
Leveraging Passage Embeddings for Efficient Listwise Reranking
with Large Language Models

Anonymous ACL submission

Abstract

Recent studies have demonstrated the effective-001
ness of using large language language models002
(LLMs) in passage ranking. The listwise ap-003
proaches, such as RankGPT, have become new004
state-of-the-art in this task. However, the effi-005
ciency of RankGPT models is limited by the006
maximum context length and relatively high007
latency of LLM inference. To address these is-008
sues, in this paper, we propose PE-Rank, lever-009
aging the single passage embedding as a good010
context compression for efficient listwise pas-011
sage reranking. By treating each passage as012
a special token, we can directly input passage013
embeddings into LLMs, thereby reducing input014
length. Additionally, we introduce an infer-015
ence method that dynamically constrains the016
decoding space to these special tokens, accel-017
erating the decoding process. For adapting the018
model to reranking, we employ listwise learn-019
ing to rank loss for training. Evaluation re-020
sults on multiple benchmarks demonstrate that021
PE-Rank significantly improves efficiency in022
both prefilling and decoding, while maintaining023
competitive ranking effectiveness.024

1 Introduction025

Passage ranking, which aims to rank each pas-026

sage in a large corpus according to its relevance027

to the user’s information need expressed in a short028

query, is an important task in IR and NLP and029

plays a crucial role in many applications such as030

web search and retrieval-augmented generation. To031

achieve both effectiveness and efficiency, current032

mainstream approaches usually follow a two-stage033

paradigm known as “retrieval-then-rerank”, which034

involves efficiently retrieving a set of candidates035

first, and further reranking them with a reranker to036

boost the effectiveness (Nogueira et al., 2019).037

In the first retrieval stage, dense retrieval mod-038

els based on a bi-encoder architecture are widely039

used (Karpukhin et al., 2020). Trained on large-040

scale text pairs through contrastive learning, these041

 [2] > [3] > [1] ...

 <p2><p3><p1> ...

The following are passages
related to query #{query}, each
with a special token representing
the passage enclosed in [].
Passage 1: [<p1>]
...
Rank these passages based on
their relevance to the query.

The following are passages
related to query #{query}.
Passage 1: #{passage 1}
...
Rank these passages based on
their relevance to the query.

Figure 1: Comparison between RankGPT (upper) and
PE-Rank (lower). RankGPT takes the whole passages
as input and outputs ordered numbers, while PE-Rank
takes a list of special tokens as both input and output.
On the right side, we show the reranking results on
DL19 using different forms of inputs.

models can encode text information into a low- 042

dimensional dense embedding and capture seman- 043

tic relevance using vector similarity. 044

In the second reranking stage, we can employ 045

more sophisticated models for better ranking perfor- 046

mance. A common reranking model is a supervised 047

model based on the cross-encoder design (Nogueira 048

et al., 2019). With the emergence of LLMs, such 049

as GPT-4 (OpenAI, 2024), a series of studies have 050

tried to leverage LLMs’ text comprehension and 051

reasoning abilities for zero-shot reranking. Typi- 052

cally, there are three main prompting approaches: 053

pointwise (Liang et al., 2022; Sachan et al., 2022), 054

pairwise (Qin et al., 2023), and listwise (Sun et al., 055

2023; Pradeep et al., 2023a). Among these meth- 056

ods, listwise approaches like RankGPT (Sun et al., 057

2023) are regarded as the most effective, achieving 058

state-of-the-art performance by directly producing 059

1

a final ranking list for multiple passages, rather than060

merely assessing the relevance of a single passage061

or the relative position between two passages.062

While the listwise approaches demonstrate po-063

tential in the reranking task, they are limited by064

two challenges. Firstly, LLMs are limited by con-065

text length and cannot rank multiple passages si-066

multaneously, necessitating techniques such as a067

sliding window strategy to complete the ranking068

process (Sun et al., 2023). Secondly, incorporating069

entire passages into prompts significantly increases070

inference costs, resulting in high latency, which is071

untenable in the ranking scenario.072

To tackle these issues, it is imperative to com-073

press listwise reranking prompts. Some context074

compression methods have been proposed for075

LLMs and can be categorized into two types: com-076

pressing the context into dense memory slots (Mu077

et al., 2024; Chevalier et al., 2023; Ge et al., 2023)078

and directly editing the input contexts (Jiang et al.,079

2023b). Nonetheless, existing methods exhibit rela-080

tively low compression rates and usually only com-081

press a single passage, rendering them inadequate082

for ranking tasks.083

For, we first highlight that in the “retrieval-then-084

rerank” pipeline, dense retrieval models have been085

trained as effective text compressors with their em-086

bedding capable of representing nearly as much in-087

formation as the original text (Morris et al., 2023).088

From this perspective, in the paper, we propose089

a novel and efficient listwise passage reranking090

method named PE-Rank, leveraging the single091

embedding of the passage as the compressed rep-092

resentation. Specifically, we obtain the passage093

embedding from a dense retrieval model and re-094

gard it as a special token of the LLM to replace095

the original text as input. To align the embedding096

space of the retrieval model and the input embed-097

ding space of the LLM, we use a projector as a098

bridge between the two models, which is inspired099

by previous work about modality alignment (Liu100

et al., 2024).101

To adapt PE-Rank to ranking tasks, we propose102

novel inference and training methods. For accurate103

and efficient inference, we propose a “Dynamic-104

Constrained Decoding” strategy that dynamically105

changes the decoding spaces to a set of special106

tokens that represent the rest of the passages to107

be ranked. We employ two-stage training, first108

training the projector for modality alignment, then109

training both the projector and LLM for ranking110

tasks using listwise learning to rank loss.111

We evaluate PE-Rank on popular retrieval bench- 112

marks TREC DL and BEIR. Experimental results 113

demonstrate that PE-Rank achieves comparable 114

ranking performance to uncompressed methods 115

while significantly improving inference efficiency. 116

Notably, when reranking top 100 candidates re- 117

trieval by BM25 on DL19, NDCG@10 of PE-Rank 118

is only reduced by less than 2% compared to the un- 119

compressed method under the same settings while 120

reducing the latency by a factor of 4.5. 121

In summary, the main contributions of this paper 122

are as follows: 123

• We propose a novel efficient listwise reranking 124

method, PE-Rank, first using passage embed- 125

dings for context compression in ranking. 126

• We evaluate PE-Rank on multiple benchmarks 127

and show its competitive ranking performance 128

and significant efficiency advantages. 129

2 Methodology 130

2.1 Overview 131

The overview architecture of PE-Rank is shown in 132

Figure 2, we introduce the model under the two- 133

stage ranking paradigm. 134

Specifically, we first use the dense retrieval 135

model to pre-encode the corpus into a vector index. 136

Given a query q, we use the same encoder to encode 137

it into an embedding and retrieve several most rel- 138

evant candidate passages Pcand = [p1, ..., pn] and 139

their embeddings ep1 , ..., epn . Here vector similar- 140

ity is used as the relevance score between query 141

and passages. 142

In the reranking stage, our key idea is to take 143

the embeddings from the previous stage as a good 144

context compression of passages. Therefore, we 145

propose replacing the original passage with the 146

single embedding representation as the input of 147

LLMs. However, there are dimensional and dis- 148

tribution differences between the passage embed- 149

dings and LLM’s token embeddings, which require 150

us to bridge the gap between two spaces with a 151

learned mapping function. Taking inspiration from 152

previous work on aligning two modalities (Liu 153

et al., 2024), we introduce a two-layer MLP, de- 154

noted as EM , as the mapping function. Here we 155

treat these transformed embeddings EM (epi) as 156

the embeddings of additional out-of-vocabulary 157

special tokens, where one passage is represented as 158

one special token, for example <p1> represents p1. 159

2

(a) (b)

Transfomer Layer

<p1><p2> <pn>

query:
what is wifi

Projector

what is wifi rank :

output: <p2><p3><p1>...

retrieve

Encoder

(c)

 at step1<p1><p2><p3>

 embeddings

token
embedding

 at step2

 at step3

passage
embedding

<p1><p2> <pn>

Figure 2: Overview of PE-Rank under a two-stage ranking paradigm. (a) is retrieval stage, retrieve n passage
embeddings; (b) is the forward pass procedure of LLM; (c) shows the listwise decoding process.

