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Abstract

Large language models (LLMs) typically require fine-tuning for domain-specific
tasks, and LoRA offers a computationally efficient approach by training low-
rank adapters. LoRA is also communication-efficient for federated LLMs when
multiple users collaboratively fine-tune a global LLM model without sharing
their proprietary raw data. However, even the transmission of local adapters
between a server and clients risks serious privacy leakage. Applying differential
privacy (DP) to federated LoRA encounters a dilemma: adding noise to both
adapters amplifies synthetic noise on the model, while fixing one adapter impairs the
learnability of fine-tuning. In this paper, we propose FedASK (Differentially Private
Federated Low Rank Adaptation with Double SKetching) , a novel federated LoRA
framework to enable effective updating of both low-rank adapters with robust
differential privacy. Inspired by randomized SVD, our key idea is a two-stage
sketching pipeline. This pipeline first aggregates carefully sketched, privacy-
preserving local updates, and then reconstructs the global matrices on the server
to facilitate effective updating of both adapters. We theoretically prove FedASK’s
differential privacy guarantee and its exact aggregation property. Comprehensive
experiments demonstrate that FedASK consistently outperforms baseline methods
across a variety of privacy settings and data distributions. Codes are available at
https://github.com/FLEECERmw/PrivacyFedLLM.

1 Introduction

Federated fine-tuning of Large Language Models (LLMs) presents a compelling paradigm for
specializing these models on domain-specific, distributed datasets without centralizing sensitive
information [41, 25, 46]. However, the sheer scale of LLMs, often involving hundreds of billions
of parameters, renders full-parameter fine-tuning prohibitive for local clients in FL due to memory,
computation, and communication constraints [46]. To overcome these limitations, Parameter-Efficient
Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA) [20], have gained promi-
nence [16]. LoRA facilitates efficient adaptation by freezing the pre-trained model weights W0 and
training only a small set of low-rank matrices, A ∈ Rr×n and B ∈ Rm×r (where r ≪ min(m,n)).

∗Equal contribution.
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Figure 1: The dilemma of differential privacy with Federated LoRA: standard federated LoRA
amplifies model noise, while fixing one adapter causes insufficient learnability.

The update ∆W = BA significantly reduces the number of trainable parameters, thereby alleviating
local processing and communication overhead in federated LLM fine-tuning scenarios.

Ensuring privacy in federated learning is critical, especially when fine-tuning LLMs [29]. The
inherent scale and complexity of LLMs lead to greater probability of encoding and revealing sensitive
information from training data compared to smaller models. While raw data are not shared in
FL settings, the model updates and gradients transmitted can still potentially leak private client
information. Therefore, providing robust privacy protection with theoretical guarantees is essential.
Differential Privacy (DP) [8, 1] serves as a principled framework to achieve this, typically by
introducing calibrated noise during the training process.

However, applying DP to federated LoRA presents a fundamental trade-off. On the one hand,
achieving robust privacy often requires adding noise to the gradients of low-rank matrices A and B.
Despite this, the intertwined nature of these gradients leads to significant noise amplification when
both matrices are perturbed. This significantly increases the magnitude of noise in the resulting ∆W
update, degrading the quality of the model update [34, 22]. On the other hand, existing methods
commonly address this noise amplification by fixing one of the matrices (typically A) during training.
Such strategies help mitigate the noise, particularly by avoiding the detrimental quadratic noise
term. However, it fundamentally restricts the representational capacity of the LoRA parameters to a
predetermined subspace, thereby impairing the model’s ability to adapt effectively [13, 45]. Motivated
by this critical dilemma, this paper addresses the following research question: Can we design a
federated LoRA that achieves differential privacy guarantee, learnability, and communication
efficiency simultaneously?

To address this dilemma, we propose FedASK (Differentially Private Federated Low Rank Adaptation
with Double SKetching). FedASK is the first federated LoRA framework designed to enable effective
updates of both low-rank matrices under robust DP, overcoming the critical noise amplification
and limited learnability trade-off inherent in prior methods. Our core insight is a novel two-stage
projection pipeline, inspired by randomized SVD [15].

Table 1: Federated LoRA Comparison. DP (✓/✗): Supports DP. Agg. Type: Aggregation Precision.
Client Init.: Parameter state before local training (Sync=Use Global Para, Keep B=Use Local B,
Fixed A=Use Initial A, Rand A=Gaussian). "dt" is the input feature dimension, and "r" is the LoRA
rank.

METHOD DP AGG. TYPE AGG. MEMORY COMMUNICATION CLIENT INIT.

FEDAVG ✗ IMPRECISE O(dlr) O(Kdlr) SYNC A,B
FLORA ✗ PRECISE O(d2l +Kdlr) O(K2dlr) B = 0,A0

k = RAND
FEDSA ✗ IMPRECISE O(dlr) O(Kdlr) SYNC A, KEEP LOCAL B
FED-FFA ✓ PRECISE O(dlr) O(Kdlr) FIX A, SYNC B
FEDASK ✓ PRECISE O(dlr) O(Kdlr) SYNC A,B

This pipeline achieves precise and resource-efficient aggregation of local LoRA update products,
avoiding the issues of directly aggregating noisy matrices. Differential privacy is guaranteed by
applying DP-SGD [1] with noise addition and clipping to local updates. Critically, the global
SVD-based aggregation step is not merely an aggregation, but powerfully leverages this privatized
information to influence and update both global matrices A and B, facilitating comprehensive
adaptation capabilities under stringent DP constraints. Our key contributions are summarized as
follows.
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• We introduce FedASK, the first privacy preserving LoRA framework updates both low-rank matri-
ces and achieves robust noise suppression, privacy guarantees, and resource-efficient operations.

• We theoretically prove the DP guarantee and the precise aggregation property of FedASK.
• FedASK empirically achieves consistent performance gains over state-of-the-art baselines in

federated LLM fine-tuning, delivering up to an 11.5% performance improvement on MMLU (7B
model) and a 46% improvement on GSM8K (13B model) under strong differential privacy.

2 Preliminary

This section describes the background on LoRA fine-tuning of LLMs within the context of Federated
Learning. We also introduce the concept of DP and its relevance to protecting client data.

Applying DP-SGD directly to the standard LoRA update mechanism presents challenges. Specifically,
when independent DP noise is added to the gradients of both A and B, these noise [12] components
interact quadratically during the construction of the LoRA update ∆W. This interaction leads to
significant noise amplification, as detailed in Lemma . Existing strategies commonly mitigate this
noise amplification by freezing one matrix and optimizing the other . This approach successfully
avoids the quadratic noise term. However, since the parameter update is constrained to a specific
subspace, it limits the model’s learning capability and hinders effective adaptation to the target task.
Tableunderscores FedASK’s distinct advantages over existing federated LoRA methods. Overcoming
the adaptability limitations of fixed-matrix DP LoRA methods, FedASK enables dynamic and
synchronized update of both LoRA matrices A and B under strong DP guarantees, achieving precise
aggregation with resource efficiency comparable to or better than existing baselines.

2.1 Federated Learning with LoRA

The goal of Federated Learning with LoRA [40, 23, 43] is to minimize the global objective function:

F (W) =
1

K

K∑
k=1

fk(Wk,Dk), (1)

where fk(Wk,Dk) =
1

|Dk|
∑

ξ∈Dk
l(Wk, ξ) represents the local objective function at client k. Here,

Wk denotes the weight matrix of the local model, and Dk is the local dataset at the client k. The
function l(Wk, ξ) computes the loss for a single data point ξ ∈ Dk, and fk averages this loss across
the entire dataset. In LoRA, instead of directly training the full weight matrix Wk, we update it by
adding a low-rank decomposition product to the pre-trained weights W0, and using gradient-based
oracles to optimize the adapters.

∂l

∂Ak
=

α

r
BT

k

∂l

∂Wk
,

∂l

∂Bk
=

α

r

∂l

∂Wk
AT

k , (2)

where Ak ∈ Rr×n and Bk ∈ Rm×r are low-rank matrices with rank r (typically r ≪ min(m,n)),
and α is a scaling factor. These matrices Ak and Bk are the parameters learned during fine-tuning.

A straightforward approach for Federated LoRA involves clients locally training their LoRA matrices
(Ak and Bk) and then average them on the server [14, 28]. However, this direct averaging approach
causes a misalignment with the precise global model update [38].

W̄ =
1

K

K∑
k=1

Wk =
1

K

K∑
k=1

(W0 +
α

r
BkAk) ̸= W0 +

α

K2r

K∑
k=1

Bk

K∑
k=1

Ak. (3)

This discrepancy introduces undesirable cross-term noise, particularly in the presence of data het-
erogeneity across clients. Prior work [3, 34, 38] has recognized the same issue. Existing methods
propose different strategies to address this misalignment. SLoRA [3] employs a multi-stage approach
with sparse fine-tuning and SVD-based initialization, which incurs additional computational overhead.
FFA-LoRA [34] adopts a simplified strategy by freezing matrix A and optimizing only B,limiting the
model’s expressive capability. FLoRA [38] relies on stacking and processing matrices on the server
side, resulting in increased server computation and communication costs.
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Figure 2: FedASK Pipeline.

2.2 DP in Federated LoRA

We hereby define differential privacy as the following [9, 11]:

Definition 1. A randomized algorithmM : D → S satisfies (ϵ, δ)-differential privacy if, for any two
adjacent datasets D,D′ ∈ D differing in one data point, and any output subset S ⊆ S

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ,

where ϵ ≥ 0 controls the privacy loss and 0 < δ < 1 is the failure probability.

DP theoretically ensures that this algorithm’s output is nearly unaffected by the presence or absence
of any single individual’s data in the dataset. In the context of federated learning, DP is commonly
achieved through DP-Stochastic Gradient Descent (DP-SGD)[1, 24]. This method adds calibrated
noise to the gradients computed at each client before aggregation.

