SWIS - Shared
Weight blt Sparsity for Efficient Neural Network Acceleration

ABSTRACT

Quantization is spearheading the increase in performance and effi-
ciency of neural network computing systems making headway into
commodity hardware. We present SWIS - Shared Weight blt Sparsity,
a quantization framework for efficient neural network inference
acceleration delivering improved performance and storage compres-
sion through an offline weight decomposition and scheduling algo-
rithm. SWIS can achieve up to 52% (19.8%) point accuracy improve-
ment when quantizing MobileNet-v2 to 4 (2) bits post-training (with
retraining) showing the strength of leveraging shared bit-sparsity in
weights. SWIS accelerator gives up to 6X speedup and 1.8X energy
improvement over state of the art bit-serial architectures.

ACM Reference Format:

. 2020. SWIS - Shared Weight blt Sparsity for Efficient Neural Network Ac-
celeration. In Proceedings of . ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Creating custom silicon for a particular application historically re-
quires a robust economic case due to the immense costs of such
endeavors. Deep neural networks (DNNs) have created such a case
in a span of a few short years and both training and inference accel-
erators are proliferating in server- and edge-class devices [7]. Many
of those are doubling down on further specialization to squeeze out
more efficiency, frequently through the use of quantization going as
low as 4-bit or binarized precision [9]. However, only a subset of ap-
plications can take advantage of such aggressive precision reduction.

Recently, a lot of research interest has gone into hardware sup-
porting configurable levels of quantization, for example bit-serial
and decomposable arithmetic [8, 11, 13]. More recent works utilizing
bit-serial arithmetic have attempted avoiding ineffectual computa-
tions resulting from zero-valued bits, however they applied it only
to activations at runtime [1, 3]. Those approaches lead to limited
latency improvements [3], significant hardware overheads [1, 3], no
storage compression [3], or non-trivial scheduling issues [1]. More-
over, most existing bit-serial, precision-scalable architectures show
benefits when quantizing from 16-bit networks [3, 8]. Recent efforts
have shown that 8-bit quantization does not lose accuracy for most
networks [6] and therefore, value of precision-scalable approaches
needs to be shown below bitwidth of 8.

To address these issues, we propose SWIS - Shared Weight blt
Sparsity Scheduling, a methodology for training, compressing, and
executing convolutional neural networks on bit-serial hardware
that can significantly reduce the effective required bitwidth. SWIS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.
ACMISBN 978-x-xxxX-Xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

achieves this through configurable, non-consecutive shift values on
a very fine granularity of small groups of weights. This results in
both efficient hardware implementation, as well as more compressed
representation. Thanks to offline profiling of weights, SWIS can
achieve significant storage compression and efficient scheduling,
which is not achievable in accelerators that process activations in
a bit-serial manner.
The main contributions of this work are as follows.

We show that Shared bit sparsity can achieve up to 3.7X neural net-
work weight compression compared to conventional quantization
approaches at similar inference accuracy.

The proposed SWIS architecture gives up to 6X (1.8X) improve-
ment in inference latency (energy) compared to state-of-the-art
bit-serial accelerators of same size.

We develop filter scheduling approaches that maximize the bene-
fits of SWIS by optimizing distribution of shift cycles among filters
on a fine granularity, giving up to 3.5p.p. improvement in accuracy
over unscheduled version.

2 SWIS QUANTIZAION

In this section, we discuss how SWIS quantizes weights and how it
can be a more effective lossless as well lossy quantization strategy.

2.1 What Should be Quantized?

Quantization and reduced precision have proven to be low-hanging
fruits for improving the efficiency of neural network inference
[8,10, 13, 17]. When these techniques are applied, a question arises -
which values should be quantized, weights or activations? Commod-
ity hardware, like CPUs or GPUs, will often enforce symmetric quan-
tization, with both weights and activations using the same precision,
while conventional bit-serial hardware can only effectively quantize
one of the two [8]. Most bit-serial work has opted for reducing the pre-
cision of activations while keeping weight precision unchanged [1, 8].
We will now argue that this approach is flawed and that reducing
the precision of weights should be prioritized in such architectures.
Firstly, prior works have shown that weights can be quantized
much more aggressively than activations without significant accu-
racy drops [10, 17]. With quantization-aware training, weight pre-
cision can be reduced to just 1 or 2 bits, and results for post-training
quantization also suggest quantizing weights to lower precision is
better than doing the same for activations in most cases [2]. Unlike
activations, weights are not input-dependent; thus, they can be quan-
tized offline at a much finer granularity without inducing hardware
overheads. Architectures that use different precision weights and
activations have opted to reduce precision more on the weight side
[13], except for the aforementioned bit-serial accelerators.
Secondly, there are performance considerations. In modern DNNss,
the overall number of weights will often dwarf the number of interme-
diate activations generated. Consider the ratio of external memory
weight to activation accesses in the ResNet-18 model, shown in Fig-
ure 1, for a systolic array accelerator. For some convolutional layers,
there can be two orders of magnitude more weight than activation
accesses. Considering how system performance can be dominated

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

95.3

DRAM Weight to Activation Ratio -~
15 11.9
e S—
10
6.1
5 1.5
0.1 0.2 e S—
0 2

A S I R RN RN N RN
. <0
Convolutional Layer Number

Figure 1: Ratio of DRAM weight to activation accesses
(RD+WR) in different convolutional layers of ResNet-18 in
asystolic array accelerator.

by memory accesses, reducing the precision of weights can yield
much greater improvements than doing this for activations.

We will now describe SWIS - a computation scheme that can
quantize weights in a much more efficient manner than traditional
bit-serial approaches.