Furthermore, by taking the instruction I and160

query q as normal tokens and then concatenating161

the token embeddings and transformed passage em-162

beddings, we can define the simplified input em-163

beddings of LLM at the first generation step:164

E
(1)
In = Et(I⊕q)⊕EM (ep1) · · ·⊕EM (epn), (1)165

where Et is the token embedding layer of LLM.166

The complete prompts are listed in Appendix F. In167

the next section, we will introduce how to output168

the ranking list in detail.169

It should be pointed out that although we de-170

scribe PE-Rank in the background of two-stage171

ranking, it can be applied separately for reranking,172

simply using the encoder as a text compressor by173

encoding passages on the fly.174

2.2 Inference175

During inference, listwise rerankers aim to out-176

put a ranking list directly. For LLM-based list-177

wise approaches, we usually generate the ranking178

list autoregressively. In previous work, LLMs are179

prompted to generate a string that could be parsed180

into a ranking list, such as “[2] > [3] > [1]...” (Sun181

et al., 2023; Pradeep et al., 2023a). However,182

in early experiments, we found that generating a183

string representing ranking may be difficult and184

slow, as LLM may output in the wrong format or185

output useless content, such as explanation.186

To address this issue, we propose a “Dynamic-187

Constrained Decoding” (DC Decoding for short)188

Algorithm 1: DC Decoding
Input :Candidates Pcand = [p1, ..., pn],

Intial Input Embeddings E(1)
In

Output :Ranking List P̂rank = [p̂1, ..., p̂n]

1 P̂rank ← ∅
2 for i← 1 to n do
3 hi ← Transformer(E(i)

In)
4 p̂i ← argmaxp ∈ Pcand

(hT
i ·EM (ep))

5 E
(i+1)
In ← E

(i)
In ⊕EM (ep̂i)

6 Pcand.remove(p̂i)
7 P̂rank.append(p̂i)
8 end
9 return P̂rank

strategy in Algorithm 1. During decoding, we dy- 189

namically change the decoding spaces according 190

to the rest of the passages that need to be ranked, 191

treating the embedding representation of those pas- 192

sages as a special set of tokens. At each generation 193

step, we no longer output a normal numerical to- 194

ken but instead constrain the decoding space only 195

in these special tokens, to perform accurate rank- 196

ing. Therefore, we can directly output a list of 197

tokens that represent the ranking of passages, such 198

as “<p2><p3><p1>...”. Furthermore, as the decod- 199

ing space and the number of generated tokens are 200

much smaller than the original vocabulary space, 201

inference will be accelerated. 202

3

For example, as shown in Figure 2 (c), we first203

obtain the hidden state h1 from LLM in the first204

decoding step and calculate the output probabil-205

ity distribution with all the passages embeddings206

EM (ep1), ...,EM (epn), then take the p2 with the207

highest probability as the top-1 passage in the result.208

In the second decoding step, we append EM (ep2)209

to the input embeddings of LLM at last, remove it210

from the decoding space, and use the hidden state211

h2 in the second step to get the next output. By212

repeating this process, we obtain the final ranking.213

We use the greedy search algorithm in the actual214

inference process. It should be pointed out that215

when generating the next special token, the model216

relies on the previously predicted results rather than217

the ground truth.218

2.3 Training219

During training, we aim to address two challenges:220

aligning disparate embedding spaces and adapting221

the model for ranking. Consequently, we divide the222

training into two stages: (1) the alignment stage,223

which aligns the output space of the dense retrieval224

model with the token embedding space of the LLM,225

and (2) the learning-to-rank stage, which enables226

the model to acquire knowledge about ranking.227

Alignment stage At this stage, our objective is228

to ensure that the passage embeddings produced229

by the dense retrieval model are comprehensible230

to the large language model and effectively repre-231

sent the original text information. To achieve this,232

we design a text reconstruction task for training.233

Given a piece of text t, it is first encoded into an234

embedding and passed through the MLP. Taking235

the transformed embedding as part of the input, the236

LLM is prompted to reconstruct the original text237

based on the embedding. The simplified input of238

LLM can be formalized as:239

EIn-Align = Et(I)⊕EM (et), (2)240

We employ language modeling loss for training:241

LAlign = −
∑
i=1

logPθ(ti|EIn-Align ⊕Et(t<i)).

(3)242

Note that we freeze the encoder and the LLM243

and only fine-tune the parameters of MLP, that is,244

we only learn the mapping between two different245

embedding spaces, without changing themselves.246

Learning-to-rank stage Previous listwise ap-247

proaches employed supervised fine-tuning (SFT)248

#{query}

Passage 1: [<p1>]
...
#{instruction}

#{query}

Passage 1: [<p1>] #{content}
...
#{instruction}

golden rankingLLM
(a)

(b)

Figure 3: Illustration of two types of training data and
the learning-to-rank training process.

paradigms for training (Pradeep et al., 2023a,b). 249

By distilling from existing reranking models, the 250

LLMs acquire ranking knowledge. However, the 251

dynamic nature of the decoding space renders stan- 252

dard SFT inapplicable in this context. 253

Therefore, we propose that the decoding pro- 254

cess can be viewed as a sequential ranking learning 255

process: at each step, we provide the previously 256

decoded rankings and maximize the probability of 257

generating the next most relevant passage. For- 258

mally, if given a query q and the golden ranking list 259

[p1, ..., pn], at step i, we maximize the conditional 260

probability of pi given q and previous p<i: 261

Pθ(pi|q, p<i) = Pθ(pi|E
(i)
In)

=
exp(hT

i ·EM (epi))∑n
j=i exp(h

T
i ·EM (epj))

