories of 90°crossings, we consider three more proxy tasks that predict 90°/180°/270°rotations of the original
input. Although CorwdEGL can be flexibly adapted to various latent GNNs, to provide sufficient global
environmental information, we employed a multi-channel GNN to incorporate original and all augmented
input. Finally, to distinguish information learned from the original or augmented tasks, each task has an
independent graph decoder to forecast the crowd positions of the next state.

3.2 Equivariant Graph Learning

In this section, we introduce how CrowdEGL constructs augmented symmetrical data and learns from them.

Equivariant data augmentation. Data augmentation strategies are the core of learning an equivariant
model. In our work, these strategies are described by a group, which represents the symmetry of target
environments. Particularly, we focus on cyclic groups, whose definition is as follows:

Definition 3.1 (Cyclic Group) A cyclic group is a group that can be generated by repeatedly applying a
single element.

Note that the group is closure (the result of two elements within a group is still an element of the group). For
example, the cyclic group of 90°rotation consists of four elements - identity and 90°/180°/270°rotations. Al-
though different environments typically have distinct symmetry groups, they can be summarized as following
three types:

4



Published in Transactions on Machine Learning Research (09/2024)

Input States

Rot. 90°

Rot. 180°

Rot. 270°

Latent 

Embedding G
ra

p
h

D
ec

o
d

er

G
ra

p
h

D
ec

o
d

er

G
ra

p
h

D
ec

o
d

er

G
ra

p
h

D
ec

o
d

er

Prediction

Equivariance

Rot. 90°

Rot. 180°

Rot. 270°

Target Positions

Equivariance

Equivariance

Augmented Input Augmented Targets

Graph Construction

Aggregation Message Passing

Multi-Channel 

Graph Encoder

Figure 2: Overview of CrowdEGL framework. Input states and target positions are firstly augmented via
group transformations. Then a multi-channel graph encoder is employed to aggregate multi-channel features
and perform message passing. Finally, CrowdEGL utilizes multiple independent graph decoders to forecast
future positions. The prediction loss and equivariance losses are calculated for the model predictions of
original and augmented inputs, respectively.

• Rotation is used to augment crowd trajectories in environments with central symmetry, including 90°and
120°crossings.

• Reflection is used to construct augmented data for axisymmetric environments. A common example is
crowd dynamics in a narrow corridor or T-junction, where we employ a cyclic group of reflections over
the x- or y-axis. The intuition is a crowd trajectory from left to right would be similar to that of the
same crowd from right to left.

• Combination of rotation and reflection is used to generate augmented data for locations like a right-
angled corner. In this case, we have to combine reflection and rotation to obtain the reversed trajectory
from the exit to the entrance.

Model training. The objective function of CrowdEGL consists of a prediction loss and an equivariance
loss. Given the group G, the model parameters are optimized by minimizing the following loss L:

L = Lp + λ
1

|G|
∑
g∈G

Lg, (3)

where Lp and Lg denote the prediction loss and equivariance loss of transformation g. |G| is the size of
group G. λ is a hyper-parameter to control the strength of equivariance loss, a larger λ leads to a more
strict equivariant model. Since our goal is to forecast the future positions of crowds, models are trained to
minimize the discrepancy between the exact and approximated positions. Specifically, Let f(·; θe) be the
backbone GNN with parameters θe and p(·; θp) be the decoder for the prediction loss. Then Lp is formulated
as:

Lp = ||p(f(x(t), v(t); θe); θp) − x(t+∆t)||2, (4)

where x(t+∆t) is the groundtruth. Here we omit the static input u, e, a for simplicity. For equivariance loss,
let Mg ∈ R2×2 be the representation (e.g., rotation or reflection matrix) of the group element g ∈ G, the
equivariance loss Lg is computed by:
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Lg = ||p(f(x(t)Mg, v(t)Mg; θe); θg) − x(t+∆t)Mg||2. (5)

Note that, depending on the backbone GNN, decoder networks for prediction loss can be shared with that
of equivariance losses. During experiments, we found that multiple independent decoders achieve better
performance.