Applying DP-SGD directly to the standard LoRA update mechanism presents challenges. Specifically,
when independent DP noise is added to the gradients of both A and B, these noise components
interact quadratically during the construction of the LoRA update ∆W. This interaction leads to
significant noise amplification, as detailed in Lemma 1. Existing strategies commonly mitigate
this noise amplification by freezing one matrix and optimizing the other [34, 22]. This approach
successfully avoids the quadratic noise term. However, since the parameter update is constrained to
a specific subspace, it limits the model’s learning capability and hinders effective adaptation to the
target task. Table 1 underscores FedASK’s distinct advantages over existing federated LoRA methods.
Overcoming the adaptability limitations of fixed-matrix DP LoRA methods, FedASK enables dynamic
and synchronized update of both LoRA matrices A and B under strong DP guarantees, achieving
precise aggregation with resource efficiency comparable to or better than existing baselines.

3 FedASK Framework

In this section, we presents FedASK (Differentially Private Federated Low Rank Adaptation with
Double SKetching) for federated fine-tuning of large language models using LoRA. We first introduce
the overall FedASK framework, which contains the two-stage projection pipeline designed for efficient
and precise global updates. Subsequently, we describe the integrated DP framework, which facilitates
privacy-preserving training.

3.1 Pipeline: Two-Stage Sketching

The core innovation of FedASK lies in its efficient two-stage pipeline, which employs sketching
and projection techniques to accurately compute the aggregated LoRA update (

∑
k BkAk) while

minimizing resource overhead. FedASK is motivated by the observation that weight updates in large
neural networks [19, 2], particularly with methods like LoRA, exhibit a low-rank structure. This
property allows their essential information to be captured efficiently in a low-dimensional subspace.

Directly computing and aggregating the full product matrices BkAk from each client would be
computationally expensive and communication-heavy, as these matrices are of the same dimension
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Algorithm 1 FedASK
Input: Initial global weight matrix W0; LoRA rank r; LoRA scaling factor α; Over-sketching parameter p;
Client learning rate γ; Set of all clients K; Communication rounds T ; Local update steps m; Boolean DP flag
use_DP; Input feature dimension dl.
Output: Final global LoRA matrices AT ,BT .
Initialization:
Initialize A0 ∈ Rr×dl ,B0 ∈ Rdl×r; Generate Ω ∈ Rdl×(r+p).
for t = 1 to T do

Sample Kt ⊆ K; Broadcast At−1,Bt−1,Ω to clients in Kt.
for each client k ∈ Kt in parallel do

if use_DP is true then
At

k ← At−1; Bt
k ← LocalUpdate_DP(Bt−1,At

k,Dk,m, γ, α)
else

At
k,B

t
k ← LocalUpdate(At−1,Bt−1,Dk,m, γ, α)

end if
Compute Yproj

k = Bt
k(A

t
kΩ); Send to server.

end for
Aggregate Yt

agg =
∑

k∈Kt
Yproj

k ; Perform QR: Qt, _ = QR(Yt
agg).

Broadcast Qt to clients in Kt.
for each client k ∈ Kt in parallel do

Compute Ỹproj
k = (At

k)
⊤((Bt

k)
⊤Qt); Send to server.

end for
Aggregate Ỹt

agg =
∑

k∈Kt
Ỹproj

k .
Compute SVD of (Ỹt

agg)
⊤: U,Σ,V⊤ = SVD((Ỹt

agg)
⊤).

Select leading r components Ur,Σr,V
⊤
r .

Update global LoRA matrices: Bt ← QtUrΣ
1
2
r ; At ← Σ

1
2
r V

⊤
r

end for

as the original weight matrices adapted by LoRA. FedASK addresses the challenge by adopting
sketching principles inspired by randomized SVD [15]. Clients transmit compressed representations
instead of full matrices. Since the aggregated LoRA update also maintains a low-rank structure, these
sketching techniques can effectively capture its essential information, enabling the server to perform
a precise reconstruction. The overall process unfolds in two stages.

First stage: Randomized Subspace Sketching. Within the FedASK framework, local clients
perform the standard LoRA training procedures to obtain their updated local matrices, denoted as
Bt

k and At
k. To enable global aggregation, FedASK utilizes a shared random projection matrix

Ω ∈ Rn×(r+p) to sketch these updated matrices. Specifically, each client computes the projection by:

Yproj
k = Bt

k(A
t
kΩ). (4)

Subsequently, this computed projection is transmitted to the server. The server aggregates these
received projections and performs a QR decomposition to derive an orthonormal basis Q, which is
then redistributed to the participating clients. This basis serves to capture the global singular subspace
relevant to the exact aggregated BtAt, helping to revise the random projection of the first stage and
align the local parameter to the Global Space.

Second stage: Global Alignment Projection. After receiving the orthonormal basis Q, the clients
project their updated matrices onto this basis, yielding an updated projection:

Ỹproj
k = (At

k)
⊤((Bt

k)
⊤Q). (5)

The server then aggregates these updated projections and proceeds to perform a Singular Value
Decomposition (SVD) on the aggregated matrix to decompose it into its singular components. Finally,
the global parameters At and Bt are updated based on the results of the SVD as follows:

Bt = QUΣ
1
2 , At = Σ

1
2V⊤. (6)

This two-stage process enables FedASK to achieve a precise global update that is mathematically
equivalent to the average of local updates 1

K

∑
k BkAk within a subspace rank r + p. The formal

theoretical guarantee for this exact aggregation property is detailed within Section 4.
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3.2 Differentially Private Local Updates in FedASK

To ensure the privacy of individual clients’ sensitive data during the training process, we integrate
Differential Privacy (DP) into our FedASK framework. As detailed in Algorithm 1, DP is applied
conditionally based on the use_DP flag (line 6). When use_DP is set to true, each selected client
k ∈ Kt executes the LocalUpdate_DP function (line 7). In the DP-enabled mode, the local update
conducts on the Bk matrix, while Ak remains fixed for that local training phase (At

k ← At−1).

In the LocalUpdate_DP function, the LoRA matrix Bk is updated at each step τ using the DP-SGD
mechanism. The process, with gradient clipping and calibrated noise addition, is formulated as:

Bτ+1
k = Bτ

k −
γα

r

(
∂l

∂Wτ
k

/max

(
1,
∥ ∂l
∂Wτ

k
∥2

C

)
+N (0, σ2C2I)

)
(At−1)T , (7)

where γ and α denote the learning rate and the LoRA scaling factor, respectively.

Although Ak is not directly perturbed by local noise in DP rounds, the information learned and
privatized via updates to Bk is not confined to global Bt. When the server aggregates the client
projections and performs the SVD reconstruction , the resulting global factors At and Bt are both
updated. The SVD step effectively decomposes the aggregated privatized information captured
primarily within the Bk updates and redistributes it across both newly formed global matrices
At = Σ

1
2V⊤ and Bt = QUΣ

1
2 .

Therefore, FedASK’s unique two-stage projection and SVD-based aggregation allow the knowledge
gained under differential privacy to influence the global representation captured by At as well. The
formal privacy analysis proving the (ϵ, δ)-guarantee for FedASK is presented in the following section.

4 Theoretical Analysis

This section highlights the theoretical analysis of FedASK, focusing on two key guarantees: robust
differential privacy and precise aggregation.

4.1 Robust Differential Privacy Integration

Applying differential privacy to Low-Rank Adaptation (LoRA), particularly when simultaneously
updating both low-rank matrices At and Bt through DP-SGD, presents a significant challenge.
Lemma 1 provides a formal quantitative analysis of this noise amplification.

Lemma 1 (Approximate Noise Power in LoRA Update with DP-SGD). Consider LoRA parameters
At ∈ Rr×dl and Bt ∈ Rdl×r (where dl ≫ r). Under DP-SGD with learning rate η, noise multiplier
σ, clipping C, and batch size Bsize, independent Gaussian noises ξA, ξB (effective per-component
variance σ2C2/B2

size) are added to gradients ∇At,∇Bt, respectively. Let ∆Wnoise be the noise
component of the resulting LoRA update.

E[||∆Wnoise||2F ] ≈ η2
σ2C2

B2
size

dlr(||At||2F + ||Bt||2F )︸ ︷︷ ︸
Term 1: Linear Noise

+ η4
σ4C4

B4
size

d2l r︸ ︷︷ ︸
Term 2: Quadratic Noise

+O(η4σ2 + η3σ2).
(8)

While Term 1 reflects standard linear noise as in DP-SGD, Term 2 arises from noise interaction and
can dominate with large σ or η, scaling with d2l . This causes the LoRA update’s Signal-to-Noise
Ratio (SNR) to degrade significantly faster (1/σ4) than individual gradient SNRs (1/σ2), revealing a
critical noise amplification problem in standard DP-LoRA.

Lemma 1 highlights a critical challenge in standard DP-LoRA: simultaneously perturbing both
low-rank matrices At and Bt leads to a dominant quadratic noise term, severely degrading the LoRA
update’s signal-to-noise ratio and impacting model utility. FedASK involves focusing local DP-SGD
updates primarily on the Bk matrix, while At

k is primarily updated on the server through the two-stage
aggregation pipeline with a global SVD-based update. This strategy preempts local generation of the
problematic quadratic noise term. The formal (ϵ, δ)-differential privacy guarantee for FedASK is
established in Theorem 1.
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Theorem 1 (Privacy Guarantee of FedASK). Suppose the gradient sensitivity is C = 1. FedASK
(Algorithm 1) guarantees that the final global LoRA matrices (AT , BT ) are (ϵ, δ)-differentially
private with respect to the joint dataset D =

⋃K
i=1Dk of K total clients, provided the variance σ2 of

the Gaussian noise added to local gradients satisfies:

σ2 = O
(
q2D ·m · qK · T · ln(2/δ) · ln(2TqK/δ)

ϵ2 ·K

)
,

where qK is the client sampling ratio per communication round (total T rounds), and qD is the data
sampling ratio per local update (total m local updates per client per round).