,
(4) 262

where θ is the model’s parameters. Considering the 263

whole sequential process, it is equivalent to listwise 264

learning to rank loss ListMLE (Xia et al., 2008): 265

Lrank = −
n∑

i=1

logPθ(pi|E
(i)
In). (5) 266

Here we only leverage the passage embeddings for 267

ranking, as illustrated in the prompt (a) in Figure 3. 268

The full prompts can be found in Appendix F. 269

However, understanding entire passages with 270

single embedding and utilizing them for ranking 271

may be challenging for LLMs, which may result in 272

difficulties when directly training with Equation (5). 273

Therefore, we incorporate both the original text and 274

the passage embedding into the model inputs and 275

apply the same forward pass to compute the loss: 276

Lcontent = −
n∑

i=1

logPθ(pi|E
(i)
In-c), (6) 277

where E
(i)
In-c is defined similarly as Equation (1), 278

but includes the content as part of the input, as il- 279

lustrated in the prompt (b) in Figure 3. We believe 280

4

this approach enhances the model’s ability to uti-281

lize the token-level interactions between query and282

passage and helps transfer this ability when solely283

using embeddings for ranking.284

Additionally, we also employ KL Divergence for285

distillation, which enables the model using com-286

pressed embeddings to emulate the proficiency in287

handling the uncompressed texts:288

LKL =
n∑

i=1

DKL(Pθ(pi|E
(i)
In)∥Pθ(pi|E

(i)
In-c). (7)289

The final loss function is defined as:290

L = Lrank + Lcontent + αLKL. (8)291

Here α is set to 0.2. We fine-tune both MLP and292

LLM in this stage but remain encoder frozen.293

It is important to note that during training, we294

use the golden ranking labels at each step, which295

differs from the inference process.296

3 Experiment Setup297

3.1 Evaluation Datasets298

We evaluate PE-Rank on multiple retrieval bench-299

marks, including TREC DL (Craswell et al., 2020)300

and BEIR (Thakur et al., 2021). TREC DL uses301

the MS MARCO dataset (Bajaj et al., 2016) as302

the retrieval corpus and has fine-grained relevance303

annotations. We use the test sets of TREC DL304

2019 and TREC DL 2020, which contain 43 and305

54 queries respectively. BEIR contains 18 datasets306

from different fields with different query require-307

ments, aiming to evaluate the generalization ability308

of ranking models. Following previous work (Sun309

et al., 2023), we conduct evaluations on 8 datasets310

that contain a relatively small number of queries.311

We use nDCG@10 as evaluation metrics.312

3.2 Implementation Details313

We choose Mistral-7B-Instruct-v0.2 (Jiang et al.,314

2023a) as our backbone model since it has a strong315

instruction-following ability. For most experiments,316

we select one popular embedding model, i.e., Jina-317

Embeddings (Günther et al., 2023), which has318

137M parameters and shows a strong generaliza-319

tion ability across different corpora. Also, we use320

different embedding models in the ablation study321

to demonstrate that our framework can adapt to322

other models. We will use PE-Rank⋆ to denote dif-323

ferent embedding models, but for convenience, if324

not indicated, Jina-Embeddings is used.325

As for training data, we leverage Wikipedia for 326

alignment and MS MARCO for the learning-to- 327

rank stage. For the latter, we use a retrieval model 328

to obtain the top 20 candidate passages for the 329

queries in the training set and employ a cross- 330

encoder as the teacher model to estimate the golden 331

ranking. More details about data construction, 332

model selection, and implementation are listed in 333

Appendix B and C. 334

During the evaluation, for each dataset, we first 335

use a retrieval model to recall the top 100 passages 336

for each query, and then evaluate the reranking re- 337

sults. For convenience, we encode the passages on 338

the fly, allowing us to use different retrieval models 339

to provide a more comprehensive comparison. If 340

not otherwise specified, we use the sliding window 341

trick to complete the whole ranking and set the 342

window size to 20 and the step size to 10, therefore 343

need 9 passes in total. We use one Nvidia H100 344

GPU to finish all evaluations. 345

3.3 Baselines 346

We select several existing methods as our ba- 347

sic baselines, including supervised neural rerank- 348

ing models monoBERT (Nogueira et al., 2019) 349

and monoT5 (Nogueira et al., 2020) that are 350

trained using a large amount of human annota- 351

tion data, unsupervised LLM-based listwise ap- 352

proach RankGPT (Sun et al., 2023), as well as 353

several listwise ranking models that are based 354

on smaller LLMs and trained with distillation in- 355

cluding RankVicuna (Pradeep et al., 2023a) and 356

RankZephyr (Pradeep et al., 2023b). 357

For a fair comparison, we train a model using 358

a similar paradigm as RankVicuna (Pradeep et al., 359

2023a) but use the Mistral-7B and the training data 360

same as PE-Rank, denoted as RankMistral. 361

Also, we use this model to evaluate different 362

text compression strategies and compare them with 363

PE-Rank. Specifically, we can use different texts 364

to replace the original passage in the inputs, de- 365

noted as RankMistral∗, where ∗ can be passage 366

(p), summary (s), or title (t). We provide more 367

details on baselines in Appendix D. 368

4 Experiment Results 369

4.1 Effectiveness Analysis 370

We first evaluate the effectiveness of PE-Rank on 371

TREC DL and BEIR benchmarks, and present the 372

results in Table 1. From the results, we can ob- 373

serve that the supervised models based on BERT 374

5

Model Ret. DL19 DL20 BEIR Avg.

BM25 - 50.58 47.96 43.42
Jina-Embedding - 65.94 63.89 41.46

Supervised models trained with human annotation

monoBERT BM25 70.50 67.28 47.16
monoT5 71.83 68.89 51.36

Unspervised LLM-based listwise models

RankGPT3.5 BM25 65.80 62.91 49.37
RankGPT4 75.59 70.56 53.68

LLM-based listwise models trained with distillation

RankVicuna

BM25

66.82 65.49 -
RankZephyr 74.20 70.86 -
RankMistral 71.73 68.07 43.65
PE-Rank 70.48 63.54 47.96

RankVicuna

Jina

69.81 70.61 -
RankZephyr 69.83 75.15 -
RankMistral 71.44 73.27 42.86
PE-Rank 70.91 69.48 44.28

Table 1: Results (NDCG@10) of reranking top-100 pas-
sages on TREC DL and BEIR. Ret means the retrieval
model used in first stage.

