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Abstract

To protect deep neural networks (DNNs) from adversarial attacks, adversarial
training (AT) is developed by incorporating adversarial examples (AEs) into model
training. Recent studies show that adversarial attacks disproportionately impact the
patterns within the phase of the sample’s frequency spectrum—typically containing
crucial semantic information—more than those in the amplitude, resulting in the
model’s erroneous categorization of AEs. We find that, by mixing the amplitude
of training samples’ frequency spectrum with those of distractor images for AT,
the model can be guided to focus on phase patterns unaffected by adversarial
perturbations. As a result, the model’s robustness can be improved. Unfortunately,
it is still challenging to select appropriate distractor images, which should mix
the amplitude without affecting the phase patterns. To this end, in this paper, we
propose an optimized Adversarial Amplitude Generator (AAG) to achieve a better
tradeoff between improving the model’s robustness and retaining phase patterns.
Based on this generator, together with an efficient AE production procedure, we
design a new Dual Adversarial Training (DAT) strategy. Experiments on various
datasets show that our proposed DAT leads to significantly improved robustness
against diverse adversarial attacks. The source code is available at https://
github.com/Feng-peng-Li/DAT.

1 Introduction

DNNs have been successfully applied to various tasks [21, 32, 25]. However, recent studies reveal
that DNNs are vulnerable to adversarial examples (AEs), created by applying subtle yet deceptive
adversarial perturbations to benign samples [40, 51]. Such vulnerabilities have sparked considerable
interests, leading to the development of numerous adversarial attacks designed to deceive DNNs
[40, 19, 39, 13, 20, 5, 6]. Furthermore, serious concerns about the trustworthiness of artificial
intelligence have been raised, due to these fundamental vulnerabilities [47, 37]. To mitigate these
threats, adversarial training (AT) has been developed to enhance model robustness by incorporating
AEs into training through a min-max strategy [40, 61, 38]. Based on the typical method, PGD-AT
[40], a variety of AT strategies have been devised [38, 29, 37] (see Appendix B for related works).

For image signals transformed into the frequency domain using, e.g. the discrete Fourier transform
(DFT), several AT works [59, 52, 53, 43] explore the adversarial attacks’ behavior on sample’s
frequency spectrum. Frequency spectra consist of amplitude and phase; the amplitude typically
captures stylistic information, whereas the phase encompasses richer semantics [7]. Recent studies
[58, 63] find, as shown in Figure 1, that adversarial attacks often severely eliminate some semantics
in the phase, making it difficult for models to extract features for correctly predicting AEs, while the
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impacts on amplitude are relatively mild. Moreover, by forcing the model to focus on phase patterns,
[7, 63] confirm the model can learn more features unaffected by image corruptions, e.g., Gaussian
noise and defocus blur, improving the model’s performance on corrupted samples.
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Patterns SpectrumPatterns Spectrum

Amplitude

Figure 1: The adversarial perturbation severely damages phase
patterns (especially in red rectangular) and the frequency spec-
trum, while amplitude patterns are rarely impacted. The AE is
generated by PGD-20 ℓ∞-bounded with radius 8/255.

To explore the impact of ad-
versarial perturbations on phase
and amplitude patterns respec-
tively, we conduct some stud-
ies (see Sec. 2 for details). We
find that the standard model
trained without AT has worse
performance on samples with
adversarial phase patterns than
those with adversarial amplitude
ones. Unlike the standard model,
AT enhances the model’s robust-
ness against both phase- and
amplitude-level adversarial per-
turbations, with a more notice-
able improvement against adver-
sarial perturbations on phase pat-
terns. This indicates the potential
for improving the model’s robust-
ness by focusing on phase patterns unaffected by adversarial perturbations in AT. Then, by mixing
the training samples’ amplitude with randomly selected distractor, we observe that the robust model
performance, particularly at adversarial phase patterns, is further enhanced, without impacting that at
adversarial amplitude ones. This demonstrates that training samples with mixed amplitude improve
the model’s performance on AEs, and maintain the model’s robustness on amplitude-level.

Inspired by these observations, we in this work propose a new Dual Adversarial Training (DAT)
strategy by focusing on the phase patterns, with two adversarial procedures: adversarial amplitude
generation and efficient AE production. Specifically, to guide the model to learn more phase patterns,
we first attempt to mix the amplitude of training samples’ frequency spectra with randomly selected
distractor images. However, when the disparity between the distractor and the original image is too
large, the recombined ones tend to disrupt original phase patterns, hindering the model from predicting
AE correctly. Conversely, it is difficult for models to focus on phase patterns when the distractor
closely resembles the original one [7]. To tackle this challenge, we propose an optimized Adversarial
Amplitude Generator (AAG) to synthesize an adversarial amplitude, maximizing the model loss
and limiting the model fitting amplitude patterns, thereby the model focusing on phase patterns for
convergence. During the training process, the AAG and robust model are optimized jointly with
the original and recombined images, together with their AEs. The robust model undergoes training
by empirical risk minimization, and maximizes the model loss to update the AAG adversarially.
Experiments across various benchmarks against a range of adversarial attacks confirm the superior
effectiveness of our proposed DAT, surpassing state-of-the-art methods in robustness with big margins.

Contribution. The contributions of this work can be summarized as:

• We verify that adversarial perturbations significantly influence phase patterns, resulting in the
model’s difficulty for predicting AEs correctly. Moreover, by mixing the amplitude of a training
image with that of a distractor, we find that the model robustness against AEs can be enhanced.

• We propose the novel DAT strategy with an optimized AAG to synthesize an adversarial amplitude.
With the AAG, we enforce the model to better focus on phase patterns, enhancing the model’s
robustness. Also, an efficient AE generation module is incorporated to improve the AT’s efficiency.

• Experiments on multiple datasets confirm that DAT significantly enhances the model’s robustness
against a variety of adversarial attacks. Specifically, DAT increases the model’s robustness by
∼2.1% on CIFAR-10, ∼2.2% on CIFAR-100, and ∼2.3% on Tiny ImageNet, on average.

Notation. Let D = {(xi, yi)}Ni=1 be a benign dataset comprising N samples from c classes, where
each sample xi ∈ X ⊆ RC×H×W is an image with C channels, height H , and width W , and its
label yi ∈ [c] = {1, . . . , c} . fθ : X → Rc denotes a DNN function parameterized by θ ∈ Rd,
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(a) Standard model
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(b) Robust model
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(c) Perturbed model

Figure 2: Test accuracy (%) on CIFAR-10 of (a) standard, (b) robust, and (c) amplitude-perturbed
ResNet-18. "Adv Amp./Pha." refers to x′

amp/x
′
pha. AEs are generated by PGD-20, C&W∞, FAB,

and Square, with ℓ∞-bounded perturbation budget ϵ = 8/255 and inner step α = 2/255. The robust
and perturbed models are trained by PGD-AT-10 following [40].

and Fθ(x) = argmaxy∈[c] fθ(x)y is the predicted label of x. Moreover, fθ = g ◦ h , where h
is the feature extractor and g is the classifier. Let H ⊆ Rm be the m-dimensional feature space,
hi : X → R be a feature mapping function, and h(x) = [h1(x), . . . , hm(x)]

⊤ ∈ H denote the
feature map of x. Specifically, features induced from the amplitude and phase patterns of x are ha(x)
and hp(x), respectively. Define Sϵ[x] = {x′ : ∥x′ − x∥∞ ⩽ ϵ} as an ℓ∞-ball centered on x with
radius ϵ. Let F(·) and F−1(·, ·) denote the DFT and inverse DFT (IDFT) functions. Typically, DFT
is independently applied to each channel of an image x within the pixel space as:

F(x)(u, v) =

H∑
h=1

W∑
w=1

x(h,w) e−i2π(u h
H +v w

W ),

where (h,w) denotes the pixel coordinates of x, and (u, v) ∈ [H]× [W ] signifies coordinates in the
frequency domain. The real and imaginary parts of F(x) are denoted by Re(F(x)) and Im(F(x)),
respectively. Then, the amplitude spectrum A(x) and phase spectrum P(x) are

A(x) =
(
Re2(F(x)) + Im2(F(x))

) 1
2 , P(x) = arctan

(
Im(F(x))

Re(F(x))

)
. (1)

2 Motivation: On Improving Adversarial Robustness in Frequency Domain

To investigate the approach to enhance the model robustness and show the motivation of DAT, we
perform exploration experiments in this section. As shown in Figure 1, adversarial perturbations
severely compromise the semantics within phase patterns, resulting in the difficulty of the model
predicting AEs correctly. Consequently, we examine the distinct effects of adversarial perturbations
on amplitude and phase patterns. To achieve this target, we employ the standard and robust models,
trained without and with AT as [40] on Dt (the training subset of CIFAR-10). Moreover, on training
samples with perturbed amplitude, the model tends to focus on phase patterns, in order to achieve the
convergence [7, 58]. Following this line, we discuss the impact of perturbing amplitude by mixing the
amplitude of training samples with those of distractors randomly selected from Dt. For (x, y) ∈ Dt,
the recombined sample x̂ is generated by amplitude-level mixing operations and IDFT, namely,

x̂ = F−1(λ · A(x0) + (1− λ) · A(x),P(x)), λ ∼ Uniform(0, 1), (2)

where x0 is the distractor i.i.d. drawn from Dt. We use (x̂, y) to construct a dataset Dr and train the
perturbed model on it as [40]. Then, for (x, y) ∈ De (the testing subset of CIFAR-10), we generate
AE x′ by four representative adversarial attacks (PGD, C&W, FAB, and Square) and utilize DFT to
derive the amplitude and phase of frequency spectra of both x and x′. Furthermore, images composed
of adversarial amplitude/phase and benign phase/amplitude (denoted by x′

amp/x
′
pha) are obtained by

x′
amp = F−1(A(x′),P(x)), x′

pha = F−1(A(x),P(x′)).