Theorem 1 establishes the end-to-end (ϵ, δ)-differential privacy for FedASK. Noise variance σ2 scales
consistent with established DP-SGD analyzes in federated learning [32]. The derivation rigorously
tracks privacy loss using Rényi Differential Privacy (RDP), briefly with the following arguments.
(1)Prove the RDP guarantee for two sketches Yproj

k and Ỹproj
k released by a client k within a single

communication round, relative to its local data Dk; (2) convert this per round, per client RDP into an
intermediate (ϵ0, δ0)-DP guarantee; (3) applying advanced composition theorems for (ϵ, δ)-DP over
T communication rounds; and (4) incorporate privacy amplification from client subsampling (ratio
qK) to achieve the final stated (ϵ, δ)-DP guarantee. The detailed proof is provided in Appendix A.2.

4.2 Aggregate Precision Guarantee

Aggregating local updates in federated LoRA presents a key challenge: achieving high accuracy while
minimizing communication and computational overhead. Unlike conventional methods introducing
approximation errors or require extensive resources (e.g., naive SVD reconstruction), FedASK’s
two-stage sketching mechanism enables mathematically exact aggregation as formalized in theorem 2.

Theorem 2 (Aggregate Precision of FedASK). Let dB = dim(span(
⋃K

k=1 Range(Bk))). If the
random projection matrix Ω ∈ Rn×(r+p) is a standard Gaussian random matrix with over-sketching
parameter p satisfying p ≥ dB − r + 2, then FedASK guarantees that the global update before
truncation ∆W t = BtAt equals the exact average of local updates ∆W̄ = 1

K

∑K
k=1 BkAk, i.e.,

∥∆W t −∆W̄∥F = 0,

where ∥·∥F denotes the Frobenius norm.

Theorem 2 provides a theoretical guarantee: the global LoRA update (∆W t) computed by FedASK
precisely matches the true average of all participating clients’ local updates (∆W̄ ), provided the
specified condition for the over-sketching parameter p is met. Our empirical evaluations (detailed in
Section 5.4) suggest that this condition for exact, or near-exact, aggregation is often satisfied with a
relatively small value for p. This implies that the theoretical precision highlighted by the theorem
is practically achievable with minimal over-sketching overhead. Thus, FedASK delivers significant
efficiency gains through its projection-based communication without compromising aggregation
fidelity in practical settings.

5 Experiment

To rigorously evaluate our proposed method, we conduct a comprehensive set of experiments across
diverse tasks and models. For natural language processing and mathematical reasoning, we utilize
two large-scale Llama-2 models: the 7B and 13B versions [35]. The Llama-2-7B model is fine-tuned
on the dolly-15K dataset [44] and assessed on general language understanding benchmarks, including
MMLU [17], DROP [7], and HumanEval [5]. Concurrently, the Llama-2-13B model undergoes
further fine-tuning with Chain-of-Thought (CoT) prompting [39] on the MetaMathQA dataset [42],
with its mathematical reasoning capabilities evaluated using the GSM8K [6], GSM8K-hard, and
MATH [18] benchmarks. To demonstrate the versatility of our approach, FedASK, beyond NLP and
standard Supervised Fine-Tuning (SFT), we also conduct experiments with Vision Language Models
and Reinforcement Learning from Human Feedback (RLHF). In this setting, we perform Direct
Preference Optimization (DPO) on Llava-1.5-7b using the SPA-VL safety preference alignment
dataset [47]. The evaluation for this task involves MM-SafetyBench [27] to measure resilience to
jailbreak attacks via an Attack Success Rate; SIUO [36] to assess safety in cross-modal reasoning;
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and BeaverTails-V [21] to provide separate win-rates for harmlessness and helpfulness. Across
all experiments, conditions are systematically varied to encompass different privacy budget levels
(Section 5.1), degrees of data heterogeneity (Section 5.2), and system robustness (Section 5.4).
All evaluations are performed on NVIDIA Tesla A100 GPUs, utilizing half-precision to maximize
computational efficiency.

Baselines. We compare FedASK with five baseline methods: (1) FedAvg [30]: Clients perform
local SGD, and the server applies weighted parameter averaging. (2) FFA-LoRA [34]: Clients train
one low-rank matrix locally, mitigating noise accumulation. (3) FedSA-LoRA [13]: Clients locally
update both LoRA matrices, with one matrix being transmitted. (4) FedProx [26]: Introduces a
proximal term in the local client loss to mitigate the effects of data heterogeneity. (5) Scaffold [33]:
Employs control variates to correct client-server gradient disparities, reducing client drift.

5.1 Model Performance with Differential Privacy Guarantees

Experiments with Llama-2-7B on homogeneous data use standardized settings (e.g., B = 8, 10 local
steps, 400 rounds) and common LoRA configurations (r = 64, α = 128), detailed in the appendix.
We perform a grid search for learning rates and explore DP budgets ϵ ∈ {1, 3, 6}, following [34].
Results are in Table 2. For Llama-2-13B, we adjust settings to B = 6, 800 total rounds and r = 128,
with other hyperparameters unchanged. Results are in Table 3.

The introduction of privacy-preserving mechanisms leads to performance degradation in several
baseline methods. In contrast, our FedASK algorithm consistently outperforms these methods,
regardless of whether privacy protection is enabled, demonstrating its superior generalization under
privacy constraints. Interestingly, we find that under certain conditions, adding DP noise improves
performance compared to the noiseless case. We attribute this to DP noise serving as implicit
regularization, thereby enhancing model robustness.

Table 2: Performance Comparison of Different Algorithms with DP Budgets on Llama-2-7B.

Task Priv. Budget FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

MMLU

Non-Private 46.15 45.13 45.98 45.19 44.98 45.65
ϵ = 1 45.80 42.07 42.76 42.9 41.99 43.41
ϵ = 3 46.25 41.49 42.72 41.13 43.17 42.47
ϵ = 6 45.78 43.34 42.82 42.84 43.70 43.80

DROP

Non-Private 32.09 30.2 31.34 31.23 30.99 30.01
ϵ = 1 31.23 29.55 29.10 31.04 29.51 29.66
ϵ = 3 32.08 29.26 28.40 29.40 28.50 28.75
ϵ = 6 31.36 29.30 29.40 29.26 27.57 30.20

Human-Eval

Non-Private 15.24 11.59 14.02 12.2 12.2 14.63
ϵ = 1 15.24 12.80 12.20 13.41 12.20 9.76
ϵ = 3 15.24 10.37 10.98 10.98 13.41 11.59
ϵ = 6 15.85 11.59 12.20 12.80 10.98 12.20

Table 3: Performance Comparison of Different Algorithms with DP Budgets on Llama-2-13B.

Task Priv. Budget FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

GSM8K

Non-Private 50.0 48.5 48.4 47.2 47.8 45.6
ϵ = 1 22.7 15.5 14.2 12.2 15.2 16.1
ϵ = 3 24.8 16.5 20.0 20.2 18.0 15.8
ϵ = 6 27.7 19.3 20.2 17.3 20.1 20.3

GSM8Khard

Non-Private 28.7 25.8 23.2 23.4 26.1 21.8
ϵ = 1 13.0 8.8 8.0 6.6 7.2 9.1
ϵ = 3 12.6 11.1 10.5 11.3 10.8 11.0
ϵ = 6 16.9 10.5 9.2 10.2 10.9 10.8

Math

Non-Private 11.8 10.3 10.8 10.7 11.7 9.8
ϵ = 1 6.9 5.2 5.8 5.6 5.6 5.8
ϵ = 3 6.6 6.1 6.0 5.9 6.4 5.5
ϵ = 6 7.6 6.2 6.0 5.9 6.7 7.1
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5.2 Model Performance with Data Heterogeneity

To evaluate data heterogeneity’s impact, we experiment with IID and three non-IID scenarios, using
10 clients with 2 selected per round. In IID settings, data is randomly partitioned. For non-IID
settings, we use Dirichlet distribution Dir(α) with α ∈ {0.1, 0.5, 1.0}, following prior work [13].

To evaluate robustness under DP in these non-IID environments, we set the privacy budget ϵ =
3, a common value for balancing privacy and utility. Other settings follow Section 5.1. The
experimental results in Table 4 demonstrate FedASK’s prominent performance. Across all tasks and
data distributions (IID and non-IID), FedASK consistently outperforms baselines, underscoring its
effectiveness and robustness. This superior performance stems from FedASK’s simultaneous local
updates and global aggregation of both A and B matrices. While previous research [13] suggests that
matrix A learns global information and matrix B captures local specifics, FedASK’s design enables a
continuous interaction and fusion of these distinct knowledge types. This inherent information fusion
capability enhances the model’s adaptation to heterogeneous data distributions.

Table 4: Performance comparison across different data distributions on various tasks.

Task Data Dist. FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

MMLU

IID 46.25 41.49 42.72 41.13 43.17 42.47
Dir(0.1) 46.04 42.69 42.54 44.27 42.61 43.05
Dir(0.5) 45.95 42.11 41.46 42.72 42.98 41.97
Dir(1) 46.01 42.96 43.23 41.04 42.98 41.71

DROP

IID 32.08 29.44 28.40 29.40 28.50 28.75
Dir(0.1) 31.01 28.34 30.10 28.58 28.18 28.27
Dir(0.5) 31.15 29.18 29.26 27.83 28.23 29.45
Dir(1) 31.58 30.02 28.93 29.29 29.82 30.52

Human-Eval

IID 15.24 10.37 10.98 10.98 13.41 11.59
Dir(0.1) 13.41 7.32 10.98 12.8 13.41 7.93
Dir(0.5) 14.63 10.98 13.41 12.8 14.63 9.76
Dir(1) 14.02 9.76 10.98 10.37 10.37 9.15

5.3 Model Performance with VLMs task and RLHF

To evaluate the efficacy of our method on vision-language tasks and preference alignment, we conduct
experiments using the Llava-1.5-7B model. We employ DPO, a form of RLHF, to align the model with
safety preferences using the SPA-VL dataset. The FL setup involves 10 clients (IID), 2 selected per
round for 600 rounds, and 10 local steps. We apply LoRA to q_proj, v_proj, and mm_projector
modules, freezing the vision_tower.