and T5 can achieve competitive ranking perfor-375

mance, while in the LLM-based baselines, using376

the strongest LLM, GPT-4, for listwise reranking377

can achieve state-of-the-art across all models on378

three datasets. As for distilled models, RankZephyr379

also shows promising ranking effectiveness, and we380

attribute this to using GPT-4 as the teacher model.381

Comparing the proposed PE-Rank model with382

other baselines, we can see that: (i) without di-383

rectly trained with human-annotated data, PE-Rank384

can approach supervised baselines’ performance.385

(ii) Despite compressing the entire passage into a386

single embedding, PE-Rank still maintains compa-387

rable effectiveness to the uncompressed distilled388

listwise models, even surpassing them on some389

datasets. For example, comparing PE-Rank with390

RankMistral, we can find that its ranking perfor-391

mance on DL19 has decreased less than 2%, while392

the results on BEIR are even consistently higher.393

It should be emphasized that when PE-Rank re-394

mains competitive, it has a significant efficiency395

advantage, and we will provide a detailed analysis396

in the next section.397

4.2 Efficiency Analysis398

We conduct efficiency analysis from the perspec-399

tives of consumed tokens and latency on DL19400

and Covid. We select Covid as it has a relatively401

long passage length, while the results on DL20 are402

similar to those on DL19.403

Number of Consumed Tokens We theoretically 404

analyze the number of processed tokens in the pre- 405

fill stage and generated tokens in the decode stage 406

of different methods. Assume a single pass with 407

n passages of average length Lp and instruction of 408

length LI , methods based on the text like RankGPT 409

exhibit an input length of O(LI + nLp), which 410

increases almost proportionally with Lp. In con- 411

trast, PE-Rank shows an input length of O(LI +n) 412

which will be unchanged when Lp increases. For 413

RankGPT-like methods, they need to generate num- 414

bers as well as identifiers such as “[]” and may not 415

output completely correctly, resulting in the num- 416

ber of generated tokens for Ω(mn). In practice 417

m ≈ 4.5. As for PE-Rank, by employing the DC 418

decoding method, the number is exactly equal to n 419

since only n unique special tokens will be output. 420

It is important to note that when employing the 421

sliding window strategy, the above results must be 422

multiplied by the number of sliding windows. How- 423

ever, PE-Rank, due to the compression of input 424

length, can achieve completion with fewer sliding 425

instances or even in a single pass, thereby further 426

underscoring its efficiency advantages. 427

Table 2 displays the number of tokens consumed 428

by different methods. The results show that, al- 429

though simple text compression techniques par- 430

tially reduce tokens to be processed, they may lead 431

to significant performance degradation. Specifi- 432

cally, when using titles as compression on DL19, 433

the performance is notably poor, possibly due to 434

title misses or lack of valid information. Using 435

summaries as input also results in performance loss, 436

particularly on the Covid dataset. Besides, these 437

text-based methods do not decrease the number of 438

generated tokens. Note that the model may not 439

output in the required format in practice, leading to 440

fluctuations in the number of generated tokens. 441

In contrast, PE-Rank significantly reduces the 442

number of tokens to be processed and generated, 443

while minimizing the loss of ranking performance. 444

Surprisingly, when ranking the top 20 passages on 445

the Covid dataset, it even outperforms the approach 446

without compression. 447

Latency We also analyze the reranking latency 448

using different methods in Table 2. The results 449

indicate that heuristic text compression techniques, 450

such as using titles or summaries, do not signifi- 451

cantly reduce latency. Conversely, by leveraging 452

passage embedding as a text compression represen- 453

tation, PE-Rank markedly accelerates the ranking 454

6

Model n
TREC DL19 TREC Covid

NDCG # Proc. # Gen. Latency (s) NDCG # Proc. # Gen. Latency (s)

RankMistralp

20

64.65 2265.8 109.9 2.04 70.90 8190.9 110.4 2.51
RankMistrals 63.03 1490.7 106.1 1.99 (×.98) 65.15 2224.2 100.2 1.92 (×.76)
RankMistralt 48.62 409.5 107.2 1.93 (×.95) 66.71 829.7 110.4 1.89 (×.75)
PE-Rank 62.66 326.9 20.0 0.42 (×.21) 72.34 344.3 20.0 0.44 (×.18)

RankMistralp

100

71.96 19506.2 910.2 16.20 77.80 71431.2 986.5 21.46
RankMistrals 70.50 13485.3 881.6 15.68 (×.97) 73.85 20148.6 929.6 16.94 (×.79)
RankMistralt 45.43 3753.4 865.1 15.12 (×.93) 75.40 7555.0 916.9 15.87 (×.74)
PE-Rank 70.48 2942.4 180.0 3.62 (×.22) 77.72 3098.9 180.0 3.65 (×.17)

Table 2: Efficiency analysis for reranking top n candidates retrieved by BM25 on TREC DL19 and TREC Covid. #
Proc and # Gen mean the number of processed tokens in the prefill stage and generated tokens in the decode stage,
respectively. For PE-Rank, we also include the time for encoding the passages on the fly. Lp of DL19 and Covid is
approximately 100 and 423, respectively. The best model in each block is in bold, and the second best is underlined.

p s t PE-Rank
0

5

10

15

20

La
te

nc
y

(s
)

0.69 0.50 0.21 0.18

16.00 15.51 14.98

3.41

DL19

Prefill Decode

p s t PE-Rank

2.72
0.72 0.30 0.18

21.05

16.72
15.72

3.33

Covid

Figure 4: Latency of reranking top 100 candidates at
different stages during inference.

process, achieving approximately a five-fold in-455

crease in speed across different candidate numbers456

and datasets, with only about 0.2 times the delay of457

the uncompressed method. Notably, when rerank-458

ing the top 20 candidates, the ranking latency for a459

single query can be limited to 0.5 seconds, render-460

ing it practical for real-world ranking scenarios.461

To fully comprehend the efficiency advantages462

of PE-Rank, we subdivide the sources of latency463

into prefilling and decoding, and conduct a more de-464

tailed analysis, as shown in Figure 4. Our findings465

first indicate that latency predominantly arises from466

decoding, with prefilling contributing only mini-467

mally. On datasets with shorter passage lengths,468

such as DL19, PE-Rank does not demonstrate a sig-469

nificant efficiency advantage during the prefilling470

stage; instead, the advantage is primarily observed471

in decoding, as fewer tokens need to be output, as472

previously analyzed. As passage length increases,473

given that the input length for PE-Rank does not474

increase linearly, it also exhibits efficiency advan-475

tages in prefilling, as the results observed on Covid.476

DL19 DL20 Covid News

(a) PE-Rank 70.48 63.54 77.72 47.40

(b) w/o Alignment 65.83 61.35 73.12 46.71
(c) w/o Lcontent & LKL 68.43 64.42 77.21 46.23
(d) w/o LKL 68.43 64.03 76.33 47.42
(e) w/o Lcontent 66.66 60.85 75.94 47.15

Table 3: Ablation on different training strategies. We
show the results of ranking top 100 candidates of BM25.

4.3 Ablation Study 477

Training Strategies We analyze the impact of 478

various training strategies on PE-Rank’s ranking 479

performance, with results presented in Table 3. 480

As expected, the model encompassing all train- 481

ing stages and loss functions exhibited the highest 482

performance across four datasets. Additionally, 483

we make the following observations: firstly, the 484

alignment stage markedly influences ranking per- 485

formance, though a model with ranking capabilities 486

can still be obtained without it. Secondly, adding 487

text without the KL loss (row (d) vs. (c)) or merely 488

incorporating the KL loss (row (e) vs. (c)) during 489

training does not yield substantial improvements. 490

Consequently, we infer that it is imperative for PE- 491

Rank to comprehend the token-level interaction 492

between query and passages, as well as to simulate 493

the original text only using passage embeddings. 494

Different Embedding Models To verify whether 495

our proposed framework can generalize to differ- 496

ent embedding models, we choose a different em- 497

bedding model for experiments. Specifically, we 498

select BGE-base (Xiao et al., 2023), a BERT-based 499

model that achieves the top tier position across the 500

same parameter scale models on the MTEB bench- 501

mark (Muennighoff et al., 2022). We use BGE as 502

the embedding model and the same complete train- 503

7

Model Ret. DL19 DL20 BEIR Avg.

BM25
BM25

50.58 47.96 43.80
PE-RankJina 70.48 63.54 48.43
PE-RankBGE 67.28 63.52 47.91

Jina-Embeddings Jina 65.94 63.89 41.46
PE-RankJina 70.91 69.48 44.28

BGE-base BGE 70.22 66.21 45.14
PE-RankBGE 72.93 67.80 46.00

Table 4: Using different embedding models to obtain
passage embeddings as context compression.

ing process as Jina-Embeddings to obtain a new504

model. The results are shown in Table 4.505

Firstly, using Jina-Embeddings and BGE as the506

encoder and leveraging their passage embeddings507

for reranking are both effective, reranking the can-508

didates obtained from different retrieval models on509

different datasets can consistently bring improve-510

ment. This proves that the PE-Rank approach can511

be applied to different embedding models.512

However, although BGE scores higher than Jina-513

embedding on MTEB, the performance of rerank-514

ing BM25 retrieval results using BGE embeddings515

is consistently lower across three different datasets516

compared to using Jina embeddings. Due to the517

use of different training data and pooling methods518

in these two models, it is challenging to directly de-519

termine the cause of this discrepancy. Nonetheless,520

we have reason to believe that models excelling in521

general embedding benchmarks like MTEB may522

not necessarily perform well in this context. This523

issue is worth further investigation.524

Impact of Sliding Window We investigate the ef-525

fects of varying window sizes (w) and step sizes (s)526

in sliding window strategies, with results presented527

in Table 5. For RankMistral, ranking performance528

decreases sharply as window size increases. This529

is attributable to two factors: firstly, RankMistral530

struggles to manage long contexts containing rich531

information; secondly, it is trained on data with a532

window size of 20, which may prevent it from gen-533

erating complete rankings with larger window sizes.534

In contrast, PE-Rank effectively addresses these535

issues. The compressed text maintains a shorter536

total length, and the compressed representation,537

i.e., passage embeddings, remains the key infor-538

mation of the original text. Additionally, the DC539

decoding method ensures accurate output of com-540

plete rankings. Consequently, PE-Rank’s ranking541

performance remains relatively stable. More impor-542

Model NDCG w/s #Proc. Latency

RankMistralp
71.96 20 / 10 19510.2 16.72
60.26 40 / 20 17152.3 9.10
51.54 100 / - 10561.9 4.09