For each (x, y) ∈ De, with every adopted adversarial attack, we use (x′, y), (x′
amp, y) and (x′

pha, y)
to combine evaluation datasets DAE, Damp and Dpha, which are used to evaluate the robustness of
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Figure 3: The overview of DAT, which consists of three stages: (I) adversarial amplitude generation,
(II) AE generation, and (III) joint optimization.

the standard, robust, and perturbed models, respectively. The experimental outcomes are illustrated
in Figure 2, from which we can draw the following conclusion:

Impact of Adversarial Attacks. As shown in Figure 2a, under all four attacks, the standard model
completely cannot predict samples in DAE. Moreover, the standard model exhibits higher test
accuracy on Damp than that on Dpha. These results suggest that adversarial attacks have a more
substantial impact on the phase patterns than amplitude ones.

Impact of AT. As depicted in Figure 2b, AT simultaneously enhances the model’s performance on
DAE and Damp and Dpha, in comparison to the standard model. Notably, the robust model exhibits
superior performance on Dpha over Damp, contrary to the standard model. That indicates the AT
helps the model learn more phase patterns unaffected by adversarial attacks, enhancing the model’s
robustness on both adversarial phase patterns and AEs. The phenomena indicate that by forcing the
model to focus on the phase patterns of samples, the model’s robustness can be improved further.

Impact of Mixing Amplitude. As shown in Figure 2c, for the perturbed model trained with AT on
Dr, compared with the robust one, its performance on DAE and Dpha is improved further, while
the performance on Damp is rarely changed. From these results, we can conclude that mixing the
amplitude with that of the randomly selected distractor can force the model to focus on phase patterns,
learning more patterns within the phase unaffected by adversarial perturbations. Then, the model’s
robustness on AEs is improved further, while robustness on amplitude patterns is retained.

Following the insight from these studies, we propose DAT to enhance the model’s robustness, mixing
training sample’s amplitude with an adversarial one, generated by the adversarially optimized AAG.

3 Methodology

In this section, the details of our proposed DAT are introduced and analyzed. As illustrated in Figure 3,
DAT consists of three stages. It first adopts the AAG Gψ to generate adversarial amplitude and obtain
the recombined data for benign ones in Stage I. With the proposed loss LAE in Stage II, we produce
the AEs for both benign and recombined samples. Then, taking both benign and recombined samples,
total loss LDAT for DAT are minimized to update robust model fθ, and maximized to optimize Gψ
adversarially in Stage III. Stages I and III involve the adversarially trained AAG Gψ and commonly
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updated model fθ, both of which share the LDAT and optimized jointly following the objective as:

min
θ

E(x,y)∼D

[
max
ψ

Ex̂∼p(x̂|x,ψ) [LDAT(fθ(x), fθ(x̂), y)]

]
, (3)

where x̂ is the recombined data of x, following a sample-dependent conditional distribution p(x̂|x,ψ).
Stage II encompasses an efficient AE generation method, optimized using the proposed loss LAE as:

max
x′∈Sϵ[x]

E(x,y)∼D [LAE(fθ(x), fθ(x
′), y)]. (4)

Following the order of these three stages, we introduce (I) AAG in Sec. 3.1 and (II) the efficient
AE generation in Sec. 3.2. Subsequently, building on these components, Sec. 3.3 details (III) the
joint optimization. Ultimately, Sec. 3.4 theoretically analyzes the mechanism of how the adversarial
amplitude spectrum generated by AAG enforces the model to focus on the phase-level patterns.

3.1 Adversarial Amplitude Generator

To explain the proposed AAG, we first introduce some constraints that the recombined x̂ with
perturbed amplitude is expected to meet. With a small ϵ1 > 0 and an ϵ2 ≫ ϵ1 , ideally, we expect x̂
of (x, y) ∈ D based on the generated adversarial amplitude to satisfy the following three conditions:

• C1. |hp(x)− hp(x̂)| < ϵ1: Ensuring x̂ retains the same semantics in the phase spectrum as x.

• C2. Fθ(x) = Fθ(x̂): Ensuring x̂ remains distinguishable with the same label as x by fθ.

• C3. |ha(x)− ha(x̂)| > ϵ2: Making x̂ maximize the LDAT, causing the model’s difficulty fitting
the amplitude of images, and forcing the model to focus on phase patterns.

Let us first analyze the above conditions C1-C3 when a randomly selected distractor image is used.
Since x̂ is recombined by the mixed amplitude with the distractor and original phase of x, then, C1
can be easily satisfied. As stated in Sec. 1, when the gap between the randomly selected distractor
and training sample is too large, the P(x)’s information can be damaged, resulting in the inconsistent
prediction between the x and x̂, destroying the C1 and C2. Conversely, it is difficult to satisfy C3,
limiting the model’s attention to the patterns in P(x). The above statement indicates that it is difficult
for x̂, using the amplitude of the randomly selected distractor, to meet the above three constraints.

Instead of searching for an appropriate distractor, we here resort to a generative approach, i.e.,
developing Gψ to generate an adversarial amplitude AG(x) as

AG(x) = Gψ(z, fθ(x)), where z
i.i.d.∼ N (0, I).

For efficient training, Gψ is constructed by four linear layers (detailed architecture in Appendix E.2).
Moreover, the input with fθ(x) can ease the difficulty of Gψ’s convergence. With Gψ , since x̂ is still
recombined by AG(x) and the P(x), then, C1 is satisfied. For the outer minimization in Eq. (3), we
retain the label of x̂ same as x, minimizing LDAT to update fθ , meeting the C2. To meets C3, Gψ is
optimized adversarially by maximizing the LDAT (further details in Sec. 3.3), shown as the inner step
in Eq. (3). Thereby, x̂ can limit fθ to fit amplitude information. To achieve the convergence, fθ has
to focus on patterns in P(x), learning more phase patterns unaffected by adversarial perturbations.

Since Gψ is adversarially trained by maximizing the LDAT, AG(x) is likely to compromise semantic
integrity [63], hindering fθ to retain the prediction consistency between x̂ and x [31]. Moreover, due
to the loss of original amplitude information, using AG(x) to replace A(x) entirely can also hurt the
model’s robustness [58]. As shown in Sec. 2, the mix-up operation on amplitude rarely has impact on
the amplitude level robustness. That indicates the linear mix-up operation can preserve the energy
of the amplitude spectrum and maintain the original amplitude information with less impact on the
sample’s original information. Otherwise, the original amplitude could be compromised, thereby
hindering accurate model predictions. Following this line, a mix-up operation is employed, ensuring
that a portion of the original amplitude information is preserved following:

Amix(x) = λ · AG(x) + (1− λ) · A(x), where λ ∼ U(0, 1).
The mix-up operation effectively satisfies C1 and C2, ensuring x̂ remains distinguishable by fθ , and
keeping P(x̂)’s patterns closer to those in P(x) in manifold. Finally, x̂ is obtained by IDFT as

x̂ = F−1(Amix(x),P(x)).

To elaborate on Gψ, we perform some experiments and provide visual results in Appendixes C
and F.7. Now we can use x̂ as an augmentation of x, introduced to Stage II for generating AEs.
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3.2 Efficient Adversarial Example Generation

Since both x and x̂ are fed into Stage II for generating AE, it doubles the time consumption if we use
the same AE generation strategies as existing methods, e.g., PGD-AT [40] and TRADES [39]. To
improve the training efficiency of DAT, we now suggest an efficient AE generation strategy. Since
simply reducing the iteration step results in the difficulty of AEs’ reaching the actual maximum in the
ℓ∞-ball [49], we propose the loss LAE to increase adversarial perturbation length in each iteration as

LAE(fθ(x), fθ(x
′), y) = LCE(fθ(x

′), y) + β · DKL(fθ(x
′), fθ(x)), (5)

where β is a weighting parameter, and LCE and DKL are cross-entropy (CE) loss and Kullback-Leibler
(KL) divergence. According to [49, 50], it is effective to enlarge adversarial perturbation length
for each step by maximizing the distance between fθ(x) and fθ(x

′). Following this line, based on
PGD-AT maximizing the LCE, the proposed LAE increases the adversarial perturbation step length
by maximizing the KL divergence between benign sample and its AE. Then, with LAE, AEs can
use fewer iterative steps to achieve the actual maximum in the ℓ∞-ball. As shown by experiments
in Appendix F.5, DAT only needs 5 steps to generate AEs for both benign x and recombined x′,
significantly reducing the training time while maintaining the model’s robustness. Enlarging the inner
step size α (in Eq. (10) of Appendix B.3) can also increase the adversarial perturbation length in each
iteration. Due to the fact that the current AT methods typically employ a fixed α, we adopt an extra
loss term for fair experimental comparisons. More details on the AE generation procedure, including
pseudocodes and experimental analyses, are in Appendixes A.1, F.3 and F.5.

With the AAG and efficient AE generation, Stage III attempts to improve the model’s robustness.

