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Abstract—We corroborate that a synergy effect may emerge
when the dually superposed orbital angular momentum (OAM)
states with two adjacent OAM numbers pass through weak
fluctuation regime of the atmospheric turbulence. We show that
this novel effect closely depends on the transition probabilities
between this two OAM eigenstates for superposition. While such
probabilities become larger, the synergy effect becomes more
obvious. Our examples show that the synergy effect enables OAM
states to better resist phase fluctuation caused by the atmospheric
turbulence.

Index Terms—atmospheric turbulence, orbital angular mo-
mentum, synergy effect.

I. INTRODUCTION

Recently, orbital angular momentum (OAM) based optical
communications in classical and quantum domains were
widely studied, principally because it can offer considerable
number of channels multiplexed for information transmission
[1]–[7]. Photons carrying OAM can be employed in quantum
key distribution [2], quantum secure direct communication [3]
and quantum teleportation [4]. The OAM of single photon,
however, is vulnerable to random phase aberrations. In partic-
ular, OAM scattering arises while a twisted light propagates in
the atmospheric turbulence [8]–[11]. Paterson firstly proposed
an OAM probability distribution model to describe the OAM
scattering of single photons in Kolmogorov turbulence [8].
Now it is known that the Kolmogorov model failed to predict
the performance of light propagating in high altitude [12], and
increasing studies were carried out based on non-Kolmogorov
turbulence, which is applicable on a wider scale. The OAM
detection probabilities respectively for several kinds of OAM
modes based on non-Kolmogorov model were calculated by
expressing each mode function as a superposition of spiral
harmonics [9], [10], [13]. More recently, the effects of low-
order Zernike turbulence aberrations on OAM of single pho-
tons were studied in detail, which showed that turbulence z-tilt
aberration is the main reason for OAM crosstalk [14].

A superposition of two OAM eigenstates, or dually super-
posed OAM states (DSOS) in context, can construct a two-
dimensional subspace geometrically described by an OAM
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Bloch sphere [15], [16]. Generally, a DSOS on the Bloch
sphere can be expressed as the form |ξ⟩ = cos (β/2) |n⟩ +
eiθsin (β/2) |m⟩, where |n⟩ and |m⟩ denote the OAM eigen-
states with OAM numbers n and m respectively. For the
angles β and θ, there are 0 ≤ β ≤ π and 0 ≤ θ < 2π
respectively. In this work, we approximately estimate the
detection probability of DSOS in non-Kolmogorov turbulence
and discuss the effects of β and θ on the detection probability.
We use the term “synergy effect”, which comes from Hermann
Haken’s conception [17], to describe a new phenomenon we
find. Here, the term particularly means the fact that detection
probability of DSOS (see Eq. (1)) is greater than those of the
two OAM eigenstates for superposition.

II. THEORY

We consider at first a monochromatic and fully coherent
twisted beam propagating along z axis in free space. In
cylindrical coordinates, the transverse spatial wave function
of DSOS constructed by two Laguerre Gaussian (LG) modes
is written as

ξp0(r, φ, z) =cos

(
β

2

)
uLG
p0,n(r, φ, z)

+ eiθsin

(
β

2

)
uLG
p0,m(r, φ, z),

(1)

where n and m are OAM numbers of initial DSOS, p0 is
the radial index of initial DSOS, and z is the propagation
distance. Angle β dominates the weights of two modes, and
ξp0(r, φ, z) reduces to a wave function of OAM eigenstate
when β = 0 or π. Angle θ is the relative phase between two
modes. uLG

p,l (r, φ, z) denotes the normalized LG mode function
at z plane [11]
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where zr = πω2
0/λ is the Rayleigh range with ω0 the

waist radius and λ the wavelength. k = 2π/λ is the wave
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number. ω(z) = ω0

√
1 + (z/zr)2 is the beam radius at

z. p and l are the radial index and the OAM number,
respectively. Ll

p(·) denotes the generalized Laguerre polyno-
mial. Another transverse spatial wave function ζp0(r, φ, z)
being orthogonal to ξp0(r, φ, z) in the same subspace can
be expressed as ζp0(r, φ, z) = sin(β/2)uLG

p0,n(r, φ, z) −
eiθcos(β/2)uLG

p0,m(r, φ, z). For convenience, we assume that
the initial DSOS send at z = 0 plane, where the radii of two
LG modes are the same as ω0.

