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Abstract

In (self-)supervised (pre-)training, such as in contrastive learning, often a network
is presented with correspondent (positive) and non-correspondent (negative) pairs
of datapoints, and is trained to find an embedding vector for each datapoint, i.e.,
a representation, which can be further fine-tuned for various downstream tasks.
To safely deploy these models in critical decision-making systems, it is crucial
to equip them with a measure of their reliability. Here we study whether such
measures can be quantified for a datapoint in a meaningful way. In other words, we
explore if the downstream performance on a given datapoint is predictable, directly
from a few characteristics of its pre-trained embedding. We study whether this goal
can be achieved by directly estimating the distribution of the training data in the
embedding space, and accounting for the local consistency of the representations.
Our experiments show that these notions of reliability often strongly correlate with
its downstream accuracy. For a more detailed version of this study, please refer to
[Ardeshir and Azizan, 2022].

1 Introduction

While deep learning approaches are capable of finding useful representations that have demonstrably
enabled breakthroughs in a wide variety of tasks, one cannot wishfully assume that their predictions
will always be accurate when queried on various inputs. There have been many examples of these
systems making wrong predictions, which in some cases have led to fatal accidents [NTS, 2017,
Varshney and Alemzadeh, 2017] and unacceptable errors [Guynn, 2015]. Many such failures may be
prevented if the system could supplement its predictions with a level of uncertainty or reliability in
those predictions [Dietterich, 2017], which is crucial for building societal trust in such systems.

Despite the recent developments in uncertainty quantification, the majority of the literature1 has been
focused on supervised settings, in which a single input is mapped to an absolute target value. On the
other hand, most high-performing models are (pre-)trained using embedding-learning objectives such
as contrastive, in which a single input is mapped to a non-absolute abstract embedding vector2. Due
to this fundamental difference, earlier approaches are not readily applicable to such models.

Figure 1 shows an overview of our setup. A back-box model f is pre-trained on a training dataset,
resulting in an embedding vector representing each datapoint. The goal is to study whether there are
any notions of reliability for an embedding vector which is indicative of how it would later perform
downstream. Given the non-triviality of predicting downstream performance solely from a pre-trained
embedding vector, we explore the possibility of such prediction using a few intuitive measures. To

1For a more in-depth literature review, please refer to [Ardeshir and Azizan, 2022].
2During a typical training regime of a contrastive model, pairs of datapoints are provided as positives or

negatives; the contrastive objective then aims to find a data representation in which the positive pairs “attract,”
(i.e., fall close to each other with an appropriate notion of distance) and the negative pairs “repulse” each other
in the embedding space.
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Figure 1: Model f is pre-trained in a supervised or self-supervised manner on a training dataset.
Given a test image x, we measure the reliability of its resulting embedding f(x) using notions such
as embedding-variance (given different augmentations), and the distribution of the training data
embeddings, to quantify this reliability. We show this reliability is not only capable of detecting out
of distribution samples, but also correlates with the performance on a datapoint downstream.

that end, given an input and a pre-trained model, we measure the reliability of the resulting embedding
in three aspects: (1) How certain the model is about the location of an embedding vector. This is
computed by introducing variations to the input datapoint and measuring variations in its embedding
vector. (2) How familiar the model is with that area of the embedding space. In other words, has
the model seen training examples with similar embeddings. This notion is computed by directly
estimating the distribution of the embedding vectors of the training data. (3) How well does the model
perform in that region of the embedding space. This is measured by calculating the local retrieval
performance of the model. We study whether these intuitive notions meaningfully correlate with the
downstream performance on a given input. In the following section, we provide more details on these
notions.

2 Framework and Proposed Method

Here we describe our framework and how our various notions of reliability are constructed. Let us
consider a model f : Rn → Sm−1, which maps an n-dimensional input datapoint (e.g., an image) x
to the ℓ2-normalized m-dimensional feature vector f(x) (on the unit hypersphere). Given the model
f , we aim to measure the reliability of the embedding vector f(x) for any given input x. As discussed
earlier, we do so based on quantifying the uncertainty in the location of the point in the embedding
space as well as the consistency of the model’s prediction in that region.

Per-Sample Feature Variation (δ). This measure aims to capture how certain the model is about
the location of an embedding vector. Given a set of transformations (augmentations) of an input
datapoint (image) {T1, T2, . . . , Tl} used in the training of the contrastive model, we measure the
variation across {z1, z2, . . . , zl}, where zi = f(Ti(x)) is the embedding vector corresponding to the
i-th transformation of the input x. More specifically, we define δ(x) as the sum of the variances
for different dimensions, i.e., the trace of the sample covariance matrix for the observation vectors
{z1, z2, . . . , zl}. An important characteristic of this metric is that it does not require access to the
training data and would work on any black-box model. Note that the underlying assumption here is
that the downstream task is invariant to the pre-training data transformations (augmentations).

