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Abstract

Flow-based generative models have recently shown impressive performance for conditional
generation tasks, such as text-to-image generation. However, current methods transform a
general unimodal noise distribution to a specific mode of the target data distribution. As
such, every point in the initial source distribution can be mapped to every point in the
target distribution, resulting in long average paths. To this end, in this work, we tap into a
non-utilized property of conditional flow-based models: the ability to design a non-trivial
prior distribution. Given an input condition, such as a text prompt, we first map it to a
point lying in data space, representing an “average" data point with the minimal average
distance to all data points of the same conditional mode (e.g., class). We then utilize the
flow matching formulation to map samples from a parametric distribution centered around
this point to the conditional target distribution. Experimentally, our method significantly
improves training times and generation efficiency (FID, KID and CLIP alignment scores)
compared to baselines, producing high quality samples using fewer sampling steps.

1 Introduction

Conditional generative models are of significant importance for many scientific and industrial applications.
Of these, the class of flow-based models and score-based diffusion models has recently shown a particularly
impressive performance (27; 11; 9; 18). Although impressive, current methods suffer from long training and
sampling times. To this end, in this work, we tap into a non-utilized property of conditional flow-based models:
the ability to design a non-trivial prior distribution for conditional flow-based models based on the input
condition. In particular, for class-conditional generation and text-to-image generation, we propose a robust
method for constructing a conditional flow-based generative model using an informative condition-specific
prior distribution fitted to the conditional modes (e.g., classes) of the target distribution. By better modeling
the prior distribution, we aim to improve the efficiency, both at training and at inference, of conditional
generation via flow matching, thus achieving high quality results with fewer sampling steps.

Given an input variable (e.g., a class or text prompt), current flow-based and score-based diffusion models
combine the input condition with intermediate representations in a learnable manner. However, crucially,
these models are still trained to transform a generic unimodal noise distribution to the different modes of
the target data distribution. In some formulations, such as score-based diffusion (16; 38; 37), the use of a
Gaussian source density is intrinsically connected to the process constructing the transformation. In others,
such as flow matching (27; 29; 1), a Gaussian source is not required, but is often chosen as a default for
convenience. Consequently, in these settings, the prior distribution bears little or no resemblance to the
target, and hence every point in the initial source distribution can be mapped to every point in every mode
in the target distribution, corresponding to a given condition. This means that the average distance between
pairs of source-target points is fairly large.

In the unconditional setting, recent works (33; 41), show that starting from a source (noise) data point that
is close to the target data sample, during training, results in straighter probability flow lines, fewer sampling
steps at test time, and faster training time. This is in comparison to the non-specific random pairing between
the distributions typically used for training flow-based and score-based models. This suggests that finding a
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strategy to minimize the average distance between source and target points could result in a similar benefit.
Our work aims to construct this by constructing a condition-specific source distribution by leveraging the
input condition.

Flow Matching Ours
Figure 1: Illustration of our approach. The LHS
illustrates the flow matching paradigm, where every
sample in the source Gaussian (shown as a circular
point) can be mapped to every sample in the conditional
target mode (shown as a cross point), where each class
samples are shown in a different color. In contrast, our
method, shown on the RHS, constructs a class-specific
conditional distribution as a source prior distribution.
Each sample in the source distribution is, on average,
closer to its corresponding sample in the target mode.

We, therefore, propose a novel paradigm for designing
an informative condition-specific prior distribution
for a flow-based conditional generative model. While
in this work, we choose to work on flow matching, our
approach can also be incorporated in other generative
models, supporting arbitrary prior distributions. In
the first step, we embed the input condition c to a
point xc lying in data space (which can be a latent
one). For a discrete set of classes, this is done by
averaging training samples corresponding to a given
class c in the data space. In the continuous case,
such as text-to-image, we first choose a meaningful
embedding for the input condition c (e.g. CLIP (34)).
Given a training sample xc and the corresponding
conditional embedding ec, we train a deterministic
mapper function that projects ec to xc lying in data
space. This results in an “average" data point of
all samples x corresponding to the condition c. To
enable stochastic mapping, we then map samples
from a parametric conditional distribution centered
on xc to the conditional target distribution ρ1(x|c).

While our approach can be implemented with any parametric conditional distribution, in our experiments, we
chose to utilize a Gaussian Mixture Model (GMM). Specifically, the mean of each Gaussian is the “average"
conditional data point. In the discrete condition case, each prior-Gaussian’s covariance is estimated directly
from the class-dependent training data, while for the continuous setting, it is fixed as a hyperparameter.
Further, while the data space can be arbitrary, we choose it as the latent space of a pre-trained variational
autoencoder (VAE). These choices are derived from the following desirable properties: (i). One can easily
sample from a GMM, (ii). Class conditional information can be directly represented by a GMM, with
each Gaussian corresponding to a conditional mode. (iii). We find empirically (see Sec. 4.2), for real-world
distributions (ImageNet (8) and MS-COCO (26)), that the average distance between pairs of samples from the
prior and data distributions (i.e. the transport cost) is much smaller than the unimodal Gaussian alternative
(as in (27; 33)). Moreover, previous works (22; 4; 15) has shown that applying a GMM in a VAE space can
be highly effective for clustering, suggesting that it can act as a suitable prior distribution. An illustration of
our approach, for a simple setting consisting of eight Gaussians, each representing a different class, is shown
in Fig. 1.

