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Abstract
Many algorithms have been recently proposed for
causal machine learning. Yet, there is little to
no theory on their quality, especially considering
finite samples. In this work, we propose a theory
based on generalization bounds that provides such
guarantees. By introducing a novel change-of-
measure inequality, we are able to tightly bound
the model loss in terms of the deviation of the
treatment propensities over the population, which
we show can be empirically limited. Our theory
is fully rigorous and holds even in the face of
hidden confounding and violations of positivity.
We demonstrate our bounds on semi-synthetic and
real data, showcasing their remarkable tightness
and practical utility.

1. Introduction
Causal machine learning plays an increasingly important
role in many application domains including economics,
medicine, education research, and more. At the core of
causal ML is reasoning about potential outcomes. For in-
stance, using covariates X to make predictions about the
potential outcomes Y 1 and Y 0, which correspond to what
would happen if the treatment were to be administered
(T = 1) and if the treatment were not to be administered
(T = 0). This reasoning differs crucially from simply pre-
dicting the actual outcome Y given those covariates, which
is subject to biases in the training data.

The fundamental problem of causal ML is that the potential
outcomes cannot be both observed at the same time. For
instance, whenever T = 1 we can only observe Y = Y 1,
and Y 0 could vary unpredictably. To amend this, some
strong assumptions are introduced, with the most typical
being ignorability (that Y 1, Y 0 ⊥⊥ T |X) and positivity (that
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for all X and a, 0 < P[T = a|X] < 1). When these don’t
hold we are in the field of sensitivity analysis. In this context,
we may assume that there are certain unobserved covariates
U which must be included to satisfy ignorability.

We consider two key tasks of causal ML: (i) outcome re-
gression, in which we seek to predict the potential outcomes
Y a given the covariates, and (ii) individual treatment effect
estimation, in which we seek to predict the treatment effects
Y 1 − Y 0 given the covariates.

Many methods have been proposed for these tasks. There
are classical approaches based on linear models (Angrist
& Imbens, 1995; Hirano & Imbens, 2001) as well as more
recent approaches based on decision trees (Athey & Imbens,
2015; Wager & Athey, 2015; Athey et al., 2016), neural
networks (Shalit et al., 2017; Johansson et al., 2016; Yoon
et al., 2018; Zhang et al., 2020) and even some model-
agnostic approaches (Künzel et al., 2017; Nie & Wager,
2017; Oprescu et al., 2023).

However, all these methods still lack a rigorous supporting
theory, with there being fundamental questions that have not
been fully answered. For example, how well can we expect
these procedures to extract causal relations from the data?
How many samples are enough? How do these procedures
fare when causal assumptions are violated (e.g., because
there are unobserved confounders)?

In this paper, we seek to provide satisfying answers to these
questions through the lens of generalization bounds. By
leveraging a change-of-measure inequality based on an f -
divergence (namely, the Pearson χ2 divergence) we are
able to tightly bound the (unobservable) complete causal
loss in terms of the (observable) conditional loss plus some
additional highly interpretable terms:
Theorem 1.1 (Informal). For any (decomposable) loss func-
tion and any λ > 0,

E[Loss]︸ ︷︷ ︸
unobservable. . .

≤ E[Loss|T = a]︸ ︷︷ ︸
observable!

+λ ·∆+ σ2/4λ

where ∆ is a term that quantifies how far we deviate from a
randomized control trial.

However, the result above suffers from the fact that ∆ fun-
damentally depends on unobservable quantities. But it can –
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quite surprisingly – be empirically upper bounded, leading
to a new form of sensitivity analysis:

Theorem 1.2 (Informal). Let ν be an (arbitrary) propensity
scoring model. Then the following holds:

∆ ≤ C · BrierScore(ν, T ) +D

where D quantifies how our reweighed samples deviate
from being balanced, C is an universal constant, and
BrierScore(ν, T ) = E[(ν(X)− T )2].

We demonstrate empirically that these bounds are tight and,
besides aiding in a theoretical backbone for causal regres-
sion, are also useful in practice for model selection.

Our main contributions are:

• Novel generalization bounds applicable to many causal
regression algorithms, which shed light on the appli-
cability and efficacy of such procedures. Our bounds
are general, assumption-light, framework-agnostic (i.e.,
can be used in conjunction with Rademacher bounds,
VC bounds, PAC-Bayes, etc.) and hold even in the lack
of ignorability or positivity.

• Relaxed versions of our bounds which are entirely em-
pirically boundable with high probability, allowing for
practical bounding of the unobservable counterfactual
losses.

• A change-of-measure inequality based on the Pearson
χ2 f -divergence, which is remarkably tight (Figure 2)
and particularly applicable to causal inference prob-
lems.

• Our bounds show that we are able to learn to estimate
treatment effects while optimizing losses other than the
mean squared loss. For example, we can use the mean
absolute error for robust estimation, or the quantile
loss1 for quantile regression, a feat previously thought
impossible in general.

Related work There has been much work on asymptotic
guarantees for causal regression algorithms, e.g., (Künzel
et al., 2017; Nie & Wager, 2017; Oprescu et al., 2023; Athey
et al., 2019). However, besides not being applicable to finite
samples, they are often restricted to specific learning classes
and/or make restrictive modelling assumptions. A notable
exception to this is (Johansson et al., 2022), which also es-
tablishes some generalization bounds on causal regression.
However, their bounds are orders of magnitude looser than
ours (see Section 3.1) and are restricted to bounds based on
the pseudo-VC-dimension and mean squared error. Also
closely related are generalization bounds for domain adapta-
tion (Cortes et al., 2010; Blitzer et al., 2007; Germain et al.,

1also known as the “pinball” loss.

2017; 2016; Mansour et al., 2009). Under ignorability, the
observed and complete distributions differ by a covariate
shift, and causal inference becomes a domain adaptation
problem. However, these bounds generally give little intu-
ition when applied in a causal context.

2. Novel Bounds for Causal Regression
In order to bridge the gap between the complete data dis-
tribution and the observed data distribution, we develop
a novel change-of-measure inequality based on Pearson’s
χ2-divergence:

Definition 2.1 (Pearson’s χ2 divergence). Let H be any
arbitrary domain, and denote by P and Q the probability
measures over the Borel σ-field on H. The χ2 divergence
between Q and P , denoted χ2(Q∥P ), is given by

χ2(Q∥P ) ··= EP

[(
dQ

dP
− 1

)2
]
.

Lemma 2.2. Let P and Q be as in Definition 2.1. For any
λ > 0,

EQ[ϕ]− E ≤ EP [ϕ] ≤ EQ[ϕ] + E

where
E ··= λ · χ2(Q∥P ) + 1

4λ
VarP (ϕ).

Moreover, the bound is optimized for

λ⋆ =
√
VarP (ϕ)/4χ2(Q∥P ).

Note how, if P = Q, then the bound in Lemma 2.2 becomes
an equality by taking λ→ ∞, showing that it is reasonably
tight. This is in contrast to, e.g., the inequalities in (Ohnishi
& Honorio, 2021), for which this is not the case.

2.1. Outcome regression

For our first setting, we wish to use our covariates X to pre-
dict the potential outcome Y a – i.e., what would happen to
that individual if he received treatment T = a. To do so, we
consider a sample-reweighted empirical risk minimization
problem: that is, we are solving for

h⋆ = argmin
h∈L2

E[w(X)(h(X)− Y )2|T = a]

≈ argmin
h∈L2

1

nT=a

∑
Ti=a

w(Xi)(h(Xi)− Yi)
2.

The purpose of sample reweighing is to bridge the gap be-
tween the observed distribution (conditional on T = a) and
the complete distribution (unconditional on T = a). In
particular, the idea is that Y a|X is fixed and that reweighing
by w(X) changes the distribution over X from PX|T=a to
some PX̃|T=a ≈ PX , with dPX̃|T=a/dPX|T=a = w(X).
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This procedure forms the basis for many notable algo-
rithms and is a fundamental building block of causal meta-
learners (Künzel et al., 2017), one of the main objects of
study in this work. The main issue to tackle is quantify-
ing the gap between the observed distribution Y,X|T = a
and the complete distribution Y a, X . To this end, we use
Lemma 2.2:

E[(Y a − h(X))2] ≤ E[w(X)(Y − h(X))2|T = a]

+ λχ2(PY,X̃|T=a∥PY a,X)︸ ︷︷ ︸
∆T=a

+
1

4λ
Var[(Y a − h(X))2]︸ ︷︷ ︸

σ2
T=a

;

We can now leverage the causal nature of our distribution
shift in order to precisely quantify this bound. In particular,
let us work out the χ2 term. Under SUTVA and ignorability
with regards to X and U and a simple application of Bayes’
rule,2 we have that

dPY,X̃,U |T=a

dPY a,X,U
= w(X)

dPY,X,U |T=a

dPY a,X,U

= w(X)
dPX,U |T=a

dPX,U
= w(X)

P[T = a|X,U ]

P[T = a]
,

and so

∆T=a = χ2(PY,X̃|T=a∥PY a,X)

= E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]
,

from which we derive our first major result:

Theorem 2.3 (Upper bound on outcome regression loss
in expectation). For any λ > 0, loss function ℓ(·, ·) and
nonnegative reweighing function w(X) with E[w(X)|T =
a] = 1,

E[ℓ(Y a, h(X))] ≤ E[w(Xi)ℓ(Yi, h(Xi))|T = a] + E,

where σ2 ··= Var[ℓ(Y a, h(X))] and

E = λE

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

︸ ︷︷ ︸
∆T=a

+
σ2

4λ
.