PE-Rank
70.48 20 / 10 2942.4 3.68
70.12 40 / 20 2187.7 3.05
68.57 100 / - 1210.9 1.90

Table 5: The impact of different settings in the slid-
ing window strategy on effectiveness and efficiency of
reranking top 100 candidates retrieved by BM25.

tantly, PE-Rank can reduce the number of sliding 543

windows, thereby enhancing ranking efficiency. 544

5 Related Work 545

Large Language Models as Rerankers Recent 546

advancements in large language models (LLMs) 547

have shown their effectiveness in zero-shot rerank- 548

ing. There are three main paradigms for prompting 549

LLMs: pointwise (Sachan et al., 2022; Liang et al., 550

2022), pairwise (Qin et al., 2023), and listwise (Sun 551

et al., 2023; Pradeep et al., 2023a,b). Although 552

pointwise is least effective and pairwise is ineffi- 553

cient, listwise achieves the best performance but 554

is limited by context length and inference costs. 555

PE-Rank aims to improve the efficiency of listwise 556

approaches while maintaining their effectiveness. 557

Context Compression Aiming to reduce the in- 558

put length of LLMs while retaining key infor- 559

mation, there are some context compression ap- 560

proaches have been proposed, including heuristic 561

modificationa (Jiang et al., 2023b) and dense mem- 562

ory slot compression (Chevalier et al., 2023; Ge 563

et al., 2023; Mu et al., 2024). However, these are 564

general methods and insufficient for ranking tasks. 565

PE-Rank is designed for ranking and can be re- 566

garded as a variant of the soft prompts method, 567

which can handle and compress multiple passages 568

simultaneously for efficient listwise reranking. 569

6 Conclusion 570

In this paper, we propose a novel approach, PE- 571

Rank, for efficient listwise passage reranking with 572

large language models, leveraging passage embed- 573

ding as the context compression, as well as effec- 574

tive inference and training methods. Experiment 575

results demonstrate that PE-Rank offers significant 576

efficiency advantages while achieving competitive 577

reranking effectiveness. 578

8

7 Limitations579

We acknowledge some potential limitations of this580

work. Firstly, for this method, we need to ob-581

tain passage embeddings and change the decoding582

space dynamically, resulting in a more complex583

architecture and additional memory allocation.584

Secondly, this method is not plug-and-play,585

using different embedding models requires fine-586

tuning both MLP and LLM, rather than just MLP.587

We look forward to it being achieved by simply588

changing the MLP, thus making it easier to use.589

Finally, due to resource limitations, the embed-590

ding models and LLMs we used are relatively small,591

and we have not conducted experiments on more592

models. It is still unclear how changing the model593

will affect this method. We leave the second and594

third points for future work.595

References596

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,597
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,598
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,599
et al. 2016. Ms marco: A human generated ma-600
chine reading comprehension dataset. arXiv preprint601
arXiv:1611.09268.602

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-603
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan604
Zhao. 2024. xrag: Extreme context compression605
for retrieval-augmented generation with one token.606
arXiv preprint arXiv:2405.13792.607

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and608
Danqi Chen. 2023. Adapting language models to609
compress contexts. In Proceedings of the 2023 Con-610
ference on Empirical Methods in Natural Language611
Processing, pages 3829–3846.612

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel613
Campos, and Ellen M Voorhees. 2020. Overview614
of the trec 2019 deep learning track. arXiv preprint615
arXiv:2003.07820.616

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and617
Christopher Ré. 2022. Flashattention: Fast and618
memory-efficient exact attention with io-awareness.619
Advances in Neural Information Processing Systems,620
35:16344–16359.621

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and622
Kristina Toutanova. 2018. Bert: Pre-training of deep623
bidirectional transformers for language understand-624
ing. arXiv preprint arXiv:1810.04805.625

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao,626
Weihang Su, Jia Chen, and Yiqun Liu. 2024.627
Scaling laws for dense retrieval. arXiv preprint628
arXiv:2403.18684.629

Luyu Gao and Jamie Callan. 2021. Condenser: a pre- 630
training architecture for dense retrieval. In Proceed- 631
ings of the 2021 Conference on Empirical Methods 632
in Natural Language Processing, pages 981–993. 633

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu 634
Wei. 2023. In-context autoencoder for context com- 635
pression in a large language model. arXiv preprint 636
arXiv:2307.06945. 637

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed- 638
dine Abdessalem, Tanguy Abel, Mohammad Kalim 639
Akram, Susana Guzman, Georgios Mastrapas, Saba 640
Sturua, Bo Wang, et al. 2023. Jina embeddings 2: 641
8192-token general-purpose text embeddings for long 642
documents. arXiv preprint arXiv:2310.19923. 643

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 644
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 645
Yu, Armand Joulin, Sebastian Riedel, and Edouard 646
Grave. 2023. Atlas: Few-shot learning with retrieval 647
augmented language models. Journal of Machine 648
Learning Research, 24(251):1–43. 649

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 650
sch, Chris Bamford, Devendra Singh Chaplot, Diego 651
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 652
laume Lample, Lucile Saulnier, et al. 2023a. Mistral 653
7b. arXiv preprint arXiv:2310.06825. 654

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 655
Yang, and Lili Qiu. 2023b. Llmlingua: Compressing 656
prompts for accelerated inference of large language 657
models. In Proceedings of the 2023 Conference on 658
Empirical Methods in Natural Language Processing, 659
pages 13358–13376. 660

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 661
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 662
Wen-tau Yih. 2020. Dense passage retrieval for open- 663
domain question answering. In Proceedings of the 664
2020 Conference on Empirical Methods in Natural 665
Language Processing (EMNLP), pages 6769–6781. 666

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris 667
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian 668
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku- 669
mar, et al. 2022. Holistic evaluation of language 670
models. arXiv preprint arXiv:2211.09110. 671

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 672
Lee. 2024. Visual instruction tuning. Advances in 673
neural information processing systems, 36. 674

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and 675
Jimmy Lin. 2023a. Fine-tuning llama for multi-stage 676
text retrieval. arXiv preprint arXiv:2310.08319. 677

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and 678
Jimmy Lin. 2023b. Zero-shot listwise document 679
reranking with a large language model. arXiv 680
preprint arXiv:2305.02156. 681

Irina Matveeva, Chris Burges, Timo Burkard, Andy Lau- 682
cius, and Leon Wong. 2006. High accuracy retrieval 683
with multiple nested ranker. In Proceedings of the 684

9

29th annual international ACM SIGIR conference on685
Research and development in information retrieval,686
pages 437–444.687

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov,688
and Alexander M Rush. 2023. Text embeddings689
reveal (almost) as much as text. In Proceedings of the690
2023 Conference on Empirical Methods in Natural691
Language Processing, pages 12448–12460.692

Jesse Mu, Xiang Li, and Noah Goodman. 2024. Learn-693
ing to compress prompts with gist tokens. Advances694
in Neural Information Processing Systems, 36.695

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and696
Nils Reimers. 2022. Mteb: Massive text embedding697
benchmark. arXiv preprint arXiv:2210.07316.698