To validate our approach, we first formulate flow matching from our conditional prior distribution (CPD)
and show that our formulation results in low global truncation errors. Next, we consider a toy setting with
a known analytical target distribution and illustrate our method’s advantage in efficiency and quality. For
real-world datasets, we consider both the MS-COCO (text-to-image generation) and ImageNet-64 datasets
(class conditioned generation). Compared to other flow-based (CondOT (27), BatchOT (33)) and diffusion
(DDPM (17)) based models, our approach allows for faster training and sampling, as well as for a significantly
improved generated image quality and diversity, evaluated using FID and KID, and alignment to the input
text, evaluated using CLIP score.

2 Related Work

Flow-based Models. Continuous Normalizing Flows (CNFs) (6) emerged as a novel paradigm in generative
modeling, offering a continuous-time extension to the discrete Normalizing Flows (NF) framework (24; 32).
Recently, Flow Matching (27; 29; 1) has been introduced as a simulation-free alternative for training CNFs.
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In scenarios involving conditional data (e.g., in text-to-image generation), conditioning is applied similarly to
diffusion models, often through cross attention between the input condition and latent features. Typically,
the source distribution remains unimodal, like a standard Gaussian (28). In contrast, our approach derives a
prior distribution that is dependent on the input condition.
Conditioning in Flow-based Models. Conditional generation often adapts diffusion techniques,
leveraging the connection between diffusion and probability flow ODEs (e.g., (39). This typically involves
parameterizing v(t, x, c) via Classifier Free Guidance inspired approaches (18; 7; 45), vector field differences
(19), or cross-attention, usually mapping from a fixed Gaussian prior. Our contribution—designing an
adaptive, condition-specific prior—is orthogonal to these dynamics conditioning techniques. We leverage such
standard mechanisms (specifically, cross-attention, as in our baselines) and apply our novel prior in addition.
Informative Prior Design. Designing useful priors is studied in generative models like VAEs (e.g.,
(10)) and Normalizing Flows (e.g., (21)). In score-based diffusion and flow matching, some works designed
informative priors. For score-based diffusion, PriorGrad (25) addresses the well-known failure mode of
score-based diffusion models to deal with extreme modes in the data, such as the voiced and unvoiced
parts in waveform signals. This method whitens the data by normalizing mode-specific statistics, effectively
flattening these modes so that the diffusion process operates on a simpler, quasi-isotropic distribution. This
strategy reduces the burden on the network but also suppresses much of the original signal’s structure. By
contrast, our approach takes the opposite stance, instead of simplifying the data, we adapt the prior to better
match the data distribution, thereby preserving its multimodal complexity while still enabling stable training.
More recently, for flow matching, (33; 41) utilized dynamic optimal transport (OT) across mini-batches to
construct priors. Despite enabling efficient sampling, these OT-based methods face challenges with highly
expensive training (quadratic OT computation) and reduced effectiveness for high-dimensional data, requiring
exponentially larger batch sizes for performance gains. Our approach avoids these specific limitations by
leveraging the conditioning variable to directly shape the prior distribution.

3 Preliminaries

We begin by introducing Continuous Normalizing Flow (6) in Sec. 3.1 and Flow Matching (27) in Sec. 3.2.
This will motivate our approach, detailed in Sec. 4, which defines an informative conditional prior distribution
on a conditional flow model.

3.1 Continuous Normalizing Flows

A probability density function over a manifold M is a continuous non-negative function ρ : M → R+
such that

∫
ρ(x)dx = 1. We set P to be the space of such probability densities on M. A probability path

ρt : [0, 1] → P is a curve in probability space connecting two densities ρ0, ρ1 ∈ P at endpoints t = 0, t = 1. A
flow ψt : [0, 1] × M → M is a time-dependent diffeomorphism defined to be the solution to the Ordinary
Differential Equation (ODE):

d

dt
ψt(x) = ut (ψt(x)) , ψ0(x) = x (1)

subject to initial conditions where ut : [0, 1] × M → T M is a time-dependent smooth vector field on the
collection of all tangent planes on the manifold T M (tangent bundle). A flow ψt is said to generate a
probability path ρt if it ‘pushes’ ρ0 forward to ρ1 following the time-dependent vector field ut. The path is
denoted by:

ρt = [ψt]#ρ0 := ρ0(ψ−1
t (x)) det

∣∣∣dψ−1
t

dx
(x)

∣∣∣ (2)

where # is the standard push-forward operation. Previously, (6) proposed to model the flow ψt implicitly by
parameterizing the vector field ut, to produce ρt, in a method called Continuous Normalizing Flows (CNF).