2.2 Shared Weight Bit-Sparsity

The multiply-accumulate (MAC) operation, which is the workhorse
of deep neural networks, between an activation vector d@ and weight
vector w can be written as:

M-1
E-W:Zaixwi (1)
i=0

Where a; and w; are the i-th elements of vectors d@ and w respec-
tively and M is the width of the multiply-accumulate. We will refer
to the M as a group size from now on. Each weight w; can be further
decomposed to its bit-wise form:

B-1
wi:Sign(wi)XZZJXwi[j] (2)
j=0
Where w;[j] is the j-th bit (from LSB) of weight w;, and B is the
bitwidth of the weight. Equation 1 can now be rewritten as:

B-1 M-1
E-W:ZZJ Sign(wi)Xa;Xw;[j] (3)
j=0 i=0
If we consider that multiplication by a single bit is a bit-wise AND
operation (&), and multiplication by a power of 2 is a logical shift
operation (<<), Equation 3 can be rewritten as:

B-1(M-1
(mzz ZSign(wi)x(ai&wi[j]) <<j o
j=0\i=0

The above formulation is used in bit-serial accelerators, although
most prior works use activations in their bit-serial representation
and weights in their parallel representation [3, 8]. We will now ex-
plain why the weight bit-serial formulation, as in Equation 4, can
be much better.

Naive implementation of bit-serial multiplication requires going
through all bits of one of the operands. However, as multiple previ-
ous works have pointed out, every bit equal to 0 will not contribute
to the final result, effectively wasting computation cycles [3]. One
solution is to clip all MSB and LSB positions containing zeroes and
only process bits within that clipped range [3]. However, that does
not eliminate zero-bits within the clipped range. For example, the
above scheme applied to a value of 129, represented as an 8-bit value

(1000_0001 in binary), results in no cycle savings, despite 75% of bits
not contributing to the result.

Further, this will cause synchronization problems that are difficult
to solve in highly-parallel architectures unless the above scheme is
applied on a group basis [1]. However, when applied to a group of
values, clipping is constrained by the worst-case number, reducing
achievable benefits. Consider grouping 129 (1000_0001 in binary)
with 8 (0001_0000). The former will require processing all 8-bit posi-
tions, while the latter only requires a single one. Overall, over 80% of
computation would effectively be wasted. While more sophisticated
techniques of removing all activation zero bit computations have
been proposed, they suffer from the above synchronization issue and
significant hardware overheads. [1]. While training optimizations
for such architectures have recently been proposed, they do not fully
solve the scheduling issues [16].

What limits the efficacy of the methods described above is that
they are attempting what is effectively "lossless compression” of
computation, requiring representation of exact values. We argue
that through careful pre-processing, a much more hardware-friendly
"lossy compression" can be achieved without significantly reduc-
ing inference accuracy, as we will show in Section 5.1. However,
pre-processing implies that it can only be applied to weights and
not activations, which are input dependent. This insight, together
with the reasons outlined in Section 2.1 justify our "reverse” weight
bit-serial formulation in Equation 4. Furthermore, these existing
approaches quantize using consecutive bit positions (usually trun-
cating the LSBs). Next we show SWIS approach to leverage the
sparsity in bit representations of weights.

Let us assume we constrain a group of weights to only use a specific
subset of active bit positions, while all the other inactive positions
are assumed to be 0. We can define a supporting vector §:

§=(50,52,---SN-1) :8i €{0,B) (5)
We can then rewrite Equation 2 as:

N-1
wi=Sign(wi)x) 29 xmy] j] (6)
Jj=0
Where m; is a mask bit indicating whether weight w; has an active
bit in position s;. After combining Equations 4 and 6 we arrive at the
shared weight bit sparsity formulation, the foundation of the SWIS
methodology:

N-1(M-1
c'inJ:Z ZSign(wi)x(a,-&mi[j]) <<s;j (7)

j=0 \'i=0
The stark similarity between Equations 4 and 7 means that SWIS
is fully compatible with bit-serial MAC processing elements (PEs).
There are three crucial differences between bit-serial and SWIS pro-
cessing. First is the change in the outer loop bound from B (weight
bitwidth) to N (size of the support vector). Second is the sparse
(non-consecutive) nature of the supporting vector - most prior bit-
serial architectures either constrained themselves to consecutive
shift ranges [8], or ran into non-trivial scheduling problems when
attempting to exploit bit-sparsity in dynamic activations [1]. SWIS
does not have this problem as long as the number of active bits,
henceforth referred to as shifts, is the same for all computations

scheduled at the same time.

The third difference is the flexibility to select shifts on the granular-
ity of an individual group. Traditional bit-serial approaches constrain

SWIS - Shared Weight blt Sparsity for Efficient Neural Network Acceleration

themselves to per-layer profiling of consecutive shifts, which, as we
will show in Section 2.3, can be overly restrictive. We refer to this
approach as layer-wise static quantization. Through a careful select-
ing and scheduling approach, described in Section 4.1 and 4.3, SWIS
can ensure that N << B, without sacrificing inference accuracy.

Recent works have shown that using consecutive shifts with a fine-
granularity can also yield acceptable accuracy for certain datasets
and networks [15]. SWIS can support consecutive shifts without any
additional overheads while taking advantage of the higher weight
compression ratio enabled by it, since only a single shift offset needs
to be stored per group of weights, instead of individual sparse shift
values. We refer to this configuration as SWIS-Consecutive, or SWIS-
C for short. The important distinction between SWIS-C and typical
quantization approaches is that the offset being used can be set on
a very fine granularity of a group of weights, instead of a per-kernel
or per-layer basis, hence allowing more aggressive quantization
without sacrificing accuracy.

