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6 Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Bennett A. Landman1,2,3,4,5 bennett.landman@vanderbilt.edu

Editors: Accepted for publication at MIDL 2023

Abstract

Diffusion MRI (dMRI) streamline tractography is the gold-standard for in vivo estimation
of white matter (WM) pathways in the brain. However, the high angular resolution dMRI
acquisitions capable of fitting the microstructural models needed for tractography are often
time-consuming and not routinely collected clinically, restricting the scope of tractography
analyses. To address this limitation, we build on recent advances in deep learning which
have demonstrated that streamline propagation can be learned from dMRI directly with-
out traditional model fitting. Specifically, we propose learning the streamline propagator
from T1w MRI to facilitate arbitrary tractography analyses when dMRI is unavailable. To
do so, we present a novel convolutional-recurrent neural network (CoRNN) trained in a
teacher-student framework that leverages T1w MRI, associated anatomical context, and
streamline memory from data acquired for the Human Connectome Project. We charac-
terize our approach under two common tractography paradigms, WM bundle analysis and
structural connectomics, and find approximately a 5-15% difference between measures com-
puted from streamlines generated with our approach and those generated using traditional
dMRI tractography. When placed in the literature, these results suggest that the accuracy
of WM measures computed from T1w MRI with our method is on the level of scan-rescan
dMRI variability and raise an important question: is tractography truly a microstructural
phenomenon, or has dMRI merely facilitated its discovery and implementation?
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1. Introduction

Diffusion MRI (dMRI) streamline tractography is the gold-standard for in vivo estimation
of white matter (WM) pathways in the brain (Jones, 2010). One key similarity across mod-
ern implementations is the reliance on high angular resolution diffusion imaging (HARDI)
(Descoteaux, 1999). HARDI acquisitions allow advanced models, like the fiber orientation
distribution (FOD), to better capture the orientations of underlying WM fiber populations,
allowing streamlines to be more accurately propagated through the brain (Tournier et al.,
2004). One key challenge to this paradigm is that HARDI acquisitions are often time-
consuming and can suffer from noise issues and as such are rarely collected clinically. Thus,
tractography has primarily been limited to those with the expertise to robustly acquire and
analyze HARDI. This renders a significant portion of neuroimaging data unavailable for
tractography analyses, limiting advances in the understanding of WM.

To address this concern, prior studies have sought to skip the tractography step for com-
mon tractography-based analyses, like WM bundle analysis and structural connectomics,
producing voxel-based WM segmentations or probabilistic atlases that require reworking of
existing tractography workflows (Yeh, 2020; Sporns et al., 2005; Yang et al., 2022; Alemán-
Gómez et al., 2022). As such, a “plug-and-play” solution to facilitate arbitrary subject-
specific streamline-based tractography analyses without dMRI remains elusive. We seek to
fill this gap by learning the streamline propagator itself from T1w MRI. To do so, we present
a novel convolutional-recurrent neural network (CoRNN) trained in a teacher-student frame-
work leveraging T1w MRI, anatomical context, and streamline memory.

To provide intuition for this work, we first consider traditional tractography using FODs
fit from dMRI with constrained spherical deconvolution (CSD) (Algorithm 1) (Tournier
et al., 2004, 2007). FODs are often represented with 45 8th order even spherical harmonic
coefficients captured on a rigid grid of voxels, whereas streamlines are represented as a series
of points in continuous 3D space (Tournier et al., 2007, 2019). The general idea is that the
FOD information at the ith point of a streamline, x̄i, allows one to compute dx̄i, or the
unit vector representing the direction to the next point, x̄i+1. One can then propagate the
streamline to x̄i+1 = x̄i + γdx̄i, where γ is the step size.

As such, the first consideration is that given x̄i one must estimate the FOD at x̄i
even if x̄i does not fall on the grid. Typically, this is achieved by sampling the FOD
grid at x̄i using some form of interpolation. We refer to sampling the grid using trilinear
interpolation as the “SAMP” operation. After SAMP to estimate the FOD at x̄i, one must
then compute dx̄i = f (FOD (x̄i)). There exist many propagators algorithms for f . We
select the SDStream deterministic algorithm (Tournier et al., 2012).