3.2 Flow Matching

Flow Matching (FM) (27) is a simulation-free method for training CNFs that avoids likelihood computation
during training, which can be expensive. It does so by fitting a vector field vθ

t with parameters θ and
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regressing vector fields ut that are known a priori to generate a probability path ρt ∈ P satisfying the
boundary conditions:

ρ0 = p, ρ1 = q (3)

Note that ut is generally intractable. However, a key insight of (27), is that this vector field can be
constructed based on conditional vector fields ut(x|x1) that generate conditional probability paths ρt(x|x1).
The push-forward of the conditional flow ψt(x|x1), start at ρt and concentrate the density around x = x1 ∈ M
at t = 1. Marginalizing over the target distribution q recovers the unconditional probability path and
unconditional vector field: ρt(x) =

∫
M ρt(x|x1)q(x1)dx1, ut(x) =

∫
M ut(x|x1) ρt(x|x1)q(x1)

ρt(x) dx1.

This vector field can be matched by a parameterized vector field vθ using the Lcfm(θ) objective:

Et∼U(0,1),q(x1),ρt(x|x1)∥vθ(t, x) − ut(x|x1)∥2 (4)

where ∥ · ∥ is a norm on T M. One particular choice of a conditional probability path ρt(x|x1) is to use
the flow corresponding the optimal transport displacement interpolant (30) between Gaussian distributions.
Specifically, in the context of the conditional probability path, ρ0(x|x1) is the standard Gaussian, a common
convention in generative modeling, and ρ1(x|x1) is a small Gaussian centered around x1. The conditional flow
interpolating these distributions is given by xt = ψt(x|x1) = (1 − t)x0 + tx1, which results in the following
conditional vector field ut(x|x1) = x1−x

1−t , which is marginalized in Eq. 4. Substituting xt to ut(x|x1), one can
also express the value of this vector field using a simpler expression: ut(xt|x1) = x1 − x0.

Conditional Generation via Flow Matching. Flow matching (FM) was extended to conditional
generative modeling in several works (45; 7; 2; 20). In contrast to the original FM, one first samples a
condition c. One then produces samples from pt(x|c) by passing c as input to the parametric vector field vθ.
The Conditional Generative Flow Matching (CGFM) objective Lcgfm(θ) is:

Et∼U(0,1),q(x1,c),ρt(x|x1)∥vθ(t, c, x) − ut(x|x1)∥2 (5)

In practice, c is incorporated by embedding it into some representation space and then using cross-attention
between it and the features of vθ as in (35).

Flow Matching with Joint Distributions. While (27) considered the setting of independently
sampled x0 and x1, recently, (33; 41) generalized the FM framework to an arbitrary joint distribution
of ρ(x0, x1) in the unconditional generation setting, which satisfies the following marginal constraints:∫
ρ(x0, x1)dx1 = q(x0),

∫
ρ(x0, x1)dx0 = q(x1). (33) modified the conditional probability path construction so

at t = 0, ρ0(x0|x1) = p(x0|x1), where p(x0|x1) is the conditional distribution ρ(x0,x1)
q(x1) . The Joint Conditional

Flow Matching (JCFM) objective is:

Ljcfm(θ) = Et∼U(0,1),ρ(x0,x1)∥vθ(t, x) − ut(x|x1)∥2 (6)

4 Method

Given a set {x1i
, ci}m

i=1 of input samples and their corresponding conditioning states, our goal is to construct
a flow-matching model that samples from q(x1|c) that start from our conditional prior distribution (CPD).

4.1 Flow Matching from Conditional Prior Distribution

We generalize the framework of Sec. 3.2 to a construction that uses an arbitrary conditional joint distribution
of ρ(x0, x1, c) which satisfy the marginal constraints:∫

ρ(x0, x1, c)dx0 = q(x1, c),
∫
ρ(x0, x1, c)dx1dc = p(x0)

Then, building on flow matching, we propose to modify the conditional probability path so that at t = 0, we
define:

ρ0(x0|x1, c) = p(x0|x1, c) (7)
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where p(x0|x1, c) is the conditional distribution ρ(x0,x1,c)
q(x1,c) . Using this construction, we satisfy the boundary

condition of Eq. 3:

ρ0(x0) =
∫
ρ0(x0|x1, c)q(x1, c)dx1dc (8)

=
∫
p(x0|x1, c)dx1dc = p(x0) (9)