Let’s consider some cases. First, the typical scenario in
the meta-learners literature, where w ≡ 1: in that case, the
∆T=a term becomes

∆T=a = E

[(
P[T = a|X,U ]

P[T = a]
− 1

)2
]
,

2SUTVA asserts that data is i.i.d. and that PY a|T=a = PY |T=a.
Ignorability with respect to X and U states that Y 1, Y 0 ⊥⊥
T |X,U .

i.e., becomes nil when P[T = a|X,U ] = P[T = a] almost
everywhere – which is the case when the data comes from
a randomized control trial. When this is not the case, this
term (for w ≡ 1) is effectfully a measure of how far the
study is from being a randomized control trial.

Interestingly, it implies that small local deviations from an
RCT (e.g., because for some small part of the population
there was some bias in the treatment assignment) should lead
to small deviations between the complete and the observed
distributions.

Now, let’s consider the case where we choose weights to
bridge over the distributions – in particular, consider the
optimal weights under the standard ignorability and postivity
assumptions sans U (i.e., when there are no unobserved
confounders) w⋆(X) = dPY a,X/dPY,X|T=a = P[T =
a]/P[T = a|X]. In that case, the divergence term becomes

∆T=a = E

[(
P[T = a|X,U ]

P[T = a|X]
− 1

)2
]
.

Under these assumptions, we would have that P[T =
a|X,U ] = P[T = a|X] and so ∆T=a = 0. When there are
unobserved confounders, ∆T=a quantifies by how much
more certain we become about the treatment mechanism
with their information – i.e., how much the confounders
can improve our understanding of the treatment assignment
mechanism.

So far, our bounds crucially involve the true propensity
scores P[T = a|X,U ], which are unknown and unobserv-
able in practice. We can relax the bound from Theorem 2.3
in order to solve this through the use of a relaxed triangular
inequality:

∆T=a = E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

≤ 2E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− w(X)

1[T = a]

P[T = a]

)2
]

+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Which can then be rearranged into

∆T=a ≤
2

P[T = a]2
E
[
w(X)2(P[T = a|X,U ]− 1[T = a])2

]
+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

It can be shown that P[T = a|X,U ] optimizes the term
E
[
w(X)2 (· − 1[T = a])

2
]
. So, by replacing it with any
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ν(X) the bound remains valid, and we obtain that

∆T=a ≤ 2

P[T = a]2
E
[
w(X)2 (ν(X)− 1[T = a])

2
]

︸ ︷︷ ︸
BrierScorew2 (ν,T )

+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]

︸ ︷︷ ︸
D

.

This is a looser bound than the previous one. For ex-
ample, while the previous one gave us that, under an
RCT, ∆T=a = 0, this time we’d conclude merely that
∆T=a ≤ C · BrierScorew2(ν, T ) + 2D, which is gener-
ally greater than zero. Nevertheless, we show in Section 3
that this relaxed bound can still be of great practical use and
is sufficiently tight in practice.
Theorem 2.4 (Empirical upper bound on outcome regres-
sion loss in expectation). Let ∆T=a be as in Theorem 2.3.
It holds that, for any ν,

∆T=a ≤ 2E

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]

+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Finally, we produce PAC-style (Valiant, 1984) finite-sample
results for the bound in Theorem 2.4, concretely showing
how its estimation would go in practice. For brevity, our
results here are based on the Rademacher complexity, but we
emphasize that our approach works just as easily with other
frameworks (e.g., VC, PAC-Bayes, algorithmic stability).
Corollary 2.5 (PAC empirical upper bound on outcome
regression loss). Suppose that ℓ is a loss function bounded
in [0,M ], and w(X) is a nonnegative reweighing function
bounded in [0, wmax] with E[w(X)|T = a] = 1. Then,
for any λ > 0, with probability at least 1 − δ over the
draw of the training data (Xi, Ti, Yi)

n
i=1, for all h ∈ H and

ν ∈ Hν ,

E[ℓ(Y a, h(X))] ≤ 1

nT=a

∑
Ti=a

w(Xi)ℓ(Yi, h(Xi))

+ λ∆̂T=a +
M2

16λ
+ 2R(w · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+
(
Mwmax + C(wmax)

√
nT=a/n

)√ log 2/δ

2nT=a

where

∆̂T=a ··=
2λ

n

n∑
i=1

(
w(Xi)

P[T = a]

)2

(ν(Xi)− 1[Ti = a])
2

+
2λ

n

n∑
i=1

(
w(Xi)

1[Ti = a]

P[T = a]
− 1

)2

,

R(w · ℓ ◦ H) and R(∆̂ ◦ Hν) are the Rademacher com-
plexities of H and Hν composed with their respective loss
functions/means, and C(wmax) is a constant nonnegative
quantity defined in the proof.

The right-hand-side of this bound has many terms: first is
the empirical observable loss, reweighed by ourw(X). Next
is the empirical bound for ∆T=a, ∆̂T=a, along withM2/16
corresponding to the variance term σ2/4, both reweighed by
the λ as in Lemma 2.2. Next are the Rademacher complexi-
ties R(H) and R(Hν) correcting for the complexity of the
algorithms we are fitting. Finally, we have a term bounding
the tail of the distribution of the reweighted empirical loss,
notably as a factor of Mwmax, which comes divided by the
number of observable samples.

This bound neatly exhibits the cost of using a reweighing
w (e.g., the optimal w⋆) to bridge over the distributions: if
there is some point that is extremely unlikely to be observed,
then that point will have a very large weight, increasing
wmax substantially. Thankfully, this is not irremediable:
by “simply” using more data, the effect of this term on the
bound can be reduced until it no longer dominates the rest.

2.2. Causal Meta-learners

We now shift our attention to using our covariates X to
predict the individual treatment effects Y 1 −Y 0 – i.e., what
would be the benefit of applying the treatment versus doing
nothing to this particular individual.

We are particularly interested in causal meta-learners: proce-
dures that leverage previously-established (or purpose-built)
regression algorithms as oracles in an estimating equation.
We focus here on the most common meta-learners available:
the T-learner, the S-learner and the X-learner (Künzel et al.,
2017). Nevertheless, our analysis is also directly applicable
to many other common causal regression methods such as
the Causal BART (Hill, 2011; Hahn et al., 2017) and TAR-
Net/CFRNet (Shalit et al., 2017), since these can be seen as
special cases of T- or S-learners.

Throughout this section, we focus on losses that satisfy a
sort of relaxed triangular inequality:

Assumption 2.6. The loss function ℓ(·, ·) can be restated as

ℓ(Y, Ŷ ) = ψ(Y − Ŷ ),

with ψ satisfying a relaxed subadditive condition: there is
someC such that, for any x, y, ψ(x±y) ≤ C(ψ(x)+ψ(y)).

Most loss functions of interest satisfy Assumptions 2.6:

• Mean Squared Error: take ψ(x) = x2 and C = 2.

• Mean Absolute Error: take ψ(x) = |x| and C = 1.
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• α-Quantile Loss: take ψ(x) = xα1[x ≥ 0] − x(1 −
α)1[x < 0] and C = max{α, 1−α}/min{α, 1−α}.

• 0-1 Loss3: take ψ(x) = |x| and C = 1.

Such an assumption allows us to employ a sort of relaxed
triangle inequality in order to decompose the loss of a meta-
learner into the losses of its individual components. This
technique has been widely applied in previous works (e.g.
(Künzel et al., 2017; Johansson et al., 2022)), though pre-
viously restricted to only the mean squared error. Through
the introduction of Assumption 2.6, we are able to make
our results substantially more general – the implications of
which we discuss in Section 2.3.

2.2.1. T-LEARNERS AND S-LEARNERS

In these types of models, we first obtain two functions h1

and h0 that have been trained to approximate Y |X,T = 1
and Y |X,T = 0 respectively. In the case of T-learners,
this is done by independently training h1 and h0 on the
samples where T = 1 and T = 0, while for S-learners it
is done by training a single model h : X × {0, 1} → Y
to use X and T to predict Y , and taking h1 = h(·, 1) and
h0 = h(·, 0). With h1 and h0 in hand, we can predict the
individual treatment effect as h1(X)− h0(X).