3.3 Joint Optimization

After the introduction to Stages I and II, we now delve into specifics of Stage III, joint optimization,
where fθ and Gψ are optimized jointly following the objective as Eq. (3). In Stage III, to satisfy C2
in Sec. 3.1, keeping x̂ with the same label as x by fθ , recombined and benign samples and their AEs
are fed into DAT for the model training, also reducing the negative impact of amplitude information
loss. Moreover, LDAT needs to be minimized on benign and recombined samples’ AEs to enhance
the robustness of fθ, enforcing fθ to focus on the phase patterns in the meanwhile. For commonly
updating θ and adversarially renewing ψ, we introduce the designed loss terms LDAT as:

LDAT(fθ(x), fθ(x̂), y) =
1

2
(LAT(fθ(x), y) + LAT(fθ(x̂), y)) + ω · DJS(fθ(x), fθ(x̂)), (6)

where LAT and DJS are adversarial training and consistency regularization losses respectively, and ω
is the weighting parameter for DJS. We discuss LAT and DJS below separately.

Adversarial Training Loss LAT. LAT is the loss used to guide fθ to learn robust features on AEs
against adversarial attacks. As shown in Figure 1, although adversarial perturbations significantly
damage phase patterns, there are still some unaffected features in the phase of AEs, important for fθ
to categorize AEs correctly. Since these unaffected phase patterns contain adversarial perturbations,
it is difficult for fθ to learn these features only with AEs. Therefore, we utilize benign samples
and their AEs in AT, guiding the model to learn their shared features, significant for improving fθ’s
robustness. Following this line, LAT for (x, y) ∈ D with AE x′ can be expressed as:

LAT(fθ(x), y) = LCE(fθ(x), y) + β · DKL(fθ(x
′), fθ(x)),

where β is the weighting parameter identical to that in Eq. (5). x̂ adopts the same AT loss as that of x.

Consistency Regularization Loss DJS. DJS is the loss used to preserve the prediction consistency
between x and x̂. In DAT, the amplitude of x̂’s frequency spectrum is mixed with the adversarial
one generated by Gψ, maximizing LDAT, showing the large gap between ha(x) and ha(x̂). Since
x̂ has the same phase patterns as x, keeping the prediction consistency between x and x̂ can make
the model learn more phase patterns further, enhancing the model’s robustness. Inspired by the
mechanism, we use the Jensen–Shannon (JS) divergence DJS to ensure the prediction consistency as:

DJS(fθ(x), fθ(x̂)) =
1

2

(
DKL

(fθ(x) + fθ(x̂)

2
, fθ(x)

)
+DKL

(fθ(x) + fθ(x̂)

2
, fθ(x̂)

))
. (7)

This concludes the introduction to LDAT. Notably, during the model training of DAT, the gap of
batch normalization (BN) parameters between x and x̂ is quite large (details in Appendix D), posing
challenges to model’s convergence. To remedy this, we adopt different BNs for x and x̂ during
training. Please refer to the pseudocode of DAT in Appendix A.2 for a comprehensive presentation.
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3.4 Theoretical Analysis

Through a convergence analysis of the empirical risk, this section theoretically discusses the effects
of DAT on the model to focus on phase patterns. Detailed proofs are provided in Appendix G.
Concretely, we instantiate g as a linear softmax classifier W = [w1, ...,wc] ∈ Rm×c on top of the
learned features h. Generally, for (x, y) ∈ D, suppose T (x) represents the augmented distribution
over data points, where x can be transformed as anyone in {x,x′, x̂, x̂′}. Then, the augmented data
for x can be denoted as t(x) ∼ T (x) . Since the augmentation will increase the discrepancy between
original and augmented distributions w.h.p., we can establish a common assumption.
Assumption 3.1. Assume ET [∥h(t(x))− h(x)∥] > ε0 , where ε0 > 0 is a relatively large value.
Since only the amplitude spectrum is perturbed in the proposed DAT, it is reasonable that

ET [|ha(t(x))− ha(x)|] > ET [|hp(t(x))− hp(x)|].

Theorem 3.2 (Weight Regularization of Amplitude Features). Grant Assumption 3.1, when the
empirical risk R̂ is minimized with some convex loss function L (e.g. CE loss):

R̂(W) :=
1

|D|
∑

(x,y)∈D

Et(x)∼T (x)

[
L
(
W⊤h(t(x)), y

)]
,

we have wj,a → 0 for all j ∈ [c], where wj,a is the corresponding weights of amplitude features ha.

Corollary 3.3. Suppose the predicted probability fw(x) = [p1, . . . , pc]
⊤, where

pi =
exp(w⊤

i h)∑c
j=1 exp(w

⊤
j h)

=
1∑c

j=1 exp((wj −wi)⊤h)
.

For every i, j ∈ [c], we have (wi,a − wj,a)ha → 0 .
Remark. Theorem 3.2 suggests that for weights wj,a corresponding to features ha derived from
amplitude pattern, minimizing the empirical risk R̂ regularizes it to 0. As a result, it is difficult for the
model to fit the adversarial amplitude generated by AAG. In order to converge, the model needs to
reduce the reliance on ha by restricting wj,a. Hence, the model would mitigate the impact of ha on
the predicted labels, as shown in Corollary 3.3, and pay more attention to features hp derived from
phase patterns, capturing more phase patterns unaffected by adversarial attacks. Therefore, we can
verify the effectiveness of DAT in enhancing the model’s robustness.

4 Experiments

In this section, we perform experiments to verify the effectiveness of DAT and explore the function
of some DAT’s parts. Sec. 4.1 shows experimental setups. Sec. 4.2 compares the model’s robustness
with existing AT methods with fixed ϵ and α. Sec. 4.3 compares DAT with existing AT methods over
complex strategy, e.g., AWP and SWA. Sec. 4.4 presents the analysis of ablation studies.

4.1 Experimental Setup

Experimental and Evaluation Settings. We select three datasets: CIFAR-10, CIFAR-100, and
Tiny ImageNet [17]. For all experiments in this work, ResNet-18, WideResNet-28-10 (WRN-28-10),
and WideResNet-34-10 (WRN-34-10) are used as model architectures (experiments are attached to
Appendix F.1), with β = 15 and ω = 2 (exploration in Appendix F.4). During training, the inner
step size is fixed as α = 2/255 to generate adversarial perturbation ℓ∞-bounded with constant radius
ϵ = 8/255 following [29, 37, 33] (details in Appendixes E.1 and E.2).

Baselines. We compare results with PGD-AT [40], TRADES [61], MART [54], and recent AT
methods with competitive performance: LAS-AT [29], SCARL [33], and ST [37]. We also compare
the DAT with OA-AT [2], DAJAT [1], and IDBH [35], which uses extra strategies, e.g., AWP [56]
and SWA [28]. Introduction and details of baselines are attached in Appendixes B.2 and E.3.

4.2 Comparison with Common Methods

In this subsection, we compare the robustness of DAT with common methods that use fixed ϵ
and α during the training procedure. Table 1 displays the results on CIFAR-10, CIFAR-100, and
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Table 1: Average natural and robust accuracy (%) of ResNet-18 against ℓ∞ threat with ϵ = 8/255 in 7
runs. The best results are boldfaced.

DATASET METHOD Natural FGSM PGD-20 PGD-100 C&W∞ AA

CIFAR-10

PGD-AT [40] 82.78±0.12 56.94±0.17 51.30±0.16 50.88±0.26 49.72±0.24 47.63±0.08
TRADES [61] 82.41±0.12 58.47±0.19 52.76±0.08 52.47±0.13 50.43±0.17 49.37±0.08
MART [54] 80.70±0.17 58.91±0.24 54.02±0.29 53.38±0.30 49.35±0.27 47.49±0.23
ST [37] 83.10±0.10 59.42±0.32 54.53±0.14 54.31±0.17 51.35±0.21 50.51±0.17
SCARL [33] 80.67±0.31 58.32±0.13 54.24±0.17 54.10±0.13 51.93±0.15 50.45±0.11
DAT (Ours) 84.17±0.21 62.06±0.19 57.55±0.15 57.47±0.17 52.59±0.13 51.36±0.14
TRADES+AWP 81.16±0.12 57.86±0.14 54.56±0.06 54.45±0.14 50.95±0.12 50.31±0.10
SCARL+AWP 81.46±0.15 59.26±0.16 55.38±0.14 55.27±0.13 52.15±0.15 51.08±0.11
DAT+AWP (Ours) 82.63±0.15 62.78±0.21 58.87±0.12 58.78±0.15 52.88±0.21 52.54±0.12

CIFAR-100

PGD-AT [40] 57.27±0.21 31.81±0.11 28.66±0.11 28.49±0.16 26.89±0.08 24.60±0.04
TRADES [61] 57.94±0.15 32.37±0.18 29.25±0.18 29.10±0.20 25.88±0.16 24.71±0.04
MART [54] 55.03±0.10 33.12±0.26 30.32±0.18 30.20±0.17 26.60±0.11 25.13±0.15
ST [37] 58.44±0.12 33.35±0.23 30.53±0.13 30.39±0.17 26.70±0.20 25.61±0.07
SCARL [33] 57.63±0.11 33.14±0.19 30.83±0.24 30.77±0.21 26.86±0.16 25.82±0.19
DAT (Ours) 62.57±0.17 36.63±0.12 33.37±0.15 33.15±0.12 28.34±0.14 27.11±0.15
TRADES+AWP 58.76±0.07 33.82±0.15 31.53±0.14 31.42±0.12 27.03±0.16 26.06±0.12
SCARL+AWP 58.36±0.12 34.25±0.14 32.32±0.14 32.26±0.13 27.92±0.11 26.83±0.15
DAT+AWP (Ours) 63.28±0.11 38.22±0.14 35.29±0.13 35.18±0.12 29.43±0.17 28.09±0.12

Tiny ImageNet

PGD-AT [40] 46.36±0.22 23.49±0.39 20.41±0.29 20.35±0.37 17.86±0.28 14.46±0.31
TRADES [61] 43.65±0.35 21.37±0.48 18.62±0.48 18.56±0.33 15.38±0.35 13.32±0.41
LAS-AT [29] 45.27±0.35 24.64±0.24 21.82±0.27 21.72±0.23 18.07±0.25 16.25±0.22
SCARL [33] 49.75±0.17 25.52±0.16 22.64±0.11 22.58±0.18 18.77±0.27 16.31±0.14
DAT (Ours) 52.45±0.21 28.45±0.15 25.47±0.12 25.36±0.14 20.39±0.17 17.51±0.19
TRADES+AWP 46.64±0.35 26.58±0.19 22.31±0.20 22.28±0.12 17.84±0.11 15.34±0.12
LAS-AT+AWP 46.85±0.13 25.76±0.12 23.30±0.11 23.05±0.15 19.68±0.11 17.98±0.15
DAT+AWP (Ours) 53.29±0.25 30.91±0.11 27.25±0.13 27.18±0.16 22.12±0.12 19.29±0.13

Table 2: Average natural and robust accuracy (%) of WRN-34-10 against ℓ∞ threat with ϵ = 8/255 in
7 runs. The best results are boldfaced.