The conditional probability path ρt(x|x1, c) does not need to be explicitly formulated. Instead, only its
corresponding conditional vector field ut(x|x1, c) needs to be defined such that points x0 drawn from the
conditional prior distribution ρ0(x0|x1, c), reach x1 at t = 1, i.e., reach distribution ρ1(x|x1, c) = δ(x− x1).
We thus purpose the Conditional Generation Joint FM Lcgjfm(θ) objective:

Et∼U(0,1),q(x0,x1,c)∥vθ(t, x, c) − ut(x|x1, c)∥2 (10)

where x = ψt(x0|x1, c). Training only involves sampling from q(x0, x1, c) and does not require explicitly
defining the densities q(x0, x1, c) and ρt(x|x1, c). We note that this objective is reduced to the CGFM
objective Eq. 5 when q(x0, x1, c) = q(x1, c)p(x0).

4.2 Conditional Prior Distribution

We now describe our choice of a condition-specific prior distribution. When choosing a conditional prior
distribution we want to adhere to the following design principles: (i) Easy to sample: can be efficiently sampled
from. (ii) Well represents the target conditional modes. We design a condition-specific prior distribution
based on a parametric Mixture Model where each mode of the mixture is correlated to a specific conditional
distribution p(x1|c). Specifically, we choose the prior distribution to be the following, easy to sample, Gaussian
Mixture Model (GMM):

p0 = GMM(N (µi,Σi)n
i=1, π) (11)

where π ∈ Rn is a probability vector associated with the number of conditions n (could be ∞) and µi,Σi are
parameters determined by the conditional distribution q(x1|ci) statistics, i.e.

µi = E[x1|ci], Σi = cov[x1|ci] (12)

To sample from the marginal distribution p(x0|x1, ci), we sample from the cluster N (µi,Σi) associated with
the condition ci.

Table 1: Average distances between
samples from the prior and data dis-
tributions (i.e. transport cost) on the
ImageNet-64 and MS-COCO datasets
across baselines.

ImageNet-64 MS-COCO
CondOT 640 630
BatchOT 632 604
Ours 570 510

Obtaining a Lower Global Truncation Error. Our CPD fits
a GMM to the data distribution in a favorable setting, where the
association between samples and clusters is given. In this process,
we fit a dedicated Gaussian distribution to data points with the
same condition. If the latter are close to being unimodal, this
approximation is expected to be tight, in terms of the average
distances between samples from the condition data mode and the
fitted Gaussian. Tab. 1 provides the average distances between
pairs of samples from the prior and data distributions (i.e. the
transport cost) of CondOT (27), BatchOT (33) and our CPD over
the ImageNet-64 (8) and MS-COCO (26) datasets (note that both
CondOT and BatchOT are applied in the conditinal setting, see Sec. 5.2.1 for details). As expected, BatchOT
which minimizes this exact measure within mini-batches, obtains better scores than the naïve pairing used in
CondOT, while our CPD, which approximates the data using a GMM exploits the conditioning available in
these datasets, and obtains considerably lower average distances.

As noted in (33), lower transport cost is generally associated with straighter flow trajectories, more efficient
sampling and lower training time. We want to substantiate this claim from the viewpoint of cumulative
errors in numerical integration. Sampling from flow-based models consists of solving a time-dependent ODE
of the form ẋt = ut(xt), where ut is the velocity field. This equation is solved by the following integral
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xt =
∫ t

0 us(xs)ds, where the initial condition x0 is sampled from the prior distribution. Numerical integration
over discrete time steps accumulate an error at each step n which is known as the local truncation error τn,
which accumulates into what is known as the global truncation error en. This error is bounded by (40)

|en| ≤ maxjτj

hL

(
eL(tn−t0) − 1

)
(13)

where h is the step size and L is the Lipschitz constant of ut. The distance between the endpoints of a path
∆ = |x1 − x0| is given by |

∫ 1
0 us(xs)ds| which can be interpreted as the magnitude of the average velocity

along the path xt. Hence, the longer the path ∆, the larger the integrated flow vector field ut. For example,
if we scale a path uniformly by a factor C > 1, i.e., xt → C(xt), we get, d

dtC(xt) = C(ut) in which case the
Lipschitz constant L is also multiplied by C.

By shortening the distance between the prior and data distribution, as our CPD does, we lower the integration
errors which permits the use of coarser integration steps, which in turn yield smaller global errors. Thus, our
construction allows for fewer integration steps during sampling. In Appendix A, we also provide a theoretical
justification for why we expect the transition error to decrease as the prior distribution moves closer to the
data.

4.2.1 Construction

Next, we explain how we construct p0 (Eq. 11) for both the discrete case (e.g., class conditional generation)
and continuous case (e.g., text conditional generation).