To bound the losses of our predictions h1(X) − h0(X),
we can separate it in terms of the losses of the individual
functions h1 and h0 through the use of Assumption 2.6:

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))]

≤ C(E[ℓ(Y 1, h1(X))] + E[ℓ(Y 0, h0(X))])

From there on, we can use the bounds developed in Sec-
tion 2.1 to obtain bounds in terms of the observable losses:
Proposition 2.7 (Upper bound on T-/S-learner loss in ex-
pectation). Let ℓ be a loss function satisfying Assump-
tion 2.6 with constant C, and let w1(X), w0(X) be non-
negative reweighing functions with E[wa(X)|T = a] = 1
for a = 0, 1. For any λ1, λ0 > 0,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))]

≤ C
(
E[w1(X))ℓ(Y, h1(X))|T = 1]

+ E[w0(X)ℓ(Y, h0(X))|T = 0]

+ λ1∆T=1 + λ0∆T=0︸ ︷︷ ︸
∆T−learner

+σ2
T=1/4λ1 + σ2

T=0/4λ0︸ ︷︷ ︸
σ2/4

)
,

where σ2
T=a

··= Var[ℓ(Y a, ha(X))] and

∆T=a = E

[(
wa(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

3In the case of binary classification, taking both the label and
predictions Y, Ŷ to assume numeric values in {0, 1}.

≤ 2

P[T = a]2
E
[
wa(X)2 (ν(X)− 1[T = a])

2
]

+ 2E

[(
wa(X)

1[T = a]

P[T = a]
− 1

)2
]
.

We can also produce a finite-sample bound akin to Corol-
lary 2.5. Again, we only present here a bound based on the
Rademacher complexity, but the same ideas can be applied
to other paradigms.
Corollary 2.8 (PAC empirical upper bound on the loss of
a T-/S-learner). Let ℓ be a loss function bounded in [0,M ]
satisfying Assumption 2.6 with constant C and let w1(X),
w0(X) be nonnegative reweighing functions bounded in
[0, wmax] and with E[wa(X)|T = a] = 1 for a = 0, 1.
Then, for any λ1, λ0 > 0, with probability at least 1 − δ
over the draw of the training data (Xi, Ti, Yi)

n
i=1, for all

h1, h0 ∈ H and ν ∈ Hν ,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))]

≤ C

(
1

nT=1

∑
Ti=1

w1(Xi)ℓ(Yi, h
1(Xi))

+
1

nT=0

∑
Ti=0

w0(Xi)ℓ(Yi, h
0(Xi))

+ λ1∆̂T=1 + λ0∆̂T=0 +
M2

16λ1
+

M2

16λ0

+ 2R(w1 · ℓ ◦ H) + 2R(w0 · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+
(
cMwmax + C(wmax)

√
nT=min/n

)√ log 3/δ

2nT=min

)
where

∆̂T=a ··=
2λ

n

n∑
i=1

(
wa(Xi)

P[T = a]

)2

(ν(Xi)− 1[Ti = a])
2

+
2λ

n

n∑
i=1

(
wa(Xi)

1[Ti = a]

P[T = a]
− 1

)2

,

nT=min = min{nT=1, nT=0}, R(wa·ℓ◦H) and R(∆̂◦Hν)
are the Rademacher complexities of H and Hν composed
with their respective loss functions/means, and c and
C(wmax) are a constant nonnegative quantities defined in
the proof, with 1 ≤ c ≤ 2.

It should be noted that these bounds do not account for inter-
actions between h1 and h0. Quantifying such interactions
requires some consideration for the structure of the models
themselves, which would lead to losing the mostly-model-
agnostic flavor of our results.

2.2.2. X-LEARNERS

An X-learner follows a slightly more involved procedure
than the T- and S-learners. First, one estimates h1 and
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h0 as in a T-learner. With that, new models τ1 and τ0

are trained to regress on Y 1 − h0(X) and h1(X) − Y 0,
respectively, as some sort of pseudo-treatment-effect la-
bels. The individual treatment effect is then estimated as
e(X)τ1(X) + (1− e(X))τ0(X), for some e(x) (often an
estimate of the propensity score P[T = 1|X]).

Similar to what we did in Section 2.2.1, we will bound the
loss of the X-learner estimator by separating it in terms of
the losses of its individual components h1, h0, τ1 and τ0.

For ease of notation, let ē(x) = 1− e(x) and ℓe(Y, Ŷ ) ··=
ℓ(e(X)Y, e(X)Ŷ ). Then, by Assumption 2.6:

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))]

≤ C2(E[ℓē(Y 1, h1(X))] + E[ℓe(Y 0, h0(X))]

+ E[ℓe(Y 1 − h0(X), τ1(X))]

+ E[ℓē(h1(X)− Y 0, τ0(X))]).

And again, all that remains is to use the bounds from Sec-
tion 2.1 to obtain observable bounds for the complete loss
of the X-learner.
Proposition 2.9 (Upper bound on X-learner loss in expec-
tation). Let ℓ be a loss function satisfying Assumption 2.6
with constant C and let w1, w0 be nonnegative reweighting
functions with E[wa(X)|T = a] = 1 for a = 0, 1. For any
λ1, λ0, λ0,1, λ1,0 > 0,

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))]

≤ C2
(
E[w1(X)ℓē(Y, h

1(X))|T = 1]

+ E[w0(X)ℓe(Y, h
0(X))|T = 0]

+ E[w1(X)ℓe(Y
1 − h0(X), τ1(X))|T = 1]

+ E[w0(X)ℓē(h
1(X)− Y 0, τ0(X))|T = 0]

+ (λ1 + λ1,0)∆T=1 + (λ0 + λ0,1)∆T=0︸ ︷︷ ︸
∆X−learner

+ σ2
T=1/4λ1 + σ2

T=0/4λ0 + σ2
1,0/4λ1,0 + σ2

0,1/4λ0,1︸ ︷︷ ︸
σ2/4

)
,

where σ2
T=a

··= Var[ℓ(Y a, ha(X))], σ2
a,b

··= Var[ℓ(Y a −
hb(X), τa(X))] and

∆T=a = E

[(
wa(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

≤ 2

P[T = a]2
E
[
wa(X)2 (ν(X)− 1[T = a])

2
]

+ 2E

[(
wa(X)

1[T = a]

P[T = a]
− 1

)2
]
.

We can also obtain finite-sample bounds akin to our Corol-
lary 2.8, which can be found in Appendix A as Corol-
lary A.13.

Just as in our analysis of T- and S- learners, we are blind
to potential improvements to the bounds due to interactions
between the individual regressions, in the spirit of keeping
our analysis reasonably model-agnostic.

With both bounds for T/S-learners and for X-learners in
hand, a natural question arises: can our theory suggest when
one should be preferred over the other? Since our bounds
for these classes of models share many terms, it is not clear
a priori whether one method should be preferred over the
other. In the end, it appears that any possible advantage
originates from the potentially improved inductive biases of
the individual regressions. This is consistent with previous
findings (Künzel et al., 2017; Dorie et al., 2017).

2.3. Beyond the Mean Squared Loss

One remarkable aspect of the bounds developed in Sec-
tion 2.2 is how they are general in relation to the loss. That
is, they can limit other losses such as the mean absolute er-
ror (for robust regression) and the quantile loss (for quantile
regression) just as well as the more typical mean squared
loss. Moreover, minimizing the same loss on each compo-
nent of the meta-learner implies minimizing the total loss
of the meta-learner as a whole.

This is a rather surprising result. For instance, it was pre-
viously understood that the conditional quantile treatment
effect Qα(Y

1 − Y 0|X) was unidentifiable in general. Yet
we show that by training a T-learner optimizing the quantile
loss, for example, we can estimate it by first approximating
h1(X) ≈ Qα(Y

1|X) and h0 ≈ Qα(Y
0|X), leading to

h1(X)− h0(X) ≈ Qα(Y
1 − Y 0|X).

This is counterintuitive, since Qα(Y
1|X)−Qα(Y

0|X) ̸=
Qα(Y

1 − Y 0|X) in general! The key to our argument is
that we are not asserting that h1(X)− h0(X) will always
converge to Qα(Y

1 − Y 0|X). We have bounded the com-
plete quantile loss of the T-learner, but we have never proven
that it is even close to the optimal one (which is what would
then imply convergence to the conditional quantile).

Nevertheless, we do show that by improving how well we
estimate the individual conditional quantiles (in terms of the
quantile loss) we also improve how well we estimate the
conditional quantile of the treatment effect. At the limit, if
h1 and h0 achieve zero quantile loss (meaning they predict
the potential outcomes exactly) and we have a negligible
divergence term (e.g., ∆ = 0), then the quantile loss for the
treatment effect will also be zero (meaning we will predict
the individual treatment effects exactly).

3. Experiments and Applications
In order to assess the tightness and efficacy of our bounds,
we empirically evaluate them on three semi-synthetic

6
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Figure 1. Tightness of our bounds. Comparison between our bounds and those of (Johansson et al., 2022), both for the complete loss
of the estimation of the potential outcome Y 1. Additional images for other tasks (e.g., estimation of treatment effects) are available in
Appendix C. Our “theoretic” and “empirical” bounds correspond in Theorems 2.3 and 2.4, and “prior work” refers to Corollary 1 of
(Johansson et al., 2022). Our theoretic bound is quite tight, being very close to the complete loss (which is unobservable in practice). Our
empirical bound, while somewhat looser than the theoretic bound, is still substantially tighter than the available prior work.

Figure 2. Importance of the tuning parameter λ in Lemma 2.2.
An illustration of the bound in Lemma 2.2 (shaded in green) over
different values of its tuning parameter λ. Change-of-measure
inequalities (e.g., (Ohnishi & Honorio, 2021)) typically do not
have a tuning parameter, which corresponds to taking λ = 1 in our
lemma. As can be seen in the figure, being able to optimally select
λ substantially tightens our bounds.

datasets of increasing difficulty: first simulating a random-
ized control trial and later in simulations of observational
data with fully observed and hidden confounders. Finally,
we tackle a real-world application of model selection in a
Parkinson’s telemonitoring dataset.