We restrict ourselves to the weak fluctuation regime, in
which the intensity fluctuation is very small and negligible.
The complex amplitude of this distorted mode at z plane reads
[9], [10], [14]

ϕ(r, φ, z) = ξp0(r, φ, z) exp [iχ(r, φ, z)], (2)

where χ(r, φ, z) corresponds to the phase fluctuation. Because
an arbitrary amplitude profile can be expanded into LG modes
[18], ϕ(r, φ, z) here can be expressed as

ϕ(r, φ, z) =
∑
p

∑
l

Al
p(z)u

LG
p,l (r, φ, z)

=
∑
p

Bp(z)ξp(r, φ, z) +
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Cp(z)ζp(r, φ, z)

+
∑
p

∑
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Al
p(z)u

LG
p,l (r, φ, z),

(3)

where p and l are the radial index and OAM number of
received LG mode, respectively. Al

p(z) is the expansion coef-
ficient. In addition, the coefficients Bp(z) and Cp(z) in Eq.
(3) can be expressed as

Bp(z) = cos(β/2)Al=n
p (z) + sin(β/2)Al=m

p (z)e−iθ

and

Cp(z) = sin(β/2)Al=n
p (z)− cos(β/2)Al=m

p (z)e−iθ.

Because {uLG
p,l (r, φ, z)|l ̸=n,m, ξp(r, φ, z), ζp(r, φ, z)}p∈N is a

set of complete and orthogonal basis for an arbitrary amplitude
ϕ(r, φ, z), the coefficient Bp(z) is obtained as

Bp(z) =

∫∫
ϕ(r, φ, z) · ξ∗p(r, φ, z)rdrdφ. (4)

We are interested in the statistic characteristic of detection
probability since phase fluctuation caused by the atmosphere
turbulence is random. For the sake of simplicity and without
loss of generality, we assume that the receiver aperture is
infinite and there is no energy loss in atmospheric turbulence.
The detection probability of initial DSOS is evaluated as

P (ξ|ξ, p0) =
∑
p

⟨
|Bp(z)|2

⟩
≡

∑
p

P (ξ, p|ξ, p0), (5)

where ⟨·⟩ denotes the ensemble average. Here P (ξ|ξ, p0) de-
notes the detection probability of received state |ξ⟩ meanwhile
the transmitted state is |ξ, p0⟩. The p order part of P (ξ|ξ, p0)
in non-Kolmogorov turbulence can be expressed as

P (ξ, p|ξ, p0) =
∫∫ ∫∫

ξp0(r1, φ1, z)ξ
∗
p0
(r2, φ2, z)

×⟨exp {i[χ(r1, φ1, z)− χ(r2, φ2, z)]}⟩
×ξ∗p(r1, φ1, z)ξp(r2, φ2, z)r1r2dr1dr2dφ1dφ2,

(6)

where the ensemble average in right hand of Eq. (6) reads [19]

⟨exp{i[χ(r1, φ1, z)− χ(r2, φ2, z)]}⟩

=exp

[
−r21 + r22 − 2r1r2 cos(φ1 − φ2)

ρ20

]
·

(7)

In Eq. (7), ρ0 is the spatial coherence radius of a spherical
wave propagating in non-Kolmogorov turbulence [20]

ρ0 =

[
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2
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where k is the wave number. C2
n is the refractive-index

structure constant, and α is the non-Kolmogorov turbulence
parameter where 3 < α < 4. Γ(·) is the Gamma function. In
our calculation, we find that the relative phase θ has no impact
on P (ξ, p|ξ, p0). Therefore, we focus on the relation between
the detection probability P (ξ|ξ, p0) and the weight factor β in
the following.

III. NUMERICAL CALCULATION AND ANALYSIS

In order to estimate P (ξ|ξ, p0), at first we investigate
P (ξ, p|ξ, p0) with small radial index p, as shown in Fig. 1.
The detection probabilities of received |ξ, p⟩ with p = 0, 1 and
2 are between 1% ∼ 100%, between 0.01% ∼ 1%, and below
0.01%, respectively. This shows that the radial mode scattering
caused by the atmospheric turbulence arises on DSOS as well
as on OAM eigenstates [21]. From previous work, we know
that an OAM superposed state can be measured experimentally
[22]–[24], and a lower radial OAM mode is detected more
easily than a higher one in a finite receiving aperture [24]. For
this reason and for the case that the received state almost falls
apart into |ξ, p = 0⟩ and |ξ, p = 1⟩, it is acceptable to omit the
higher radial order parts and make an approximate estimation
as P (ξ|ξ, p0) ≈ P (ξ, p = 0|ξ, p0) + P (ξ, p = 1|ξ, p0). As
β = 0 or π, P (ξ|ξ, p0) is written as P (n|n, p0) or P (m|m, p0)
respectively.

For simplicity, in all figures we use the term “peak” to
describe a curve whose middle part is higher than two ends.