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-699
tavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,700
Yi Luan, Keith B Hall, Ming-Wei Chang, et al.701
2021. Large dual encoders are generalizable retriev-702
ers. arXiv preprint arXiv:2112.07899.703

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-704
sage re-ranking with bert. arXiv preprint705
arXiv:1901.04085.706

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020.707
Document ranking with a pretrained sequence-to-708
sequence model. arXiv preprint arXiv:2003.06713.709

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and710
Jimmy Lin. 2019. Multi-stage document ranking711
with bert. arXiv preprint arXiv:1910.14424.712

OpenAI. 2024. Gpt-4 technical report. arXiv preprint713
arXiv:2303.08774.714

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin.715
2021. The expando-mono-duo design pattern for716
text ranking with pretrained sequence-to-sequence717
models. arXiv preprint arXiv:2101.05667.718

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy719
Lin. 2023a. Rankvicuna: Zero-shot listwise doc-720
ument reranking with open-source large language721
models. arXiv preprint arXiv:2309.15088.722

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy723
Lin. 2023b. Rankzephyr: Effective and robust zero-724
shot listwise reranking is a breeze! arXiv preprint725
arXiv:2312.02724.726

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,727
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,728
Donald Metzler, Xuanhui Wang, et al. 2023.729
Large language models are effective text rankers730
with pairwise ranking prompting. arXiv preprint731
arXiv:2306.17563.732

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine733
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,734
Wei Li, and Peter J Liu. 2020. Exploring the lim-735
its of transfer learning with a unified text-to-text736
transformer. Journal of machine learning research,737
21(140):1–67.738

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and 739
Yuxiong He. 2020. Deepspeed: System optimiza- 740
tions enable training deep learning models with over 741
100 billion parameters. In Proceedings of the 26th 742
ACM SIGKDD International Conference on Knowl- 743
edge Discovery & Data Mining, pages 3505–3506. 744

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, 745
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and 746
Luke Zettlemoyer. 2022. Improving passage retrieval 747
with zero-shot question generation. arXiv preprint 748
arXiv:2204.07496. 749

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang 750
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and 751
Zhaochun Ren. 2023. Is chatgpt good at search? 752
investigating large language models as re-ranking 753
agents. In Proceedings of the 2023 Conference on 754
Empirical Methods in Natural Language Processing, 755
pages 14918–14937. 756

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 757
hishek Srivastava, and Iryna Gurevych. 2021. Beir: 758
A heterogenous benchmark for zero-shot evalua- 759
tion of information retrieval models. arXiv preprint 760
arXiv:2104.08663. 761

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, 762
Rangan Majumder, and Furu Wei. 2023. Improving 763
text embeddings with large language models. arXiv 764
preprint arXiv:2401.00368. 765

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and 766
Hang Li. 2008. Listwise approach to learning to 767
rank: theory and algorithm. In Proceedings of the 768
25th international conference on Machine learning, 769
pages 1192–1199. 770

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas 771
Muennighof. 2023. C-pack: Packaged resources to 772
advance general chinese embedding. arXiv preprint 773
arXiv:2309.07597. 774

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, 775
Jialin Liu, Paul N Bennett, Junaid Ahmed, and 776
Arnold Overwijk. 2020. Approximate nearest neigh- 777
bor negative contrastive learning for dense text re- 778
trieval. In International Conference on Learning 779
Representations. 780

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re- 781
comp: Improving retrieval-augmented lms with com- 782
pression and selective augmentation. arXiv preprint 783
arXiv:2310.04408. 784

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min 785
Zhang, and Shaoping Ma. 2021. Optimizing dense 786
retrieval model training with hard negatives. In Pro- 787
ceedings of the 44th International ACM SIGIR Con- 788
ference on Research and Development in Information 789
Retrieval, pages 1503–1512. 790

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and 791
Shaoping Ma. 2020. Repbert: Contextualized text 792
embeddings for first-stage retrieval. arXiv preprint 793
arXiv:2006.15498. 794

10

Xinyu Zhang, Sebastian Hofstätter, Patrick Lewis,795
Raphael Tang, and Jimmy Lin. 2023. Rank-without-796
gpt: Building gpt-independent listwise rerankers on797
open-source large language models. arXiv preprint798
arXiv:2312.02969.799

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,800
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and801
Michael Bendersky. 2023a. Rankt5: Fine-tuning t5802
for text ranking with ranking losses. In Proceedings803
of the 46th International ACM SIGIR Conference on804
Research and Development in Information Retrieval,805
pages 2308–2313.806

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,807
and Guido Zuccon. 2023b. A setwise approach808
for effective and highly efficient zero-shot rank-809
ing with large language models. arXiv preprint810
arXiv:2310.09497.811