Experiments were run on an AMD Ryzen 9 5950X
CPU (2.2GHz/5.0GHz, 32 threads) with 64GB of
RAM. Nevertheless, the relevant code is lightweight
and should easily run on weaker hardware. More
details can be found in Appendix B, and the code is
available at https://github.com/dccsillag/
experiments-causal-generalization-bounds.

3.1. Experiments on Semi-Synthetic Data

To evaluate our procedures we use semi-synthetic data (i.e.,
synthetic data that attempts to reproduce real data) as this
allows us to have access to the potential outcomes Y 1, Y 0.

We use the following datasets, ordered by increasing diffi-
culty. Learned IHDP: Results of a randomized control trial
simulated with generative models trained on the IHDP (Hill,
2011) dataset. ACIC16: Simulated observational data from
(Dorie et al., 2017) with fully observed confounding, satis-
fying ignorability and positivity assumptions; Confounded
ACIC16: Observational data with significant unobserved
confounding and no positivity. This is also the ACIC16
dataset, but modified so that there are hidden confounders.
This does not satisfy ignorability nor positivity, making it
an extremely challenging dataset to work with.

Figure 1 demonstrates the tightness of our bounds, espe-
cially in comparison to the prior work of (Johansson et al.,
2022). In it, we visualize the observed loss, the (unob-
servable) complete loss, our bounds and the closest corre-
sponding bound from (Johansson et al., 2022), varying the
number of training samples, all for the task of estimating
the potential outcome Y 1.

Our theoretical bound is remarkably tight both in the Near-
RCT data and in the observational datasets with hidden
confounding, matching the complete loss almost exactly.
Furthermore, in the hidden confounding case even our em-
pirical bound – which is generally looser than the theoretic
one – is exceptionally tight, possibly due to the inapplicabil-
ity of the positivity assumption. In the observable dataset

7
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Figure 3. Application: model selection on real data. The plot compares multiple models for treatment effect estimation: bars correspond
to our bounds on the complete loss of the models, while the knobs in the middle correspond to standard bootstrapped confidence intervals
for the loss on the observed distributions. Note how some models (e.g., R.F. T-learner) appear strictly better than others (e.g., G.B.
X-learner) only if ours bounds are not considered. The R.F. and G.B. T/S-learners remain strictly better than the Lasso-based models.

with fully observed confounding there is a wider gap be-
tween our bounds and the complete loss, though they are
all about the same order of magnitude. On all accounts, the
previous bound of (Johansson et al., 2022) is multiple orders
of magnitude looser.

A significant contributor to the tightness of our bounds is
the tuning parameter λ in Lemma 2.2. Figure 2 showcases
its importance, displaying the bound from Lemma 2.2 on
our dataset with hidden confounding for various values of
λ. Most existing bounds correspond to taking λ = 1 (e.g.,
those of (Ohnishi & Honorio, 2021) and those of (Johansson
et al., 2022), though it is arguable whether such a tuning
parameter could even be introduced into their IPM-based
bounds). By allowing optimization over the λ parameter we
introduced, our bounds can become over 30× tighter.

3.2. Application on real data

In this section, we work on top of the Parkinson’s Telemoni-
toring dataset of (Tsanas et al., 2009), containing features
from voice measurements paired with standardized scores
describing the progression of the disease, along with the sub-
ject’s age, gender, and time since recruitment to the study.
The goal is to assess the effect of sex on the progression of
the disease. There are likely unobserved confounders (e.g.,
not enough data about the subject to construct a baseline),
and at the same time there is enough data to nearly violate
positivity (voice data can be a good predictor of sex).

In order to evaluate a causal link between sex and disease
progression, we wish to train a model that estimates the
individual treatment effect of the standardized UPDRS score
on the subject being male vs. female. To this end, we
have trained a myriad of models consisting of T-learners, S-
learners and X-learners based on a Lasso, Gradient Boosting
and Random Forests.

To assess the quality of our models, we utilize our bounds
from Propositions 2.7 and 2.9. We limit the ∆ term via

our empirial bounds, and posit a conservative upper bound
on the variance of the loss; we note that, on the observed
distributions, the loss typically has a variance of around
10−6 to 10−8, leading us to conservatively estimate the
variance of the loss as below 10−5 to give some margin to
increased deviation in the complete distribution.

The results of this procedure can be seen in Figure 3. Prior
to the “correction” given by our bounds, we would have
confidently concluded that the Random Forest-based S- and
T-learners outperformed all others. After considering the
gap between the observed and complete distributions, how-
ever, this no longer appears to be the case, with these models
now performing roughly on par with the gradient boosting-
based meta-learners. However, even after this correction, it
is clear that there is an advantage to using more expressive
models over our linear meta-learners, these being confi-
dently outperformed by the Random Forest backed T- and
S-learners. Finally, the use of an X-learner does not seem
worth it. They are worse in terms of the observable loss
and have wider error bars due to the bound – one should
probably opt here instead for either the Random Forest T-
or S-learner.

4. Conclusion
In this work, we’ve introduced generalization bounds for
outcome regression and treatment effect estimation, estab-
lishing rigorously that modern causal ML procedures can
properly estimate causal quantities. Our results hold regard-
less of hidden confounding or lack of positivity. Moreover,
our bounds show that existing procedures for CATE estima-
tion can be adapted for other tasks, such as estimation of
quantiles of individual treatment effects – which was pre-
viously thought to be infeasible – simply by changing the
loss function in the individual optimizations. We also em-
pirically showcase the tightness and practical utility of our
bounds on semi-synthetic and real data, where it is shown
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to vastly outperform the bounds from the closest matching
prior work. We expect that our results can be of great use
not only as motivation for using existing algorithms, but
also as a backbone for new algorithms on diverse causal
inference tasks.
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Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S., Trouvé,
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A. Theoretical Results
A.1. Change of Measure

Lemma A.1 (Lemma 2.2 in the main body). Let P and Q be as in Definition 2.1. For any λ > 0,

EQ[ϕ]− E ≤ EP [ϕ] ≤ EQ[ϕ] + E

where
E ··= λ · χ2(Q∥P ) + 1

4λ
VarP (ϕ).

Moreover, the bound is optimized for
λ⋆ =

√
VarP (ϕ)/4χ2(Q∥P ).

Proof. We build upon the variational representation framework of (Ruderman et al., 2012) and (Ohnishi & Honorio, 2021).
By Lemma 2 of (Ohnishi & Honorio, 2021), we have that, for all R and S, for any ψ,

EQ[ψ] ≤ EP [ψ] + χ2(Q∥P ) + 1

4
VarP [ψ].

Consider two possible choices of ψ: ψ0 = λϕ and ψ1 = −λϕ. We then have that:

EQ[λϕ] = λEQ[ϕ] ≤ EP [λϕ] + χ2(Q∥P ) + 1

4
VarP [λϕ] = λEP [ϕ] + χ2(Q∥P ) + 1

4
λ2 VarP [ϕ]

EQ[−λϕ] = −λEQ[ϕ] ≤ EP [−λϕ] + χ2(Q∥P ) + 1

4
VarP [−λϕ] = −λEP [ϕ] + χ2(Q∥P ) + 1

4
λ2 VarP [ϕ].

Rearranging, we obtain that, for any λ > 0,

EQ[ϕ]− λ · χ2(Q∥P )− 1

4λ
VarP [ϕ] ≤ EP [ϕ] ≤ EQ[ϕ] + λ · χ2(Q∥P ) + 1

4λ
VarP [ϕ].

Finally, this bound is tightest by optimizing

λ⋆ = argmin
λ

(
EQ[ϕ] + λ · χ2(Q∥P ) + 1

4λ
VarP (ϕ)

)
= argmin

λ

(
λ · χ2(Q∥P ) + 1

4λ
VarP (ϕ)

)
.

And taking the derivative in respect to λ and equating it to zero gives the desired result.

A.2. Bounds in Expectation

Theorem A.2 (Theorem 2.3 in the main body). For any λ > 0, loss function ℓ(·, ·) and nonnegative reweighing function
w(X) with E[w(X)|T = a] = 1,

E[ℓ(Y a, h(X))] ≤ E[w(Xi)ℓ(Yi, h(Xi))|T = a] + E,

where σ2 ··= Var[ℓ(Y a, h(X))] and

E = λE

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

︸ ︷︷ ︸
∆T=a

+
σ2

4λ
.

Proof. First note that since E[w(X)|T = a] = 1, the reweighting w(X) induces a distribution PX̃ over the X with
dPX̃/dPX|T=1 = w(X).