METHOD
DATASET CIFAR-10 CIFAR-100

Natural PGD-100 C&W∞ AA Natural PGD-100 C&W∞ AA

PGD-AT [40] 85.37±0.74 54.61±0.68 53.42±0.82 52.03±0.68 60.63±1.17 30.83±0.51 30.21±0.83 27.93±0.57
TRADES [61] 85.54±0.59 56.04±0.45 53.91±0.46 53.37±0.51 61.26±0.39 33.11±0.42 30.24±0.58 28.32±0.62
MART [54] 85.13±0.52 58.72±0.66 53.02±0.37 51.61±0.48 60.52±0.62 32.34±0.62 29.07±0.43 25.91±0.36
LAS-AT [29] 86.07±0.31 55.97±0.47 55.49±0.54 53.34±0.42 61.87±0.57 32.21±0.45 30.47±0.34 28.91±0.39
SCARL [33] 84.41±0.23 57.81±0.65 56.21±0.47 54.37±0.29 62.41±0.36 34.19±0.46 30.53±0.31 29.52±0.33
DAT (Ours) 86.78±0.42 61.32±0.24 57.62±0.34 56.46±0.33 64.53±0.25 36.75±0.43 32.21±0.27 30.79±0.17

Tiny ImageNet using ResNet-18. Compared with existing methods, DAT not only improves the
model’s robustness but also enhances the natural accuracy. On CIFAR-10, DAT achieves an average
improvement of ∼2.9% against FGSM, PGD-20, and PGD-100. For challenging C&W∞ and AA,
DAT obtains ∼0.66% and ∼0.85% improvement, respectively. Specifically, since SCARL adopts
a contrastive learning strategy, DAT achieves less improvement against C&W∞ compared to it.
CIFAR-100 contains more classes but fewer samples for each class, thereby making it challenging
for AT. DAT enhances the model’s robustness by ∼2.7% on average against FGSM, PGD-20, and
PGD-100 compared to the existing methods. For the demanding C&W∞ and AA, the model’s
robustness is improved by ∼1.5% and ∼1.3%. On the intricate real-world dataset Tiny ImageNet,
DAT achieves ∼2.9% better performance against FGSM, PGD-20, and PGD-100. For the challenging
C&W∞ and AA, we enhance the model’s robustness by ∼1.6% and ∼1.2%. AWP is proved to be an
effective method for protecting the model from robust overfitting. To further improve the model’s
robustness, we combine DAT with AWP, and compare the performance with the combination of
various existing methods and AWP fairly. Since a few methods provide the codes for the combination
with AWP, we choose only these methods for comparison. As shown in Table 1, the combination of
DAT and AWP improves the model’s robustness further and still outperforms previous methods.

Large-capacity models usually have better adversarial robustness. Thus, we also perform comparative
experiments using WRN-34-10 on CIFAR-10 and CIFAR-100, as shown in Table 2. Compared
to existing methods, DAT still retains better performance and has a lower negative impact on the
model’s natural accuracy, achieving ∼1.51%, ∼0.63%, and ∼1.31% robust accuracy improvement
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Table 3: The average experimental results for methods with complex strategies against ℓ∞ threat
model with ϵ = 8/255 in 7 runs. The best results are boldfaced.

METHOD DATASET

ARCHITECTURE ResNet-18 WRN-34-10

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

PGD-20 AA PGD-20 AA PGD-20 AA PGD-20 AA

TRADES+AWP 54.56±0.06 50.31±0.10 31.53±0.14 26.06±0.12 59.26±0.24 55.28±0.21 34.48±0.26 29.74±0.21
TRADES+AWP+SWA 55.21±0.24 51.14±0.13 31.72±0.23 26.21±0.15 60.25±0.26 55.37±0.15 35.16±0.23 29.92±0.16
OA-AT (SWA+variable ϵ and α) [2] 56.47±0.37 50.83±0.24 32.63±0.25 26.84±0.36 60.49±0.31 57.91±0.18 36.18±0.27 30.35±0.23
DAJAT (AWP+SWA+variable ϵ&α) [1] 56.52±0.47 51.85±0.26 32.96±0.32 27.83±0.29 62.34±0.35 56.62±0.23 37.05±0.14 31.51±0.17
IDBH (AWP+SWA+variable ϵ) [35] 57.48±0.34 52.31±0.26 33.67±0.27 27.86±0.32 62.47±0.23 57.64±0.26 36.46±0.23 31.34±0.22
DAT+AWP (Ours) 58.57±0.14 52.54±0.12 35.29±0.13 28.09±0.12 63.34±0.18 57.96±0.16 38.41±0.17 31.62±0.12
DAT+AWP+SWA (Ours) 58.84±0.16 52.76±0.14 35.47±0.11 28.31±0.13 63.65±0.19 58.12±0.18 38.59±0.16 31.81±0.12

Table 4: Results of ablation studies with ResNet-18 against ℓ∞ with ϵ = 8/255 average in 7 runs.

METHOD
DATASET CIFAR-10 CIFAR-100

Natural PGD-20 AA Natural PGD-20 AA

Baseline 82.87±0.46 52.76±0.51 49.52±0.62 58.27±0.52 29.89±0.58 24.92±0.39
DAT w/o DJS 83.76±0.49 57.06±0.51 51.25±0.22 60.92±0.46 32.83±0.47 26.53±0.28
DAT w/o Mix-up 81.45±0.49 55.64±0.54 50.13±0.35 59.84±0.42 30.83±0.46 25.41±0.29
DAT w/o Split BN 82.37±0.43 53.07±0.53 46.53±0.32 56.51±0.55 28.47±0.34 24.91±0.39
DAT w/o AAG 83.41±0.53 55.32±0.62 49.81±0.31 62.19±0.73 30.27±0.66 25.82±0.42
DAT 84.17±0.21 57.55±0.15 51.36±0.14 62.57±0.17 33.37±0.15 27.11±0.15

on CIFAR-10 with WRN-34-10. On CIFAR-100, the robustness obtained by DAT is enhanced by
∼2.56%, ∼1.68%, and ∼1.27%, showing significant improvement compared to existing methods.

4.3 Comparison with Complex Strategy Based Methods

After the comparison of common methods, we then demonstrate the performance of some existing
methods with extra strategies, e.g., AWP and SWA. Addepalli et al. [1] find that variable ϵ and α can
enhance the model’s robustness, and some methods using variable ϵ and α (e.g., DAJAT, OA-AT,
and IDBH) obtain competitive performance against various adversarial attacks. To further verify
the effectiveness of DAT, we compare it with the latest competitive methods, e.g., DAJAT with one
augmentation, OA-AT and IDBH, see Appendix B.2. As shown in Table 3, fixing ϵ = 8/255 and
α = 2/255, we combine DAT with AWP and SWA. Compared with IDBH, on CIFAR-10 with ResNet-
18 and WRN-34-10, DAT with AWP and SWA achieves robust improvement ∼1.36% and ∼1.18%
against PGD-20, and ∼0.45% and ∼0.48% against AA. For complex CIFAR-100 with ResNet-18
and WRN-34-10, compared with the previous best method, our method obtain ∼1.8% and ∼1.54%
improvement against PGD-20, and ∼0.45% and ∼0.30% enhancement against AA. Additionally, we
perform with synthesized data and augmentation strategies, attached in Appendixes F.1 and F.2.

4.4 Ablation Study

Through experiments on CIFAR-10 and CIFAR-100, this subsection discusses the impact of different
components in DAT on the model’s natural accuracy and robustness against PGD-20 and AA. As
shown in Table 4, we use the model with the proposed AE generation method without recombined
data as the baseline. Compared with complete DAT, the robustness is decreased ∼0.3% and ∼0.5%
on CIFAR-10 and CIFAR-100 without DJS. Due to DJS keeping the predictions consistent between
the benign and recombined data, removing DJS makes the model learn less unaffected phase patterns
and thus reduces the robust performance. As mentioned in Sec. 3.1, the mix-up operation combines
the generated adversarial and original amplitude spectrum. Since the model still needs some original
amplitude information, Table 4 shows that replacing the original amplitude spectrum with the
generated one drops ∼1.6% and ∼1.9% model’s robustness on CIFAR-10 and CIFAR-100, due to
damaging original phase patterns. As mentioned in Sec. 3.3, the gap of BN parameters between
original and recombined data is quite large. Without split BNs, the robustness of the model is
reduced ∼4.6% and ∼3.5% on CIFAR-10 and CIFAR-100, showing that the model robustness is
significantly affected because of the convergence difficulty. For experiments without AAG, we mix
the amplitude of training sample’s frequency spectra as Sec. 2. Table 4 shows the selected amplitude
does not severely reduce the natural accuracy but significantly decreases robustness ∼1.6% and
∼2.2% on CIFAR-10 and CIFAR-100, confirming the effectiveness of AAG. To comprehensively
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explore the effectiveness of AAG, we combine AAG with some existing AT methods on ResNet-18,
see Appendixes F.6 and F.7. Additionally, we compare the time consumption in Appendix F.3.