Algorithm 1: Traditional streamline propagation

1. Given a grid of FODs from dMRI, FOD = CSD (dMRI), and streamline point
x̄i, perform SAMP to obtain FOD (x̄i).

2. Compute dx̄i = f (FOD (x̄i)) with a streamline propagator, f , like SDStream.
3. Propagate streamline to x̄i+1 = x̄i + γdx̄i, where γ is the step size.

Prior works have modeled this iterative process with recurrent neural networks (RNNs)
and shown that the streamline propagator can be a learned function from a grid of dMRI
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signals directly, effectively skipping the CSD step (Poulin et al., 2019). Interestingly, we ob-
serve that both FODs and dMRI signals are simply grids of imaging features that happen to
be modeled or measured, respectively. Given this, we posit that the grid of imaging features
can be learned instead: in this case, from T1w MRI with a convolutional neural network
(CONV). Thus, we propose a modified streamline propagation algorithm (Algorithm 2).

Algorithm 2: Proposed streamline propagation

1. Given a grid of learned imaging features from T1w MRI, I = CONV (T1w), and
streamline point x̄i, perform SAMP to obtain I (x̄i).

2. Compute dx̄i, h̄i = g
(
I (x̄i) , h̄i−1

)
with a learned streamline propagator, g,

approximated by an RNN with hidden state, h̄.
3. Propagate streamline to x̄i+1 = x̄i + γdx̄i, where γ is the step size.

We note CONV and the RNN can be trained end-to-end since they are linked by SAMP,
a differentiable operation. Further, unlike dMRI which provides high contrast within WM,
T1w MRI largely detects consistent intensities within it. Thus, to obtain useful signals in
WM, we posit that the receptive field for CONV must be large enough to capture WM tissue
borders. Further, since prior studies have demonstrated that neural networks can learn to
propagate streamlines from dMRI signals, the solution space for the problem at hand is
known to exist for dMRI (Poulin et al., 2019). Thus, we design a framework to constrain
that the solution space for a “student” T1w MRI network be close to that modeled by an
analogous “teacher” network from dMRI.

In summary, we attempt to tackle the challenge of performing tractography when tra-
ditional dMRI acquisitions are unavailable. As such, we propose learning the streamline
propagator from T1w MRI and associated anatomical context with three primary contribu-
tions: we present a novel interpretation of CoRNN which (1) is linked end-to-end through
innovative use of trilinear sampling, (2) is trained with a custom teacher-student framework
to constrain the solution space of T1w MRI to be close to that of dMRI, and (3) propagates
streamlines directly on T1w MRI in a first for the field, facilitating streamline-based, WM
bundle and connectomics analyses without dMRI.

2. Methods

2.1. Data and data preparation

We utilize paired dMRI and T1w MRI from 100 adult participants from the Human Con-
nectome Project (HCP) for training (80), validation (10), and testing (10) (Van Essen
et al., 2013). The testing participants have two imaging sessions each with dMRI and T1w
MRI, allowing our method to be evaluated against scan-rescan dMRI performance. The
dMRI were acquired on a custom 3T Siemens Skyra (Erlangen, Germany) with multishell
single-shot echo planar imaging at b = 1000, 2000, and 3000 s/mm2 with 90 directions per
shell (TE/TR = 89.5/5520ms) and 6 b = 0 s/mm2 images. All dMRI were susceptibility,
motion, and eddy current corrected (Andersson et al., 2003; Andersson and Sotiropoulos,
2016). The T1w MRI were acquired with 3D MPRAGE (TE/TR=2.1/2400ms).
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To prepare the T1w MRI, we compute a brain mask and perform N4 bias correction
(Fischl, 2012; Tustison et al., 2010). We then compute the anatomical context utilized for
the network in three steps. First, a tissue-type mask is computed, providing cortical GM,
deep GM, WM, and CSF segmentations (Tournier et al., 2019; Jenkinson et al., 2012). Sec-
ond, 132 brain regions are computed with the SLANT deep learning framework and grouped
into 46 larger regions based on the BrainColor protocol (Huo et al., 2019). Third, 72 WM
bundle regions defined by the TractSeg algorithm are computed with the WM learning
(WML) framework (Yang et al., 2022; Wasserthal et al., 2018). All the contextual informa-
tion is one-hot encoded. The bias corrected T1w MRI is normalized to the median value
within the brain mask. This produces 123 total features for learning. Finally, we compute a
rigid transformation between the T1w MRI and the Montreal Neurological Institute (MNI)
common space at 2mm isotropic resolution (Grabner et al., 2006).