Density (pemb). The density of the embedding space at a point z would intuitively capture how much
data has the model observed around z during training, which is the transformation of the training data
distribution under f . We fit a Gaussian mixture model (GMM) to the m-dimensional embeddings of
the training data. Computing this density function requires access to the pre-trained model and an
unsupervised training dataset, i.e., only the input datapoints and not the labels.
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Model Training
Inputs

Training
Labels

Downstream
Classifier

Per-Sample Feature Variation: δ ✓ × × ×
Embedding Density: pemb ✓ ✓ × ×

Ensembled Embedding Density: pemb-ens ✓ ✓ × ×
Embedding Consistency: pk,τemb ✓ ✓ ✓ ×

Ensembled Embedding Consistency: pk,τemb-ens ✓ ✓ ✓ ×
Entropy ✓ ✓ ✓ ✓

Max Score ✓ ✓ ✓ ✓
Table 1: Our different reliability measures make different assumptions on access to the model and the
training data. A ✓ indicates requiring access. Note that entropy and max score require access to the
downstream classifier and are thus not applicable in our setting.

Consistency (pk,τemb). The consistency of the model at z measures whether the training datapoints
mapped closest to z have consistent labels. This notion would capture how accurate the model
is at z, based on the fact that a more accurate contrastive model should have a more pure local
correspondence. Note that unlike the density-only distribution mentioned above, estimating this
distribution requires access to both training data and training labels (correspondences). For each
training datapoint, we calculate the fraction of its k nearest neighbors (k-NN) in the embedding space
whose class labels are consistent with that datapoint. We then filter out the datapoints based on their
k-NN accuracy with a threshold τ , and fit a Gaussian mixture model to the datapoints whose k-NN
consistency is above the threshold τ . We denote this distribution by pk,τemb. This notion would require
access to the model and a supervised training dataset, and is thus only applicable to the supervised
contrastive learning setup [Khosla et al., 2020]. Note that setting τ to zero yields pk,0emb(·) = pemb(·),
which would solely capture the density of each datapoint in the training data.

Per-Sample Feature Variance + Embedding Distribution (pk,τemb-ens). One could also combine
the two notions of per-sample variance and embedding distribution, which has the interpretation
of a stochastic embedding [Wang and Isola, 2020]. More specifically, we have an ensemble of
probabilities through the l transformations {T1, T2, ..., Tl}, and using the law of total probability we
have pk,τemb-ens =

∑l
i=1 p

k,τ
emb(f(Ti(x)))p(Ti) =

1
l

∑l
i=1 p

k,τ
emb(f(Ti(x))).

The measures mentioned above have different requirements, ranging from access to the black-box
model only (feature-variation measure), to requiring access to a fully supervised training dataset
(consistency measure). Table 1 summarizes the requirements for each measure. Note that the last two
measures (entropy and max score) require the full observation of the downstream task and are solely
defined as a baseline. In the next section, we describe our experimental setup and how we evaluate
the aforementioned measures.

3 Experimental Results

We pre-train self-supervised (SimCLR) [Chen et al., 2020] and supervised (SupCon) [Khosla et al.,
2020] contrastive models with ResNet18 [He et al., 2016] backbones, and on the training set of
CIFAR10 or CIFAR100 [Krizhevsky et al., 2009] datasets. We then perform inference on their test
sets, alongside test sets of CUBS2011 [Wah et al., 2011] and SVHN [Netzer et al., 2011] as other
out-of-distribution datasets. We follow the pre-training and linear fine-tuning protocols in accordance
to Khosla et al. [2020].

We evaluate different notions of reliability to cover different aspects of downstream predictability, and
out-of-distribution detection. To evaluate our different metrics, we treat them as retrieval instances and
compute their AUROC (Area Under the Receiver Operating Characteristic curve). The ground-truth
label of the retrieval instance could be derived as a function of the downstream accuracy of a datapoint
and whether the model has been exposed to the datapoint’s semantic class during pre-training. In
what follows, we discuss the details of this evaluation for each reliability notion.
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Setup Dataset δ pemb pemb-ens pk,τemb pk,τemb-ens Entropy Max score

SimCLR CIFAR10 0.652 0.702 ± 0.023 0.719 ± 0.004 - - 0.883 0.836
SimCLR CIFAR100 0.647 0.559 ± 0.009 0.564 ± 0.017 - - 0.816 0.761
SupCon CIFAR10 0.830 0.805 ± 0.025 0.858 ± 0.004 0.808 ± 0.026 0.862 ± 0.002 0.916 0.892
SupCon CIFAR100 0.766 0.735 ± 0.017 0.764 ± 0.004 0.720 ± 0.017 0.743 ± 0.002 0.879 0.852

Table 2: In-distribution performance prediction (quantified based on AUROC as described in 3.1) is
done on each datapoint in the downstream task of image classification. As it can be observed, all
of our notions meaningfully capture sample difficulty as measured by correctness on in-distribution
datapoints.