5 Conclusion

This work presents a novel Dual Adversarial Training (DAT) method to improve adversarial robust-
ness against various adversarial attacks. We first illustrate the motivation through some exploration
experiments. Subsequently, we delve into the efficient and effective DAT, discussing both its under-
lying motivation and detailed mechanics. Additionally, we theoretically validate the functionality
of the Adversarial Amplitude Generator (AAG) and the convergence properties of the DAT model.
Through experiments across multiple datasets against various adversarial attacks, we verify that the
proposed DAT significantly improves model robustness. We also explore the hyper-parameters and
discuss the function of specific components of DAT. In the future, we will design a more suitable
amplitude generation and augmentation strategy to enhance robustness further.
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This appendix provides additional support to the main ideas presented in the submission. The general
pipeline is as follows:

• §A presents the algorithms of the proposed efficient AE generation and DAT.

• §B presents comprehensive related works, including adversarial attack and adversarial training
methods.

• §C presents additional details of AAG (e.g., mix-up operation and λ range).

• §D presents the gap of BN parameters for benign and recombined data, showing the reason for the
split BN operation in the model training of DAT.

• §E presents more information about the training settings and selected datasets.

• §F presents omitted experimental results (e.g., synthesized methods, data augmentation strategies
and training time, iteration K and different inputs of AAG).

• §G presents explanation and proof for Theorem 3.2.
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A Pseudocodes of AE Generation and DAT

A.1 Pseudocode of the AE Generation Method

Algorithm 1 EFFICIENT ADVERSARIAL EXAMPLE GENERATION (EAEG)

Input: Mini-batch B = {(xi, yi)}Mi=1, model fθ , perturbation radius ϵ, iteration step K, step size α, weight
parameter β

Output: AEs {x′
i}Mi=1

// EAEG Procedure
1: for i = 1, . . . ,M (in parallel) do
2: x′

i ← xi + 0.001 · ξ, where ξ i.i.d.∼ N (0, I) ▷ initialize AE
3: for k = 1 to K do
4: LAE(x

′
i;xi, yi,θ) = LCE(fθ(x

′
i), yi) + β · DKL(fθ(x

′
i), fθ(xi)) ▷ Eq. (5)

5: x′
i ← ΠSϵ[x

′
i]

(
x′
i + α · sign

(
∇x′

i
LAE(x

′
i;xi, yi,θ)

))
▷ update AE

A.2 Pseudocode of DAT

Algorithm 2 DUAL ADVERSARIAL TRAINING (DAT)

Input: Training data D = {(xi, yi)}Ni=1, mini-batch size M , model fθ , Adversarial Amplitude Generator Gψ ,
AE generation method EAEG, perturbation radius ϵ, iteration step K, step size α, weight parameter {β,
ω}, training epoch T

Output: Robust model fθ
// DAT Procedure

1: for t = 1 to T do
2: for each batch B = {(xi, yi)}Mi=1 do
3: for i = 1, . . . ,M (in parallel) do
4: x′

i = EAEG(xi, yi;θ, ϵ,K, α, β) ▷ generate AE for benign data

5: AG(xi) = Gψ(z, fθ(xi)), where z
i.i.d.∼ N (0, I) ▷ generate adversarial amplitude

6: Amix(xi) = λAG(xi) + (1− λ)A(F(xi)), where λ ∼ Uniform(0, 1) ▷ mix amplitudes
7: x̂i = F−1(Amix,P(F(xi))) ▷ generate recombined sample
8: x̂′

i = EAEG(x̂i, yi;θ, ϵ,K, α, β) ▷ generate AE for recombined sample
9: LDAT(fθ(xi), yi) =

1
2
(LAT(fθ(xi), yi) + LAT(fθ(x̂i), yi)) + ω · DJS(fθ(x̂i), fθ(xi))

▷ Eq. (6)
10: Update ψ and θ by LDAT
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B Related Work & Background

B.1 Adversarial Attacks

With the heightened attention on DNN vulnerabilities, numerous adversarial attack methods have
developed to study the model’s robustness. FGSM [22] generates AEs by applying a gradient on
benign samples in a single iteration step. Building upon I-FGSM [34], PGD [40] emerges as the
strongest first-order attack, amplifying the adversarial impact of AEs. In order to reduce the difficulty
of parameter settings in FGSM, the accurate and efficient Deepfool [42] is developed. To enhance the
effect of PGD attack, APGD, and APGD-DLR are proposed [13]. These methods have alternative
loss functions and do not require an inner step size in the AEs’ generation procedure. However,
these white-box attacks require detailed knowledge of the target model to generate AEs, which
poses challenges in practical scenarios. To address this challenge, black-box [45, 9, 27, 10, 57, 24]
and no-box [45, 36] adversarial attacks are proposed. For a comprehensive evaluation of model
robustness, ensemble adversarial attacks consisting of multiple types of adversarial attacks become
popular. AutoAttack (AA) [13] stands out as a representative ensemble attack approach, seamlessly
integrating white-box attacks including APGD, APGD-DLR, and FAB [12], alongside a black-box
attack called Square attack [3]. AA is broadly recognized as a benchmark tool for the robustness
evaluation of models.

B.2 Adversarial Training

In an effort to protect models from adversarial attacks, various methodologies have been developed.
Adversarial training is one of the most effective methods for countering adversarial attacks [64,
62, 4, 5, 19, 20, 40, 61, 1, 35]. PGD-AT [40] formulates AT as a min-max optimization problem.
AEs are first generated via PGD and then fed into the trained model to minimize empirical risk.
To address the robust overfitting issues, early stopping of PGD-AT is proposed to further enhance
the model’s robustness [48]. However, PGD-AT only takes AEs into the training procedure. This
approach, due to the data distribution shift between AEs and benign samples, can diminish the
model’s accuracy. To make a better tradeoff between accuracy and robustness, TRADES [61] takes
both benign samples and AEs into the AT procedure. Motivated by weight perturbation methods in
standard training, Adversarial Weight Perturbation (AWP) [56] adversarially perturbs both inputs
and weights, markedly easing the robust overfitting issues and improving adversarial robustness.
Additionally, Stochastic Weight Averaging (SWA) [28] is also a frequently used technology to reduce
the negative impact of robust overfitting issues and enhance the model’s robustness. Misclassification
Aware adveRsarial Training (MART) [54] adopts misclassified training samples as regularizers
to enhance the model’s robustness against AEs generated by various adversarial attacks. Instead
of generating AEs by maximizing the prediction distance between AEs and benign samples as in
TRADES, Squeeze Training (ST) [37] selects a better reference target and uses collaborative examples
to benign ones, produced by minimizing the prediction distance between collaborative and benign
samples. Different from existing hand-crafted strategy based AT, Adversarial Training with Learnable
Attack Strategy (LAS-AT) [29] generates AEs by a reinforcement learning network. Motivated
by Contrastive Language-Image Pre-training (CLIP) [46], Semantic Constraint Adversarial Robust
Learning (SCARL) [33] uses the text information to obtain robust semantic information of training
samples, improving the model’s robustness. Due to the positive impact of data augmentation on AT,
Diverse Augmentation-based Joint Adversarial Training (DAJAT) [1] uses AutoAugment, SWA, and
AWP to achieve an effective AT. To reduce the time consumption of AE generation, DAJAT adopts
variable adversarial perturbation radius ϵ and inner step size α to reduce the iteration steps. OA-AT
[2] uses SWA and variable ϵ and α to protect the model from AEs with large adversarial magnitudes.
Li et al. [35] show that the effectiveness of data augmentations on robustness improvement depends
on their impacts on the model’s robust accuracy on test data, referred to as hardness. Moreover,
the work proves that augmentation strategies with moderate hardness can protect the model from
robust overfitting issues and enhance the model’s robustness. Based on the phenomena, with variable
adversarial perturbation radius ϵ, Improved Diversity and Balanced Hardness (IDBH) [35] combines
several data augmentation strategies to obtain significant robustness improvement against various
adversarial attacks. Recently, motivated by the stable diffusion (SD) model [30], some methods
[47, 23, 15, 55, 44] synthesize data by SD to enhance the model’s robustness further.
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B.3 Generation of Adversarial Example in Adversarial Training

PGD-AT [40] formulates a min-max strategy to inject AEs into AT. The optimization objective is

min
θ

N∑
i=1

max
x′
i∈Sϵ[xi]

LCE(fθ(x
′
i), yi), (8)

where x′
i is the AE for xi, and LCE represents the cross-entropy (CE) loss. To achieve a better tradeoff

between natural and robust accuracy, TRADES [61] incorporates both AEs and benign samples into
training as

min
θ

N∑
i=1

(
LCE(fθ(xi), yi)) + β · max

x′
i∈Sϵ[xi]

DKL(fθ(x
′
i), fθ(xi))

)
, (9)

where β is a weight parameter, and DKL represents the Kullback-Leibler (KL) divergence.