To process the dMRI, we first compute a rigid transformation between the T1w MRI
and average b = 0 s/mm2 image, allowing the brain and tissue-type masks to be utilized for
dMRI processing. Then, we fit FODs to the dMRI using the Tournier et al. (2013) response
function and CSD (Tournier et al., 2007). Subsequently, we compute 1 million streamlines
for the training and validation FODs with MRTrix3 SDStream anatomically constrained
tractography via the tissue-type and brain masks, seeding at the GM/WM interface, a
step size of 1mm, and default tracking parameters otherwise (Tournier et al., 2019, 2012;
Smith et al., 2012). The 1 million streamlines are then randomly split into chunks of 1000
streamlines each. For labels, we compute unit vectors representing the steps between all
adjacent points on a streamline in spherical coordinates (θ and ϕ). This yields labels that
are one point shorter than streamlines, so the last points of all streamlines are dropped.

All data are rigidly moved to 2mm MNI space for training and evaluation.

Figure 1: Teacher-student training and inference frameworks.
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2.2. Teacher-student training and network architectures

We train our approach in a teacher-student framework (Figure 1), learning a streamline
propagator from FODs with the teacher before training the student with T1w MRI.

For the teacher, we seek to balance out local information with streamline memory (Poulin
et al., 2017). As such, we first use a four-block MLP to embed FOD information queried with
SAMP at streamline point locations where each block consists of a linear layer (size 512),
a batch normalization layer, and a leaky ReLU activation (slope 0.1) (Ioffe and Szegedy,
2015). The MLP output is then fed into two stacked gated-recurrent-unit (GRU) RNNs
(hidden size 512) to encode streamline memory (Cho et al., 2014). The outputs of both
are then concatenated and projected with a linear layer (LIN) to the 2D output space
representing dx̄ as θ and ϕ. During training, we use a batch size of 1 on the image level,
and a randomly selected batch of 1 chunk or 1000 streamlines for the SAMP operation.
We constrain that the network output, dx̄pred, be close to the labels, dx̄label, with a cosine
similarity loss, Lcos (dx̄pred, dx̄label), averaged across all streamlines in the chunk:

Lcos(z̄1, z̄2) = 1− ⟨z̄1, z̄2⟩
∥z̄1∥∥z̄2∥

(1)

For the student model, we use a single 7x7x7 3D convolutional projection layer for
CONV, providing a 1.4x1.4x1.4cm receptive field in 2mm space. We then utilize SAMP and
the same MLP, GRU, and LIN architectures as the teacher to convert the CONV output
to streamline points and compute dx̄pred. We also utilize frozen weights for the GRU and
LIN modules transferred from the teacher. When training the student, we enforce the same
constraint against the labels and additionally constrain that the output of the student MLP
be similar to that of the teacher MLP with an additional cosine similarity loss.

All models, training, and inference are implemented in PyTorch 1.12.1 and performed
on an NVIDIA RTX Quadro 5000 or RTX A6000 (CUDA 11.6). We use an Adam optimizer
with a constant learning rate of 0.001 and stop training with no improvement in validation
loss after 200 epochs (Kingma and Ba, 2014). The models with the lowest validation loss
are used for inference and evaluation (Appendix A).

2.3. Seeding, tracking, and stopping during inference

The teacher and student propagate similarly during inference. First, dMRI is converted to
FOD with CSD for the teacher and bias corrected T1w MRI and context are embedded with
CONV for the student (Tournier et al., 2007). These operations occur only once. Propaga-
tion then begins with SAMP to query the image grid at a seed location and initialization of
the GRU hidden state to zero. dx̄ and the new hidden state are then computed and used
to determine the next streamline point location, and so on. We set γ to 1mm.

Unlike the training data, we randomly seed points in WM defined by non-zero locations
in the tissue-type mask: empirically, this yielded a higher proportion of seeds that became
successful streamlines than GM/WM interface seeding. However, seeding in WM requires
bidirectional tracking, as unidirectional tracking from the middle of the brain would only
capture half of a given WM fiber. Thus, we perform bidirectional tracking by first tracking
in one direction until stopping criteria are met, flipping the streamline, performing a forward
pass to obtain the new hidden state, and subsequently tracking in the reverse direction.
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We implement tracking in batches since, unlike traditional tractography, parallelization
of the tracking process with neural networks must occur on the step level as opposed to the
streamline level. Thus, all streamlines in a batch are stepped and evaluated for stopping
criteria simultaneously. Once all have stopped or been rejected, the reverse tracking process
begins. Once reverse tracking is complete, a new batch of streamlines is seeded and the
process is repeated until at least 1 million streamlines are generated.