2.3 Granularity of Weight Quantization

We discuss the relative accuracy of three quantization approaches
in this section, namely layer-wise static quantization, SWIS-C, and
SWIS. To establish the superiority of both SWIS methods, we will
first discuss their approximation ability, which can be reflected by
the probability of losslessly quantizing an 8-bit integer A into A
using a given number of shifts N. The 8-bit number is assumed to
be randomly generated so that each bit will have a 50% probability
of being one.

First, for SWIS, as the bit selection is sparse, the quantization is
lossless if the number of bits being 1 in A is smaller or equal to N.
The probability of lossless quantization for SWIS given N can be
formulated using cumulative binomial distribution:

== A = N 8 - 8
Pswis(A==A)=} | |05 ®)
n=0

Second, for SWIS-C, the probability formulation is more compli-
cated due to the constraint of consecutive shift values. For each N, it
can be calculated based on the probability of SWIS, multiplied by the
fraction of total bit permutations that can be losslessly quantized.
The probability of lossless quantization of SWIS-C for given N can
therefore be formulated by:

_ N N 9—-N)—(8=N N-1
PSWIS—C(A::A):Z(:)~O.58. (n)() (8())(n) ©
n=0 n

Last, for layer-wise static quantization, the bit selection is fixed
for entire layer, therefore the probability of lossless quantization of
an individual 8-bit value is:

: ZN 8) 55, (n)
Player—wise(A::A): (n)'O'S ’ (3) (10)
n=0 n

Figure 2 shows the computed probability of lossless quantization
for all three approaches at every N.The results are expected, SWIS
outperforms the other two by a large margin in most cases due to its
bit sparsity, while SWIS-C also outperforms layer-wise quantization
noticeably, since it allows a finer granularity.

The relative accuracy of lossless quantization also holds for lossy
quantization. We use root mean square error (RMSE), instead of
probability, to compare the above three methods. Table 1 shows
quantization RMSE against original weights for a typical layer of

Probability of lossless quanzation of an 8-bit integer

i 2 3 4 5 & 7 8

Number of shifts (bits)
mSWIS SWIS-C layer-wise

Probability

o

Figure 2: Probability of lossless quantization of a random
8-bit integer using layer-wise static quantization, SWIS-C
and SWIS.

8-bit ResNet-18 [4] and MobileNet-v2 for a different number of shift
values. To measure the upper bound of accuracy, we set the group size
to 1, meaning that shift values are chosen for each weight individu-
ally. We will show in Section 4.2 how using a larger group size affects
overall accuracy. Both networks show a similar trend, and the huge
RMSE of static layer-wise quantization (implemented using LSB trun-
cation) suggests that it does not work well for lower bit widths. SWIS
outperforms SWIS-C in all cases, and the gap is large for the com-
bination of a hard-to-quantize network (MobileNet-v2) and a small
number of shift values. However, SWIS-C shows overall good perfor-
mance and can be considered an alternative for some networks, with
a better weight compression than SWISS, as discussed in Section 3.3.

Table 1: RMSE of three weight quantization methods for a
typical layers of 8-bit ResNet-18 and MobileNet-v2, assuming
the group size of one.

shifts SWIS SWIS-C layer-wise

truncation
ResNet-18 first convolution layer

5 shifts 0.0013 0.0020 0.0168

4 shifts 0.0019 0.0037 0.0314

3 shifts 0.0038 0.0070 0.0556

2 shifts 0.0094 0.0146 0.0895

MobileNet-v2 first point-wise convolution layer

5 shifts 0.0007 0.0011 0.0158

4 shifts 0.0009 0.0043 0.0227

3 shifts 0.0031 0.0098 0.0394

2 shifts 0.0104 0.0186 0.0774

3 ARCHITECTURE

We architect SWIS as a bit-serial processed systolic array with each
processing element (PE) and dataflow optimized to leverage SWIS
quantization.

3.1 SWISPE

The conventional processing element (PE) implementation of Equa-
tion 7 would consist of N (group size) parallel bitwise AND operations
(masking), conditional sign inversion, an adder tree for summing
masked activations, a barrel-shifter for power-of-2 multiplication

and a serial accumulator, similar to the one proposed in [8]. It com-
putes one of the operands one bit at a time. We refer to this style of bit-
serial PE as a single-shift PE. While inverting the order of addition and
multiplication results in certain gains in efficiency, bit-serial process-
ing by itself does not provide higher throughput per area or energy
efficiency compared to conventional fixed-point when processing all
of the bits. Only by aggressively reducing the number of bits (shifts)
being used and maximizing the PE group size, performance improve-
ments over fixed-point can be achieved. While such improvements
are trivial when 16-bit fixed-point precision is used as a baseline,
they are much harder when the baseline is reduced to 8-bits, the
de-facto standard precision in quantized networks nowadays. [8].

To quantify the possible benefits of using bit-serial computation,
we have designed the 8-bit fixed-point, and a single-shift bit-serial
PEs with different group sizes (2-16) using Verilog RTL and synthe-
sized them using a commercial 28nm TSMC library and Cadence
Genus synthesis tool. Since we intended to use them in a systolic
array style accelerator, all PEs include activation and weight buffers.
We then compared their area, energy per MAC, and throughput
per area for different number of shifts used in the bit-serial version
(2/4/6). Results, normalized to the fixed-point PE are shown in Figure
3. The single-shift PE only comes out ahead in terms of energy and
throughput per area when fewer than 4 shifts are used. When using
conventional quantization approaches, this level of precision reduc-
tion might not be tolerable, as we will show in Section 5.1 SWIS,
with its ability to implement sparse quantization on a much finer
granularity, can reduce the number of shifts required much more
aggressively than those approaches.