Discrete Condition. In the setup of discrete conditional generation, we are given data {x1i , ci}m
i=1 where

there are a finite set of conditions ci. We approximate the statistics of Eq. 12 using the training data statistics.
That is, we compute the mean and covariance matrix of each class (potentially in some latent representation
of a pretrained auto-encoder). Since the classes at inference time are the same as in training, we use the
same statistics at inference.

Continuous Condition. While in the discrete case we can directly approximate the statistics in Eq. 12
from the training data, in the continuous case (e.g. text-conditional) we need to find those statistics also
for conditions that were not seen during training. To this end, we first consider a joint space for training
samples {x1i , ci}m

i=1, which represents the semantic distances between conditions ci and samples x1i . In the
setting where ci is text, we choose a pretrained CLIP embedding. ci is then mapped to this representation
space, and then mapped to the data space (could be a latent representation), using a learned mapper Pθ.
Specifically, Pθ is trained to minimize the objective:

Lprior(θ) = Eq(x1,c)∥Pθ(E(c)) − x1∥2
2. (14)

where E is the pre-trained mapping to the joint condition-sample space (e.g. CLIP). Pθ can be seen as
approximating E[x1|c], which is used as the mean for the condition specific Gaussian. At inference, where
new conditions (e.g., texts) may appear, we first encode the condition ci to the joint representation space
(e.g., CLIP) followed by Pθ. This mapping provides us with the center µi of each Gaussian. We also define
Σi = σ2

i I where σi is a hyper-parameter, ablated in Sec. 5.2.1

4.3 Training and Inference

Given the prior p0 (either using the data statistics or by training Pθ), for each condition c, we have its
associated Gaussian parameters µc and Σc. The map ψt(x|x1, c) must be defined in order to minimize Eq. 10
above. This corresponds to the interpolating maps between this Gaussian at t = 0 and a small Gaussian
around x1 at t = 1, defined by:

ψt(x|x1, c) = σt(x1, c)x+ µt(x1, c), (15)
σt(x1, c) = t(σminI) + (1 − t)Σ1/2

c , and (16)
µt(x1, c) = tx1 + (1 − t)µc. (17)
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This results in the following target flow vector field

ut(ψt(x|x1, c)) = d

dt
ψt(x|x1, c) =

(
σminI − Σ1/2

c

)
x+ x1 − µc.

During inference we are given a condition c and want to sample from q(x1|c). Similarly to the training, we
sample x0 ∼ p(x0|c) and solve the ODE

d

dt
ψt(x) = vθ (t, ψt(x), c) , ψ0(x) = x0 (18)

Training and implementation details are provided in Appendix D.

5 Experiments
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Figure 2: Trajectory illustration. A toy example illustrating the trajectory from the source to the target
distribution for our method and conditional flow matching using optimal transport (CondOT).
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(a) (b)
Figure 3: (a) NFE convergence illustration. A toy example illustrating convergence to the target
distribution at different NFEs, for our method, compared to CondOT. (b) Generalization illustration. A
toy example illustrating the generalization capabilities. LHS: Source prior and target samples for training
classes RHS: As for LHS, but for test classes.

5.1 Toy Examples

We begin by considering the setting in which the prior distribution is a mixture of isotropic Gaussians (GMM),
where each Gaussian’s mean represents the center of a class (we set the standard deviation to 0.2). The target
distribution consists of 2D squares with the same center as the Gaussian’s mean in the source distribution
and with a width and height of 0.2, representing a large square. We compare our method to class-conditional
flow matching (with OT paths), where each conditional sample can be generated from each Gaussian in the
prior distribution.

In Fig. 2, we consider the trajectory from the prior to the target distribution. By starting from a more
informative conditional prior, our method converges more quickly and results in a better fitting of the target
distribution. In Fig. 3(a), we consider the resulting samples for the different NFEs. NFE indicates the
number of function evaluation is used using a discrete Euler solver. Our method better aligns with the target
distribution with fewer number of steps.

In Fig. 3(b), we consider the model’s ability to generalize to new classes not seen during training, akin to
text-to-image generation’s setting. Training on only a subset of the classes our model exhibits generalization
to new classes at test time.
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(a)

(b)
Figure 4: Numerical evaluation. (a) We compare our method to class conditional flow matching using
optimal transport paths (CondOT) (27), BatchOT (33), and DDPM (17), on the ImageNet-64 dataset. We
consider the FID score (LHS), KID score (Middle) and CLIP score (RHS). (b). As in (a) but for text-to-image
generation on the MS-COCO dataset. As can be seen our method exhibit significant improvement per NFE,
especially for low NFEs. For example, for 15 NFEs, on ImageNet-64 and MS-COCO we get FID of 13.62
and FID of 18.05 respectively, while baselines do not surpass FID of 16.10 and FID of 28.32 respectively for
the same NFEs. We consider up to 40 NFE steps and note that DDPM converges to a superior result given
more steps.