As with the training data, we use anatomically constrained stopping criteria as defined
by Smith et al. (2012). Unlike the training data, however, we are unable to use the MRTrix3
implementation due to the neural networks and the modified parallelization. Thus, we
reimplement slightly modified but analogous criteria (Appendix B).

2.4. Model evaluation

Since each participant in the test set has two dMRI imaging sessions (dMRI 1 and 2) and
a T1w MRI, we generate four tractograms each: (1) MRTrix3 tissue-type anatomically
constrained SDStream tractography on dMRI 1 with the original stopping criteria to those
reimplemented in Appendix B, (2) the same SDStream tractography on dMRI 2, (3) the
teacher network on dMRI 1, and (4) the student network on T1w MRI (Tournier et al., 2019;
Smith et al., 2012). We call (1) the reference and compare (2)-(4) to it to contextualize our
results in the setting of scan-rescan dMRI variability.

We evaluate the different methodologies with two commonly used tractography appli-
cations: bundle analysis and structural connectomics (Yeh, 2020; Sporns et al., 2005). For
bundles, we identify 39 WM bundles from each tractogram with RecoBundlesX (Appendix
C) (Garyfallidis et al., 2018; Rheault, 2020). We compare bundle streamline count, volume,
length, span, and surface area between methodologies as well as geometric agreement with
the bundle adjacency streamlines distance metric and Dice similarity coefficient (Rheault,
2020; Schilling et al., 2021; Yeh, 2020). For connectomics, we use 97 cortical regions defined
by the SLANT BrainCOLOR framework and compute two types of connectomes, one with
edges weighted by the streamline count between any two given regions and one weighted
analogously by average streamline length (Huo et al., 2019; Sporns et al., 2005). We compare
between methodologies with connectome Pearson correlation and the agreement between
the maximum modularity, average betweenness centrality, and characteristic path length
scalar graph measures as computed with the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). Detailed definitions of all measures are included in Appendix D.

We do not statistically characterize differences between methodologies. Whether differ-
ences are significant at N=10 would not drastically change results interpretation as our goal
is to understand trends with regards to the dMRI literature to assess framework viability.

3. Results

We provide tractograms generated on a representative subject across methodologies in Fig-
ure 2a and observe striking similarities overall but noticeably noisier streamlines near the
cortex in those generated with SDStream. We posit this is likely due to noisy or small dMRI
signals near the GM/WM interface being difficult to reproduce in data-driven paradigms.
In either case, we find these tractograms to be appropriate for further investigation.
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3.1. Bundle evaluation

We plot the median bundle adjacency and Dice coefficients per bundle in Figure 3a (see
Appendix E for bundle-specific plots). We find bundle adjacency is higher in both the
teacher and student compared to rescan with SDStream, but by less than 0.5mm. We find
equivalent Dice across bundles around 0.6-0.7 for all methods. These results suggest good
geometric agreement between bundles generated from our models and those from SDStream
upon rescan. We find good visual agreement in a representative sample of a bundle with 0.6-
0.7 Dice between the student network and the reference in Figure 2b. We plot the median
percent difference in streamline count per bundle in Figure 3b and find around 50% fewer
streamlines identified per bundle with our models compared to SDStream upon rescan. We
plot the median absolute percent difference in characteristics per bundle in Figure 3c and
find increasing error from SDStream upon rescan to the teacher to the student across all
measures. We also find higher student errors for the voxel-based surface area and volume
measures at around 15% and 25%, respectively, but lower errors for the streamline-based
length and span measures at around 5-10%. These results suggest that the morphology of
student-identified streamlines are in high agreement with SDStream, even if the number or
voxel coverage of those streamlines are in lower agreement.