The results in Table 5 demonstrate FedASK’s superior performance in the VLM alignment task
under privacy constraints. At ϵ = 6, FedASK consistently outperforms all baselines, achieving the
highest helpfulness (56.36) and harmlessness (65.36) on BeaverTails-V, the lowest ASR (43.40) on
MMsafety, and leading scores on SIUO. This advantage stems from a fundamentally more expressive
learning process. FedASK avoids the representational bottleneck of fixed-matrix methods, which is
particularly limiting in complex, multi-objective tasks like preference alignment. The global SVD
reconstruction acts as a powerful information distillation step, re-decomposing the aggregated private
updates into a new, more optimal shared basis for both A and B. Furthermore, the inherent DP noise
serves as an implicit regularizer, preventing the model from overfitting to specific client preference
data and promoting a more generalized alignment. This synergy preserves the model’s full expressive
capacity while enhancing robustness, explaining its significant margin over baselines even under
stricter privacy budgets such as ϵ = 1.

5.4 Effect of the Sketching Dimension

Theorem 2 guarantees that FedASK achieves precise global aggregation provided the over-sketching
parameter p meets a specified condition, our empirical evaluations aim to demonstrate that this
precision is practically attainable with minimal p, underscoring FedASK’s efficiency. To this end, we
conduct two sets of experiments using the Llama-2-7B model and identical settings from Section 5.1
to assess p’s impact on both downstream task performance and direct aggregation fidelity.
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Table 5: Performance comparison of DPO with LoRA across different privacy budgets.
Beavertails-V MMsafety SIUO

Algorithm Helpfulness Harmlessness ASR (↓) Effectiveness Safety
ϵ=6 ϵ=1 ϵ=6 ϵ=1 ϵ=6 ϵ=1 ϵ=6 ϵ=1 ϵ=6 ϵ=1

FedASK 56.36 53.65 65.36 62.98 43.40 46.93 87.42 85.62 31.14 28.74
FedAvg 51.53 45.50 53.66 48.89 48.24 50.80 83.23 80.23 26.94 25.14
FFA-LoRA 54.66 52.38 63.32 61.96 44.39 48.45 86.23 83.83 29.34 27.54
Scaffold 51.02 48.97 52.55 46.67 50.80 51.43 83.83 76.04 27.54 23.95

First, to evaluate downstream task performance, we test FedASK with varying over-sketching param-
eters p ∈ {0, 32, 64, 96, 128} on the MMLU benchmark. This is performed under a challenging Non-
IID setting (α = 0.1) with differential privacy (ϵ = 3). Second, to directly assess aggregation fidelity,
we compare FedASK configured with no over-sketching (p = 0) against FedAvg. This latter experi-
ment is conducted without DP, across varying numbers of selected clients (Ks ∈ {2, 5, 10, 15, 20})
and data heterogeneity levels. After 30 local update rounds by each client, we measure aggre-
gation fidelity using the cosine similarity between FedASK’s reconstructed global LoRA update
(∆W t = BtAt) and the ideal average of all the local LoRA updates (∆W̄ t = 1

Ks

∑
k∈Ks

Bt
kA

t
k).

Figure 3: Impact of over-sketching p on FedASK. (a) MMLU score of FedASK versus p. (b) Aggregation
fidelity of FedASK (with p = 0) and (c) FedAvg, measured by cosine similarity with the ideal mean of local
updates (1.0 indicates perfect fidelity). Subplots (b) and (c) vary selected clients (Ks) and Non-IID degrees.

The empirical results, presented in Figure 3, illustrate that the over-sketching parameter p has
a minimal influence on the effectiveness of FedASK. Firstly, (a) shows that FedASK’s MMLU
performance remains remarkably stable across the tested p values (ranging from 45.63 at p = 0 to
46.06 at p = 128), even under conditions of significant data heterogeneity and differential privacy.
This stability demonstrates a low sensitivity to p to achieve robust downstream utility. Secondly,
FedASK’s inherent design ensures exceptional aggregation fidelity, even with zero over-sketching
(p = 0). As shown in (b), FedASK consistently achieves near-perfect cosine similarities (with an
error on the order of 10−7) across a variety of selected clients (Ks) and Non-IID degrees. This
performance consistently outperforms FedAvg, presented in (c), which typically ranges from 0.92 to
0.96. These findings affirm FedASK’s practical efficiency and the attainability of its theoretically
guaranteed precise aggregation with negligible over-sketching overhead.

6 Conclusion

This paper introduces FedASK, a novel federated LoRA framework that successfully resolves the
trade-off between noise amplification and learnability in private federated fine-tuning. By employing
a two-stage sketching pipeline, FedASK enables the differentially private and effective update of both
LoRA adapters. Our theoretical analysis and comprehensive experiments demonstrate FedASK’s
superior performance in achieving precise aggregation and robust downstream utility with strong
privacy guarantees and practical efficiency. Future studies will focus on extending its applicability
to a broader range of model architectures and complex training tasks, as well as exploring further
refinements to its privacy-utility trade-off.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately state the paper’s contributions, includ-
ing the FedASK framework and its theoretical guarantees.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are mentioned in Section 6, and detailed discussion is provided in
Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Section 4 presents the theoretical analysis, with complete proofs available in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 details the experimental setup using open-source datasets, ensuring
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be open-sourced within a month and is included in the supple-
mentary material package.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All necessary experimental settings and details are specified in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars will be provided in the supplementary material due to main text
page limitations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: System efficiency, including compute resources, is analyzed in the supplemen-
tary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This foundational research is assessed to have no direct societal impact at
this stage. We use the open access data and models that has been investigated under risk
evaluation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed framework does not pose immediate high risks requiring specific
safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets are properly credited, referencing their original sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new datasets or models as assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research utilizes existing datasets and does not involve direct human
subject participation.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB approval is not applicable as the research does not directly involve human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs were utilized solely for editing and formatting purposes in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Proof

A.1 Proof of Lemma 1

Proof. Let At ∈ Rr×dl and Bt ∈ Rdl×r be the LoRA matrices. The noisy updates under DP-SGD
with learning rate η are,

At+1 = At − η(∇At + ξA), (9)
Bt+1 = Bt − η(∇Bt + ξB), (10)

where ξA, ξB are independent Gaussian noise matrices with i.i.d. entries N (0, σ2
eff ), and σ2

eff =

σ2C2/B2
size. The noise component in the LoRA update ∆W = Bt+1At+1 − BtAt is found by

substituting (9) and (10),

∆W = (Bt − η(∇Bt + ξB))(At − η(∇At + ξA))−BtAt,

= −η(Bt∇At +∇BtAt) + η2∇Bt∇At (Signal part)

− η(BtξA + ξBAt) + η2(∇BtξA + ξB∇At + ξBξA) (Noise part).

Thus, ∆Wnoise = X + Y , where,

X = −η(BtξA + ξBAt), (11)

Y = η2(∇BtξA + ξB∇At + ξBξA). (12)

The expected noise power is PN = E[||X + Y ||2F ] = E[||X||2F ] + E[||Y ||2F ] + 2E[⟨X,Y ⟩F ].
For the linear noise term power E[||X||2F ], using (11),

E[||X||2F ] = η2E[||BtξA + ξBAt||2F ],
= η2

(
E[||BtξA||2F ] + E[||ξBAt||2F ]

)
,

due to E[⟨BtξA, ξBAt⟩F ] = 0 from noise independence and zero mean. We have E[ξAξTA] =
dlσ

2
effIr and E[ξTBξB ] = dlσ

2
effIr. So,

E[||BtξA||2F ] = Tr(BtE[ξAξTA]BT
t ) = dlσ

2
eff ||Bt||2F ,

E[||ξBAt||2F ] = Tr(AtA
T
t E[ξTBξB ]) = dlσ

2
eff ||At||2F .

This yields,
E[||X||2F ] = η2dlσ

2
eff (||At||2F + ||Bt||2F ). (13)

For the cross term 2E[⟨X,Y ⟩F ], using (11) and (12),

E[⟨X,Y ⟩F ] = −η3E[⟨BtξA + ξBAt,∇BtξA + ξB∇At + ξBξA⟩F ].

Non-zero expectations arise from,

E[⟨BtξA,∇BtξA⟩F ] = Tr(BT
t ∇BtE[ξAξTA]) = dlσ

2
effTr(BT

t ∇Bt),

E[⟨ξBAt, ξB∇At⟩F ] = Tr(AT
t E[ξTBξB ]∇At) = dlσ

2
effTr(AT

t ∇At).

Other terms are zero since the independence of noise. Thus,

2E[⟨X,Y ⟩F ] = −2η3dlσ2
eff (Tr(BT

t ∇Bt) + Tr(AT
t ∇At)). (14)

For the higher-order noise term power E[||Y ||2F ], using (12), the dominant component is,

E[||η2ξBξA||2F ] = η4E[Tr(ξBξAξTAξ
T
B)], (15)

= η4Tr(E[ξBE[ξAξTA]ξTB ]), (16)

= η4Tr(E[ξB(dlσ2
effIr)ξ

T
B ]), (17)

= η4dlσ
2
effE[||ξB ||2F ] = η4d2l r(σ

2
eff )

2. (18)

Other terms in E[||Y ||2F ] are O(η4σ2
effdlr(||∇At||2F + ||∇Bt||2F )).
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Combining the dominant terms from (13) and the dominant part of E[||Y ||2F ] (derived in (18)),
and noting the cross-term (14) is often less dominant, we approximate PN . Substituting σ2

eff =

σ2C2/B2
size, we get,

E[||∆Wnoise||2F ] ≈ η2
σ2C2

B2
size

dlr(||At||2F + ||Bt||2F ) + η4
σ4C4

B4
size

d2l r, (19)

which matches the expression stated in Lemma 1, highlighting the linear and dominant quadratic
noise terms.