3.3 Backbone GNN

To design a backbone under the CrowdEGL framework, a common solution is to utilize a shared graph
encoder and decoder (e.g., GNS (Sanchez-Gonzalez et al., 2020)) for all original and transformed input.
However, the crowds may not be exactly symmetric due to the complex human interactions. Simply treating
the augmented inputs as original inputs may lead to a suboptimal performance. Instead of using a hard
parameter-sharing strategy, we design a flexible multi-channel pipeline to share partial parameters across
tasks and learn equivariance from data. Therefore, if the augmented trajectories are exactly equivariant, the
CrowdEGL can degrade to the hard parameter-sharing strategies, where the parameters of each channel are
the same. Specifically, we first construct a graph and initialize the multi-channel node embeddings based on
the defined group. Then multiple steps of message passing are performed to obtain latent graph embeddings.
The final predictions are computed via independent graph decoders. We elaborate on the model designs as
follows.

Graph construction. For personal safety and comfort, pedestrians adjust their trajectories in high-density
crowds to avoid collisions with others or obstacles (Yu et al., 2023). Consequently, when they approach each
other, pedestrians often instinctively adjust their movement velocities and alter their directions. To model
these interactions, we treat all pedestrians and obstacles as nodes and build a radius graph. That is, nodes
are connected if the distance between them is smaller than a predefined radius r.

Multi-channel node embedding. This subsection investigates how to attain desirable initialization for
node embeddings that involve 2D symmetry information. To integrate the global environment information,
given the rotation matrix representations Mg of group element g ∈ G, The initial embedding of node i is
derived by:

hi,g = ϕ(xiMg, viMg, ui), (6)

where hi,g represents the features under the transformation g, which includes both the original (i.e., identity
transformation) and augmented inputs. ϕ is a linear embedding layer. ui is the node type embedding,
including the pedestrian and obstacle. xi, vi are position and velocity features, respectively. The velocities
of obstacles are set to zero. Then the initial multi-channel node embeddings h

(0)
i are obtained by aggregating

all the above features:
h

(0)
i = Agg({hi,g}g∈G). (7)

It is worth noting that the aggregation function should not be permutation invariant (Zaheer et al., 2017),
such as Mean or Sum. These functions result in a G-invariant GNN and latent embeddings. That is,
their outputs remain invariant under input transformations of group G. Consequently, the model can not
distinguish the original from augmented inputs and would map all original and augmented inputs to the
same position, instead of a G-equivariant model. For CrowdEGL, we use the following aggregation:

h
(0)
i = ϕa([hi,g]g∈G), (8)

where ϕa is an MLP. [hi,g]g∈G is the concatenated feature that follows a fixed order of group elements.

Message passing. In high-density crowds, the interactions among pedestrians, and that between pedes-
trians and obstacles, are extremely dense and significantly influence their trajectories. Thus the quality of
approximating these interactions determines the model performance. We adopt the message-passing frame-
work, which has been proven effective in learning such dynamics. Our Message Passing Layer (MPL) takes
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Table 1: Dataset statistics and symmetry property.
Dataset #Sample Mean #Pedestrian Max #Pedestrian Target ∆t Cyclic group #Elements
Corner 2813 13 31 4 90° Rotation and Reflection 2

T-Junction 5927 34 70 4 Reflection 2
Crossing-90° 6581 129 224 20 90° Rotation 4
Crossing-120° 10680 132 222 10 120° Rotation 3
Corridor-Uni. 17231 81 160 6 Reflection 2
Corridor-Bi. 10405 88 143 10 Reflection 2

Stadium Gate-Up 7461 97 197 10 Reflection 2
Stadium Gate-Low 7047 103 198 10 Reflection 2

the set of node embeddings h(l) (h(0) is initialized via Eq. 8) and edges e as input and outputs a transfor-
mation on h(l+1). Concisely, h(l+1) = MPL(h(l), e). The definition of message embeddings is as follows:

m
(l)
ij = ϕm(h(l−1)

i , h
(l−1)
j , aij), (9)

where ϕm denotes the MLP. aij are edge attributes that are the distance ||xi − xj ||2 between node i and j.
Then the nodes aggregate the message embeddings and update their embeddings as follows:

h
(l+1)
i = ϕh(h(l)

i ,
∑

j∈Ni

m
(l)
ij ) + h

(l)
i . (10)

Here the node embedding is updated via the skip connection. After L iterations of message passing, we
obtain the latent graph embeddings h

(L)
i .