However, even with SWIS, improving the performance requires
using PEs with large group sizes, as shown in Figure 3. Below a group
size of 8, performance improvements, even with a low number of
shifts used, are modest at best. This limited improvement is due to
overheads which cannot be reduced compared to fixed-point PEs.
As we will show in Section 4.2, a larger group size makes it much
harder or even impossible for SWIS to recover accuracy. Therefore,
a way to improve hardware efficiency is needed. To better amortize
the fixed costs mentioned above, we propose to process multiple bits
(shifts) simultaneously. By computing, for example, two shifts at the
same time, performance break-even points compared to fixed-point
can be improved.

We show the performance comparison of this double-shift PE in
Figure 3, for the same group sizes and number of shifts being used as
the single-shift one. It has a lower normalized energy per MAC and
throughput per area than a single-shift one with double the group
size. This means we can effectively halve the group size while im-
proving both performance and inference accuracy. For that reason,
we opt to use double-shift PEs in our SWIS accelerator architecture,
as shown in Figure 4. However, this double-shift processing comes
at an increased rigidity in terms of the number of shifts used. Using
an odd number of shifts would result in underutilization of the avail-
able compute - going from four to three shifts would therefore not
improve inference latency. However, SWIS allows us to assign the
number of shifts on a sub-layer granularity, meaning that effective
number of shifts is not constrained to even numbers. For example,
if half of the kernels in a given layer use 2 shifts, and the other half 4
shifts, the effective, layer-wise number of shifts is 3. See Section 4.3
for network accuracy when using a scheduled odd effective number
of shifts on the double-shift configuration.

3.2 SWIS Systolic Array and Dataflow

We use systolic array as a baseline architecture, shown in Figure
4, due to simple scheduling, low complexity processing element
architecture, and low bandwidth requirements when processing
convolutional layers [7]. We assume the same structure, consisting
of the systolic array itself, together with activation, weight, and
output buffers, as described in [12]. That being said, SWIS is not
inherently tied to a particular implementation and could be used in
any accelerator that can support bit-serial processing.

Compared to conventional systolic array, where each element
consists of a single multiplier and accumulator, SWIS systolic array
uses group-wise PEs, where multiple MAC operations are executed
in parallel on a vector of activations and a corresponding vector of
weights, one shift at a time. For simplicity, we assume that all such
vectors are depth-wise - all activations and weights have the same
x and y positions but correspond to different input channels. We
also assume that those vectors are packed in memory, and on-chip
buffers have interfaces scaled by a factor equal to the group size.
Those assumptions are easy to fulfill for commonly used convolu-
tional layers where the number of input channels is a power of 2. For
depthwise-separable convolutions, such as those used by MobileNet,
we underutilize the PEs in the systolic array, for the simplicity of
scheduling. We plan on exploring a more efficient implementation
of such layers in future work.

In terms of scheduling, we use the output stationary dataflow (OS),
as it has been shown to provide the best performance and minimal
number of memory accesses in most cases [12]. There are several
ways bit-serial computation can be scheduled in a systolic array.
The most naive would be to perform a full computational pass for
each shift. While straightforward to implement in the OS dataflow, it
would also increase the number of on-chip memory accesses roughly
proportional to the number of shifts being used. Another alternative
is to send all shift masks to the PE at the same time and execute
each operation in multiple cycles. Unfortunately, this would require
scaling both the weight buffer interface and PE weight buffers to
support the worst case, 8 shifts, drastically increasing their area.
Instead, we opt for a "staggered" approach, where weights (shifts)
flow through the array normally, but each activation is fed in repeat-
edly over multiple cycles, equal to the number of shifts being used.
Such an approach requires minimal control and buffering overhead,
without over-provisioning the PE buffers or increasing the number
of activation buffer accesses. For SWIS-C, we assume that a shift
(offset) is fetched only once, and incremented outside of the array,
incurring negligible area overheads.

3.3 SWIS Compression

The performance of acomputing system cannot be evaluated without
considering the impact of memory. Increasingly, memory bandwidth
and access energy have a dominant impact on overall latency, and en-
ergy [5]. Approaches that rely solely on point improvements to arith-
metic efficiency will quickly fall victim to diminishing returns. One of
the main advantages of SWIS is the weight storage compression it of-
fers. Assuming 8-bit underlying precision, for each group of weights,
we only need to store their signs (one bit per weight), shift values (3
bits per group, per shift), and shift masks (1 bit per weight, per shift).

The resulting weight compression ratios for different number
of shifts and group sizes are shown in Figure 5. We compare our
compression scheme of 8-bit weights to the one used by DPRed [3],
profiled across one example convolution layer, for different groups

SWIS - Shared Weight blt Sparsity for Efficient Neural Network Acceleration

Il Singe-Shift PE Double-Shift PE 2 Shifts 4 Shifts 6 Shifts
0.75 Normalized PE Area 3.0 Normalized PE Energy/MAC 3 Normalized PE Throughput/Area
0.50 2.0 /A 7 " 2
9% % 1 7

- AR e ml e b b e dho Al Al
000 MWV A VAT AR A WV PR Y PA I DA I

2 16 2 4 8 16 2 4 8 16
a) PE Width (Group Size) b) PE Width (Group Size) C) PE Width (Group Size)

Figure 3: Single- and double-shift 8-bit SWIS PE area (a), per-MAC energy (b) and throughput/area (c) for different PE widths,
normalized to a conventional fixed-point PE with the same group size.

r o= e e o e e e e - -]
L -[Activation Buffer |<—I
| sign Buffer) """ “M*’# '
1 : 1

Mask Buffer—m{ Mask Mask]
| Mo T8 @ ™ 818 |
| % % ;9 |

a) I
1 Shift Buffer s 3 8+log(N) Sin 3 8+log(N) |
| 16+log(N) 16+log(N) |
| 16+log(N) |
1 16+log(N) PE]
[T S0 SRR A - 4

‘ Weight Memory ’(7
¥
Activation
Memory

) i

Output Memory

Figure 4: N-wide double shift bit-serial MAC unit (a) and
systolic array accelerator (b) used by the SWIS methodology.

sizes. DPRed stores weights using per-group bitwidth, determined
by the highest active bit position in a given group. We also show
compression ratios for SWIS-C, which only needs to store one shift
value per group.