(a) (b) (c) (d) (e)

Figure 5: Multi-modal classes. 1. A toy example illustrating multi-
modal classes with intersections in the prior. Each color represents a
class (class A or B), with samples as points and the prior distribution
as contour lines. (a) shows a standard Gaussian prior (in black),
while (b) and (c) show class-specific priors. While the mean each
class falls on samples from the other class, our method results in an
improved MMD score. (e) and (d) are as in (b) and (c) respectively,
but where a separate GMM is used for each class.

In Fig. 5, we evaluate the method
in the case where classes are not
uni-modal and there are intersections
in the prior distribution, following
data from VLines of the Datasaurus
Dozen (12). We present generated
samples from a model trained using
CondOT (a) alongside samples from
our model (b, c). The maximum mean
discrepancy (MMD) computed on this
data is 0.084 for CondOT, while we
achieve an improved MMD of 0.072. In
addition, we consider the case where
the GMM consists of 2 Gaussians for
class A and 3 Gaussians for B (as shown in d and e respectively). These Gaussians can be found with
a per-class clustering method (applied on training data) such as GMM-based clustering. This results in
improved performance compared to using a single Gaussian per class (MMD of 0.067 vs 0.072).

5.2 Real World Setting

Datasets and Latent Representation Space.

For class-conditioned setting, we consider the ImageNet-64 dataset (8) while for text-to-image setting, we
consider the 2017 split of the MS-COCO dataset (26), using standard train/validation/test splits. We
compute all our metrics on the ImageNet-64 validation set and the MS-COCO validation set. We perform
flow matching in the latent representation of a pre-trained variational auto-encoder (42).
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5.2.1 Quantitative Results

For a fair comparison, we evaluate our method in comparison to baselines using the same architecture,
training scheme, and latent representation, as detailed above. We compare our method to standard class-
conditioned or text-conditioned flow matching with OT paths (27) which we denote CondOT, where the
source distribution is chosen to be a standard Gaussian. We also consider BatchOT (33), which constructed
a prior distribution by utilizing the dynamic optimal transport (OT) formulation across mini-batches during
training. Lastly, we consider Denoising Diffusion Probabilistic Models (DDPM) (16). We adapted the
baselines DDPM, BatchOT/CondOT for conditional generation by incorporating condition c into their shared
U-Net architecture via standard mechanisms like cross-attention (detailed in Appendix D). This architectural
conditioning is orthogonal to our novel prior contribution. By using identical architectures and conditioning
for all methods, our experimental validation fairly shows our prior enhances state-of-the-art conditional
generation approaches, improving performance and convergence. To evaluate image quality, we consider the
KID (3) and FID (14) scores. We also consider the CLIP score to evaluate the alignment of generated
images to the input text or class, using the standard setting, as in (13).

Overall Performance. We evaluate the FID, KID and CLIP similarity metrics for various NFE values
(as defined above), which is indicative of the sampling speed. In Fig. 4(a) and Fig. 4(b), we perform this
evaluation for our method and the baseline methods, for ImageNet-64 (class conditioned generation) and for
MS-COCO (text-to-image generation), respectively. As can be seen, our method obtains superior results
across all scores for both ImageNet-64 and MS-COCO. For ImageNet-64, already, at 15 NFEs our method
achieves almost full convergence, whereas baseline methods achieve such convergence at much higher NFEs.
This is especially true for FID, where our method converges at 15 NFEs, and baseline methods only achieve
such performance at 30 NFEs. A similar behavior occurs for MS-COCO at 20 NFEs. We note that when
considering NFEs for MS-COCO, we consider the pass in the mapper Pθ to be marginal due to the small size
of the mapper in relation to the velocity vθ, see Appendix B. In Appendix B, we also compare exclusively
the diversity of generated samples in comparison to baselines, demonstrating improved performance.

Figure 6: Training time. For a text-conditional model trained
on MS-COCO, we consider the NFE per training epoch. We
compare our method with CondOT, BatchOT and DDPM. Note
that DDPM had an FID value above 30 for all epochs so not
shown on the RHS.

Training Convergence Speed. By
starting from our conditional prior dis-
tribution, training paths are on average
shorter, and so our method should also
converge more quickly at training. To
evaluate this, in Fig. 6, we consider the
FID obtained at each epoch as well as
the number of function evaluations (NFE)
required for an adaptive solver to reach
a pre-defined numerical tolerance, for a
model trained on MS-COCO. Specifically,
FID is computed using an Euler sampler
with a constant number of function evalu-
ations, NFE=20. As for the adaptive sampler, we use the dopri5 sampler with atol=rtol=1e-5 from the
torchdiffeq (5) library. Our method results in lower NFEs and superior FID, for every training epoch.