Graph decoder There are two main designs to predict future positions from h(L). First, most existing
models Shi et al. (2023) rely on a simple MLP as the decoder, ignoring crucial interactions in high-density
crowds. Hence, h(L) is decoded by several message passing layers:

x(t+∆t) = x(t) + MPL(· · · (MPL(h(L), e), · · · ), e). (11)

The decoder outputs the change of crowd positions and the skip connection of the decoder’s last layer is
removed due to the dimension. Second, to increase model capacity and allow models to perform differently
for prediction and equivariant tasks, we use independent decoders for each task instead of shared decoders.

4 Experiments

4.1 Settings

Datasets Methods are evaluated on public pedestrian dynamic data1 that is built up by the Institute for
Advanced Simulation 7:Civil Safety Research of Forschungszentrum Jülich (Cao et al., 2017). The density
of these data is extremely high and their scenarios are specially designed for observing crowd dynamics.
Dataset statistics are shown in Table 1. The target time interval is determined by the space size and crowd
speed. For all datasets, 70%, 10%, and 20% are randomly split over time for training, validation, and
testing, respectively. We use the following five environments: (1) Crossing: crowds start from all entrances
and go through a 90°or 120°crossing; (2) Corridor: a crowd goes through a corridor unidirectionally or
bidirectionally; (3)Stadium Gate: a large number of pedestrians enter or leave the stadium through a
gate; (4) Corner: a large number of pedestrians move from one side of the corner to the other side; (5)T-
Junction: two groups of pedestrians entered from both sides of the T-junction and exited from the middle.
Note that our work focuses on modeling high-density crowd trajectories where the pedestrian space is severely
constrained by others and obstacles. Thus, we do not test our model on traditional human trajectory datasets
such as ETH/UCY (Pellegrini et al., 2009; Lerner et al., 2007) and GC (Zhou et al., 2012), where crowds
are sparse and more random.

1https://ped.fz-juelich.de/database/doku.php
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Table 2: MSE (in decimeters) of all models. Bold font indicates the best result and Underline is the
strongest baseline. We report both mean and standard deviation that are computed over 5 runs. Abs.
Improv. denotes absolute improvement.

Model Crossing Corridor Stadium Gate Corner T-Junction90 Degree 120 Degree Unidirectional Bidirectional Enter Leave
MLP 16.359± 0.001 14.224± 0.001 3.283± 0.001 5.984± 0.001 3.939± 0.001 5.622± 0.001 1.133± 0.001 0.962± 0.001

S-LSTM 13.690±0.067 12.451±0.030 2.961±0.003 5.116±0.016 3.148±0.008 4.585±0.039 0.943±0.013 0.804±0.004
TransF 12.682± 0.088 12.352± 0.030 3.061± 0.064 5.123± 0.009 3.106± 0.026 4.515± 0.011 0.924± 0.005 0.785± 0.005
GNS 1.609± 0.007 2.254± 0.093 0.191± 0.009 0.443± 0.013 0.391± 0.001 0.427± 0.011 0.100± 0.002 0.140± 0.001

EGNN 3.548± 0.951 2.900± 0.284 0.248± 0.054 0.899± 0.015 0.496± 0.030 0.612± 0.049 1.258± 0.008 0.323± 0.001
GMN 3.668± 0.240 3.957± 0.070 0.652± 0.129 0.789± 0.310 0.779± 0.108 0.866± 0.018 0.545± 0.004 0.246± 0.008