Fig. 1. The p order part of P (ξ|ξ, p0) versus β with p=0,1 and 2 where
n = 0, m = 1 (solid), n = 5, m = 6 (dashed), n = 10, m = 11
(dot-dashed). Besides, p0 = 0, λ = 1550nm, ω0 = 0.03m, z = 3000m,
C2

n = 10−15m3−α and α = 3.67, respectively.
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Fig. 2. (a) P (ξ|ξ, p0) versus β with ∆l = |n − m|=1, 2, 3, 4 and 5.
(b) P (ξ|ξ, p0) versus β with ∆l = |n − m| = 1. (c) P (ξ|ξ, p0) versus
β with n = −m = −1,−2 and −3. In (a)-(c), p0 = 0, λ = 1550nm,
ω0 = 0.03m, z = 3000m, C2

n = 10−15m3−α and α = 3.67, respectively.

In Fig. 2(a), P (ξ|ξ, p0) against β is plotted with different
values of ∆l = |n − m|. A tiny peak on the probability
curve for ∆l = 1 appears above the horizontal line denoted by
P (n|n, p0), but no obvious peak appears for ∆l = 2, 3, 4, 5.
Subsequently, several cases are considered in Fig. 2(b) for
∆l = 1. In Fig. 2(b), this peak always exists and becomes
more obvious as n and m become larger. This peak is also
above the horizontal line denoted by P (m|m, p0), because
P (n|n, p0) is larger than P (m|m, p0) where |n| < |m|.
Besides, we observe that the peak becomes more symmetrical
about β=π/2 while the OAM numbers of DSOS become
larger. In Fig. 2(c), we show some more common cases where
n is contrary to m. However, there is no visible peak on the
probability curve for each n = −m.

Figures 2(a)-2(c) show that a peak appears distinctly on the
DSOS with a couple of adjacent OAM numbers, or named
adjacent dually superposed OAM states (ADSOS), rather than
other kinds of DSOS. The main reason for its appearance is
analyzed next. P (ξ, p|ξ, p0) can be expressed as such form

P (ξ, p|ξ, p0) = F p
p0

+Rp
p0
, (9)

where Rp
p0

= cos2 (β/2) sin2 (β/2) [P (n, p|m, p0) +
P (m, p|n, p0)], and the definition of term F p

p0
can be found

in APPENDIX section. In order to facilitate the analysis,
the radial index of initial DSOS p0 is taken as 0. Here
P (ξ|ξ, p0 = 0) can be obtained by F + R, where there
are estimation F ≈ F 0

0 + F 1
0 and R ≈ R0

0 + R1
0. It is

easy to know that the curve of term R against β shows a
peak, of which the convex degree is controlled by the sum
P (n|m, p0 = 0) + P (m|n, p0 = 0). P (n|m, p0 = 0) and
P (m|n, p0 = 0) are probabilities of |m⟩ and |n⟩ transforming

to each other in the atmospheric turbulence respectively,
which have been investigated deeply in previous work [8],
[9].

In Fig. 3, we plot F and R against β with ∆l = 1, 2, 3
respectively. For each value of ∆l, there is no visible peak on
the curve of F , while curve of R shows a symmetrical profile
with central peak. This fact means that if the peak on R is
not pronounced enough, the detection probability of DSOS
will not show any peaks because P (ξ|ξ, p0 = 0) = F + R.
The curve of F is more declining as ∆l becomes larger.
Accordingly, to form a peak on the detection probability curve,
the lower limit of sum P (n|m, p0 = 0) + P (m|n, p0 = 0)
should increase as ∆l increases. In addition, the peak on R

Fig. 3. The terms (a) F and (b) R against β with n = 0,m = 1 (red solid
line),n = 0,m = 2 (blue long dashed line), and n = 0,m = 3 (green
short dashed line). In (a)-(b), C2

n = 10−15m3−α, α = 3.67, z = 3000m,
λ = 1550nm, p0 = 0 and ω0 = 0.03m, respectively.

Fig. 4. F and R against β with (a) and (d): C2
n = 10−15m3−α, α=3.67. (b)

and (e): C2
n = 5× 10−16m3−α, α=3.67. (c) and (f): C2

n = 10−15m3−α,
α=3.95. In (a)-(f), n = 0,m = 1 (red solid line),n = 5,m = 6 (blue long
dashed line), and n = 10,m = 11 (green short dashed line). In addition,
z = 3000m, λ = 1550nm, p0 = 0 and ω0 = 0.03m, respectively.
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Fig. 5. Evolution of the peak on P (ξ|ξ, p0) in propagation process where
C2

n = 10−15m3−α and α = 3.95. In addition, n = 10, m = 11, λ =
1550nm, p0 = 0 and ω0 = 0.03m, respectively.

becomes more obvious as ∆l becomes smaller owing to the
OAM spreading property in weak fluctuation regime of the
atmospheric turbulence. Because of small P (n|m, p0 = 0) +
P (m|n, p0 = 0), the peaks on R for ∆l = 2, 3 are not
obvious. Therefore, the detection probabilities of DSOSs with
∆l = 2, 3 don’t show any peaks (see Fig. 2 (a)).