NFE=3 NFE=5 NFE=8 NFE=10 NFE=15 NFE=20 NFE=400

Figure 7: Visualization of results for different NFEs. We
consider a model trained on MS-COCO, and two different vali-
dation prompts: Top: “There are yellow flowers inside a vase”,
Bottom: “A bowl full of oranges".

Qualitative Results. In Appendix
C, Fig. 9, we provide a visualization of
our results for a model trained on MS-
COCO, demonstrating both the sample
corresponding the the text in the condi-
tional source distribution, which resem-
bles ‘an average’ image corresponding to
the text, as well as samples corresponding
to the text. We also provide a diverse set
of images generated by our method, in
comparison to flow matching. IN Fig. 7,
we consider, for a model trained on MS-
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COCO and a specific prompt, a visualization of our results for different NFEs, illustrating the sample quality
for varying numbers of sampling steps. As can be seen, our method already produces highly realistic samples
at NFE=15.

Table 2: Ablation study. Model per-
formance for different values of σ (the
standard deviation) as a hyperparame-
ter for a model trained on MS-COCO.
We also consider the case where our
mapper Pθ takes as input a bag-of-
words encoding instead of a CLIP.

FID ↓ KID↓ CLIP↑
σ = 0.2 23.55 2.88 16.12
σ = 0.5 15.47 0.93 15.75
σ = 0.7 7.55 0.61 15.85
σ = 1.0 7.87 1.66 15.81
w/o CLIP 16.33 2.38 15.51

Ablation Study. In the continuous setting, as in MS-COCO,
our method requires choosing the hyperparameter σ, the standard
deviation of each Gaussian. In Tab. 2, we report the FID, KID, and
CLIP similarity values for different values of σ. Our method results in
best performance when σ = 0.7, we believe that a relative large σ is
necessary to allow a richer conditional prior due to the complex nature
of the conditional image distribution. We also consider the case where
our mapper Pθ takes as input a bag-of-words encoding instead of a
CLIP encoding showing the importance of an expressive condition
representation. As can be seen, performance drops significantly. As
an additional ablation, we compare CondOT to our approach when
mapping distributions directly to the original data space. When
sampling with 15 NFEs, CondOT has an FID score of 27.32 vs our
22.55 on ImageNet-64.

6 Conclusion

In this work, we introduce a novel initialization for flow-based generative models using condition-specific
priors, improving both training time and inference efficiency. Our method allows for significantly shorter
probability paths, reducing the global truncation error. Our approach achieves improved performance on
MS-COCO and ImageNet-64, surpassing baselines in FID, KID, and CLIP scores, particularly at lower NFEs.
The flexibility of our method opens avenues for further exploration of other conditional initialization. While
this work we assumed a GMM structure of the prior distribution, different structures can be explored.

10
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Flow Matching Ours

Figure 8: Visual comparison of randomly generated samples for prompts from the MS-COCO validation set
using our method, in comparison to flow matching, for a model trained on MS-COCO.

A Theoretical Justification for Lower Truncation Error

We follow our definition of the global truncation error in Eq. 13 and formalize why we expect it to decrease
as the prior distribution moves closer to the data. This connection can be formalized under the reasonable
assumption that the velocity fields us learned via flow matching scale proportionally with the effective distance
D between the source and target distributions. Empirically, this is supported by faster convergence with our
closer prior (e.g., Fig. 3, Fig. 6). Let us = Du′

s, where u′
s is a velocity field with magnitude O(1). As argued

in Sec. 4.2, the Lipschitz constant L of us also scales proportionally: L = DL′.

Proposition 1. Assuming flow matching velocity fields us have magnitude and Lipschitz constant L scaling
proportionally with D, then the global truncation error bound decreases as D decreases.

Proof. The error is bounded by |en| <= maxjτj

hL ∗ (eL(tn−t0) − 1). Assuming maxjτj also scales with D, and
substituting L = DL′, the bound becomes approximately C(eDL′(tn−t0)) − 1). The exponential dependence
on D via L shows that reducing D (closer prior) exponentially reduces the error bound, allowing larger steps
h or lower error.
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A red and white plane is in the sky

A light green kitchen some cabinets a dish washer and a sink

A black honda motorcycle with a dark burgundy seat

A city street with multiple trees

Figure 9: A visualization of our results on MS-COCO. We show, for four different text prompts: (a).
The sample corresponding to the text in the conditional source distribution, which is used as the center of
Gaussian corresponding to the text prompt (LHS) (b). Six randomly generated samples from the learned
target distribution conditioned on the text prompt (RHS).

B Additional Quantitative Results

Table 3: Numerical evaluation.
Quality of generated samples (FID,
KID), and conditional fidelity (CLIP-
Score) for our method in compari-
son to baselines, for the ImageNet-64
dataset for 15 NFEs. We consider
(CondOT) (27), BatchOT (33) and
DDPM (16).