A.2 Proof of Theorem 1

To facilitate the privacy analysis of FedASK, we first recall several fundamental concepts and
properties of differential privacy. We leverage the advanced composition theorem and subsampling
theorem for (ϵ, δ)-differential privacy:
Lemma 2 (Advanced Composition [10]). Let M1, . . . ,Mk be a sequence of k adaptive mechanisms,
where each Mi provides (ϵ, δ)-differential privacy. For any δ′ > 0, the composed mechanism
M = (M1, . . . ,Mk) is (ϵtotal, kδ + δ′)-differentially private, where

ϵtotal =
√
2k ln(1/δ′)ϵ+ kϵ(eϵ − 1).

If ϵ≪ 1, then for any δ′ > 0, the composed mechanism M is (ϵ′total, kδ + δ′)-differentially private,
where ϵ′total ≈

√
2k ln(1/δ′)ϵ+ kϵ2.

Lemma 3 (Privacy Amplification by Subsampling [37]). LetM be an (ϵ, δ)-differentially private
mechanism. IfM is run on a random sample of size m drawn uniformly without replacement from
a dataset of size N (where m ≤ N ), let γ = m/N be the sampling ratio. Then, the subsampled
mechanismMsubsample is (ϵ′, δ′)-differentially private, where,

ϵ′ = log(1 + γ(eϵ − 1)),

δ′ = γδ.

While (ϵ, δ)-DP provides a worst-case privacy guarantee, analyzing the precise privacy loss under
composition, especially for Gaussian mechanisms, can be complex. Rényi Differential Privacy
(RDP) [31] offers a convenient framework for tracking privacy loss, providing tighter bounds under
composition. We define RDP as follows:
Definition 2 (RDP [31]). A randomized mechanismM : D → R satisfies (α,R)-Rényi Differential
Privacy (RDP) if for any neighboring datasets D,D′ ∈ D (differing in one individual’s data), and
for all α > 1,

Dα(M(D)||M(D′)) ≤ R,

where Dα(P ||Q) = 1
α−1 lnEx∼Q(x)

[(
P (x)
Q(x)

)α]
is the Rényi divergence of order α.

RDP possesses several useful properties that simplify privacy analysis.
Lemma 4 (Post-processing of RDP [31]). LetM : D → R be a mechanism that satisfies (α,R)-
RDP. Let g : R → R′ be an arbitrary randomized mapping (a post-processing function). Then the
mechanism g ◦M : D → R′ also satisfies (α,R)-RDP.
Lemma 5 (Adaptive Sequential Composition of RDP [31]). LetM1 : D → R1 be a mechanism satis-
fying (α,R1)-RDP. LetM2 : R1×D → R2 be a mechanism such that for any fixed output o1 ∈ R1 of
M1,M2(o1, ·) satisfies (α,R2)-RDP. Then the mechanismM(D) = (M1(D),M2(M1(D), D)),
which outputs the pair (o1, o2) where o1 ∼M1(D) and o2 ∼M2(o1, D), satisfies (α,R1 + R2)-
RDP.
Lemma 6 (Conversion from RDP to (ϵ, δ)-DP [4]). If a randomized mechanismM satisfies (α,R)-
RDP, then it satisfies (R + ln((α − 1)/α) − (ln δ + lnα)/(α − 1), δ)-DP for any 0 < δ < 1.

The core mechanism for achieving privacy in FedASK involves adding Gaussian noise. The RDP of
a (subsampled) Gaussian mechanism is characterized as follows:
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Lemma 7 (Approximate RDP for qD-Subsampled Gaussian Mechanism [32]). Consider a qD-
subsampled Gaussian mechanism with noise variance σ2

g . Under the assumption that the data
subsampling ratio qD is small (i.e., qD = o(1)), and assuming the mechanism operates in a high
privacy regime (Assumption 1-(iii) in [32]), for any real number α > 1, the mechanism satisfies
(α,R′)-RDP, where R′ = O( q

2
D(α+1)

σ2
g

).

Proof. The proof proceeds in several steps. We first analyze the RDP guarantee for the information
transmitted by a single client k in one communication round t with respect to its local dataset Dk.
Then, we analyze the RDP of the aggregated global update at the server. Finally, we compose the
privacy loss over T communication rounds, incorporate the amplification due to user subsampling,
and convert the total RDP to an (ϵ, δ)-DP guarantee.

Step 1: RDP of Local Updates and Transmitted Sketches by Client k w.r.t. Dk.

Privacy guarantee for first sketching Client k executes LocalUpdateDP (using m local steps, data
subsampling ratio s, fixed At

k = At−1, and noise parameter σ2) on its private dataset Dk to compute

the local LoRA matrix Bt
k. By Lemma 5 and Lemma 7, Bt

k satisfies (α,O(mq2D(α+1)
σ2 ))-RDP w.r.t.

Dk. The first sketch, Yproj
k = Bt

k(A
t
kΩ), is derived from Bt

k by post-processing (Lemma 4), since At
k

and Ω are independent of Dk in this context. Thus, Yproj
k also satisfies (α,R(t)

k (α))-RDP w.r.t. Dk,

where R
(t)
k (α) = O(mq2D(α+1)

σ2 ).

Privacy guarantee for second sketching: After the client k sends Yproj
k to the server, the server

computes an orthonormal basis Qt = QR(
∑

j∈Kt
Y proj
j ) and broadcasts Qt back to the partic-

ipating clients, including the client k. The client k then computes its second sketch Ỹproj
k =

(At
k)

T ((Bt
k)

TQt). The calculation of Ỹproj
k utilizes the already privatized matrix Bt

k, the public
matrix At

k, and the received matrix Qt. For client k, Qt is an external input provided by the server,
and this computation does not involve fresh access to its private dataset Dk. Consequently, according
to Lemma 6, Ỹproj

k also satisfies (α,R(t)
k (α))-RDP with respect to Dk.

So we could have that, for the local uplink transmitted information, Y proj
j and Ỹproj

k satisfy the

(α,R
(t)
k (α))-RDP w.r.t. Dk, where

R
(t)
k (α) = O(mq2D(α+ 1)

σ2
). (20)

Step 2: DP guarantee of (At, Bt) w.r.t. the Joint Dataset D =
⋃

k Dk.

The server aggregates the second sketches to form Ỹ t
agg =

∑
k∈Kt

Ỹproj
k . Based on the (α, ϵ

(t)
k (α))-

RDP guarantee for each client’s transmitted information w.r.t. its local data (Step 1) and the disjoint-
ness of client datasets, the mechanism producing an appropriately scaled aggregate over the Ks = |Kt|
participating clients yields (α,R(t)

agg(α))-RDP for Ỹ t
agg w.r.t. the joint data DKt =

⋃
k∈Kt

Dk, where

R(t)
agg(α) = ϵ

(t)
k (α)/Ks = O

(
mq2D(α+ 1)

Ksσ2

)
. (21)

Since the global LoRA matrices (At, Bt) are derived via SVD of Ỹ t
agg (a post-processing step, Lemma

4), they inherit this RDP guarantee. Consequently, by applying the RDP to DP conversion (Lemma
6), for any 0 < δ0 < 1, (At, Bt) satisfy (ϵ

(t)
0 , δ0)-DP w.r.t. DKt , with ϵ

(t)
0 given by:

ϵ
(t)
0 (α, δ0) = R(t)

agg(α) + ln(
α− 1

α
)− ln δ0 + lnα

α− 1
. (22)

Step 3: DP guarantee of (AT , BT ) w.r.t. the Joint Dataset D =
⋃

k Dk.

The per-round guarantee (ϵ
(t)
0 , δ0) w.r.t. DKt

is amplified by client subsampling (ratio qK from K

total clients) using Lemma 3, yielding an (qKϵ
(t)
0 (α, δ0), qKδ0)-DP guarantee per round w.r.t. the full

dataset D =
⋃K

i=1Di.
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Composing this (qKϵ
(t)
0 (α, δ0), qKδ0)-DP mechanism over T adaptive communication rounds using

Lemma 2 , for a chosen δ1 > 0, gives the final (ϵ, δ)-DP guarantee for (AT , BT ):

ϵ = qK
√
2T ln(1/δ1)O

(
mq2D(α+ 1)

Ksσ2
+ ln(

α− 1

α
)− ln δ0 + lnα

α− 1

)
, (23)

δ = qKTδ0 + δ1. (24)

The specific noise variance σ2 required in Theorem 1 is derived by appropriately setting ϵ
(t)
0 , δ0

(based on RDP conversion from Step 2) and δ1 to meet the target overall (ϵ, δ), then solving for σ2.

Step 4: Analysis of the RDP Order α.

Let δ0 and δ1 be δ/2 and δ/(2qKT ) respectively, we now trying to acquire an expression of α through
the following minization problem

min
α>1

mq2D(α+ 1)

Ksσ2
+ ln(

α− 1

α
)− ln(δ/2) + lnα

α− 1
. (25)

Let C1 =
mq2D
Ksσ2 , equation (25) find an optimal α > 1 that minimizes ϵ is approximated by setting the

derivative of the dominant terms to zero.
C1(α− 1)2 + ln(δ0α) = 0. (26)

Assume α≫ 1, then, (α− 1)2 ≈ α2 and the term ln(δ0α) can be written as ln δ0 + lnα.