While it is important to note that unlike SWIS, DPRed compres-
sion is lossless (retains all information), it is also too restrictive, at
least at 8-bit precision, to deliver any significant storage savings.
Meanwhile, SWIS and SWIS-C can deliver close to 3.7X reduction in
weight storage when large groups are used with an aggressive reduc-
tion in the number of shifts. For a group size of 4, which we use in our
architecture, compression varies between 1.1X and 2.9X, and 1.5X
and 2.9X for SWIS and SWIS-C respectively. Accuracy-performance
trade-offs between the number of shifts and group sizes are explored
in Section 5.

4 SWIS SCHEDULING & GROUPING
4.1 SWIS Shift Selection

The shift selection process for SWIS consists of selecting the optimal
shift values s; for each group and generating the bitmasks m; for
individual weights to minimize the quantization error for the given
number of shifts. As the total number of possible combinations of se-
lecting N shift values out of 8 is manageable, we use an enumeration

Weight Compression Ratio

4 2-wide 4-wide == 8-wide ==@@= 16-wide
o e = SWIS = - ¢ SWIS-C == ==DPRed

B Ll L N Sy e

1 2 3 4
Number of Shifts

Figure 5: Weight storage compression ratio for different
number of shifts and PE sizes, for SWIS, SWIS Consecutive,
and DPRed.

algorithm. For each group, we quantize the weights using all possible
shift value combinations and select the combination with the least
RMSE over the entire group. For each shift value combination, the cor-
responding values for all possible bitmasks are generated, and each
weight is quantized to the nearest value (bitmask). This enumeration
algorithm ensures that the optimal shift values and bitmasks are se-
lected for every group and every weight to minimize the RMSE error.

4.2 SWIS Grouping

The previous analysis of different quantization granularities assumes
that the group size is one, but that does not result in efficient hard-
ware implementation or storage compression. However, increasing
the group size will increase the quantization error and impact net-
work accuracy as the shift values for the entire group of weights need
to be shared. Figure 6 shows the inference accuracy of ResNet-18
on ImageNet, with different group sizes and number of shift values.
As expected, inference accuracy drops as group size increases, but
the exact amount differs significantly for different number of shift
values. SWIS performs better than SWIS-C when the number of shift
values is small, but their performance converges when the number
of shift values increases, which verifies the analysis in section 2.3.
For a group size of 4, which tends to be a good accuracy/efficiency
trade-off point, we need 3 shifts to maintain a similar performance
of 8-bit baseline. In the next section, we will discuss how to obtain
even finer granularity of the number of shits being used.

RESNET-18 INFERENCE ACCURACY

—e—8-bit baseline 8- SWIS-C #shift = 2 SWIS-C #ishift = 3 SWIS-C #shift =4 —#—SWIS-C #shift=5

—@—SWIS #shift =2 —k=SWIS #shift =3 ——=—=SWIS #ishift =4 —=——SWIS #ishift =5

3

o @
8 &

o o«
& &

INFERENCE ACCURACY
N

0 2 4 6 8 10 12 14 16
PE GROUP SIZE

Figure 6: ResNet-18 top-1 inference accuracy for different
group sizes and number of shift values.

4.3 SWIS Scheduling

Within a layer, not all filters are equally sensitive to the loss of preci-
sion. SWIS scheduling takes advantage of this to decrease the RMSE
for a given layer compared to the RMSE achieved by naively quan-
tizing the entire layer to the same number of shifts. We do this by
increasing the number of shifts for some filters while decreasing it
for others to keep the total number of shifts constant for the layer.
This scheduling approach’s main benefit is that it allows us to choose
an average quantization level that would not be possible without
filter scheduling. For instance, it allows the double-shift architecture
to use a target number of shifts that is not an even number without
under-utilizing the hardware.

The SWIS scheduling heuristic starts by placing all filters at a
number of shifts higher than the target value. We then calculate the
RMSE cost of decreasing the number of shifts used to quantize each
filter by one shift. The filters are then sorted based on this cost, and
the lowest cost n filters are moved down to the next lowest shift. The
new cost for the filters which changed their number of shift values
are then recomputed, and the filter costs are sorted again to find
the n lowest cost filters. This process is repeated until the average
number of shifts in the layer is equal to the target number of shifts.
At this point, the filters are sorted based on their number of shifts.

The above method does not guarantee that all filters scheduled
simultaneously on the systolic array have the same number of shifts,
arestriction that is necessary to ensure simple scheduling and the
absence of synchronization issues. To enforce such behavior, the
second part of the algorithm assigns the number of shifts to each
group of filters that are scheduled simultaneously, based on previous
ordering. We first enumerate the possible per-filter-group number
of shift assignment sequences that are nondecreasing and guaran-
tee the desired overall average number of shifts per layer. For each
sequence, we compute the RMSE and select the combination with
the lowest RMSE.

Accuracy using SWIS scheduling for single-shift improved as
shown in Table 2.