FID ↓ KID↓ CLIP↑
DDPM 47.51 6.74 17.71
CondOT 16.16 1.96 18.02
BatchOT 16.10 1.43 17.72
Ours 13.62 0.83 18.05

In Tab.3, we present additional metrics (FID, KID, and CLIP-Score)
for ImageNet-64 with 15 NFEs. We compare the performance of
CondOT (27), BatchOT (33) and DDPM (16). As shown, our model
delivers significant improvements over the baselines.

As additional comparison, we note that while FID has a compo-
nent addressing diversity, it measures both fidelity and diversity
together. To this end, we considered the Recall and Coverage metrics
from (31), which exclusively measure diversity (higher is better for
both). On ImageNet-64, compared to CondOT and BatchOT, for 15
NFEs we obtain Recall/Coverage of 0.54/0.78 while CondOT obtains
0.03/0.07 and BatchOT obtains 0.14/0.23. For 40 NFEs, we obtain
Recall/Coverage of 0.55/0.79 while CondOT obtains 0.32/0.49 and
BatchOT obtains 0.37/0.60. This demonstrates that our method
improves the generated distribution’s diversity, in both low and high
NFEs.

C Visual Results

In Fig. 9, we provide a visualization of our results for a model trained on MS-COCO. We show, for four
different text prompts: (a). The sample corresponding to the text in the conditional source distribution,
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Table 4: Hyper-parameters used for training each model

ImageNet-64 MS-COCO
Dropout 0.0 0.0
Effective Batch size 2048 128
GPUs 4 4
Epochs 100 50
Learning Rate 1e-4 1e-4
Learning Rate Scheduler Constant Constant

which is used as the center of Gaussian corresponding to the text prompt. (b). Six randomly generated
samples from the learned target distribution conditioned on the text prompt. As can be seen, the conditional
source distribution samples resemble ‘an average’ image corresponding to the text, while generated samples
display diversity and realism.

In Fig. 7, we consider, for a model trained on MS-COCO and a specific prompt, a visualization of our results
for different NFEs, illustrating the sample quality for varying numbers of sampling steps. As can be seen, our
method already produces highly realistic samples at NFE=15.

In Fig. 8, we provide additional visual results for our method in comparison to standard flow matching for a
model trained on MS-COCO.

D Implementation Details

We report the hyper-parameters used in Table 4. All models were trained using the Adam optimizer (23)
with the following parameters: β1 = 0.9, β2 = 0.999, weight decay = 0.0, and ϵ = 1e−8. All methods we
trained (i.e. Ours, CondOT, BatchOT, DDPM) using identical architectures, specifically, the standard Unet
(36) architecture from the diffusers (44) library with the same number of parameters (872M) for the the
same number of Epochs (see Table 4 for details). For all methods and datasets, we utilize a pre-trained
Auto-Encoder (42) and perform the flow/diffusion in its latent space.

In the case of text-to-image generation, we encode the text prompt using a pre-trained CLIP network and
pass to the velocity vθ using the standard UNet condition mechanism. In the class-conditional setting, we
create the prompt ‘an image of a ⟨class⟩’ and use it for the same conditioning scheme as in text conditional
generation.

For the mapper Pθ (Sec. 4.2), we use a network composed of a linear layer followed by two ResNet blocks,
totaling 11M parameters. The training time required for Pθ is negligible compared to the flow network,
accounting for only ∼ 1% of the total training time.

When using an adaptive step size sampler, we use dopri5 with atol=rtol=1e-5 from the torchdiffeq (5)
library.

Regarding the toy example Sec. 5.1, we use a 4 layer MLP with ReLU activation as the velocity vθ. In this
setup, we incorporate the condition by using positional embedding (43) on the mean of each conditional
mode and pass it to the velocity vθ by concatenating it to its input.

E Limitations and Future Work

Our proposed approach, utilizing a GMM prior centered on mapped conditional means within a VAE latent
space, demonstrates significant improvements for class-conditional and text-to-image generation tasks, proving
effective in these complex, real-world settings.

However, while effective for images, there exist conditional generation tasks where the output structure is
fundamentally different, and for which our current GMM prior construction might not be optimal. For
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instance, consider conditional 3D human pose generation. Poses are constrained to a complex kinematic
manifold, and an ’average pose’ used to center a Gaussian component might be physically invalid.

This motivates important directions for future work. Exploring more sophisticated priors tailored to specific
output structures could be highly beneficial. For tasks like human pose generation, this could involve
manifold-aware priors or priors explicitly modeling kinematic constraints (e.g., using distributions over joint
angles). Similarly, priors reflecting graphs or sequential properties might be necessary for generating other
structured data like molecules or music. Extending our core idea by developing such tailored, condition-specific
priors for diverse domains remains a rich area for future research. Furthermore, investigating performance
directly in the data space, removing the VAE dependency, also constitutes valuable future work.
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