To exemplify the universality of our analysis, we consider
F and R of several ADSOSs against β in different turbulent
environments, as shown in Fig. 4. In Figs. 4 (a)-(c), we observe
that the term F doesn’t show obvious peaks. Moreover, as n
and m become larger, the curves of F become flatter. In Figs.
4 (d)-(f), the symmetrical peaks emerging on R become more
obvious as n and m become larger, thereby giving a more
pronounced peak on detection probability of DSOS (see Fig.
2 (b)). Definitely, if the peak on detection probability of DSOS
arises, we consider that the two parts of DSOS jointly generate
a synergy effect.

To see how the atmospheric turbulence affects the peak on
P (ξ|ξ, p0) in propagation, we consider an example illustrated
in Fig. 5. We observe that the peak is enhanced at a modest
distance, and weakened as z increases or decreases from that
position. For example, in Fig. 5 the peak at b is more obvious
than those at a and c. Following the analysis above, we can
give an explanation for this phenomenon. When z is very short
or very long, P (n = 5|m = 6, p0 = 0) and P (m = 6|n =
5, p0 = 0) are small because of too weak or too strong phase
fluctuation [8], and thus the peak is not obvious. When z is
moderate, P (n = 5|m = 6, p0 = 0) and P (m = 6|n =
5, p0 = 0) is large enough, thereby leading to a pronounced
peak.

IV. CONCLUSION

In summary, we have revealed the synergy effect on DSOS in
non-Kolmogorov turbulence and further analyzed the reason.
Besides LG mode, other kinds of OAM modes can also
be adopted to analyze this effect. The synergy effect arises
obviously on DSOS if its two OAM numbers are adjacent
to each other, and closely depends on the transition proba-
bilities between the two OAM eigenstates for superposition.

Concretely, if such probabilities are small, the synergy effect
is weak or even disappear. In addition, there are two important
conclusions. Firstly, the synergy effect can only be fully
demonstrated at a moderate transmission distance. Secondly,
the relative phase of DSOS has no impact on the OAM detec-
tion probability if only phase fluctuation is considered. Further
investigation with regard to the property of high-dimensional
OAM superposition states in atmospheric turbulence might be
enlightened by the synergy effect.

APPENDIX

In this section, we give the deduction process of Eq. (9). At
first we suppose a = cos (β/2), b = sin (β/2), uLG

j,l (r, φ, z) =

LGl
j(r, z) exp (ilφ)/

√
2π where l = n,m and j = p, p0.

Firstly, we denote that

si1,i2,i3,i4h =
[
LGi1

p (r1, z)
]∗

LGi2
p (r2, z)

×
[
LGi3

p0
(r2, z)

]∗
LGi4

p0
(r1, z)

× Ih

(
2r1r2
ρ20

)
exp

(
−r21 + r22

ρ20

)
. (A1)

By means of the equation [9]∫ 2π

0

exp [−inφ1 + ηcos (φ1 − φ2)]dφ1

=2π exp (−inφ2)In (η) , (A2)

where In(·) is the modified Bessel function of the first kind
with order n, the p order part of P (ξ|ξ, p0) can be expanded
as

P (ξ, p|ξ, p0) =
∫ ∞

0

∫ ∞

0

(a4sn,n,n,n0 + b4sm,m,m,m
0

+ a2b2sn,m,m,n
0 + a2b2sm,n,n,m

0

+ a2b2sm,m,n,n
n−m + a2b2sn,n,m,m

m−n )

× r1r2dr1dr2. (A3)

The probability of an OAM eigenstate |l2, p0⟩ turning into
another one |l1, p⟩ can be expressed as [24]

P (l1, p|l2, p0) =
∫ ∞

0

∫ ∞

0

sl1,l1,l2,l2l2−l1
r1r2dr1dr2. (A4)

Here we denote that

F p
p0

=

∫ ∞

0

∫ ∞

0

(a4sn,n,n,n0 + b4sm,m,m,m
0

+ a2b2sm,n,n,m
0 + a2b2sn,m,m,n

0 )r1r2dr1dr2, (A5)

Rp
p0

= a2b2[P (n, p|m, p0) + P (m, p|n, p0)], (A6)

then P (ξ, p|ξ, p0) can be expressed as

P (ξ, p|ξ, p0) = F p
p0

+Rp
p0
. (A7)
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