5 EVALUATION & RESULTS

All PE area, power, latency numbers are derived from synthesis re-
sults in a commercial 28nm library with Cadence Genus tool. We
used SCALE-Sim, a systolic array simulator, to obtain cycle-accurate
execution traces [12]. As a baseline, we used an 8x8 bit-serial systolic

Table 2: ResNet-18 top-1 accuracy with SWIS scheduling for
single- and double-shift PEs, compared to a single-shift PE
accuracy with no scheduling for different systolic array (SA)
sizes. PE group size is 4.

| 2 Shift % Accuracy | 2.5Shift % Accuracy
SA ‘ Single ‘ Double ‘ None ‘ Single ‘ Double ‘ None
8 65.07 64.94 | 61.42 67.95 67.1 N/A
16 64.21 61.42 | 61.42 67.44 67.18 N/A
‘ 3 Shift % Accuracy ‘ 4 Shift % Accuracy
8 68.77 68.47 | 68.31 69.48 69.32 | 69.05
16 68.79 67.84 | 68.31 69.38 69.05 | 69.05

array with 64KB activation and weight buffers, and 16KB output
buffer. The PE group size has been set to 4, as it provides a good bal-
ance between performance and accuracy. We compare the following
versions of SWIS:

SWIS-DS - double-shift SWIS.

SWIS-SS - single-shift SWIS.

SWIS-C-DS - double-shift SWIS consecutive.
SWIS-C-SS - single-shift SWIS consecutive.

As a baseline, we use a systolic array with conventional (single-
shift) bit-serial PEs using per-layer activation truncation. Compu-
tation is done in the same way as [8], however the accelerator or-
ganization is different. We also compare to the same architecture,
but using weight truncation. Finally, we compare SWIS to BitFusion,
a systolic array using decomposable arithmetic [13]. The area and
energy numbers have been scaled appropriately to 28nm, whenever
necessary. We evaluate BitFusion using 4-bit weights and 8-bit ac-
tivations, as the architecture is constrained to power-of-2 precision.
All configurations have the same amount of on-chip memory. All
comparison points use the same size of the systolic array (8x8) as it
allows us to isolate the benefits coming from each scheme. We evalu-
ate the performance only on convolutional layers of tested networks,
as they dominate overall performance and latency. We leave SWIS
optimizations targeting fully-connected layers for future work.

For network accuracy evaluation, we use Pytorch as the frame-
work and implement all custom quantization functions using Py-
torch’s built-in functions. Table 3 shows the networks and datasets
we used as benchmark and their baseline accuracy. We select ResNet-
18 and MobileNet-v2 on ImageNet 2012 and VGG-16[14] on CI-
FAR100 to evaluate the results. For MobileNet-v2, the floating point
weights are downloaded from Pytorch’s model zoo and then re-
trained for 10 epochs with 8-bit quantization to generate the 8-bit
baseline weights, as MobileNet-v2 performs poorly on post-training
INT8 quantization. For ResNet-18, the 8-bit baseline is the layer-
wise static INT8 quantization of pytorch’s pretrained floating point
weight. For VGG-16, the network structure is adjusted slightly to fit
CIFAR-100 dataset and trained from scratch for 100 epochs to obtain
the floating point accuracy. The INT8 baseline is the layer-wise static
quantization of floating point network. For quantization-aware re-
training, all baseline results are trained for 10 epochs with learning
rate decay. Some SWIS variants also fine-tune based on scheduling
algorithm’s output to enable odd number of shifts (for DS) and half
shifts. All activations are also quantized to 8 bits unless specified.

For SWIS weight quanization, we use the method introduced in
Section 4.1. To simulate the activation quantization used in [3, 8], we
implement a layer-wise LSB truncation algorithm on all activations,

SWIS - Shared Weight blt Sparsity for Efficient Neural Network Acceleration

Table 3: Networks and datasets used for benchmark, with
their top-1 accuracy

Network Dataset FP32 Accuracy | INT8 Accuracy
ResNet-18 ImageNet | 69.6% 69.5%
MobileNet-v2 | ImageNet | 71.9% 70.1%
VGG-16 CIFAR100 | 64.8% 64.8%

where the last 8— N bits are truncated and N is the number of shifts
allowed.

5.1 Network Accuracy Evaluation

5.1.1 Post-training Quantization. In this section we compare the
accuracy of the 4 SWIS configurations to layer-wise activation trun-
cation (similar to the approach used in [8]) and layer-wise weight
truncation + clipping, which is a standard baseline method for weight
quantization. Table 4 shows the post training quantization accuracy
for all quantization configurations on the three networks shown in
table 3. All SWIS/SWIS-C results are after scheduling. All four SWIS
configurations outperform weight and activation truncation by a
large margin in all cases. In general, SWIS outperforms SWIS-C and
SS outperforms DS slightly due to better scheduling flexibility. In
most cases, the accuracy difference between DS and SS is small, and
DS should be preferred due to its better hardware efficiency. The ac-
curacy difference between SWIS and SWIS-C depends on networks,
the gap is relatively small for more redundant networks like VGG-16
on CIFAR100 while it is large for MobileNet-v2, where SWIS shows
advantage of its bit sparsity quantization. Post-training activation
quantization (as in [8]) below 8 bits has unusably low accuracy. Even
for weight quantization, for example at 4 bits (or shifts), SWIS has
9.3%, 52%, 1.5% higher accuracy than conventional quantization for
Resnet-18, MobileNet-v2 and VGG-16 respectively.

5.1.2 Quantization-aware Retraining. Though our focus is to show
energy/latency benefits of SWIS without needing to retrain, retrain-
ing can reduce the number of shift values needed further by 1-3.
Retraining is especially helpful for the MobileNet-v2 case, as it needs
larger number of shifts to maintain accuracy for post-training quan-
tization compared to other networks. Table 5 shows the retraining
results for the three networks, all SWIS configurations still outper-
form weight truncation in all cases (5%, 19.8%,4.5% point accuracy
gain over conventional quantization at 2-shifts for the three net-
works). SWIS at 2 shifts in all its variants is far superior in accuracy
compared to conventional quantization at 3 shifts.