Substituting these approximations into the condition (26), we get:
C1α

2 + ln δ0 + lnα ≈ 0. (27)

If α is sufficiently large such that C1α
2 dominates lnα (i.e., the α2 term grows much faster than lnα),

we can further simplify Eq. (27) by neglecting the lnα term relative to C1α
2 and ln δ0 (especially if

| ln δ0| is large, which is true for small δ0). This yields:

C1α
2 ≈ − ln δ0. (28)

From Eq. (28), we obtain an approximate expression for the optimal α:

αopt ≈
√
− ln δ0
C1

. (29)

Substituting δ0 = δ/(2qKT ) and C1 =
mq2D
Ksσ2 :

αopt ≈

√
ln(2qKT/δ) ·Ksσ2

mq2D
. (30)

Plug (30) into (24), we could conclude that to reach (ϵ, δ)-DP, FedASK nessesitates a noise of

σ2 = O
(
q2D ·m · qK · T · ln(2/δ) · ln(2TqK/δ)

ϵ2 ·K

)
. (31)

This finishes the proof of theorem 1.

A.3 Proof of Theorem 2

Lemma 8 (Expected Frobenius Norm Error of Random Projection [15]). Let A ∈ Rm×n be a
matrix with singular values σ1 ≥ σ2 ≥ . . . . Choose a target approximation rank kapprox ≥ 1
and an oversampling number sover ≥ 2 such that the total number of random projection vectors
l = kapprox + sover ≤ min{m,n}. Let Ω ∈ Rn×l be a standard Gaussian random matrix, and let
Y = AΩ. Let PY be the orthogonal projector onto Range(Y ). Then, the expected Frobenius norm of
the error in approximating A by its projection PY A is bounded by,

E∥(I − PY )A∥F ≤
(
1 +

kapprox

sover − 1

)1/2
 ∑

j>kapprox

σ2
j (A)

1/2

.
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Proof. Let the average of local updates be defined as:

∆W̄ =
1

K

K∑
k=1

BkAk. (32)

The first sketching follows as:

Yproj =
1

K

K∑
k=1

Bk(AkΩ) = ∆W̄Ω, (33)

where Ω ∈ Rn×(r+p) is standard Gaussian. The dimension of the random subspace is r + p.

The second aggregated projection is:

Ỹproj =
1

K

K∑
k=1

(A⊤
k (B

⊤
k Q)) = (∆W̄ )⊤Q (34)

Let SVD(Q⊤∆W̄ ) = UΣV⊤.
Q⊤∆W̄ = UΣV⊤ (35)

The global update ∆W t = BtAt = (QUΣ1/2)(Σ1/2V⊤) = QUΣV⊤.

∆W t = Q(Q⊤∆W̄ ) = QQ⊤∆W̄ (36)

The condition p ≥ dB − r + 2 implies r + p ≥ dB + 2. Since rank(∆W̄ ) ≤ dB , we have
r + p+ 2 ≥ rank(∆W̄ ). Apply Lemma 8 with A = ∆W̄ , let the target rank be kapprox = r + p, and
sover = 2. For kapprox > rank(∆W̄ ), the singular values σkapprox+1 and beyond are zero. Therefore, we
could come to the conclusion of Theorem 2.

B Future Explorations

While FedASK demonstrates notable strengths, we identify the following areas for future exploration:

• Local Matrix Update Strategies: FedASK currently fixes the local Ak matrix during
differentially private updates in one communication round. Investigating alternating local
updates for both Ak and Bk matrices under differential privacy could reveal different
learning dynamics and performance trade-offs.

• Broader Model Applicability: Our validation of FedASK is currently limited to Large
Language Models. Assessing its efficacy and potential adaptations for other architectures,
such as vision transformers or diffusion models, remains an open research direction.

• Advanced Training Paradigms: The current study focuses on fine-tuning for standard
language and reasoning tasks. Extending FedASK to more complex federated and private
training paradigms, such as model alignment (e.g., RLHF), presents a valuable avenue for
future work.

C More Experimets results

C.1 Training details

NLP Task, Model Performance with Privacy Guarantee. Experiments with the Llama-2-7B model
focus on homogeneous data distributions. To ensure fair comparisons, standardized settings include a
batch size B of 8, 10 local update steps, and 4000 total communication rounds. Transformer-related
hyperparameters, such as the sequence length lseq of 128, align with previous studies [19]. The
LoRA rank r is fixed at 64, with the scaling factor α set to twice the rank. Optimal performance
is determined through a grid search over learning rates {5e − 5, 1e − 4, 2e − 4, 5e − 4}, and in
differential privacy scenarios, privacy budgets ϵ ∈ {1, 3, 6} are explored, consistent with prior work
[34]. For the Llama-2-13B experiments, we use a batch size B of 6, extend the total communication
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rounds to 8000, adjust the sequence length lseq to 968, and increase the LoRA rank r to 128. Other
settings remain the same as in the Llama-2-7B experiments. Results are summarized in Table 3.

NLP Task, Model Performance with Data Heterogenety. To evaluate data heterogeneity’s impact,
we experiment with IID and three non-IID scenarios, using 10 clients with 2 selected per round.
In IID settings, data is randomly partitioned. For non-IID settings, we use Dirichlet distribution
Dir(α) with α ∈ {0.1, 0.5, 1.0}, following prior work [13]. To evaluate robustness under DP in these
non-IID environments, we set the privacy budget ϵ = 3, a common value for balancing privacy and
utility. Other settings keep the same.

VLM Task, Model Performance with RLHF. To evaluate the efficacy of our method on vision-
language tasks and preference alignment, we conduct experiments using the Llava-1.5-7B model.
We employ DPO, a form of RLHF, to align the model with safety preferences using the SPA-VL
dataset. The training dataset is curated by first filtering the source data to include only samples where
the "chosen" response exceeds 450 characters, followed by a balanced sampling of 2,888 entries
from each top-level category to ensure diversity. The federated learning environment consists of
10 clients with an IID data distribution, where 2 clients are selected per round for a total of 600
communication rounds, with each client performing 10 local update steps. Key hyperparameters
include a LoRA rank of 256 applied to the q_proj, v_proj, and mm_projector modules while
freezing the vision_tower, a batch size of 2, and a learning rate of 1e-5. We evaluate performance
under Non-Private and two differential privacy budgets, ϵ ∈ {, 6}.

Table 6: More Performance comparison of algorithms across different privacy budgets.
Beavertails-V MMsafety SIUO

Algorithm Help Harm ASR (↓) Effective Safety

No DP ϵ=6 ϵ=1 No DP ϵ=6 ϵ=1 No DP ϵ=6 ϵ=1 No DP ϵ=6 ϵ=1 No DP ϵ=6 ϵ=1

FedASK 55.78 56.36 53.65 65.13 65.36 62.98 43.21 43.40 46.93 88.62 87.42 85.62 30.53 31.14 28.74
FedAvg 53.98 51.53 45.50 60.61 53.66 48.89 45.63 48.24 50.80 89.82 83.23 80.23 29.94 26.94 25.14
FFA-LoRA 55.68 54.66 52.38 63.43 63.32 61.96 44.93 44.39 48.45 86.83 86.23 83.83 28.74 29.34 27.54
Scaffold 52.01 51.02 48.97 57.61 52.55 46.67 48.75 50.80 51.43 88.02 83.83 76.04 28.14 27.54 23.95

C.2 Error-Bar of Current Experiments

This section presents error bar experiments, reporting the mean ± standard error of the mean (SEM)
over five independent runs, to substantiate the stability and performance of the FedASK framework.
These evaluations cover varied differential privacy (DP) budgets and non-IID data distributions for
Llama-2-7B and Llama-2-13B models on the dolly-15K and MetaMathQA datasets, respectively.
Unless otherwise specified, all other parameters, such as batch size and communication rounds, align
with the primary experimental configurations detailed in Section 5.

For these error-bar evaluations, specific learning rates and LoRA ranks were employed. Llama-2-7B
experiments (Tables 7 and 9) used LoRA rank r = 64. For IID data with varying DP budgets
(Table 7), baseline learning rates were 2× 10−4 (non-DP) and 1× 10−4 (DP); FedASK and other
LoRA methods used 5×10−5 (non-DP) and 4×10−4 (DP) with gradient clipping of 1.0. For non-IID
evaluations at DP ϵ = 3 (Table 9), baseline learning rates were 1× 10−4, and LoRA-based methods
(including FedASK) used 4× 10−4 with 1.0 gradient clipping. The Llama-2-13B experiments with
IID data (Table 8) utilized a LoRA rank r = 128; FedASK learning rates were 5× 10−4 (non-DP)
and 4× 10−4 (DP), while baselines used 2× 10−4.

The inclusion of mean± SEM from five runs in these experiments offers robust statistical validation of
the delineated advantages of FedASK, reinforcing the conclusions drawn from single-run experiments
in the main paper. As detailed in Table 7 and Table 8 , FedASK outperforms or performs comparable
to baseline methods in non-private settings and DP budgets of ϵ ∈ {1, 3, 6}, frequently producing
comparable or reduced SEMs, highlighting its capacity to achieve an effective equilibrium between
model utility and privacy preservation. This demonstrated robustness is further evident in scenarios
characterized by data heterogeneity; Table 9 reveals FedASK’s consistent maintenance of leading
average performance alongside constrained variability, as indicated by the SEMs, across diverse
non-IID Dirichlet distributions (α ∈ {0.1, 0.5, 1.0}), corroborating the adaptability observations
presented in Section 5.2.
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Table 7: Performance Comparison (Mean ± SEM from five runs) on Llama-2-7B with Different DP
Budgets.