For (x, y) ∈ D , its corresponding AE x′ is initialized by adding a random noise (e.g., uniform noise
in PGD and Gaussian noise in TRADES) on x, then iteratively updated by K steps following

x′(k+1) = ΠSϵ[x]

(
x′(k) + α · sign(∇x′(k)L(fθ(x′(k)), y))

)
, (10)

where Π(·) is the projection operator, α is the projection inner step size, and k ∈ {0, ...,K − 1}, with
K typically set to 10.

B.4 Discrete Fourier Transform

DFT transforms an image signal from the spatial domain into the frequency domain, while the inverse
discrete Fourier transform (IDFT) reverses this process. Let F(·) and F−1(·, ·) denote the DFT and
IDFT functions, respectively. Typically, DFT is independently applied to each channel of an image
within the pixel space. An image x can be transformed into the frequency domain as follows:

F(x)(u, v) =

H∑
h=1

W∑
w=1

x(h,w) e−i2π(u h
H +v w

W ),

where (h,w) denotes the pixel coordinates of x, and (u, v) ∈ [H]× [W ] signifies coordinates in the
frequency domain. The real and imaginary parts of F(x) are denoted by Re(F(x)) and Im(F(x)),
respectively. Then, the amplitude spectrum A(x) and phase spectrum P(x) are defined as follows:

A(x) =
(
Re2(F(x)) + Im2(F(x))

) 1
2 , P(x) = arctan

(
Im(F(x))

Re(F(x))

)
. (11)

C Experiments of the Amplitude Spectrum Operation

To better explore the proposed AAG, we present the amplitude spectrum mix-up operation visually
and explore the impact of the λ range on the model’s robustness in this part. First, we display and
explain the visual results of the recombined samples and show the impact of the mix-up operation
on the model’s performance. Then, the experimental results of DAT with different ranges of λ are
shown.

C.1 Visualization of the Mix-up Operation on Amplitude Spectrum

Figure 8 (see page 28) shows the benign samples, amplitude spectrum, phase spectrum, generated
amplitude spectrum, and recombined data. Compared to images with mixed amplitude spectrum, data
recombined by replacing the original amplitude from the generated one entirely has a great gap for
the original benign samples, reducing the natural and robust accuracy of the benign test samples. To
better show the impact of the different strategies on the model’s performance, we perform experiments
with and without the mix-up operation. Table 5 shows the DAT with mix-up has a better performance.
That indicates the model still needs some original information on the amplitude spectrum, showing
the effectiveness of the mix-up operation.
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Table 5: Average experimental results of DAT with and without Mix-up on CIFAR-10 and CIFAR-100
with ResNet-18 and ϵ = 8/255 in 7 runs.

METHOD
CIFAR-10 CIFAR-100

Natural PGD-20 AA Natural PGD-20 AA

DAT w/o Mix-up 81.45±0.49 55.64±0.54 50.13±0.35 59.84±0.42 30.83±0.46 25.41±0.29
DAT w/ Mix-up 84.17±0.21 57.55±0.15 51.36±0.14 62.57±0.17 33.37±0.15 27.11±0.15
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Figure 4: Natural and robust accuracy (%) against AA of DAT with different µ on CIFAR-10 and
CIFAR-100 with ResNet-18.

C.2 Impact of the Range of Amplitude Mixture Parameters

In this subsection, to fully explore the impact of the λ range on the model’s robustness, we perform
some experiments to show the impact of different λ on the natural and robust accuracy. As shown in
the work, the mix-up operation to perturb A(x) by the generated AG(x) follows

Amix(x) = λAG(x) + (1− λ)A(x), (12)

where 0 < λ < 1 , reserving some information of A(x). Suppose that λ ∼ Uniform(0, µ) , where
0 < µ < 1 , we perform experiments with different values of µ on CIFAR-10 and CIFAR-100 against
AA, where β = 15 and ω = 2. As shown in Figures 4a and 4b, the test accuracy fluctuations
between different values of µ are quite large, and the best settings of µ for natural and robust
accuracy for CIFAR-10 and CIFAR-100 are different. For CIFAR-10, the model achieves the best
natural performance when µ = 0.6, while its robust accuracy is better with µ = 0.8. For results on
CIFAR-100, µ = 0.4 makes the best natural accuracy when the model achieves better robustness
with µ = 0.6. In the work, there are already two hyper-parameters: ω and β. Moreover, the range of
λ is more likely to influence the settings of ω and β. Consequently, we do not discuss the impact of
different ranges of λ on the model’s robust and natural accuracy in the main paper.

For the real-valued x, it is noticed that F(·) need to be even-conjugate, i.e., F(x)(−u,−v) =

F(x)(u, v), implying that the amplitude spectrum is symmetric. Conversely, IDFT returns real-
valued signals for a symmetric amplitude spectrum. Consequently, Gψ only generates AG with the
non-redundant and non-negative part of the amplitude spectrum.

D Batch Normalization Parameter Analysis

In the DAT training procedure, we use different BNs for the benign data and their recombined samples.
In the ablation study, we show the model performances with and without a split BN are quite different,
showing that the single BN significantly influences the model’s performance. To better present the
necessity of the split BN in DAT training, we show the cosine similarity of the parameters of each
BN layer between benign data and recombined ones. There are 20 BN layers in ResNet-18. From
Figures 5a and 5b, on both CIFAR-10 and CIFAR-100, we can see the cosine similarity gaps for
BN parameters in different layers. The distance between the mean and variance of each BN layer
is small, while the gaps between the γs and βs are large, especially in the low-level layers and the
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Figure 5: Cosine similarity between the BN parameters of the original data and recombined ones in
ResNet-18 on (a) CIFAR-10 and (b) CIFAR-100.

last layer. Consequently, using a single BN in the training procedure of DAT is likely to result in
the difficulty of model convergence, showing as the performance comparisons in the ablation study.
To solve the issue, we adopt different BNs for the original data and the recombined ones. In the
model training procedure of DAT, we split the BN into two groups: BN-A and BN-B, for each layer
with BN, original data and its AE are processed by BN-A, while recombined one and its AE are
regularized by BN-B.

E Detailed Experimental Setup

In this section, we add more details about the datasets and experimental settings. Moreover, the
information about the robust evaluation is further introduced.

E.1 Datasets

To evaluate the performance of DAT, we select three widely used benchmark datasets for robust
evaluation: CIFAR-10, CIFAR-100, and complex Tiny ImageNet [17]. CIFAR-10 and CIFAR-100
contain 50,000 32×32 training samples and 10,000 32×32 test images, categorized into 10 and 100
classes respectively. Tiny ImageNet is a challenge 200-class real-world dataset, where there are 500
training and 50 test images for each category, where the image size is 64×64. Moreover, due to the
samples in the test set of Tiny ImageNet without labels, we evaluate the robustness of the validation
set following [29, 33].

E.2 Training Settings

We use ResNet-18, WRN-34-10, and WRN-28-10 as model architectures. Experiments with ResNet-
18 are performed on Ubuntu 20.04.3 LTS GPU server with Intel Xeon 5120 and 5×3090 by PyTorch
2.0, while WRN-34-10 and WRN-28-10 experiments are performed on DGX with a H800 GPU on
PyTorch 2.0. In the model training procedure, we adopt an SGD optimizer with momentum 0.9 and
weight decay 5e-4. For the common experiments, the model is trained for 150 epochs for CIFAR-10
and CIFAR-100 and 100 epochs for Tiny ImageNet. Moreover, the learning rate follows the schedule
[0.1, 0.01, 0.001] in decay epoch schedule [100, 110] in CIFAR-10 and CIFAR-100 and in decay
epoch schedule [75, 80] for Tiny ImageNet. For these datasets, the experiments with AWP or the
combination of AWP and SWA use the same learning rate schedule with decay epoch as [100, 150].

For the proposed AAG, we use a four-linear layer structure to build it. Since only the non-negative
part of the amplitude spectrum is produced, the output of AAG is processed by a Sigmoid function.
In the model training procedure, we set the dimension of z as τ = 100. Due to the input of AAG
combined by z and sample logits extracted by fθ, the input dimension of AAG is the sum of τ and
class number c of D.
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The AAG is optimized by an SGD optimizer with a fixed learning rate 0.1, momentum 0.9, and weight
decay 5e-4. For hyper-parameters, β and JS weight parameter ω are set as 15 and 2 respectively.
During the training procedure, we adopt the basic data augmentation strategies, Random Crop and
Random Horizontal Flip, for all selected datasets. For AE generation, the inner step size α is set to
2/255 with K = 5 to generate adversarial perturbation ℓ∞-bounded with radius ϵ = 8/255 following
previous work [29, 37, 33].

E.3 Baselines

For experimental result comparisons in this work, we select two typical PGD-AT and TRADES
[40, 61] as baselines. Moreover, we adopt two types of existing methods to perform experimental
result comparisons. For common type AT methods, which are trained with fixed ϵ = 8/255 and inner
step size α = 2/255 and without any extra technologies, we select MART [54], ST [37], LAS-AT [29]
and SCARL [33]. Additionally, some methods with complex strategies, such as AWP, SWA, variable
ϵ, and changeable α are also selected as baselines. For AutoAugment-based DAJAT [1] consisting of
AT, SWA, variable ϵ and α, we select it with one augmentation for a fair comparison. OA-AT [2] is
a variable ϵ based AT method with SWA. IDBH [35] is an AT method based on the augmentation
combination of Cropping, CutOut, and ColorShape, and is combined with AWP and SWA strategies.