5.2 Performance Comparison

Performance results, in terms of frames per Joule (F/J) and frames
per second (F/s) for each evaluated configuration are listed in Table
6. Performance for each SWIS configuration is evaluated at 2 accu-
racy points, with corresponding activation- and weight-truncation
results, as well as BitFusion 4x8 where applicable. First, we show
that SWIS-SS can be between 1.75x and 3x faster than activation-
truncation bit-serial. For SWIS-DS that speedup ranges from 2.8X
to 6X. SWIS can also improve energy efficiency by 1.04-1.7X and
1.1-1.8X for SWIS-SS and SWIS-DS respectively, due to weight com-
pression and more efficient computation. When using the same
number of shifts, SWIS-C has higher energy efficiency than SWIS,
but that benefit is often offset when additional shifts are required
to maintain iso-accuracy with it.

Table 4: Post-training quantization top-1 accuracy of the
three networks, using different algorithm and hardware se-
tups, Wgt. and Act. means weight truncation and activation
truncation. Results for weight and activation truncation
with 6 and 7 shifts are included for reference.

SWIS SWIS-C Trunc.
N_shift || SS | DS | ss | DS | Wgt. | Act.
Resnet-18 ImageNet
2 65.1 64.9 62.4 59.1 3.6 0.1
2.5 68.0 67.1 65.9 65.6 N/A N/A
3 68.8 68.5 68.1 67.4 30.8 0.1
4 69.5 69.3 69.5 69.4 60.2 45.9
6 / / / / 69.2 66.7
7 / / / / 69.5 69.1
MobileNet-v2 ImageNet
3 30.7 5.3 6.9 3.7 0.6 0.1
3.5 52.9 44.6 34.0 50.8 N/A N/A
4 65.2 65.2 57.7 57.7 13.2 0.3
5 69.1 67.2 67.6 64.5 60.6 25.8
6 / / / / 68.0 60.3
7 / / / / 70.1 68.1
VGG-16 CIFAR100
2 57.8 57.8 57.5 57.5 31.1 1.0
2.5 62.1 60.6 60.8 60.3 N/A N/A
3 64.0 62.3 62.7 62.2 60.5 3.6
4 64.7 64.7 64.6 64.6 63.2 24.7
6 / / / / 64.7 62.8
7 / / / / 64.9 64.1

Table 5: Retraining top-1 accuracy of the three networks,
using different algorithm and network setups

SWIS SWIS-C Trunc.
N_shift || SS | DS | ss | DS | Wgt.

Resnet-18 ImageNet

2 68.3 68.3 68.1 68.1 63.3
3 69.1 68.7 68.4 68.3 66.3

MobileNet-v2 ImageNet

2 67.4 67.4 65.5 65.5 47.6
2.5 68.0 67.8 66.9 66.0 N/A
69.3 68.5 69.0 67.2 65.8

VGG-16 CIFAR100

2 || 64.1 | 64.1 | 64 | 64 | 59.6

Even when comparing to more efficient bit-serial with weight
truncation, SWIS offers offers up to 1.6X and 2.5X speedup for SWIS-
SS and SWIS-DS respectively, with up to 1.55X reduction in energy
across all SWIS configurations. Compared with BitFusion, at the
same accuracy, SWIS can have up to 2X lower latency and up to
1.9X lower energy consumption. This is thanks to the SWIS’s ability
to reduce the number of bits used much more aggressively than
conventional approaches can, improving both storage compression
and computation energy efficiency.

Table 6: Energy (Frames/J) and latency (Frames/s) comparison between different SWIS configurations, bit-serial with activation
and weight truncation and BitFusion, at different accuracy points for different network models and datasets.

SWIS SWIS-C Trunc Bit
Architecture SS \ DS \ SS \ DS \ Act \ Wgt Fusion 4x8
Area [mm2] | 0.54 \ 0.55 \ 0.54 \ 0.55 \ 0.54 \ 0.54 \ 0.57
Network ‘ ResNet-18 ImageNet
Accuracy | #S FJ Fis | # FJ Fis | # FJ Fs | # FJ Fs |# FJ Fs |# FJ Fs |# FJ Fs
>69.1% 4 2677 21.4 4 2925 42.9 4 3263 214 4 3536 42.9 7 2158 122 6 2307 143 | NJA N/A N/A
>60.2% 2 3908 42.9 2 416.5 85.7 2 410.6 42.9 2.5 404.8 68.6 6 2307 143 4 2677 214 4 2189 42.9
Network ‘ MobileNet V2 ImageNet
Accuracy | #S FJ Fs | # FJ Fs | # FJ Fs |# FJ Fs |# FJ Fs |# FJ Fs |# FJ s
>68.0% 5 4756 4.0 5 490.0 8.0 | NJA N/A N/A N/A N/A N/A 7 456.1 2.9 6 466.1 33 | NNA N/A N/A
>60.3% 4 4989 5.0 4 5116 10.0 5 4963 4.0 5 5120 8.0 6 466.1 33 5 476.6 40 | NJA N/A N/A
Network ‘ VGG-16 CIFAR-100
Accuracy | #S F/J Fis | # FJ F/s | # FJ Fs | # FJ Fs |# FJ Fs | # FJ Fs | # FJ Fis
>64.1% 4 6254 93.5 4 6265 187.1 4 8151 93.5 4 8435 187.1 7 553.0 534 6 5695 624 | NJA N/A N/A
>62.1% 2.5 8782 149.7 3 7885 2494 3 9421 124.7 3 9803 2993 6 5695 624 4 6056 935 4 7998 187.1
6 CONCLUSION [10] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
hi Kk £ K 1 Kk 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
In this work, we propose SWIS, a framework for neural networ. Networks. In ECCV 2016. 525-542. https://doi.org/10.1007/978-3-319-46493-0
quantization for efficient inference on edge devices. We show con- [11] SungjuRyu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim. 2019. BitBlade: Area
: P : i : hils and Energy-Efficient Precision-Scalable Neural Network Accelerator with Bitwise
ventional bit-serial deSIgnS, do I}Ot fully ut11.1z.e their ﬂ?XIblhty as m(.’St Summation. In DAC 2019, 1-6. https://doi.org/10.1145/3316781.3317784
of them only apply to activations. We utilize the bit level sparsity [12] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
inherent in weights to quantize them beyond the conventional "pre- Krishna. 2018. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv preprint
fix" or "suffix" stvle t ti F le. SWIS tizati arXiv:1811.02883 (2018). http://arxiv.org/abs/1811.02883
X 401“ su XA style truncation. or‘ex(i:unp & qugn 1zation C.an [13] Hardik Sharma, Jongse Park, and Benson Chau. 2018. Bit Fusion : Bit-Level
achieve MobileNet-v2 accuracy within 1% of INT8 with 5 effective Dynamically Composable Architecture for Accelerating Deep Neural Networks.
bit quantization without any retraining and 3 bits with retraining. ISCA 2018 (2018), 764-775. https://doi.org/10.1109/ISCA.2018.00069
. ial archi ioh . [14] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
For bit-serial architectures, SWIS compresses weights and improves works for Large-Scale Image Recognition. (9 2014). http://arxiv.org/abs/1409.1556
latency and energy by as much as 6X and 1.8X, respectively, without [15] Salim Ullah, Siddharth Gupta, Kapil Ahuja, Aruna Tiwari, and Akash Kumar. 2020.