Task Priv. Budget FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

MMLU

Non-Private 46.34± 0.19 43.13± 2.01 45.72± 0.27 44.63± 0.57 43.55± 1.44 44.49± 1.17
ϵ = 1 45.79± 0.01 42.82± 0.75 44.15± 1.39 43.16± 0.25 43.00± 1.01 43.53± 0.12
ϵ = 3 45.88± 0.37 42.43± 0.94 43.82± 1.10 42.30± 1.17 43.07± 0.11 42.88± 0.41
ϵ = 6 45.73± 0.05 43.46± 0.12 44.02± 1.20 43.30± 0.54 43.00± 0.71 43.43± 0.37

DROP

Non-Private 32.01± 0.08 30.31± 0.11 31.65± 0.31 30.86± 0.37 30.95± 0.04 30.87± 0.86
ϵ = 1 31.33± 0.10 30.49± 0.94 30.41± 1.31 29.96± 1.08 30.18± 0.67 30.08± 0.42
ϵ = 3 31.06± 1.02 29.69± 0.43 29.87± 1.47 29.66± 0.26 29.07± 0.57 28.90± 0.15
ϵ = 6 31.27± 0.10 29.46± 0.15 30.37± 0.97 29.91± 0.65 28.64± 1.07 30.19± 0.01

Human-Eval

Non-Private 14.63± 0.61 13.42± 1.83 14.02± 0.02 12.81± 0.61 12.81± 0.61 14.63± 0.00
ϵ = 1 13.72± 1.52 11.28± 1.52 12.50± 0.30 11.28± 2.13 8.85± 3.35 8.54± 1.22
ϵ = 3 14.02± 1.22 7.63± 2.74 11.59± 0.61 8.85± 2.13 10.06± 3.35 9.76± 1.83
ϵ = 6 15.85± 0.02 9.76± 1.83 11.90± 0.31 10.67± 2.13 8.85± 2.13 9.76± 2.44

Table 8: Performance Comparison (Mean ± SEM from five runs) on Llama-2-13B with Different DP
Budgets.

Task Priv. Budget FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

GSM8K

Non-Private 51.40± 1.40 46.25± 2.25 48.50± 0.10 50.00± 2.80 47.95± 0.15 46.95± 1.35
ϵ = 1 24.95± 2.25 16.40± 0.90 14.25± 0.05 14.50± 2.30 16.00± 0.80 16.45± 0.35
ϵ = 3 25.35± 0.55 19.60± 3.10 18.60± 1.40 21.20± 1.00 20.20± 2.20 18.30± 2.50
ϵ = 6 24.35± 3.35 20.05± 0.75 19.15± 0.95 18.45± 1.15 22.05± 1.95 20.35± 0.05

GSM8Khard

Non-Private 23.90± 4.80 21.90± 3.90 22.20± 1.00 22.10± 1.30 23.05± 3.05 20.95± 0.85
ϵ = 1 13.65± 0.65 10.25± 1.45 7.85± 0.15 8.25± 1.65 7.90± 0.70 9.35± 0.25
ϵ = 3 13.00± 0.40 11.90± 0.80 10.25± 0.25 11.55± 0.25 11.35± 0.55 11.20± 0.20
ϵ = 6 13.30± 3.60 11.30± 0.80 9.40± 0.20 10.55± 0.35 11.60± 0.70 11.40± 0.60

Math

Non-Private 12.55± 0.75 9.30± 1.00 10.25± 0.55 10.60± 0.10 10.90± 0.80 10.00± 0.20
ϵ = 1 7.25± 0.35 5.55± 0.35 5.50± 0.30 5.85± 0.25 5.85± 0.25 5.55± 0.25
ϵ = 3 7.20± 0.60 6.50± 0.40 6.20± 0.20 6.15± 0.25 6.30± 0.10 5.95± 0.45
ϵ = 6 6.50± 1.10 6.35± 0.15 6.15± 0.15 6.05± 0.15 6.50± 0.20 7.00± 0.10

Table 9: Performance Comparison (Mean ± SEM from five runs) for DP Budget ϵ = 3 across
Different Data Distributions on Llama-2-7B.

Task Data Dist. FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

MMLU

IID 45.88± 0.37 42.43± 0.94 43.82± 1.10 42.30± 1.17 43.07± 0.11 42.88± 0.41
Dir(0.1) 45.21± 0.84 42.85± 0.16 43.64± 1.09 44.11± 0.16 42.99± 0.39 42.33± 0.73
Dir(0.5) 45.05± 0.90 42.71± 0.60 43.22± 1.76 43.26± 0.54 42.66± 0.32 42.91± 0.94
Dir(1) 45.26± 0.75 42.75± 0.21 44.60± 1.37 42.37± 1.33 43.10± 0.12 42.69± 0.98

DROP

IID 31.10± 1.04 29.78± 0.34 29.87± 1.47 29.66± 0.26 29.07± 0.57 28.90± 0.15
Dir(0.1) 30.85± 0.17 29.27± 0.93 30.52± 0.42 28.72± 0.14 28.53± 0.35 28.29± 0.02
Dir(0.5) 31.15± 0.01 29.41± 0.23 29.98± 0.72 28.47± 0.64 28.47± 0.24 29.17± 0.28
Dir(1) 31.19± 0.40 29.77± 0.25 30.16± 1.23 29.40± 0.11 29.85± 0.03 30.20± 0.32

Human-Eval

IID 14.02± 1.22 7.63± 2.74 11.59± 0.61 8.85± 2.13 10.06± 3.35 9.76± 1.83
Dir(0.1) 13.41± 0.00 9.15± 1.83 11.29± 0.31 10.67± 2.13 9.15± 4.27 8.24± 0.31
Dir(0.5) 12.81± 1.82 9.76± 1.22 11.89± 1.52 12.19± 0.61 14.33± 0.31 8.24± 1.52
Dir(1) 13.41± 0.61 7.93± 1.83 12.50± 1.52 10.37± 0.00 7.93± 2.44 7.63± 1.52
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C.3 Algorithms within more DP and Non-iid Conditions

Table 10 provides a comparative evaluation of algorithm performance when subjected to the combined
effects of differential privacy and specific non-IID data distributions, namely Dirichlet distributions
with α = 0.1 representing higher data heterogeneity and α = 1.0 indicating lower heterogeneity.
This side-by-side presentation for each algorithm across various DP budgets (ϵ ∈ {1, 3, 6} and
Non-Private) allows for a nuanced understanding of their robustness.

The results in Table 10 underscore FedASK’s consistent ability to deliver strong performance
even under these challenging compound conditions. Across the evaluated tasks (MMLU, BBH,
DROP, Human-Eval), FedASK generally maintains a competitive edge or outperforms baseline
methodologies for both the more heterogeneous non-IID setting α = 0.1 and the less heterogeneous
setting α = 1.0. In particular, while increased DP noise (smaller ϵ) or increased data heterogeneity
(smaller α) tends to degrade performance for all algorithms, FedASK often exhibits a more graceful
degradation compared to several baselines. This suggests that FedASK’s two-stage sketching and
aggregation mechanism not only preserves utility under DP but also offers resilience against varying
degrees of data heterogeneity. The comparative performance between the Non-IID 0.1 and Non-IID
1.0 columns for FedASK within each DP budget further illustrates its capacity to adapt effectively,
reinforcing its suitability for practical federated learning scenarios where both privacy and non-IID
data are prevalent concerns.

Table 10: Algorithm Performance across Varying DP Budgets for Non-IID (Dirichlet 0.1 and 1.0)
Data on Llama-2-7B

Task DP Setting FedASK FedAvg FFA-LoRA FedSA-LoRA FedProx Scaffold

α 0.1 α 1.0 α 0.1 α 1.0 α 0.1 α 1.0 α 0.1 α 1.0 α 0.1 α 1.0 α 0.1 α 1.0

MMLU

No DP 46.50 46.32 45.59 45.61 45.33 45.82 45.82 45.48 45.53 45.51 43.75 44.70
DP ϵ = 1 45.73 45.88 42.69 42.12 41.00 43.75 41.44 41.62 41.40 43.66 43.11 43.60
DP ϵ = 3 46.04 45.86 42.69 42.96 42.54 43.23 44.27 41.04 42.61 42.98 43.05 41.71
DP ϵ = 6 46.24 46.42 41.79 43.97 42.82 42.24 42.94 43.93 40.07 43.56 41.06 43.83

BBH

No DP 32.15 32.55 33.50 32.03 32.16 32.86 32.25 32.11 33.10 32.29 32.99 33.08
DP ϵ = 1 31.99 31.78 31.14 31.73 31.71 33.45 33.34 31.80 32.22 33.40 32.28 31.36
DP ϵ = 3 32.46 32.39 33.54 31.02 32.71 32.06 33.37 32.61 32.30 32.17 33.02 31.50
DP ϵ = 6 32.12 31.91 31.98 30.99 32.42 31.56 31.00 31.65 31.67 34.01 31.12 32.44

DROP

No DP 33.16 32.30 30.56 31.47 31.19 33.46 30.96 31.92 31.09 32.78 28.94 30.12
DP ϵ = 1 31.93 31.98 28.18 29.93 29.75 31.17 28.96 28.81 28.16 30.71 29.45 29.20
DP ϵ = 3 31.01 31.09 31.49 30.02 30.10 28.93 28.58 29.29 28.18 29.82 28.27 30.52
DP ϵ = 6 32.46 30.90 28.78 28.35 29.51 29.21 30.37 26.51 29.96 28.51 28.88 29.80

Human-Eval

No DP 15.24 15.85 12.20 12.80 14.63 14.02 14.02 14.02 12.80 14.02 12.80 15.85
DP ϵ = 1 14.02 12.20 11.59 10.98 9.76 12.20 10.98 10.98 12.20 12.80 14.02 12.80
DP ϵ = 3 12.20 13.41 12.20 9.76 10.98 10.98 12.80 10.37 13.41 10.37 7.93 9.15
DP ϵ = 6 12.20 13.41 6.71 13.41 10.37 10.37 6.71 10.98 11.59 12.80 14.63 12.80

C.4 Sensitive Experiments

C.4.1 Choice on the lora rank

Figure 4: Performance of Llama 2-7B on IID data across LoRA ranks and differential privacy (DP)
settings (ϵ) for MMLU, DROP, and Human tasks.