By Lemma 2.2:

E[(Y a − h(X))2] ≤ E[w(X)(Y a − h(X))2|T = a] + λχ2(PY a,X̃|T=a∥PY a,X) +
1

4λ
Var[(Y a − h(X))2]; (1)
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Under SUTVA and ignorability with regards to X and U and using the fact that dPX̃/dPX|T=1 = w(X) and a simple
application of Bayes’ rule, we have that

dPY,X̃,U |T=a

dPY,X,U
=

dPY,U |X̃,T=a · dPX̃|T=a

dPY a,X,U
= w(X)

dPY,U |X,T=a · dPX|T=a

dPY a,X,U
= w(X)

dPY,X,U |T=a

dPY a,X,U

= w(X)
dPY a,X,U |T=a

dPY a,X,U
= w(X)

dPY a|X,U,T=a · dPX,U |T=a

dPY a|X,U · dPX,U
= w(X)

dPY a|X,U · dPX,U |T=a

dPY a|X,U · dPX,U

= w(X)
dPX,U |T=a

dPX,U
= w(X)

dPT=a|X,U · dPX,U/dPT=a

dPX,U
= w(X)

dPT=a|X,U

dPT=a

= w(X)
P[T = a|X,U ]

P[T = a]
,

and thus

χ2(PY,X̃|T=a∥PY a,X) = E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]
.

Plugging this into Equation 1, we conclude.

Theorem A.3 (Theorem 2.4 in the main body). Let ∆T=a be as in Theorem 2.3. It holds that, for any ν,

∆T=a ≤ 2E

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Proof. We can relax the bound from Theorem 2.3 in order to solve this through the use of a relaxed triangular inequality:

∆T=a = E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

≤ 2E

[(
w(X)

P[T = a|X,U ]

P[T = a]
− w(X)

1[T = a]

P[T = a]

)2
]
+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]

Which can then be rearranged into

2

P[T = a]2
E
[
w(X)2 (P[T = a|X,U ]− 1[T = a])

2
]
+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Note that E[w(X)2 (ν(X)− 1[T = a])
2
] is the Brier Score (or Mean Squared Error) of ν(X) predicting 1[T = a],

reweighted by the covariates X according to w(X). Therefore, it is minimized by ν⋆(X,U) = E[1[T = a]|X,U ] = P[T =
a|X,U ]. Therefore, it holds that

∀nu. E
[
w(X)2 (P[T = a|X,U ]− 1[T = a])

2
]
≤ E

[
w(X)2 (ν(X)− 1[T = a])

2
]
,

And we obtain that

∆T=a ≤ 2

P[T = a]2
E
[
w(X)2 (ν(X)− 1[T = a])

2
]
+ 2E

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Before we continue, let us prove a fundamental lemma about the pinball function:

Lemma A.4. Let pinballα(x) = xα1[x ≥ 0]− x(1− α)1[x < 0]. Then, for all x ∈ R and α ∈ (0, 1), it holds that

xα ≤ pinballα(x) and − x(1− α) ≤ pinballα(x).

12
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Proof. To prove that xα ≤ pinballα(x), we consider two cases:

1. If x ≥ 0, then pinballα(x) = xα and equality holds trivially.

2. If x < 0, then xα < 0. But certainly pinballα(x) = −x(1− α) ≥ 0, so the inequality holds.

To prove that −x(1− α) ≤ pinballα(x) we similarly consider two cases:

1. If x > 0, then −x(1− α) < 0. But certainly pinballα(x) = xα ≥ 0, so the inequality holds.

2. If x ≤ 0, then pinballα(x) = −x(1− α), and the equality holds trivially.

Proposition A.5 (Applicability of Assumption 2.6). Let ℓ(·, ·) be the mean squared error, mean absolute error, quantile loss
or 0-1 loss. Then it holds that there exists some C and ψ that satisfy Assumption 2.6 for ℓ.

Proof. For the mean squared error, write ℓ(y, ŷ) = (y − ŷ)2, thus having ψ(x) = x2. Then, by a relaxed triangular
inequality, (y ± ŷ)2 ≤ 2 · (y2 + (±ŷ)2) = 2 · (y2 + ŷ2), meaning we can take C = 2.

For the mean absolute error, write ℓ(y, ŷ) = |y − ŷ|, with ψ(x) = |x|. Then, by the standard triangular inequality,
|y ± ŷ| ≤ |y|+ |±ŷ| = |y|+ |ŷ|, meaning we can take C = 1.

For the α-quantile loss, write ℓ(y, ŷ) = pinballα(y − ŷ), with ψ(x) = pinballα(x) = xα1[x ≥ 0] − x(1 − α)1[x < 0].
To prove the triangular-type inequality, we consider two cases and use Lemma A.4:

1. When y − ŷ ≥ 0, it holds that

pinballα(y − ŷ) = (y − ŷ)α = yα+
α

1− α
[−ŷ(1− α)] ≤ pinballα(y) +

α

1− α
pinballα(ŷ).

pinballα(y + ŷ) = (y + ŷ)α = yα+ ŷα ≤ pinballα(y) + pinballα(ŷ).

2. When y − ŷ < 0, it holds that

pinballα(y − ŷ) = −(y − ŷ)(1− α) = −y(1− α) +
1− α

α
[ŷα] ≤ pinballα(y) +

1− α

α
pinballα(ŷ).

pinballα(y + ŷ) = −(y + ŷ)(1− α) = −y(1− α)− ŷ(1− α) ≤ pinballα(y) + pinballα(ŷ).

Joining both, we conclude that

pinballα(y ± ŷ) ≤ pinballα(y) + max

{
α

1− α
,
1− α

α
, 1

}
pinballα(ŷ)

≤ max

{
α

1− α
,
1− α

α
, 1

}
(pinballα(y) + pinballα(ŷ))

= max

{
α

1− α
,
1− α

α

}
(pinballα(y) + pinballα(ŷ))

=
max{α, 1− α}
min{α, 1− α}

(pinballα(y) + pinballα(ŷ)) .

Finally, for the 0-1 loss (in the binary case), consider y, ŷ ∈ {0, 1} and write ℓ(y, ŷ) = |y − ŷ|. Then the same logic as in
the mean absolute error holds.

13
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Proposition A.6 (Proposition 2.7 of the main body). Let ℓ be a loss function satisfying Assumption 2.6 with constant C, and
let w1(X), w0(X) be nonnegative reweighing functions. For any λ1, λ0 > 0,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))] ≤ C
(
E[w1(X))ℓ(Y, h1(X))|T = 1] + E[w0(X)ℓ(Y, h0(X))|T = 0]

+ λ1∆T=1 + λ0∆T=0︸ ︷︷ ︸
∆T−learner

+σ2
T=1/4λ1 + σ2

T=0/4λ0︸ ︷︷ ︸
σ2/4

)
,

Where σ2
T=a

··= Var[ℓ(Y a, ha(X))] and

∆T=a = E

[(
wa(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]
.

≤ 2

P[T = a]2
E
[
wa(X)2 (ν(X)− 1[T = a])

2
]

+ 2E

[(
wa(X)

1[T = a]

P[T = a]
− 1

)2
]
.

Proof. Using Assumption 2.6,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))]

= E[ψ
(
(Y 1 − Y 0)− (h1(X)− h0(X))

)
]

= E[ψ
(
(Y 1 − h1(X))− (Y 0 − h0(X))

)
]

≤ E[ψ(Y 1 − h1(X)) + ψ(Y 0 − h0(X))] = E[ψ(Y 1 − h1(X))] + E[ψ(Y 0 − h0(X))].

Then, the rest follows by applying Theorem 2.3 and 2.4.

Proposition A.7 (Proposition 2.9 of the main body). Let ℓ be a loss function satisfying Assumption 2.6 with constant C and
let w1, w0 be nonnegative reweighting functions. For any λ1, λ0, λ0,1, λ1,0 > 0,

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))] ≤ C2
(
E[w1(X)ℓē(Y, h

1(X))|T = 1] + E[w0(X)ℓe(Y, h
0(X))|T = 0]

+ E[w1(X)ℓe(Y
1 − h0(X), τ1(X))|T = 1] + E[w0(X)ℓē(h

1(X)− Y 0, τ0(X))|T = 0]

+ (λ1 + λ1,0)∆T=1 + (λ0 + λ0,1)∆T=0︸ ︷︷ ︸
∆X−learner

+σ2
T=1/4λ1 + σ2

T=0/4λ0 + σ2
1,0/4λ1,0 + σ2

0,1/4λ0,1︸ ︷︷ ︸
σ2/4

)
,

where σ2
T=a

··= Var[ℓ(Y a, ha(X))], σ2
a,b

··= Var[ℓ(Y a − hb(X), τa(X))] and

∆T=a = E

[(
wa(X)

P[T = a|X,U ]

P[T = a]
− 1

)2
]

≤ 2

P[T = a]2
E
[
wa(X)2 (ν(X)− 1[T = a])

2
]
+ 2E

[(
wa(X)

1[T = a]

P[T = a]
− 1

)2
]
.