_ L2L: A Highly Accurate Log_2_Lead Quantization of Pre-trained Neural Networks.
loss of acc.uracy. Based on SWIS’ we further purpose SWIS-C and In DATE 2020.979-982. https://doi.org/10.23919/DATE48585.2020.9116373
double-shift SWIS (SWIS-DS), one for better weight compression [16] Xiandong Zhao, Ying Wang, Cheng Liu, Cong Shi, Kaijie Tu, and Lei Zhang.
and the other for better hardware eﬂiciency. Further, we develop afil- 2020. BitPruner: Network Pruning for Bit-Serial Accelerators. In DAC 2020. 1-6.

t heduli 1 ithm. to all for fine- ined tradeoff bet https://doi.org/10.1109/DAC18072.2020.9218534
er scheduling algorithm, to allow 1or Iine-grained tradeo ctween [17] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng

accuracy and energy/latency. Our ongoing work includes design
space exploration of SWIS systolic array architectures as well as
approaches for efficient SWIS execution of fully connected layers.

REFERENCES

[1] Jorge Albericio, Patrick Judd, Alberto Delmas, Sayeh Sharify, and Andreas
Moshovos. 2017. Bit-Pragmatic Deep Neural Network Computing. ISCA 2017
(2017), 382-394.

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training 4-bit

Quantization of Convolutional Networks for Rapid-Deployment. In NeurIPS.

7950~7958. https://github.com/submission2019/cnn-quantization.

Alberto Delmas, Sayeh Sharify, Patrick Judd, Kevin Siu, Milos Nikolic, and

Andreas Moshovos. 2018. DPRed: Making Typical Activation and Weight Values

Matter In Deep Learning Computing. arXiv preprint arXiv:1804.06732 (2018).

http://arxiv.org/abs/1804.06732

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In IEEE CVPR 2016. 770-778.

http://arxiv.org/abs/1512.03385

[5] Mark Horowitz. 2014. Computing’s Energy Problem (And What We Can Do About
It). In IEEE ISSCC 2014, Vol. 57. 10-14. https://doi.org/10.1109/ISSCC.2014.6757323

[6] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. [n.d.]. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
Technical Report.

[7] NormanP. Jouppiand Et. Al. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In ISCA 2017.1-12. https://doi.org/10.1145/3079856.3080246

[8] Patrick Judd, Jorge Albericio, and Andreas Moshovos. 2016. Stripes:
Bit-Serial Deep Neural Network Computing. In IEEE MICRO 2016. 1-12.
https://doi.org/10.1109/LCA.2016.2597140

[9] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU.

(3

=

[4

fla

Zou. 2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural Net-
works with Low Bitwidth Gradients. arXiv preprint arXiv:1606.06160 (2016).
http://arxiv.org/abs/1606.06160

https://github.com/submission2019/cnn-quantization.
http://arxiv.org/abs/1804.06732
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/LCA.2016.2597140
https://doi.org/10.1007/978-3-319-46493-0
https://doi.org/10.1145/3316781.3317784
http://arxiv.org/abs/1811.02883
https://doi.org/10.1109/ISCA.2018.00069
http://arxiv.org/abs/1409.1556
https://doi.org/10.23919/DATE48585.2020.9116373
https://doi.org/10.1109/DAC18072.2020.9218534
http://arxiv.org/abs/1606.06160

	Abstract
	1 Introduction
	2 SWIS Quantizaion
	2.1 What Should be Quantized?
	2.2 Shared Weight Bit-Sparsity
	2.3 Granularity of Weight Quantization

	3 Architecture
	3.1 SWIS PE
	3.2 SWIS Systolic Array and Dataflow
	3.3 SWIS Compression

	4 SWIS Scheduling & Grouping
	4.1 SWIS Shift Selection
	4.2 SWIS Grouping
	4.3 SWIS Scheduling

	5 Evaluation & Results
	5.1 Network Accuracy Evaluation
	5.2 Performance Comparison

	6 Conclusion
	References