The selection of an appropriate LoRA rank r is crucial to balance the performance of the model
and the efficiency of the parameters, particularly when differential privacy (DP) is applied. This

28



Figure 5: Performance of Llama 2-7B on Non-IID data (α = 0.1) across LoRA ranks and differential
privacy (DP) settings (ϵ) for MMLU, DROP, and Human tasks.

Figure 6: Performance of Llama 2-13B on IID data across LoRA ranks and differential privacy (DP)
settings (ϵ) for gsm8k, gsm8k_hard, and math tasks.

Figure 7: Performance of Llama 2-13B on Non-IID data (α = 0.1) across LoRA ranks and differential
privacy (DP) settings (ϵ) for gsm8k, gsm8k_hard, and math tasks.
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section details the interaction between LoRA rank, DP settings, model size, and data distribution for
the FedASK framework, referencing empirical results from Llama 2-7B and Llama-2-13B models.
Although higher LoRA ranks, such as r = 128, often deliver superior performance in nonprivate
scenarios, the introduction of DP mechanisms significantly alters these performance landscapes, often
favoring intermediate ranks for a more robust utility-privacy trade-off.

A key finding, illustrated in Figure 6 for the Llama 2-13B model on IID data, is the change in the
optimal LoRA rank under DP for FedASK. Although rank 128 excels without privacy, for instance, on
gsm8k (50.0) and gsm8k_hard (28.7), intermediate ranks frequently provide a superior utility-privacy
trade-off when DP is enabled. Specifically, on the gsm8k task, rank 64 consistently outperforms rank
128 under all tested DP settings; for example, with ϵ = 1, rank 64 achieves 40.4 versus 22.7 for rank
128, and with ϵ = 6, rank 64 achieves 40.6 versus 27.7 for rank 128. Similarly, for the math task,
rank 64 shows better performance than rank 128 across all DP budgets. On gsm8k_hard, rank 64
also remains highly competitive with, or slightly better than, rank 128 under DP conditions. This
consistent strong performance of rank 64 under various DP constraints suggests that for FedASK
with the 13B model on IID data, a moderately sized LoRA rank can be more parameter-efficient and
achieve better utility when stringent privacy guarantees are necessary. When data heterogeneity is
introduced for the Llama 2-13B model, as shown in Figure 7 for Non-IID data (α = 0.1), the utility
of intermediate ranks under DP persists largely. Although overall performance levels may adjust due
to the non-IID distribution, FedASK with moderately sized ranks continues to demonstrate a strong
balance between adaptation capability and resilience to DP noise, reinforcing the notion that maximal
ranks are not universally optimal under privacy constraints in heterogeneous settings.

This rank-dependent performance pattern under DP is also investigated for the Llama 2-7B model.
Figure 4 presents results on IID data for MMLU, DROP, and HumanEval tasks. For FedASK, it is
generally observed that while larger ranks might offer marginal gains or lead in non-private scenarios,
the application of DP tends to make intermediate ranks more advantageous. These moderately sized
ranks appear to strike an effective balance, providing sufficient capacity for task adaptation while
mitigating the detrimental impact of DP noise that can be more pronounced with a larger number of
trainable parameters. The introduction of significant data heterogeneity with Non-IID data (α = 0.1),
illustrated in Figure 5, further tests this dynamic. Even in these challenging conditions, FedASK
with intermediate ranks often maintains robust performance relative to larger ranks under DP. This
suggests that for the 7B model, an excessively large rank under combined DP and non-IID stress may
not yield proportional benefits and could be outperformed by more parameter-efficient intermediate
rank configurations.

C.4.2 Choice on over-sketching rate

The precision of FedASK’s aggregation mechanism is theoretically linked to the choice of the over-
sketching parameter p, which, together with the LoRA rank r, defines the sketching dimension r + p.
While Theorem 2 provides a condition for exact aggregation, it is crucial to empirically assess the
impact of varying sketching dimensions on aggregation fidelity under practical conditions, including
different degrees of data heterogeneity and client participation numbers. This appendix section details
these specific evaluations for FedASK, illustrating its robustness. The experiments summarized here
were conducted to determine a suitable range for the sketching dimension, ensuring high fidelity
without unnecessary computational overhead. All results presented pertain to the FedASK algorithm,
and aggregation fidelity is quantified as the cosine similarity between the global LoRA update
reconstructed by FedASK and the ideal average of true local LoRA updates.

The empirical investigation involved evaluating the aggregation fidelity of FedASK across a matrix
of conditions, as depicted in Figure 9. The experiments systematically varied: (i) the sketching
dimension (x-axis values: 6, 32, 51, 64, and 96), (ii) the degree of non-iid degree (Dirichlet distri-
butions with α ∈ {1.0, 0.8, 0.5, 0.1}), and (iii) the number of participating clients, shown in four
distinct panels: (a) 5 clients, (b) 10 clients, (c) 15 clients, and (d) 20 clients. For these specific
fidelity evaluations, differential privacy mechanisms were not applied to isolate the performance
of the aggregation mechanism itself. The color intensity in each heatmap cell corresponds to the
achieved cosine similarity, with lighter shades indicating higher fidelity.

The results consistently demonstrate FedASK’s exceptional aggregation fidelity across the vast
majority of tested scenarios. As seen in Figure 8, near-unity cosine similarity is achieved for most
combinations of sketching dimensions, non-IID degrees, and client numbers. Even with the smallest
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Figure 8: Impact of sketching dimension (x-axis) and non-IID degree (y-axis, Dirichlet α / IID) on FedASK’s
aggregation fidelity (cosine similarity) for (a) 5, (b) 10, (c) 15, and (d) 20 clients, showing robust near-unity
performance.

sketching dimensions, fidelity remains remarkably high, particularly as the number of participating
clients increases (panels b, c, and d). While the 5-client scenario (panel a) shows slightly reduced
fidelity under extreme non-IID conditions and very small sketching dimensions, the performance
rapidly approaches unity with modest increases in either parameter. These findings underscore that
FedASK is not highly sensitive to the over-sketching rate for maintaining precise aggregation and
can achieve excellent fidelity even with minimal or conservative sketching dimensions, confirming its
practical efficiency and robustness.

C.5 System Efficiency Experiments

To quantify the system efficiency of the evaluated algorithms, we conducted experiments on NVIDIA
H100 GPUs, focusing on two key metrics: communication volume and end-to-end wall-clock time.
The analysis uses the Llama 2-7B and Llama 2-13B models, with LoRA applied to the ‘q_proj’,
‘v_proj’, and ‘k_proj’ modules. Our measurements do not incorporate system-level optimizations like
distributed parameter servers or communication-computation overlap.

Figure 9 illustrates the usage of resources per client. The volume of communication, seg-
mented into uplink and downlink traffic, is reported in millions of parameters. Peak
GPU memory consumption (in MB) was meticulously monitored on the client side using
the torch.cuda.max_memory_allocated(device=torch.device(’cuda’)) PyTorch func-
tion, capturing the maximum memory footprint during local training operations with differential
privacy mechanisms enabled. Futhermore, we analyze the communication volume per round. As
shown in Table 11, the choice of numerical precision (FP16, INT8, INT4) directly impacts the data
transfer size for all algorithms. The results highlight a clear trade-off: FedASK’s communication
volume is 25% higher than FedAvg’s, but it remains significantly more efficient than other baselines,
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Figure 9: System resource utilization for five federated learning algorithms when training Llama 2-7B (left)
and Llama 2-13B (right) models using 4-bit precision. The metrics, shown for a single client in a 5-client
federated setup, include uplink and downlink communication volume (millions of parameters) and GPU memory
consumption (MB).

Table 11: Total communication volume per client round for federated learning algorithms using Llama 2-7B
and Llama 2-13B models under different numerical precisions. All values are in Megabytes (MB).

Algorithm Llama 2-7B (MB) Llama 2-13B (MB)

FP16 INT8 INT4 FP16 INT8 INT4

FedAsk 1200 600 300 7500 3750 1875
FedAvg 960 480 240 6000 3000 1500
Scaffold 1920 960 480 12 000 6000 3000
Flora 5280 2640 1320 33 000 16 500 8250
FedFA 480 240 120 3000 1500 750

requiring 40% less communication than Scaffold and 77% less than the communication-heavy Flora.
As demonstrated in our main paper, this modest overhead unlocks substantial performance gains,
with FedASK outperforming FedAvg by up to 11.5% on MMLU and 46% on GSM8K under strong
privacy.

Table 12: End-to-End Wall-Clock Time per Communication Round (s)

Clients Num. Alg. Client Comp.(s) Server Comp.(CPU) (s) Total Comm. (s)

2 FedASK 1.44 0.12 1.51
FedAvg 1.64 0.07 1.21

10 FedASK 1.44 0.29 5.53
FedAvg 1.64 0.35 4.84

30 FedASK 1.44 0.69 16.61
FedAvg 1.64 0.71 13.29

To further assess practical performance, we empirically measured the end-to-end wall-clock time
for a single FL round. The experiment fine-tunes a Llama-2-7B model, with client operations on an
NVIDIA H100 GPU and server aggregation on a CPU, simulating a 1Gbps network across a varying
number of clients (Kt).

The results, detailed in Table 12, confirm FedASK’s practicality. Crucially, FedASK reduces client-
side computation time by approximately 0.2 seconds per round compared to FedAvg. This is
because our local DP strategy avoids backpropagation for one of the LoRA matrices. While FedASK
introduces a minor computational overhead on the server, this cost is minimal and does not create a
scalability bottleneck; the server time remains under one second on a CPU even with 30 clients, as
the core aggregation operations do not scale with the number of clients.
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