A Additional Related Work 812

A.1 Multi-Stage Ranking 813

Multi-stage ranking, which can be traced back to 814

work over a decade ago (Matveeva et al., 2006), 815

aims to achieve both effective and efficient ranking. 816

Current mainstream approaches generally adhere 817

to a “retrieval-then-rerank” pipeline, first retrieve 818

a set of candidates, followed by a more powerful 819

reranker to enhance the ranking results (Nogueira 820

et al., 2019; Ma et al., 2023a). 821

Dense retrieval models On the retriever side, 822

dense retrieval models based on a bi-encoder design 823

are prevalent. Based on the bi-encoder architecture, 824

these models independently encode documents and 825

queries into one dense embedding and use vector 826

similarity to model the relevance (Karpukhin et al., 827

2020; Zhan et al., 2020). This design allows for 828

the offline pre-encoding of the corpus, facilitating 829

efficient retrieval during the search phase through 830

approximate nearest neighbor search (ANNs) algo- 831

rithms. Numerous techniques have been proposed 832

to augment the efficacy of retrieval models, includ- 833

ing mining hard negatives (Xiong et al., 2020; Zhan 834

et al., 2021), pre-training for retrieval (Gao and 835

Callan, 2021), large-scale contrastive training (Gün- 836

ther et al., 2023; Xiao et al., 2023), and scaling the 837

model size (Ni et al., 2021; Fang et al., 2024; Wang 838

et al., 2023). These methods improve the capacity 839

of embeddings, enabling them to comprehensively 840

capture the semantic information of the text. 841

Supervised neural rerankers On the reranker 842

side, monoBERT (Nogueira et al., 2019) and 843

monoT5 (Nogueira et al., 2020) demonstrated 844

the effectiveness of employing pre-trained lan- 845

guage models for reranking. RankT5 (Zhuang 846

et al., 2023a) explored using ranking loss for train- 847

ing. These rerankers are usually trained on MS 848

MARCO dataset. 849

Large Language Models as Rerankers Re- 850

cently, large language models have demonstrated 851

impressive effectiveness on many tasks. Many 852

studies also attempt to utilize LLMs for zero-shot 853

reranking. In general, there are three paradigms 854

for prompting large language models: pointwise, 855

pairwise, and listwise. 856

The pointwise approach evaluates the relevance 857

score on one query-passage pair at a time, including 858

relevance generation (Liang et al., 2022) and query 859

generation (Sachan et al., 2022). The pairwise 860

11

approach prompts LLM with a pair of passages to861

a given query to indicate which is more relevant,862

using aggregation methods (Pradeep et al., 2021) or863

sorting algorithms (Qin et al., 2023; Zhuang et al.,864

2023b) to derive the final ranking.865

The listwise approach aims to receive a query866

along with a list of candidates and directly gen-867

erate a ranking list based on their relevance to868

the query (Ma et al., 2023b; Sun et al., 2023).869

Recently, some studies have attempted to distill870

smaller listwise reranking models from existing871

powerful rerankers like RankGPT (Pradeep et al.,872

2023a,b; Zhang et al., 2023).873

Among these methods, the pointwise approach874

exhibits the poorest performance, the pairwise ap-875

proach suffers from low efficiency, and only the list-876

wise approach achieves optimal performance while877

maintaining a relatively reasonable efficiency level.878

However, it remains constrained by the context879

length and inference cost of LLMs. Our proposed880

method aims to enhance the efficiency of listwise881

approaches while preserving their effectiveness.882

A.2 Context Compression883

Context compression, which seeks to reduce the884

input length of LLMs while retaining the essen-885

tial information from the original context, has re-886

cently garnered considerable attention. One ap-887

proach is to heuristic modify the context to make it888

concise while retaining key information. LLMLin-889

gua (Jiang et al., 2023b) introduces a coarse-to-fine890

prompt compression method based on the perplex-891

ity score. RECOMP (Xu et al., 2023) proposes892

compressing documents into text summaries for893

RAG. Another direction is to compress the text894

into dense slots or soft prompts, such as AutoCom-895

pressor (Chevalier et al., 2023), ICAE (Ge et al.,896

2023), and Gist (Mu et al., 2024). However, these897

methods only compress a single prompt and are898

inadequate for ranking tasks. In contrast, our pro-899

posed method is specifically designed for ranking900

tasks and can be regarded as a variant of the soft901

prompts method.902

Recently, a contemporary work, xRAG, pro-903

posed using embedding models to compress a doc-904

ument into a token for RAG, which is similar to our905

proposed method (Cheng et al., 2024). Compared906

to it, our proposed PE-Rank method has the follow-907

ing differences: firstly, we compress prompts for908

the ranking task which is more complex, and sec-909

ondly, we compress multiple documents as input at910

once.911

B Training Data 912

B.1 Dataset for Alignment 913

During the alignment stage, we employ segmented 914

Wikipedia as the training dataset. The texts in the 915

Wikipedia dataset, authored and reviewed by hu- 916

mans, are of higher quality and completeness. Ad- 917

ditionally, its encyclopedic nature provides knowl- 918

edge from diverse fields, rendering it reliable for 919

training in the alignment stage. Specifically, we 920

utilized the Wikipedia dump from Dec 2020, pre- 921

processed by Izacard et al. (2023), which is totaling 922

around 31.5 million texts. We sampled 2 million 923

data pieces for training. The complete data format 924

can be found in Appendix F. 925

B.2 Dataset for Learning-to-rank 926

In the learning-to-rank stage, we utilize the MS 927

MARCO dataset (Bajaj et al., 2016). MS MARCO 928

is a large-scale passage retrieval dataset that con- 929

tains around 8.8 million passages and 800,000 930

queries, of which about 500,000 have manually 931

annotated relevance labels. 932

We use Jina-embeddings-v2-base-en1 as the re- 933

trieval model to retrieve the top 20 candidate pas- 934

sages for all queries in the training set, to construct 935

the dataset. However, it only includes binary anno- 936

tations (i.e., relevant or irrelevant) and cannot be 937

directly used as training data for our training proce- 938

dure. Therefore, following the approach of Zhang 939

et al. (2023), we use an existing powerful super- 940

vised reranking model, i.e., MiniLM2 trained on 941

MS MARCO, as the annotation model to approxi- 942

mate the golden ranking. Following Pradeep et al. 943

(2023a), we used a data augmentation strategy of 944

randomly shuffling document order. 945

To facilitate training, we excluded samples with 946

excessively long lengths, retaining only those with 947

input lengths less than 2048. Consequently, our 948

dataset for this stage comprises 232,419 samples 949

and each sample contains 20 passages and the ap- 950

proximated golden ranking. 951

C Implementation Details 952

For the models we use, we select Mistral-7B- 953

Instruct-v0.2 as the backbone.3 For embedding 954

1https://huggingface.co/jinaai/
jina-embeddings-v2-base-en

2https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-6-v2

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

12

https://huggingface.co/jinaai/jina-embeddings-v2-base-en
https://huggingface.co/jinaai/jina-embeddings-v2-base-en
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Hyperparameter Alignment LTR

optimizer AdamW AdamW
learning rate 1e-4 2e-5
lr scheduler type cosine cosine
warmup ratio 0.03 0.03
weight dacay 0 0
epochs 1 1
batch size per GPU 32 4
gradient accumulation 1 2
max sequence length 512 2048

Table 6: Hyperparameters for Training.

models, we use Jina-Embeddings and BGE-base4955

which are both encoder-based models with 137M956

parameters and 110M parameters, respectively.957

The selection of embedding models is based on the958

number of model parameters, their performance959

on MTEB, and community popularity. We didn’t960

use top-tier models on MTEB because they are961

all decoder-based models that have a much larger962

number of parameters.963

We implement all training codes based on the Py-964

Torch framework. To optimize memory usage and965

accelerate training, we applied Deepspeed ZeRO966

stage 2 (Rasley et al., 2020) and BFloat16 mixed967

precision techniques. Additionally, Flash atten-968

tion (Dao et al., 2022) was used to further improve969

training efficiency.970

In Table 6, we present the hyperparameters for971

the alignment stage and learning-to-rank stage. All972

models were trained on 4 Nvidia H100 GPUs. The973

training for the alignment stage required approx-974

imately 7 hours, while the learning-to-rank stage975

also took 7 hours. It is important to note that the976

hyperparameters were determined based on empiri-977

cal observations, as comprehensive hyperparameter978

tuning was beyond the scope of this study due to979

resource constraints.980

D Selection of Baselines981

We provide a detailed introduction to the selection982

of baselines here.983

Supervised Neural Rerankers First, we select984

two typical supervised models, including:985

• monoBERT (Nogueira and Cho, 2019), a986

cross-encoder based on BERT-Large (Devlin987

et al., 2018), which uses the concatenation of988

4https://huggingface.co/BAAI/bge-base-en-v1.5

the query and the passage as input and maps 989

the embedding of [CLS] token to a score. 990

• monoT5 (Nogueira et al., 2020), which is a 991

sequence-to-sequence reranking model based 992

on T5-3B (Raffel et al., 2020), using the prob- 993

ability of the output token “true” as the rele- 994

vance score. 995

These two models are both trained on the MS 996

MARCO dataset using a large number of human 997

annotation labels. 998

LLM-based Rerankers Additionally, we use 999

one unsupervised LLM-based methods as base- 1000

lines: 1001

• RankGPT (Sun et al., 2023), a state-of-the- 1002

art listwise method that uses a sliding window 1003

strategy for listwise ranking based on GPT. 1004

We also add listwise reranking models that are 1005

based on smaller LLMs (such as an LLM with 1006

7B parameters) and are distilled from existing 1007

rerankers. In particular, we select: 1008

• RankVicuna (Pradeep et al., 2023a), which 1009

is a listwise model based on Vicuna-7B, using 1010

RankGPT3.5 as the teacher model. 1011

• RankZephyr (Pradeep et al., 2023b), which 1012

is a listwise model based on a more powerful 1013

backbone Zephyr-7B, using both RankGPT3.5 1014

and RankGPT4 as the teacher model thus 1015

achieve a strong ranking performance. 1016

Besides, we also use a ranking model trained 1017

by ourselves. The training process is similar to 1018

RankVicuna but uses the data mentioned in the 1019

previous section. This decision is motivated by 1020

two reasons. Firstly, the choice of the base model 1021

can significantly influence the performance of the 1022

ranking model. Secondly, the selection of different 1023

teacher models can have a substantial impact. Con- 1024

sequently, to ensure a more equitable comparison, 1025

we retrained a ranking model based on Mistral-7B 1026

as the baseline, denoted as RankMistral∗. 1027

We replace ∗ with different forms of text input, 1028

including: 1029

• RankMistralp, which use original passage as 1030

the input. 1031

• RankMistrals, which use the summary to 1032

relace the passage. The summary is gener- 1033

ated by Mistral-7B-Instruct-v0.2. 1034

13

https://huggingface.co/BAAI/bge-base-en-v1.5

Model Ret. Covid NFCorpus Touché DBPedia SciFact Signal News Robust Avg.