Setup In-dist Out-of-dist δ pemb pemb-ens pk,τemb pk,τemb-ens Entropy Max score

SimCLR CIFAR10 CUBS2011 0.766 0.59 ± 0.004 0.602 ± 0.074 - - 0.689 0.745
SimCLR CIFAR10 SVHN 0.393 0.960 ± 0.000 0.975 ± 0.018 - - 0.890 0.918
SimCLR CIFAR10 CIFAR100 0.645 0.773 ± 0.003 0.793 ± 0.035 - - 0.851 0.858
SimCLR CIFAR100 CUBS2011 0.783 0.598 ± 0.0032 0.608 ± 0.020 - - 0.775 0.783
SimCLR CIFAR100 SVHN 0.365 0.810 ± 0.002 0.846 ± 0.022 - - 0.761 0.789
SimCLR CIFAR100 CIFAR10 0.610 0.515 ± 0.0023 0.516 ± 0.010 - - 0.692 0.670
SupCon CIFAR10 CUBS2011 0.580 0.644 ± 0.005 0.660 ± 0.031 0.640 ± 0.006 0.655 ± 0.022 0.671 0.690
SupCon CIFAR10 SVHN 0.548 0.977 ± 0.003 0.995 ± 0.000 0.976 ± 0.003 0.995 ± 0.001 0.962 0.964
SupCon CIFAR10 CIFAR100 0.765 0.878 ± 0.003 0.918 ± 0.002 0.877 ± 0.003 0.916 ± 0.002 0.903 0.900
SupCon CIFAR100 CUBS2011 0.853 0.727 ± 0.006 0.762 ± 0.084 0.718 ± 0.004 0.747 ± 0.026 0.877 0.884
SupCon CIFAR100 SVHN 0.546 0.904 ± 0.003 0.940 ± 0.015 0.867 ± 0.002 0.903 ± 0.017 0.845 0.852
SupCon CIFAR100 CIFAR10 0.720 0.667 ± 0.005 0.689 ± 0.016 0.644 ± 0.002 0.661 ± 0.028 0.739 0.723

Table 3: Out-of-distribution detection (quantified based on AUROC as described in 3.2): As expected,
pemb−ens, which aims to directly estimate the embedding distribution and benefits from the ensemble
effect, outperforms other measures in most instances.

3.1 In-distribution Performance Prediction

We evaluate our proposed reliability measures on in-distribution test-set datapoints, and in terms of
their capability in retrieving samples that are correctly classified in a downstream classifier. Table 2
shows this metric for our different reliability measures. It can be observed that all of our notions
strongly correlate with the correctness of the model’s predictions on in-distribution datapoints.

3.2 Out-of-distribution Detection

We evaluate our reliability measures on images from the in-distribution (pre-training dataset) and an
out-of-distribution dataset and quantify their performance in terms of retrieving the in-distribution
embeddings. In other words, a model pre-trained (supervised or self-supervised) on the training set
of dataset A is fed test datapoints from datasets A and B. Then, the effectiveness of the reliability
measures are evaluated in terms of distinguishing datapoints of dataset A from those of B. Table 3
contains the performance of our different measures on this task. It can be observed that in most cases,
pemb−ens has the best performance, whose definition is also more consistent with out-of-distribution
detection tasks, as it directly estimates the embedding distribution that comes from the training
data. Another observation would be the failure of the feature variation measure in detecting out-of-
distribution samples of SVHN in the self-supervised setups. We hypothesize this could be due to
the fact that SVHN is a less diverse dataset, which results in its images being mapped close to one
another in a CIFAR10 or CIFAR100 pre-trained model. As a result, feature variation would not be
a good notion for distinguishing such samples. On the other hand, the probability-based measures
result in very high AUROC scores, alluding that these measures capture complementary notions of
reliability. For a more detailed version of our experiments, including more insights and ablation
studies, please refer to [Ardeshir and Azizan, 2022].

4 Conclusion

In this effort, we explored the possibility of measuring the reliability of abstract embeddings obtained,
e.g., from contrastive learning. We show that such measures not only are able to meaningfully
detect out-of-distribution samples but also are predictive of performance in downstream tasks. We
believe that having such notions of reliability can particularly be insightful, e.g., for deciding between
different options of pre-trained models, or for deciding on specific sample weighting policies in
downstream fine-tuning tasks.
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