Figure 2: Representative samples by methodology. (a) Left view of tractograms. (b) Right
view of the right arcuate fasciculi. (c) Connectomes weighted by streamline count.
Arrows denote visually notable differences compared to the reference.
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3.2. Connectomics evaluation

We plot correlations for the two connectome types in Figure 3d. For connectomes weighted
by streamline count, we find decreasing correlations from SDStream upon rescan to the
teacher to the student, at around 0.9-1, 0.8-0.9, and 0.7-0.8, respectively. For the con-
nectomes weighted by average streamline length, we find a similar trend with correlations
around 0.5, 0.4-0.5, and 0.4-0.5, respectively. As this drop from rescan SDStream to student
is more obvious in the connectome weighted by streamline count, we visualize a represen-
tative sample in Figure 2c. We observe small differences across methodologies, with few
visually obvious differences. Further, we plot differences in maximum modularity, average
betweenness centrality, and characteristic path length between methodologies in Figure 3e
and find the graph theory measures all have at most 5-10% difference to the reference indi-
cating high agreement, despite reduced connectome correlations with the student network.

Figure 3: Comparisons of bundle geometry (a), streamline count (b), and characteristics (c)
plotted as bundle-wise medians, as well as connectomes (d) and graph measures
(e) by methodology.

4. Discussion

Prior studies have identified non-negligible scan-rescan variability in dMRI tractography-
based measures. One study placed estimates between <5-10% coefficient of variation (CoV)
for both bundle and connectomics measures (Cai et al., 2021). Other studies estimated 1-
20% CoV for bundles and 5-30% for connectomics (Besseling et al., 2012; Roine et al., 2019).
In this work, we quantify the scalar accuracy of tractography-based measures to be around
5-15% absolute difference which translates to approximately 3-10% CoV after accounting
for the

√
2 conversion between them. This places the accuracy of our method on the level

of variability attributable to scan-rescan effects in traditional dMRI tractography. Notably,
this is a contextualization, and not a direct comparison between accuracy and variability.

As this is the first study into CoRNN tractography with T1w MRI, we identify four
key limitations. (1) It is unclear whether the network has merely “memorized” propagation
directions based on location or if it has truly “learned” to perform tractography on T1w
MRI or what it even means to distinguish the two. (2) We did not investigate how other
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loss functions or architectures impact performance. (3) We did not pursue a probabilistic
framework as neural networks traditionally approximate deterministic functions, though
prior studies have shown that probabilistic tractography can be approximated from dMRI
with RNNs through reparameterization (Benou and Riklin Raviv, 2019). (4) To assess
viability, we only used data from one scanner on 1/10 of the total HCP cohort with one
implementation each for bundles and connectomics. Thus, future work should (1) investi-
gate how the model propagates through brains with obvious lesions, (2) more completely
explore optimal architectures and designs, (3) study how probabilistic frameworks may be
integrated, and (4) further validate the model and framework on external data consider-
ing multiple scanners, larger and more diverse cohorts, and different analysis approaches.
Future work should also study if the CoRNN framework may allow dMRI harmonization
networks to be optimized directly for tractography (Yao et al., 2023; Nath et al., 2019).

Last, the existence of our model raises an important question: is tractography truly a
microstructural phenomenon, or is it a reflection of brain shape and macrostructure that
has merely been discovered and implemented through dMRI? The answers to this question
are potentially broad and paradigm-shifting. Thus, prior to robust investigation and further
model validation and optimization, we recognize this framework cannot be an all-purpose
replacement for dMRI tractography. Model weights and source code for inference are made
available at github.com/MASILab/cornn_tractography.
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Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder–decoder approaches. Proceedings of
SSST 2014 - 8th Workshop on Syntax, Semantics and Structure in Statistical Translation,
pages 103–111, 2014. doi: 10.3115/v1/w14-4012.

Maxime Descoteaux. High Angular Resolution Diffusion Imaging (HARDI). In Wi-
ley Encyclopedia of Electrical and Electronics Engineering, pages 1–25. John Wiley
& Sons, Inc., Hoboken, NJ, USA, 1999. doi: 10.1002/047134608X.W8258. URL
https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W8258.

Bruce Fischl. FreeSurfer. NeuroImage, 62(2):774–781, 2012. ISSN 10538119. doi: 10.1016/
j.neuroimage.2012.01.021.