14
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Proof. Using Assumption 2.6,

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + (1− e(X))τ0(X))]

= E[ψ
(
(Y 1 − Y 0)− (e(X)τ1(X) + (1− e(X))τ0(X))

)
]

= E[ψ
(
Y 1 − Y 0 − e(X)(τ1(X)− (Y 1 − h0(X)) + (Y 1 − h0(X)))

− (1− e(X))(τ0(X)− (h1(X)− Y 0) + (h1(X)− Y 0))
)
]

= E[ψ
(
Y 1 − Y 0 − e(X)Y 1 + e(X)h0(X)− (1− e(X))h1(X) + (1− e(X))Y 0

− e(X)(τ1(X)− (Y 1 − h0(X)))− (1− e(X))(τ0(X)− (h1(X)− Y 0))
)
]

= E[ψ
(
(1− e(X))(Y 1 − h1(X))− e(X)(Y 0 − h0(X))

− e(X)(τ1(X)− (Y 1 − h0(X)))− (1− e(X))(τ0(X)− (h1(X)− Y 0))
)
]

≤ C(E[ψ
(
(1− e(X))(Y 1 − h1(X))− e(X)(Y 0 − h0(X))

)
]

+ E[ψ
(
e(X)(τ1(X)− (Y 1 − h0(X))) + (1− e(X))(τ0(X)− (h1(X)− Y 0))

)
])

≤ C2(E[ψ
(
(1− e(X))(Y 1 − h1(X))

)
] + E[ψ

(
e(X)(Y 0 − h0(X))

)
]

+ E[ψ
(
e(X)(τ1(X)− (Y 1 − h0(X)))

)
] + E[ψ

(
(1− e(X))(τ0(X)− (h1(X)− Y 0))

)
])

= C2(E[ℓē(Y 1, h1(X))] + E[ℓe(Y 0, h0(X))] + E[ℓe(Y 1 − h0(X), τ1(X))] + E[ℓē(h1(X)− Y 0, τ0(X))])

Then, the rest follows by applying Theorems 2.3 and 2.4.

A.3. Finite-sample Bounds

Throughout this section, we rely on bounds on the random variables within the expectations that appear on the right-hand-side
of the results in Section A.2.
Lemma A.8. Suppose that ℓ is a loss function bounded in [0,M ], w(X) is a nonnegative reweighing function bounded in
[0, wmax], and that ν(X) is bounded in [0, 1]. It then holds that, for all x, y:

0 ≤ w(x)ℓ(y, h(x)) ≤ wmaxM

0 ≤
(

w(x)

P[T = a]

)2

(ν(x)− 1[T = a])2 +

(
w(x)

1[T = a]

P[T = a]
− 1

)2

≤
(

wmax

P[T = a]

)2

+max

{
1,

(
wmax

P[T = a]
− 1

)2
}
.

Proof. For the first bound, simply note that both w(x) and ℓ(y, h(x)) are nonnegative, and that

w(x)ℓ(y, h(x)) ≤ wmaxℓ(y, h(x)) ≤ wmaxM.

The second bound is slightly more involved.

0 ≤ w(x)

P[T = a]
≤ wmax

P[T = a]
=⇒

(
w(x)

P[T = a]

)2

≤
(

wmax

P[T = a]

)2

and
−1 ≤ ν(x)− 1[T = a] ≤ 1 =⇒ 0 ≤ (ν(x)− 1[T = a])2 ≤ 1.

Together, we get that

0 ≤
(

w(x)

P[T = a]

)2

(ν(x)− 1[T = a])2 ≤
(

wmax

P[T = a]

)2

.

Next,

−1 ≤ w(x)
1[T = a]

P[T = a]
− 1 ≤ wmax

P[T = a]
− 1 =⇒ 0 ≤

(
w(x)

1[T = a]

P[T = a]
− 1

)2

≤ max

{
1,

(
wmax

P[T = a]
− 1

)2
}
.

Combining everything, we get that

0 ≤
(

w(x)

P[T = a]

)2

(ν(x)− 1[T = a])2 +

(
w(x)

1[T = a]

P[T = a]
− 1

)2

≤
(

wmax

P[T = a]

)2

+max

{
1,

(
wmax

P[T = a]
− 1

)2
}
.
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We base ourselves on a variation of the standard PAC Rademacher Complexity bound presented in (Mohri et al., 2012):

Lemma A.9 (Theorem 3.3 in (Mohri et al., 2012)). Let G be family of functions mapping from Z to [0, 1]. Then, for any
δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample (Zi)

n
i=1, the following holds for all g ∈ G:

E[g(Z)] ≤ 1

n

n∑
i=1

g(Zi) + 2R(G) +
√

log 1/δ

2n
.

Lemma A.10. Let G be family of functions mapping from Z to [0,M ]. Then, for any δ > 0, with probability at least 1− δ
over the draw of an i.i.d. sample (Zi)

n
i=1, the following holds for all g ∈ G:

E[g(Z)] ≤ 1

n

n∑
i=1

g(Zi) + 2R(G) +M

√
log 1/δ

2n
.

Proof. Writing g(z) =M−1g̃(z), we have by the definition of the Rademacher complexity and Lemma A.9 that

R(G) = E

[
Eσ

[
sup
g∈G

1

n

n∑
i=1

σig(Zi)

]]

= E

[
Eσ

[
sup
g̃∈G̃

1

n

n∑
i=1

σiM
−1g̃(Zi)

]]

=M−1E

[
Eσ

[
sup
g̃∈G̃

1

n

n∑
i=1

σig̃(Zi)

]]
=M−1R(G̃)

and so

M−1E[g̃(Z)] ≤M−1 1

n

n∑
i=1

g̃(Zi) + 2M−1R(G) +
√

log 1/δ

2n
.

=⇒ E[g̃(Z)] ≤ 1

n

n∑
i=1

g̃(Zi) + 2R(G) +M

√
log 1/δ

2n
.

Corollary A.11 (Corollary 2.5 in the main body). Suppose that ℓ is a loss function bounded in [0,M ] and w(X) is a
nonnegative reweighing function bounded in [0, wmax]. Then, for any λ > 0, with probability at least 1− δ over the draw of
the training data (Xi, Ti, Yi)

n
i=1, for all h ∈ H and ν ∈ Hν ,

E[ℓ(Y a, h(X))] ≤ 1

nT=a

∑
Ti=a

w(Xi)ℓ(Yi, h(Xi)) + λ∆̂T=a +
M2

16λ

+ 2R(w · ℓ ◦ H) + 2R(∆̂ ◦ Hν) +
(
Mwmax + C(wmax)

√
nT=a/n

)√ log 2/δ

2nT=a

where

∆̂T=a ··=
2λ

n

n∑
i=1

(
w(Xi)

P[T = a]

)2

(ν(Xi)− 1[Ti = a])
2
+

2λ

n

n∑
i=1

(
w(Xi)

1[Ti = a]

P[T = a]
− 1

)2

,

R(w · ℓ ◦ H) and R(∆̂ ◦ Hν) are the Rademacher complexities of H and Hν composed with their respective loss
functions/means and C(wmax) is a constant nonnegative quantitity defined in the proof.
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Proof. By Theorems 2.3 and 2.4,

E[ℓ(Y a, h(X))] ≤ E[w(Xi)ℓ(Yi, h(Xi))|T = a]

+ 2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2λE

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
+

Var[ℓ(Y a, h(X))]

4λ
.

By Popoviciu’s inequality, σ2 ≤M2/4 and so

E[ℓ(Y a, h(X))] ≤ E[w(Xi)ℓ(Yi, h(Xi))|T = a]

+ 2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2λE

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]
+
M2

16λ
.

Note that for all x, y, it holds that w(X)ℓ(Y, h(X)) ≤ wmaxM . By Lemma A.10 along with Lemma A.8, with probability
of at least 1− δ/2,

E[w(X)ℓ(Y, h(X))|T = a] ≤ 1

nT=a

∑
Ti=a

w(Xi)ℓ(Yi, h(Xi)) + 2R(w · ℓ ◦ H) +Mwmax

√
log 2/δ

2nT=a
.

And, also with probability of at least 1− δ/2,

2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2λE

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
]

= 2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

(
w(X)

1[T = a]

P[T = a]
− 1

)2
]

≤ 2λ

n

n∑
i=1

(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

2λ

n

n∑
i=1

(
w(X)

1[T = a]

P[T = a]
− 1

)2

+ 2R(∆̂ ◦ Hν) +

((
wmax

P[T = a]

)2

+max

{
1,

(
wmax

P[T = a]
− 1

)2
})√

log 2/δ

2n
.

Therefore, by an union bound, with probability of at least 1− δ,

E[ℓ(Y a, h(X))] ≤ 1

nT=a

∑
Ti=a

w(Xi)ℓ(Yi, h(Xi)) +
2λ

n

n∑
i=1

(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

+
2λ

n

n∑
i=1

(
w(X)

1[T = a]

P[T = a]
− 1

)2

+
M2

16λ
+ 2R(w · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+Mwmax

√
log 2/δ

2nT=a
+

((
wmax

P[T = a]

)2

+max

{
1,

(
wmax

P[T = a]
− 1

)2
})

︸ ︷︷ ︸
C(wmax)

√
log 2/δ

2n
.