CrowdSim 1.421± 0.043 1.815± 0.043 0.167± 0.004 0.380± 0.019 0.314± 0.007 0.413± 0.032 0.107± 0.007 0.113± 0.001
SEGNO 2.279±0.859 5.789±5.311 0.694±0.234 0.981±1.229 0.331±0.210 0.415±0.016 0.513±0.012 0.261±0.059

CrowdEGL 0.530± 0.024 0.638± 0.044 0.056± 0.001 0.121± 0.008 0.119± 0.010 0.161± 0.009 0.073± 0.001 0.063± 0.001
Abs. Improv. 0.891 1.177 0.111 0.259 0.195 0.252 0.034 0.050

Baselines We compared CrowdEGL against various baselines including (1) basic MLP; (2) trajectory
forecasting models: S-LSTM (Alahi et al., 2016) and TransF (Giuliari et al., 2021); (3) fundamental GNNs:
GNS (Sanchez-Gonzalez et al., 2020), and CrowdSim (Shi et al., 2023); (3) equivariant GNNs: EGNN (Sator-
ras et al., 2021), GMN (Huang et al., 2022), and state-of-the-art SEGNO (Liu et al., 2024).

Evaluation metric Following previous studies (Shi et al., 2023; Satorras et al., 2021), we use Mean Square
Error (MSE) between model predictions and groundtruth to measure the single-step prediction performance.
For multi-step predictions, Average Displacement Error (ADE) and Final Displacement Error (FDE) are
utilized as metrics. They are the l2 distance of the predicted whole trajectory/endpoint to the ground truth
of the whole trajectory/endpoint.

Parameter settings We empirically find that the following hyperparameters generally work well, and use
them for all datasets: Adam optimizer with learning rate 0.0005, batch size 100, the hidden dimension 64,
weight decay 1 × 10−10, the message passing layer number 4 and the decoder layer number 2. All models are
trained for 5000 epochs with an early stopping strategy of 100. For CrowdEGL, the strength λ of equivariance
loss is turned from 0.1 to 1 with a step size of 0.1. All models are implemented based on Pytorch and PyG
library (Fey & Lenssen, 2019), trained on GeForce RTX 4090 GPU. The cyclic group used in CrowdEGL
can be found in Table 1.

4.2 Performance Comparison

In this section, we compare our model with baselines.

Overall performance Table 2 displays the performance of CrowdEGL and all baselines. From them, we
have the following observations:

• GNNs significantly outperform non-GNN models (i.e., MLP, S-LSTM, TransF), indicating the importance
of modeling interactions in high-density crowd dynamics. Although EGNN, GMN, and SEGNO consider
equivariance property as well, they underperform GNS and CrowdSim. These results show that strict
Euclidean group equivariant models are too strong to model the crowd dynamics and even have a negative
effect. For example, EGNN underperforms MLP in the Corner dataset.

• CrowdEGL consistently outperforms all baselines under all circumstances in a large gap. In particular,
CrowdEGL achieves 1.177 and 0.891 lower MSE than the runner-up model CrowdSim. Such improvement
verifies the effectiveness of learning a soft equivariance via data augmentation and a multi-channel GNN
backbone.

Multi-step prediction performance We additionally evaluate model performance on multi-step pre-
dictions as well. Following the previous work(Xu et al., 2023), the decoder is slightly modified to perform
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Figure 3: MSE (in decimeters) of multi-step predictions. CrowdEGL achieves the best performance.
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Figure 4: Visualization of CrowdSim and CrowdEGL predic-
tion of high-density crowds. Our method produces a crowd
distribution that is closer to the groundtruth.

0

5

15
20

25

30

10

35
40

M
SE

S-LSTM TransF GNS EGNN

GMN CrowdSim SEGNO CrowdEGL

Crossing Corridor

Figure 5: Generalization experiments.
90°Crossing: models are trained on tra-
jectories from the right and bottom en-
trances and tested on those from the left
and top. Corridor: models are trained on
left-to-right trajectories and tested in the
reversed direction.

multistep predictions. We set the timestep ∆t to 1 and aim to predict the future 10 steps. The results are
displayed in Figure 3. We can observe that CrowdEGL consistently outperforms baselines with the lowest
ADE and FDE, demonstrating its effectiveness.