E.4 Robustness Evaluation

For the experimental results, we report the model’s natural and robust accuracy. We select several
widely used types of adversarial attacks to generate AEs for robustness evaluation. FGSM, PGD-
20, PGD-100, and C&W∞ are selected as basic methods to evaluate the model’s robustness. To
better show the model’s robust generalization against different adversarial attacks, we also select
AA consisting of black-box and white-box methods to evaluate the robustness of the model. The
adversarial perturbation of these methods is ℓ∞-bounded with radius ϵ = 8/255 and inner step size
α = 2/255.

F Additional Results and Discussion

Due to the limitation of the pages, we perform some experiments on CIFAR-10 and CIFAR-100 to
show the effectiveness of our proposed DAT further. In the first section, we show the experimental
results on generated data with WRN-28-10. The experimental comparison between proposed DAT
and some data augmentation strategies are presented in the second section. Then, we show the time
consumption comparison between DAT and existing methods in the third part. The fourth subsection
discusses the impact of different β and ω. Then, the impact of iteration K of AE generation on the
model’s performance is explored in the fifth subsection. In the sixth part, the AAG is combined
with existing methods to verify its effectiveness. Then, we explore the influence of AAG’s input.
The last two subsections show the results comparison of single and dual AE generation of DAT and
limitations of the work.

F.1 Comparison for Different AT Methods with Generated Data

In this subsection, following [47, 23, 15, 55, 44], we take advantage of the diffusion model to
synthesize data enhance the model’s robustness further. Since these existing methods are combined
with strategies such as AWP, SWA, variable ϵ and changed α, we use the DAT with AWP and SWA to
show the experimental results comparison. Due to methods only providing single-time results, we just
use the one-time test accuracy of DAT to compare with them on WRN-28-10. From Table 6, compared
with IKL-AT [15], we can see DAT achieves about ∼0.69% and ∼0.48% robustness improvement
with 1M and 20M generated data on CIFAR-10. On CIFAR-100, as shown in Table 7, for current
IKL-AT, the method with the best robustness against AA with WRN-28-10 on the RobustBench [11],
the model robustness is enhanced by ∼0.29% and ∼0.23% with 1M and 50M synthesized samples,
respectively.
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Table 6: The average experimental results for different augmentations against ℓ∞ threat model with
ϵ = 8/255 on CIFAR-10. #Aug. refers to the number of augmentation. The best results are boldfaced.

METHOD Architecture #Aug. Natural AA

Rebuffi et al. [47] WRN-28-10 1M 87.33 60.73
Gowal et al. [23] WRN-28-10 100M 87.50 63.38
Wang et al. [55] WRN-28-10 1M 91.12 63.35
Wang et al. [55] WRN-28-10 50M 92.27 67.17
Wang et al. [55] WRN-28-10 20M 92.44 67.31
IKL-AT [15] WRN-28-10 1M 90.75 63.54
IKL-AT [15] WRN-28-10 20M 92.16 67.75
DAT+AWP+SWA (Ours) WRN-28-10 1M 91.37 64.25
DAT+AWP+SWA (Ours) WRN-28-10 20M 92.86 68.18

Table 7: The average experimental results for different augmentations against ℓ∞ threat model
with ϵ = 8/255 on CIFAR-100. #Aug. refers to the number of augmentation. The best results are
boldfaced.

METHOD Architecture #Aug. Natural AA

Pang et al. [44] WRN-28-10 1M 62.08 31.40
Rebuffi et al. [47] WRN-28-10 1M 62.41 32.06
Wang et al. [55] WRN-28-10 1M 68.06 35.65
Wang et al. [55] WRN-28-10 50M 72.58 38.83
IKL-AT [15] WRN-28-10 1M 68.99 35.89
IKL-AT [15] WRN-28-10 50M 73.85 39.18
DAT+AWP+SWA (Ours) WRN-28-10 1M 69.52 36.18
DAT+AWP+SWA (Ours) WRN-28-10 50M 74.86 39.41

F.2 Comparison of DAT with Different Augmentations

Since the recombined data based on AAG can be regarded as an augmentation for benign samples, to
better present the effectiveness of the proposed strategy, we combine the proposed AE generation
method with three widely used augmentation policies in AT, such as CutOut [18], CutMix [60], and
AutoAugment [14], and perform experiments on CIFAR-10 and CIFAR-100. The settings of CutMix
and CutOut are as [35], while AutoAugment follows [1]. In these experiments, the baseline is AT
with the proposed AE generation strategy. These selected data augmentation strategies adopt the same
training strategy as DAT. As shown in Table 8, for the baseline, these augmentations enhance the
model’s robustness against PGD-20 and AA. Compared to other strategies, DAT achieves robustness
improvement of ∼1% on CIFAR-10 and ∼1.2% on CIFAR-100.

F.3 Comparison of Training Time Consumption

In this part, we compare the time consumption of different methods on CIFAR-10 and CIFAR-100.
From Table 9, we can obtain the time consumption of DAT is slightly higher than PGD-AT and
TRADES because of added AAG. Compared with recently proposed methods, DAT takes less time
and achieves better robustness.

Table 8: The average experimental results for different augmentations against ℓ∞ threat model with
ϵ = 8/255 in 7 runs. The best results are boldfaced.

METHOD
CIFAR-10 CIFAR-100

PGD-20 AA PGD-20 AA

Baseline 53.13±0.51 49.64±0.62 30.09±0.58 25.43±0.39
CutOut [18] 55.85±0.51 50.28±0.14 31.35±0.44 26.26±0.14
CutMix [60] 55.76±0.42 50.13±0.54 31.26±0.62 26.17±0.19
AutoAugment [14] 56.24±0.45 50.42±0.15 31.69±0.52 26.44±0.17
DAT (Ours) 57.55±0.15 51.36±0.14 33.37±0.15 27.11±0.15
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Table 9: Time consumption (s) of each training epoch for different AT methods.

METHOD CIFAR-10 CIFAR-100

PGD-AT [40] 187 188
TRADES [61] 187 192
ST [37] 320 326
SCARL [33] 221 228
DAT (Ours) 218 221

F.4 Hyper-parameter Exploration

After the performance comparisons, we then explore the settings of β and ω by experiments on
CIFAR-10 and CIFAR-100. Additionally, the λ’s range and the iteration step K of AE generation are
also discussed, attached to Appendixes C.2 and F.5.

Setting of β. As shown in Figure 6a of Appendix F.4, we present the model’s natural and robust
accuracy with different β with ω = 2 and K = 5. We can see that the curves of robust accuracy rise
first and then fall. Meanwhile, natural accuracy keeps decreasing as β increases, indicating that β
significantly influences the model’s natural and robust accuracy. To achieve a better tradeoff between
robust and natural accuracy, we set β = 15 for experiments of DAT on all datasets.

Setting of ω. With β = 15 and K = 5, we discuss the settings of ω. Figure 6b shows the model’s
accuracy changes along with ω on both natural and AE. When ω < 2, the curves of robust accuracy
rise. On the contrary, ω > 2 results in the performance decreasing. Unlike the robust accuracy, the
model’s performance on benign samples grows with the increase of ω. For better model robustness,
ω is set as 2 in this work.
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(b) Impact of ω on natural and robust accuracy.

Figure 6: The impact of ω and β on the model’s natural (Na.) and robust accuracy (Rob.) against AA
on CIFAR-10 (C-10) and CIFAR-100 (C-100) with ResNet-18.

F.5 Iteration Step K of AE Generation

The generation iteration step K has an extremely important impact on the model’s robust accuracy.
As shown in Figure 7, the larger the iteration step, the adversarial robustness against AA of the model
rises with the increase of K. However, the larger K will significantly increase the time consumption
of AT. To achieve a tradeoff between the model’s robustness and time consumption, we set the
iteration step as K = 5. Then, the time consumption of DAT will not be increased compared with
existing methods.

F.6 AAG with Existing AT Methods

To further show the effectiveness of the proposed AAG, we combine AAG with PGD-AT and
TRADES and perform experiments on CIFAR-10 and CIFAR-100 against PGD-20 and AA. Compared
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Figure 7: The impact of different iteration step K on the model’s performance on natural data and
against AA on CIFAR-10 and CIFAR-100 with ResNet-18.

with PGD-AT and TRADES, the combinations with AAG enhance the model’s robust and natural
accuracy further.

Table 10: Average experimental results of AAG with existing AT methods on CIFAR-10/100 with
ResNet-18 and ϵ = 8/255 in 7 runs.

METHOD
DATASET CIFAR-10 CIFAR-100

Natural PGD-20 AA Natural PGD-20 AA

PGD-AT 82.78±0.12 51.30±0.16 47.63±0.08 57.27±0.21 28.66±0.11 24.60±0.04
PGD-AT+AAG 83.24±0.21 55.64±0.18 50.96±0.14 59.34±0.23 31.82±0.25 26.16±0.16
TRADES 82.41±0.12 52.76±0.19 49.37±0.08 57.94±0.15 29.25±0.18 24.71±0.04
TRADES+AAG 84.36±0.38 55.45±0.42 50.75±0.27 60.18±0.24 32.43±0.22 26.76±0.17

Table 11: Average experimental results of different inputs of Gψ with ResNet-18 and ϵ = 8/255 in 7
runs.