And we conclude by rearranging and observing that

Mwmax

√
log 2/δ

2nT=a
+ C(wmax)

√
log 2/δ

2n
=Mwmax

√
log 2/δ

2nT=a
+ C(wmax)

√
nT=a

n

√
log 2/δ

2nT=a

=

(
wmaxM + C(wmax)

√
nT=a

n

)√
log 2/δ

2nT=a
.
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Corollary A.12 (Corollary 2.7 in the main body). Let ℓ be a loss function bounded in [0,M ] satisfying Assumption 2.6 and
let w1(X), w0(X) be nonnegative reweighing functions bounded in [0, wmax]. Then, for any λ1, λ2 > 0, with probability at
least 1− δ over the draw of the training data (Xi, Ti, Yi)

n
i=1, for all h1, h0 ∈ H and ν ∈ Hν ,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))] ≤ 1

nT=1

∑
Ti=1

w(Xi)ℓ(Yi, h
1(Xi)) +

1

nT=0

∑
Ti=0

w(Xi)ℓ(Yi, h
0(Xi))

+ λ1∆̂T=1 + λ0∆̂T=0 +
M2

16λ1
+

M2

16λ0

+ 2R(w1 · ℓ ◦ H) + 2R(w0 · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+
(
cMwmax + C(wmax)

√
nT=min/n

)√ log 3/δ

2nT=min

where

∆̂T=a ··=
2λ

n

n∑
i=1

(
w(Xi)

P[T = a]

)2

(ν(Xi)− 1[Ti = a])
2
+

2λ

n

n∑
i=1

(
w(Xi)

1[Ti = a]

P[T = a]
− 1

)2

,

nT=min = min{nT=1, nT=0}, R(wa · ℓ ◦ H) and R(∆̂ ◦ Hν) are the Rademacher complexities of H and Hν composed
with their respective loss functions/means, and c and C(wmax) are constant nonnegative quantities defined in the proof,
with 1 ≤ c ≤ 2.

Proof. By Propositions 2.7,

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))] ≤ C
(
E[w1(X))ℓ(Y, h1(X))|T = 1] + E[w0(X)ℓ(Y, h0(X))|T = 0]

+
2λ1

P[T = 1]2
E
[
w1(X)2 (ν(X)− 1[T = 1])

2
]
+ 2λ1E

[(
w1(X)

1[T = 1]

P[T = 1]
− 1

)2
]

+
2λ0

P[T = 0]2
E
[
w0(X)2 (ν(X)− 1[T = 0])

2
]
+ 2λ0E

[(
w0(X)

1[T = 0]

P[T = 0]
− 1

)2
]

+
1

4λ1
Var[ℓ(Y 1, h1(X))] +

1

4λ0
Var[ℓ(Y 0, h0(X))]

)
.

By Popoviciu’s inequality, σ2 ≤M2/4 and so

E[ℓ(Y 1 − Y 0, h1(X)− h0(X))] ≤ C
(
E[w1(X))ℓ(Y, h1(X))|T = 1] + E[w0(X)ℓ(Y, h0(X))|T = 0]

+
2λ1

P[T = 1]2
E
[
w1(X)2 (ν(X)− 1[T = 1])

2
]
+ 2λ1E

[(
w1(X)

1[T = 1]

P[T = 1]
− 1

)2
]

+
2λ0

P[T = 0]2
E
[
w0(X)2 (ν(X)− 1[T = 0])

2
]
+ 2λ0E

[(
w0(X)

1[T = 0]

P[T = 0]
− 1

)2
]

+
M2

16λ1
+

M2

16λ0

)
.

By Lemma A.10 along with Lemma A.8, with probability of at least 1− δ/3,

E[wa(X)ℓ(Y, ha(X))|T = a] ≤ 1

nT=a

∑
Ti=a

wa(Xi)ℓ(Yi, h
a(Xi)) + 2R(wa · ℓ ◦ H) +Mwmax

√
log 3/δ

2nT=a
.
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And, also with probability of at least 1− δ/3,

∑
a∈{0,1}

(
2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2λE

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
])

= 2λE

 ∑
a∈{0,1}

((
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

(
w(X)

1[T = a]

P[T = a]
− 1

)2
)

≤
∑

a∈{0,1}

(
2λ

n

n∑
i=1

(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

2λ

n

n∑
i=1

(
w(X)

1[T = a]

P[T = a]
− 1

)2
)

+ 2R(∆̂ ◦ Hν) +

 ∑
a∈{0,1}

(
wmax

P[T = a]

)2

+
∑

a∈{0,1}

max

{
1,

(
wmax

P[T = a]
− 1

)2
}√ log 3/δ

2n
.

Therefore, by an union bound, with probability of at least 1− δ,

E[ℓ(Y a, h1(X)− h0(X))] ≤ 1

nT=1

∑
Ti=1

w1(Xi)ℓ(Yi, h
1(Xi)) +

1

nT=0

∑
Ti=0

w0(Xi)ℓ(Yi, h
0(Xi))

+
2λ

n

n∑
i=1

(
w1(X)

P[T = 1]

)2

(ν(X)− 1[T = 1])
2
+

2λ

n

n∑
i=1

(
w1(X)

1[T = 1]

P[T = 1]
− 1

)2

+
2λ

n

n∑
i=1

(
w0(X)

P[T = 0]

)2

(ν(X)− 1[T = 0])
2
+

2λ

n

n∑
i=1

(
w0(X)

1[T = 0]

P[T = 0]
− 1

)2

+
M2

16λ1
+

M2

16λ2
+ 2R(w1 · ℓ ◦ H) + 2R(w0 · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+Mwmax

√
log 3/δ

2nT=1
+Mwmax

√
log 3/δ

2nT=0

+

 ∑
a∈{0,1}

(
wmax

P[T = a]

)2

+
∑

a∈{0,1}

max

{
1,

(
wmax

P[T = a]
− 1

)2
}

︸ ︷︷ ︸
C(wmax)

√
log 3/δ

2n
.

And we conclude by rearranging and observing that, assuming without loss of generality that nT=1 = min{nT=1, nT=0},

Mwmax

√
log 3/δ

2nT=1
+Mwmax

√
log 3/δ

2nT=0
+ C(wmax)

√
log 3/δ

2n

=Mwmax

√
log 3/δ

2nT=min
+Mwmax

√
nT=min

nT=0

√
log 3/δ

2nT=min
+ C(wmax)

√
nT=min

n

√
log 3/δ

2nT=min

=

Mwmax

(
1 +

√
nT=min

nT=0

)
︸ ︷︷ ︸

c

+C(wmax)

√
nT=min

n


√

log 3/δ

2nT=min

and that 0 ≤
√
nT=min/nT=0 ≤ 1.

Corollary A.13. Let ℓ be a loss function bounded in [0,M ] satisfying Assumption 2.6 and let w1(X), w0(X) be nonnegative
reweighing functions bounded in [0, wmax]. Then, for any λ1, λ0 > 0, with probability at least 1− δ over the draw of the
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training data (Xi, Ti, Yi)
n
i=1, for all h1, h0, τ1, τ0 ∈ H and ν ∈ Hν ,

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))] ≤ C2

(
1

nT=1

∑
Ti=1

w(Xi)ℓē(Yi, h
1(Xi)) +

1

nT=0

∑
Ti=0

w(Xi)ℓe(Yi, h
0(Xi))

+
1

nT=1

∑
Ti=1

w(Xi)ℓe(Yi − h0(Xi), τ
1(Xi)) +

1

nT=0

∑
Ti=0

w(Xi)ℓē(h
1(Xi)− Yi, τ

0(Xi))

+ λ1∆̂T=1 + λ0∆̂T=0 +
M2

4λ1
+
M2

4λ0
+ 4R(w1 · ℓ ◦ H) + 4R(w0 · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+
(
2cMwmax + C(wmax)

√
nT=min/n

)√ log 5/δ

2nT=min

)

where

∆̂T=a ··=
2λ

n

n∑
i=1

(
w(Xi)

P[T = a]

)2

(ν(Xi)− 1[Ti = a])
2
+

2λ

n

n∑
i=1

(
w(Xi)

1[Ti = a]

P[T = a]
− 1

)2

,

nT=min = min{nT=1, nT=0}, R(wa · ℓ ◦ H) and R(∆̂ ◦ Hν) are the Rademacher complexities of H and Hν composed
with their respective loss functions/means, and c and C(wmax) are constant nonnegative quantities defined in the proof,
with 1 ≤ c ≤ 2.

Proof. By Proposition 2.9,

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))] ≤ C2
(
E[w1(X)ℓē(Y, h

1(X))|T = 1] + E[w0(X)ℓe(Y, h
0(X))|T = 0]

+ E[w1(X)ℓe(Y
1 − h0(X), τ1(X))|T = 1] + E[w0(X)ℓē(h

1(X)− Y 0, τ0(X))|T = 0]

+

(
λ1
2

+
λ1
2

)
∆T=1 +

(
λ0
2

+
λ0
2

)
∆T=0 +

σ2
T=1

4λ1/2
+
σ2
T=0

4λ0/2
+

σ2
1,0

4λ1/2
+

σ2
0,1

4λ0/2

)
,

By Popoviciu’s inequality, σ2 ≤M2/4 and so

E[ℓ(Y 1 − Y 0, e(X)τ1(X) + ē(X)τ0(X))] ≤ C2
(
E[w1(X)ℓē(Y, h

1(X))|T = 1] + E[w0(X)ℓe(Y, h
0(X))|T = 0]

+ E[w1(X)ℓe(Y
1 − h0(X), τ1(X))|T = 1] + E[w0(X)ℓē(h

1(X)− Y 0, τ0(X))|T = 0]

+ λ1∆T=1 + λ0∆T=0 +
M2

4λ1
+
M2

4λ0

)
,

By Lemma A.10 along with Lemma A.8, with probability of at least 1− δ/5,

E[w1(X)ℓē(Y, h
1(X))|T = 1] ≤ 1

nT=1

∑
Ti=1

w1(Xi)ℓē(Yi, h
1(Xi)) + 2R(w1 · ℓ ◦ H) +Mwmax

√
log 5/δ

2nT=1
.