Visualization. To gain more insights into the superior performance of CrowdEGL, the density of predicted
crowd positions of CrowdSim and CrowdEGL are visualized in Figure 4. We choose samples that have a
high density. Particularly, the pedestrian numbers are 199 and 217 in the case of Crossing 90°and 120°.
According to the visualization results, we can conclude that CrowdEGL accurately predicts the distribution
of all directions, while CrowdSim only captures the patterns in partial directions. For example, the x-axis of
CrowdSim output is similar to the ground truth, but it has an obvious difference on the y-axis. Such results
again demonstrate the effectiveness of our equivariant training framework.

Generalization ability To further investigate whether the proposed model learns the symmetry of crowd
dynamics, we conduct a generalization experiment on Corridor and 90°Crossing environments. For Corridor,
models are trained on left- to-right trajectories and tested in the reversed direction. Similarly, in 90°Crossing,
models are trained on trajectories from the right and bottom entrances and tested on those from the left
and top. The results are shown in Figure 5 where the results of MLP are omitted since they are too high.
Under such a situation, the performance of all baselines decreases by a large margin. In contrast, the test
error of CrowdEGL is still at a relatively low level.

Running time To compare the efficiency, we report the running time of all methods in the largest two
datasets (i.e., Crossing-120◦ and Corridor-Unidirectional) in Table 4. Results are run on GeForce RTX 4090
GPU. From the table, we can find that CrowdEGL has a comparable efficiency with CrowdSim.
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Table 3: Ablation Studies (in decimeters) on model designs. Results are computed over 5 runs. Rel.
Improv. denotes relative improvement.

Model Crossing Corridor Stadium Gate Corner T-Junction90 Degree 120 Degree Unidirectional Bidirectional Enter Leave
Only data augmentation 2.123±0.252 1.989±0.126 0.155±0.009 0.195±0.018 0.331±0.009 0.385±0.018 0.156±0.001 0.163±0.001

Shared decoder 1.494± 0.088 1.341± 0.031 0.101± 0.006 0.192± 0.011 0.204± 0.000 0.304± 0.024 0.114± 0.003 0.098± 0.001
MLP decoder 0.946± 0.001 1.010± 0.105 0.089± 0.004 0.201± 0.024 0.198± 0.000 0.207± 0.006 0.097± 0.001 0.088± 0.001

w/o Multi-channel 0.713± 0.001 0.743± 0.030 0.061± 0.003 0.160± 0.070 0.147± 0.007 0.199± 0.011 0.080± 0.001 0.066± 0.001
λ = 0 0.583± 0.086 0.730± 0.026 0.063± 0.005 0.130± 0.019 0.124± 0.004 0.186± 0.027 0.081± 0.001 0.065± 0.001

Default 0.530± 0.024 0.638± 0.044 0.056± 0.001 0.121± 0.008 0.119± 0.010 0.161± 0.009 0.073± 0.001 0.057± 0.001
Rel. Improv. 9.09% 12.60% 8.20% 6.92% 4.03% 13.44% 9.88% 12.31%

Table 4: Running time (in seconds) comparison on the largest two datasets. Results are run on GeForce
RTX 4090 GPU. Uni. is short for Unidirectional.