METHOD
DATASET CIFAR-10 CIFAR-100

Natural PGD-20 AA Natural PGD-20 AA

w/ z 83.63±0.63 56.86±0.64 50.67±0.61 61.52±0.72 32.74±0.55 26.64±0.43
w/ z + one-hot label 83.86±0.33 57.27±0.39 50.92±0.38 62.05±0.32 32.96±0.35 26.87±0.28
w/ z + logits 84.17±0.21 57.55±0.15 51.36±0.14 62.57±0.17 33.37±0.15 27.11±0.15

F.7 Impact of Different Inputs of Gψ

For the Generative Adversarial Nets (GANs), Conditional GANs (CGANs) [41] usually have higher
quality generative results than vanilla ones. Consequently, motivated by CGAN, we use a combination
of the sample logits from model fθ and stochastic sampling noise vector z ∼ N (0, I) following
a standard Gaussian distribution as input of Gψ, which is different CGAN with one-hot label. To
better show the effectiveness, we perform experiments on CIFAR-10 and CIFAR-100 against the
PGD-20 and AA. Table 11 shows that the input of Gψ significantly influences the model’s natural
and robust accuracy. Moreover, the performance of input with logits has a smaller variance than
in other cases, indicating the logits make the training runs more stable. As shown in Figure 9 (see
page 28), the gaps between the generated amplitude spectrum of different inputs are quite small.
However, the recombination from the input with z and logits have a small gap for benign samples,
with no significantly changed sample.

F.8 Single AE Generation of DAT

In the training procedure of DAT, we take both benign and recombined samples’ AEs into AT. To
reduce the time consumption of AE generation, we propose an efficient strategy to produce AEs.

24



We can also generate AE of recombined data by mixing the generated amplitude spectrum with that
in the benign sample’s AE. For an example, with (x, y) ∈ D, we use the x’s AE x′ to obtain the
amplitude of recombined AE as

Amix(x
′) = λAG(x

′) + (1− λ)A(x′). (13)

Then, x̂′ is obtained by
x̂′ = F−1(Amix(x

′),P(x′)). (14)

Table 12: Average experimental results with single and dual AE on CIFAR-10 and CIFAR-100 with
ResNet-18 and ϵ = 8/255 in 7 runs.

METHOD
DATASET CIFAR-10 CIFAR-100

Natural PGD-20 AA Natural PGD-20 AA

Single AE 84.28±0.26 55.78±0.35 50.43±0.32 62.64±0.34 31.64±0.37 26.38±0.24
Dual AE 84.17±0.21 57.55±0.15 51.36±0.14 62.57±0.17 33.37±0.15 27.11±0.15

We call such a procedure to obtain recombined data and AE a single AE DAT, while the process
described in the main text is Dual AE DAT. To explore the difference in performance between the two
AE generation strategies, we perform experiments with the same experimental settings in Sec. E.2
on CIFAR-10 and CIFAR-100 with ResNet-18. The PGD-20 and AA are selected to evaluate the
model’s performance with single or dual AE generation. As shown in Table 12, we report the natural
and robust results. According to these experiments, the natural accuracy gap for the DAT with single
and dual AE is small, while the difference for the robust performance is large. As mentioned in the
work, the amplitude spectrum of the sample influences the model’s learning of the phase patterns.
The single AE of DAT does not reflect the impact of mixed amplitude x̂ on adversarial perturbation,
resulting in a lower robust performance than dual AE for DAT. Additionally, as shown in Table 4,
although the model trained with single AE has a lower robust performance than common DAT, it still
enhances the model’s robustness compared to the baseline. That indicates the single AE for DAT can
also enforce the model to learn more robust phase patterns.

F.9 Limitations and Future Works

Although the proposed DAT significantly improves the model’s robustness and natural accuracy of
the model, there are still some limitations of the work. Since the robust over-fitting issues, DAT
without AWP needs to be trained in a limited epoch, restricting its performance. Moreover, our DAT
focused on protecting from adversarial attacks. Other types of image corruptions, e.g., Gaussian
noise, and defocus blur, can also influence the model’s performance. DAT needs to be developed
further to protect the model from various image corruptions. Due to the limitation of page length, we
only provide the experimental results on three frequently used datasets and deep models in the main
paper. In the future, we will add experiments on more large-scale datasets with different deep models.
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G Theoretical Analysis and Proof

Here we restate and prove Theorem 3.2.
Theorem 3.2 (Weight Regularization of Amplitude Features). Grant Assumption 3.1, when the
empirical risk R̂ is minimized with some convex loss function L (e.g. CE loss):

R̂(W) :=
1

|D|
∑

(x,y)∈D

Et(x)∼T (x)

[
L
(
W⊤h(t(x)), y

)]
,

we have wj,a → 0 for all j ∈ [c], where wj,a is the corresponding weights of amplitude features ha.

We consider a quadratic approximation of the objective in Theorem 3.2, and provide a further and
extended analysis following [16, 26]. Using the second-order Taylor expansion, we expand each term
of the objective function:

Et(x)∼T (x)

[
L
(
W⊤h(t(x)), y

)]
= L(W⊤h̄, y) +

1

2
Et(x)∼T (x)

[
∆⊤H(ζ, y)∆

]
, (15)

where h̄ = Et(x)∼T (x) [h(t(x))] , ∆ = W⊤ (h(t(x))− h̄
)

, and H is the Hessian matrix with ζ
denoting the remainder. We introduce Lemma G.1 to demonstrate the properties of H.
Lemma G.1. For the CE loss with softmax, the Hessian matrix w.r.t. the loss function satisfies

1. H ⪰ 0, i.e., H is semi-definite.

2. H is independent of the true label vector y.

Proof. The CE loss for a single instance x, when given the true label vector y (using one-hot encoding
with c-dimension) is defined as

L = −
c∑

i=1

yi log(pi). (16)

The gradient of L w.r.t. the logits is computed as

∂L

∂zk
= pk − yk, (17)

for k ∈ [c], where pk = σ(z)k is the predicted probability of class k. The Hessian matrix H, which
is the matrix of second derivatives of L, has elements given by

∂2L

∂zk∂zj
=

∂

∂zj
(pk − yk) =

∂pk
∂zj

. (18)

Using the derivation properties of the softmax function, the above derivative simplifies to

∂pk
∂zj

= pk(δkj − pj), (19)

where δkj is the Kronecker delta, equal to 1 if k = j and 0 otherwise. Thus, the Hessian matrix H is

Hkj = pk(δkj − pj). (20)

Positive Semi-Definiteness. The Hessian matrix can be expressed in matrix form as

H = P(I−P), (21)

where P is a diagonal matrix with diagonal entries pk, and I is the identity matrix. The product of P
and I − P, where P is a diagonal matrix with entries between 0 and 1, ensures that H is positive
semi-definite.

Independence from Label y. The structure and values of H depend solely on the predicted proba-
bilities p, which are functions of z and not dependent on the specific values of y. This characteristic
signifies that the Hessian’s form is invariant w.r.t. the true label vector y, thus highlighting its
independence.

26



In the following, we omit the subscript of the expectation in Eq. (15) for simplicity. According to
[8], when minimizing R̂, the first term in RHS of Eq. (15) may be no room for further improvement
because the local optima has nearly the same value as the global optimum in neural networks, and
we put our main focus on the second term. We first derive an upper bound for the second term in
Lemma G.2, since directly optimizing it which requires a third-order derivative is intractable.
Lemma G.2 (stated informally, cf . Theorem 3.1 in [8]). Assume that the covariance between ∥H∥F
and ∥∆∥2 is zero, we can get the upper bound of the second term as

E
[
∆⊤H∆

]
≤ E [∥H∥F ] · E

[
∥∆∥22

]
. (22)

Proof. By Hölder’s inequality, we have

E
[
∆⊤H∆

]
= E [∥∆∥p∥H∆∥q] ≤ E [∥∆∥p∥H∥r,q∥∆∥r] = E [∥H∥r,q] · E [∥∆∥p∥∆∥r] , (23)

where 1/p + 1/q = 1, ∥ · ∥r,q is an induced matrix norm. When p = q = r = 2, we have

E
[
∆⊤H∆

]
≤ E [∥H∥2] · E

[
∥∆∥22

]
≤ E [∥H∥F ] · E

[
∥∆∥22

]
. (24)

Intuitively, since ∥H∥F represents the sharpness/flatness of loss landscape, and ∥∆∥2 describes the
translation of landscape, the two terms can be assumed independent, where their covariance can be
assumed as zero [8]. Consider the latter item in RHS of Eq. (22):

E
[
∥∆∥22

]
= E

[
∆⊤∆

]
= E

[(
h(t(x))− h̄

)⊤
WW⊤ (h(t(x))− h̄

)]
= E

[
tr
(
WW⊤ (h(t(x))− h̄

) (
h(t(x))− h̄

)⊤)]
= tr

(
WW⊤E

[(
h(t(x))− h̄

) (
h(t(x))− h̄

)⊤])
= tr

(
WW⊤Σ

)
,

(25)

where Σ is the covariance matrix of h(t(x)). For a model trained well enough, the feature extractor
can completely distinguish different features, i.e., Σ is a diagonal matrix. Then we can obtain

tr
(
WW⊤Σ

)
= tr

(
c∑

i=1

wiw
⊤
i Σ

)
=

m∑
i=1

c∑
j=1

w2
j,iVar [hi(t(x))] , (26)

where wj,i is the j-th entry of wi. If the variance of the feature hi(t(x)) is large, minimizing the
empirical risk R̂ requires

∑c
j=1 w

2
j,i → 0 =⇒ wj,i → 0 for all j ∈ [c]. By Assumption 3.1, it is

trivial that Var[ha(t(x))] > Var[hp(t(x))] and therefore wj,a → 0. Under this circumstance, the
model is enforced to learn more phase information. The claim follows.
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