BM25 - 59.47 33.75 44.22 31.80 67.89 33.05 39.52 40.70 43.80
monoBERT BM25 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 47.16
monoT5 BM25 80.71 38.97 32.41 44.45 76.57 32.55 48.49 56.71 51.36
RankGPT3.5 BM25 76.67 35.62 36.18 44.47 70.43 32.12 48.85 50.62 49.37
RankGPT4 BM25 85.51 38.47 38.57 47.12 74.95 34.40 52.89 57.55 53.68

RankMistralp BM25 78.00 33.10 27.46 37.71 66.22 30.04 37.10 39.54 43.65
PE-RankJina BM25 77.72 36.39 33.06 40.05 69.38 33.74 49.70 47.40 48.43
PE-RankBGE BM25 77.21 36.24 35.68 38.91 69.29 32.86 47.94 45.12 47.91

Jina-Embeddings - 68.94 31.43 28.68 33.32 65.53 25.76 39.80 38.23 41.46
RankMistralp Jina 80.19 29.74 29.16 40.25 63.85 28.17 35.80 35.69 42.86
PE-RankJina Jina 77.49 30.92 30.00 36.26 64.48 26.54 44.78 43.73 44.28

BGE - 75.19 36.58 23.64 37.21 74.41 28.18 41.93 43.96 45.14
RankMistralp BGE 82.75 34.99 27.80 43.04 72,72 29.02 39.06 40.51 42.45
PE-RankBGE BGE 80.56 36.94 24.26 39.84 71.88 26.20 44.18 44.13 46.00

Table 7: Full results on BEIR benchmark. For all datasets, NDCG@10 is used as the metric.

Model n NDCG # Proc. Latency (s)

RankMistralp

20

60.64 2190.4 1.88
RankMistrals 59.52 1446.8 1.81 (×.97)
RankMistralt 42.28 422.8 1.85 (×.99)
PE-Rank 56.48 327.7 0.42 (×.22)

RankMistralp

100

68.39 19787.0 16.31
RankMistrals 66.14 13514.3 15.74 (×.97)
RankMistralt 38.15 3874.9 15.29 (×.94)
PE-Rank 63.54 2949.0 3.66 (×.22)

Table 8: Efficiency analysis or reranking top n candi-
dates retrieved by BM25 on TREC DL20.

• RankMistralt, which use the title obtained1035

from the origincal datasets.1036

These baselines help us evaluate the effectiveness1037

and efficiency of different compression methods1038

under a consistent setting.1039

We didn’t include other context compression1040

methods as baselines for efficiency analysis be-1041

cause they are unsuitable for ranking tasks.1042

E More Results1043

We give more evaluation results and analysis here.1044

E.1 Full Results on BEIR1045

Table 7 shows the full results on BEIR benchmark.1046

E.2 Efficiency Analysis on TREC DL201047

Table 8 shows the analysis results on TREC DL20.1048

E.3 Sensitivity to the Initial Ranking1049

We analyze different orderings of the candidates1050

that are retrieved by BM25, including the original1051

BM25 ranking order, inverted BM25 ranking order,1052

and random shuffled order. The results are shown in1053

Model Order TREC DL19 TREC DL20

BM25 - 50.58 47.96

RankMistralp
Origin 71.73 68.07
Random 71.04 67.91
Inverse 70.92 68.85

PE-Rank
Origin 70.48 63.54
Random 66.74 56.14
Inverse 57.15 49.85

Table 9: Sensitivity to the initial ranking.

Table 9. We can see that compared to using passage 1054

as input, using embeddings as the compressed input 1055

may be more sensitive to the initial order. This may 1056

be one of the limitations of this method. 1057

F Prompts 1058

Alignment Stage Training For alignment stage, 1059

we use diverse instruction data, shown in Table 10. 1060

Learning-to-rank Stage Training For learning- 1061

to-rank stage, as discussed in Section 2.3, we used 1062

two different types of training data. The full data 1063

formats are listed in Table 11 and Table 12. 1064

Training RankMistral The prompt used for 1065

training RankMistral is listed in Table 13. 1066

Generating Summaries The prompt for generat- 1067

ing summaries for RankMistrals is in Table 14. 1068

Prompts for Evaluation For RankMistral∗, we 1069

use the same prompt as training shown in Table 13. 1070

For PE-Rank, we use the prompt shown in Table 11. 1071

14

User:

• Given the passage: {{embedding}}, reconstruct the original text.

• Passage: {{embedding}} means the same as

• Passage: {{embedding}} Can you say the above text again?

• {{embedding}} Please provide a reconstruction of the preceding passage.

• Passage: {{embedding}} is about what?

• {{embedding}} Could you give me a different version of the passage above?

• Passage: {{embedding}} Please offer a restatement of the provided passage.

• Passage: {{embedding}}, which means:

Assistant:
{{text}}

Table 10: Prompts used for alignment stage training, where {{embedding}} and {{text}} are placeholders for
transformed embeddings EM (et) and the original text t.

User:

I will provide you with {{n}} passages, each with a special token representing the passage
enclosed in [].

Rank the passages based on their relevance to the search query: {{query}}.

Passage 1: [{{embedding}}]

...

Passage {{n}}: [{{embedding}}]

Search Query: {{query}}

Rank the {{n}} passages above based on their relevance to the search query in descending order.
Only output the {{n}} unique special token in the ranking.

Table 11: Data format used for learning-to-rank stage training.

15

User:
I will provide you with {{n}} passages, each with a special token representing the passage
enclosed in [], followed by the original text.

Rank the passages based on their relevance to the search query: {{query}}.

Passage 1: [{{embedding}}] {{content}}

...

Passage {{n}}: [{{embedding}}] {{content}}

Search Query: {{query}}

Rank the {{n}} passages above based on their relevance to the search query in descending order.
Only output the {{n}} unique special token in the ranking.

Table 12: Data format used for learning-to-rank stage training.

User:

I will provide you with {{n}} passages. Rank the passages based on their relevance to the search
query: {{query}}.
Passage 1: {{content}}

...

Passage {{n}}: [{{embedding}}] {{content}}

Search Query: {{query}}

Rank the {{n}} passages above based on their relevance to the search query in descending order.
The output format should be [] > [] > ..., e.g., [4] > [2] > ..., Only respond with the ranking results
with {{n}} unique numbers, do not say anything else or explain.

Table 13: Data format used for training RankMistral.

User:
Summarize the following passage, only output the summary, do not include anything else.
Passage: {{content}}

Table 14: Prompts used for generating summary using Mistral-7B.

16

	Introduction
	Methodology
	Overview
	Inference
	Training

	Experiment Setup
	Evaluation Datasets
	Implementation Details
	Baselines

	Experiment Results
	Effectiveness Analysis
	Efficiency Analysis
	Ablation Study

	Related Work
	Conclusion
	Limitations
	Additional Related Work
	Multi-Stage Ranking
	Context Compression

	Training Data
	Dataset for Alignment
	Dataset for Learning-to-rank

	Implementation Details
	Selection of Baselines
	More Results
	Full Results on BEIR
	Efficiency Analysis on TREC DL20
	Sensitivity to the Initial Ranking

	Prompts