Dataset MLP S-LSTM TransF GNS EGNN GMN CrowdSim SEGNO CrowdEGL
Crossing-120◦ 1.493 2.190 3.150 4.608 5.513 4.534 3.331 3.136 3.643
Corridor-Uni. 2.000 2.583 3.217 3.220 3.886 4.004 3.060 3.428 3.280

4.3 Ablation Study

Model design To evaluate the benefits of our model designs, we compare CrowdEGL with five model
variants: (1) Only data augmentation: simply treat augmented data as observed trajectories to train the
GNN (without multi-channel and independent graph decoder); (2) Shared decoder: use the same decoder
for both prediction and equivariance tasks; (3) MLP decoder: replace graph decoders with MLPs; (4) w/o
Multi-channel: removes multi-channel inputs and only employ the original input features as initialize node
embedding; (5) λ = 0: remove equivariance loss by setting the hyperparameter λ to zero. Table 3 shows
the results of all models. We have the following findings:

• The straightforward solution, only employing data augmentation, underperforms all model variants, indi-
cating it is insufficient to model the challenging crowd dynamics. Utilizing a shared decoder in CrowdEGL
leads to a significant drop in performance, mainly because the models fail to distinguish the observed or
augmented data, reducing the quality of learned latent graph embeddings.

• MLP decoders underperform graph decoders. These observations suggest that modeling interactions are
essential in not only the encoding but also decoding processes, especially in the high-density case where
interactions are frequent and dense. Removing multi-channel information results in a local model and
enhances model errors, demonstrating that explicitly integrating the symmetric features in the encoder
can learn a better latent representation.

• Incorporating EGL largely improves the model performance in various environments by encoding equiv-
ariance in latent representations. Specifically, EGL achieves 12.60%, 13.44%, and 12.31% relative im-
provement on Crossing, Stadium Gate, and T-Junction datasets, respectively. Such results demonstrate
its effectiveness.

Performance w.r.t. crowd density To investigate the model performance on crowd density, we divide
the testing sample into 4 equal intervals according to the number of pedestrians. The results are shown in
Table 5. From the results, we can observe that the MSE decreases as the density increases, validating our
motivation.

Model performance w.r.t. λ It is crucial to control the degree of equivariance for real-world crowd
dynamics modeling. The sensitivity of λ on Crossing and Corridor datasets is illustrated in Figure 6.
According to the results, we can find that its values largely influence the model performance. A larger value
first leads to a lower error, and then enhances the error, indicating strict equivariance does not achieve better
performance for real-world crowd dynamics.
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Table 5: Mean square errors w.r.t. crowd density. Testing samples are divided into 4 equal intervals
according to the number of pedestrians. Uni. and Bi. denote Unidirectional and Bidirectional.

Density Crossing-90◦ Crossing-120◦ Corridor-Uni. Corridor-Bi.
42-95 96-149 150-206 207-262 126-179 180-233 234-287 288-343 49-88 89-128 129-170 171-212 41-74 75-108 109-143 144-179

MSE 2.371 0.710 0.570 0.384 6.009 1.138 0.532 0.343 0.184 0.069 0.053 0.039 0.792 0.149 0.102 0.079
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Figure 6: Model performance w.r.t. λ on Crossing
and Corridor.
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Figure 7: Equivariance error w.r.t. λ on Crossing
and Corridor. We scale the equivariance error of the
Corridor-Unidirectional by a factor of 10.
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Figure 8: Performance w.r.t. the multi-channel aggre-
gation function.

Multi-channel aggregation functions The
choice of multi-channel aggregation functions is the
basis for constructing an equivariant model. We re-
place the non-linear transformation of multi-channel
inputs in Eq.8 by Mean and Sum pooling and show
their results on Crossing and Corridor in Figure 8.
The key finding is that these permutation invari-
ant functions will significantly reduce model accu-
racy since they make the model invariant to group
transformation. Such invariance contradicts the equivariant nature of crowd dynamics, leading to poor
performance.

Equivariance error w.r.t. λ To provide insights into the imperfect equivariance of models, we can
computer the equivariance error of group g ∈ G as:

Leq = ||f(g ◦ x) − g ◦ f(x)||2. (12)

A smaller error indicates the model is more equivariant. If the model is exactly equivariant, the equivariance
error will be zero. We compute the average model equivariance errors of considered groups and display the
results in Figure 7. From the figure, we can find that employing equivariant training generally achieves lower
equivariance errors. A larger λ generally leads to a lower equivariance error in Crossing-90◦ and Corridor-
Unidirectional, while in Crossing-120◦ and Corridor-Bidirectional, the lowest equivariance errors are achieved
at around 0.4.