E[w0(X)ℓe(Y, h
0(X))|T = 0] ≤ 1

nT=0

∑
Ti=0

w0(Xi)ℓe(Yi, h
0(Xi)) + 2R(w0 · ℓ ◦ H) +Mwmax

√
log 5/δ

2nT=0
.
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Also with probability of at least 1− δ/5,

E[w1(X)ℓe(Y
1 − h0(X), τ1(X))|T = 1] ≤ 1

nT=1

∑
Ti=1

w1(Xi)ℓe(Y
1 − h0(X), τ1(X))

+ 2R(w1 · ℓ ◦ H) +Mwmax

√
log 5/δ

2nT=1
.

E[w0(X)ℓē(h
1(X)− Y 0, τ0(X))|T = 0] ≤ 1

nT=0

∑
Ti=0

w0(Xi)ℓē(h
1(X)− Y 0, τ0(X))

+ 2R(w0 · ℓ ◦ H) +Mwmax

√
log 5/δ

2nT=0
.

And, likewise,

∑
a∈{0,1}

(
2λE

[(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2

]
+ 2λE

[(
w(X)

1[T = a]

P[T = a]
− 1

)2
])

= 2λE

 ∑
a∈{0,1}

((
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

(
w(X)

1[T = a]

P[T = a]
− 1

)2
)

≤
∑

a∈{0,1}

(
2λ

n

n∑
i=1

(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

2λ

n

n∑
i=1

(
w(X)

1[T = a]

P[T = a]
− 1

)2
)

+ 2R(∆̂ ◦ Hν) +

 ∑
a∈{0,1}

(
wmax

P[T = a]

)2

+
∑

a∈{0,1}

max

{
1,

(
wmax

P[T = a]
− 1

)2
}√ log 5/δ

2n
.

Therefore, by an union bound, with probability of at least 1− δ,

E[ℓ(Y a, e(X)τ1(X) + ē(X)τ0(X))] ≤ 1

nT=1

∑
Ti=1

w1(Xi)ℓē(Yi, h
1(Xi)) +

1

nT=0

∑
Ti=0

w0(Xi)ℓe(Yi, h
0(Xi))

+
1

nT=1

∑
Ti=1

w1(Xi)ℓe(Y
1 − h0(X), τ1(X)) +

1

nT=0

∑
Ti=0

w0(Xi)ℓē(h
1(X)− Y 0, τ0(X))

+
∑

a∈{0,1}

(
2λ

n

n∑
i=1

(
w(X)

P[T = a]

)2

(ν(X)− 1[T = a])
2
+

2λ

n

n∑
i=1

(
w(X)

1[T = a]

P[T = a]
− 1

)2
)

+ 4R(w1 · ℓ ◦ H) + 4R(w0 · ℓ ◦ H) + 2R(∆̂ ◦ Hν)

+ 2Mwmax

√
log 5/δ

2nT=1
+ 2Mwmax

√
log 5/δ

2nT=0

+

 ∑
a∈{0,1}

(
wmax

P[T = a]

)2

+
∑

a∈{0,1}

max

{
1,

(
wmax

P[T = a]
− 1

)2
}

︸ ︷︷ ︸
C(wmax)

√
log 5/δ

2n
.
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And we conclude by rearranging and observing that, assuming without loss of generality that nT=1 = min{nT=1, nT=0},

2Mwmax

√
log 5/δ

2nT=1
+ 2Mwmax

√
log 5/δ

2nT=0
+ C(wmax)

√
log 5/δ

2n

= 2Mwmax

√
log 5/δ

2nT=min
+ 2Mwmax

√
nT=min

nT=0

√
log 5/δ

2nT=min
+ C(wmax)

√
nT=min

n

√
log 5/δ

2nT=min

=

2Mwmax

(
1 +

√
nT=min

nT=0

)
︸ ︷︷ ︸

c

+C(wmax)

√
nT=min

n


√

log 5/δ

2nT=min

and that 0 ≤
√
nT=min/nT=0 ≤ 1.
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B. Details About the Experiments
B.1. Details About the Simulated Data

B.1.1. LEARNED IHDP

The IHDP dataset (Hill, 2011) are the results of a randomized control trial. In order to be able to simulate the potential
outcomes, we train generative models on it and use these generative models as our data generating process.

First, we train a Forest Diffusion (Jolicoeur-Martineau et al., 2023) model to generate the covariates X . We then train two
Gaussian Processes: one to predict Y 1 from X based on samples from Y |X,T = 1, and another to predict Y 0 from X based
on samples from Y |X,T = 0. The use of Gaussian Processes here allows us to sample from the predictive distribution,
introducing variability into the potential outcomes, an essential element of real data. Finally, a calibrated random forest
model is trained to predict the treatment assignments from X .

Such data is guaranteed to satisfy ignorability, since the treatment assignment is determined independenly from the potential
outcomes, given the covariates X . Moreover, since the original data is an RCT, it is expected that the data will roughly
resemble an RCT (but not exactly, since the treatment assignment is allowed to vary over the X).

B.1.2. ACIC16

This is the data from the 2016 edition of the Atlantic Causal Inference Competition (Dorie et al., 2017), widely used in
previous works.

It is synthetic, providing even the potential outcomes, but crafted to resemble real data. Nevertheless, it is guaranteed to
satisfy the standard ignorability (i.e., no hidden confounding) and positivity assumptions.

B.1.3. CONFOUNDED ACIC16

This is built on top of the data from ACIC16. Having generated X,T, Y 1, Y 0 as in ACIC16, we now modify the potential
outcomes in order to violate positivity and ignorability by making it so that when T = 0, Y 1 is offset by −20. This makes it
so that T (which is not part of X) becomes a hidden confounder, and positivity is violated (since certain outcomes happen
only in the counterfactuals). Finally, this modification makes it so that the true treatment propensities (accounting for the
unobserved confounder) are exactly equal to T .

B.2. Learning reweightings and the ν

B.2.1. LEARNING TO REWEIGHT

We consider two options to learn the reweighting functions w(X). One is to simply use the constant reweighting w ≡ 1,
which is a surprisingly strong option.

Another option is to approximate the “optimal” weights given by

wa⋆(X) =
P[T = a]

P[T = a|X]
.

Were we to use these precise weights under no hidden confounding and positivity, we would fully eliminate the gap between
the observed and complete distributions, since for any ϕ(X),

E[wa⋆(X) · ϕ(X)|T = a] = E[ϕ(X)].

To approximate wa⋆, we first train a classifier ê(X) to estimate P[T = a|X] and estimate the probability P[T = a] via its
sample mean as p̂T=a, and produce the following intermediate unnormalized approximation w̃a(X) for the weights:

w̃a(X) = p̂T=a/ê(X).

To ensure that E[ŵa(X)|T = a] = 1 (as required by our bounds), we normalize w̃a(X) by its sample mean M :

ŵa(X) = w̃a(X)/M̂, M̂ = Ê[w̃a(X)].
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B.2.2. LEARNING A ν

The ν(X) is a probabilistic classification model for the treatment assignment (possibly the very same one used for weight
estimation), with ν(X) being the predicted probability of T = a given X (i.e., ν(X) ≈ P[T = a|X]). Since ν appears in
the bound within a classification loss of the model for predicting T (the Brier score), a better classification model (i.e., a
better ν) means a better bound.

B.3. Details about the figures

In Figure 1, all means were estimated via the standard empirical mean with an adequately high number of samples. The
underlying models used were Random Forests as per Scikit-Learn’s implementation (Pedregosa et al., 2011) with the default
hyperparameters. For the prior work bound of (Johansson et al., 2022), the estimation of the Wasserstein distance (which is
highly nontrivial) was done with GeomLoss, which implements the method from (Feydy et al., 2018).

Figure 2 was computed on the Confounded ACIC16 dataset on the loss of outcome regression of Y 1, with the relevant
means being estimated via the standard empirical mean from a sufficiently large number of samples.

In Figure 3, none of the models use sample reweighting. An alternate version of the figure including such models can be
found in Section C. The loss used in the figure is the mean squared loss.
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C. More figures
In what follows:

• Quantile loss refers to the quantile loss with α = 0.8;

• 0-1 loss refers to the 0-1 loss for predicting whether the target is above its median value.

Figure 4. Alternate version of Figure 1 for outcome regression of Y 1 and including more losses.
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Figure 5. Alternate version of Figure 1 for T-learners and including more losses.

(a) Near-RCT dataset. (b) Observational dataset. (c) Hidden Confounding dataset.

Figure 6. Alternate versions of Figure 2.
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Figure 7. Alternate version of Figure 3 which includes models using sample reweighting.

27