5 Related Work

5.1 Modeling crowd dynamics

Traditional methods simulate pedestrian behaviors, especially collision avoidance, based on expert knowl-
edge. Typical methods include rule-based (Reynolds, 1987), force-based (Helbing & Molnar, 1995; Saboia
& Goldenstein, 2012), and velocity-based models (Fiorini & Shiller, 1998). Nevertheless, the designed for-
mulas are insufficient to model complex and uncertain real-world dynamics. With the development of deep
learning, recent studies (Shi et al., 2023; Yu et al., 2023; Zhang et al., 2022) seek neural solutions to improve
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simulation performance. Another similar research line is pedestrian trajectory prediction (Alahi et al., 2016;
Gupta et al., 2018), whose goal is to predict pedestrians’ future positions based on their historical trajecto-
ries. However, they generally study the pedestrian trajectories in urban open spaces where interactions are
relatively sparse. Thus, they focus on capturing their sequential dependency via time-series models, such as
recurrent models (Alahi et al., 2016; Feng et al., 2018) and Transformer (Yu et al., 2020). Different from
the above studies, our target is to predict the future position of high-density crowds based on current states.
In this task, interactions are extremely dense and significantly affect crowd trajectories. Thus, we focus on
modeling such interactions via GNNs.

5.2 Graph Neural Netwoks

Equivariant graph neural networks Recently, to model the dynamics of particle systems (Huang et al.,
2022), researchers have proposed equivariant GNNs that meet specific symmetry constraints. They de-
sign provably equivariant message passing layers, which could be broadly classified into two types (Han
et al., 2022a). First, leverage irreducible representation to denote higher-order geometric features, such as
TFN (Thomas et al., 2018; Fuchs et al., 2020) and SEGNN (Brandstetter et al., 2022). Second, construct an
invariant scalarization message embedding like the inner product (Satorras et al., 2021; Huang et al., 2022;
Zheng et al., 2024). However, they can not be directly extended to pedestrian dynamics. Because of human
psychology and physiology, crowd trajectories might not be exactly the same after transformation. Further-
more, due to the boundary conditions, not all rotation/reflection/translation are valid in environments. In
this work, we propose to encourage the equivariance of backbone GNNs via self-supervised training, which
can flexibly control the degree of equivariance during the learning procedure. In contrast to the above works,
we study equivariant GNNs of a finite group.

Graph network-based simulators Due to the simplicity and effectiveness of graph networks, plenty of
studies (Sanchez-Gonzalez et al., 2020; Shi et al., 2023; Li et al., 2019; Allen et al., 2022; Pfaff et al., 2021)
have adopted them to simulate complex physical dynamics, including fluids, meshes, and rigid objects (Li
et al., 2019). They follow an encoder-processor-decoder framework. The core idea is to use a particle
representation of objects, then dynamically construct interaction graphs among them and perform multiple
steps of information propagation to model their interactive forces. Despite their promising empirical results,
these works have not adequately considered the symmetry of real-world crowd dynamics. As a result, they
fail to achieve satisfactory generalization ability to forecast crowd trajectories.

6 Conclusion and Future Work

In this work, we propose a novel CrowdEGL for modeling the trajectories of high-density crowds in various
environments. It learns a soft equivariant model via data augmentation and an additional equivariance
loss. We further design an advanced backbone to incorporate multi-channel inputs and employ independent
graph decoders to distinguish original and augmented tasks. Extensive experiments conducted on high-
density crowd trajectories in various environments demonstrate that CrowdEGL outperforms all competing
methods. Ablation studies have further substantiated the effectiveness of our model designs. For future
work, For future work, we will enhance CrowdEGL by designing multi-channel embedding without specific
input orders and generalize it to multi-environment scenarios instead of learning on a single environment.
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