Eleftherios Garyfallidis, Matthew Brett, Marta Morgado Correia, Guy B. Williams, and
Ian Nimmo-Smith. QuickBundles, a Method for Tractography Simplification. Frontiers
in Neuroscience, 6(December):1–13, 2012. doi: 10.3389/fnins.2012.00175.

Eleftherios Garyfallidis, Marc Alexandre Côté, Francois Rheault, Jasmeen Sidhu, Janice
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Appendix A. Loss curves

We include the loss curves for both the teacher and student models in Figure A1. We
observe that both the teacher and student converge. Additionally, we observe that the loss
curves are noticeably noisy, as expected for a training paradigm where the streamlines are
randomly sampled every batch. Last, we also observe that the teacher network training
loss increases slightly after convergence, likely due to overfitting to previously randomly
sampled streamlines. Regardless, the model weights saved at the point of convergence are
used for the experiments.

Figure A1: Loss curves for the teacher network (a) and the student network (b). The points
of convergence, defined as no improvement in validation loss after 200 epochs,
are denoted with dotted lines.
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Appendix B. Reimplementation of anatomically constrained stopping
criteria

The following is a reimplementation of the criteria originally described Smith et al. (2012)
and implemented in MRTrix3 (Tournier et al., 2019).

For streamlines propagated to the ith point, they are rejected if either of the following
criteria are met, where PT (x̄) is the percent contribution of tissue-type T at streamline
point location x̄, trilinearly interpolated.

1. The streamline enters CSF; defined as PCSF (x̄i) > 0.5 and PCSF (x̄i) > PCSF (x̄i−1);
or

2. the streamline takes too sharp of a turn in WM; defined as PWM (x̄i) > 0.5,
PWM (x̄i−1) > 0.5, and the angle between the current predicted step and the pre-
vious predicted step is greater than 60◦.

Streamlines are terminated at the ith point if they are not rejected and have either exceeded
the maximum length of 250mm or meet any of the following criteria, where CGM is cortical
GM, DGM is deep GM, and MASK is a brain mask.

3. The streamline enters CGM; defined as PCGM (x̄i) > 0.5 and PCGM (x̄i) >
PCGM (x̄i−1); or

4. the streamline exits the brain mask; defined as PMASK (x̄i) > 0.5; or

5. the streamline takes too sharp of a turn in DGM; defined as PDGM (x̄i) > 0.5,
PDGM (x̄i−1) > 0.5, and the angle between the current predicted step and the previous
predicted step is greater than 60◦; or

6. the streamline exits DGM; defined as PDGM (x̄i) < 0.5 and PDGM (x̄i−1) > 0.5.

Unlike the traditional criteria, these implementations do not allow for back-tracking or
consideration of streamline morphology beyond the previous streamline point. Additionally,
due to the initialization of the hidden state as zero, we provide a buffer of the first five steps
where criteria number 2 is ignored to allow streamlines to achieve a more useful hidden state.
These five steps are then removed prior to flipping the streamlines for reverse tracking.
Last, after reverse tracking, streamlines that do not meet the minimum length requirement
of 50mm are discarded.

We note criteria number 6 required empirical tuning to avoid erroneous termination.
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Appendix C. Bundle definitions

Using the RecoBundlesX tool, we dissect the following bundles from tractograms (Table A1)
(Garyfallidis et al., 2018; Rheault, 2020).

Table A1: Names and abbreviations of bundles investigated with RecoBundlesX. Right and
left are investigated separately.

Abbreviation Name
AC Anterior commissure
AF Arcuate fasciculus
CC Fr 1 Corpus callosum, Frontal lobe (most anterior part)
CC Fr 2 Corpus callosum, Frontal lobe (most posterior part)
CC Oc Corpus callosum, Occipital lobe
CC Pa Corpus callosum, Parietal lobe
CC Pr Po Corpus callosum, Pre/Post central gyri
CC Te Corpus callosum, Temporal lobe
CG Cingulum
FAT Frontal aslant tract
FPT Fronto-pontine tract
FX Fornix
ICP Inferior cerebellar peduncle
IFOF Inferior fronto-occipital fasciculus
ILF Inferior longitudinal fasciculus
MCP Middle cerebellar peduncle
MdLF Middle longitudinal fascicle
OR ML Optic radiation and Meyer’s loop
PC Posterior commissure
POPT Parieto-occipito pontine tract
PYT Pyramidal tract
SCP Superior cerebellar peduncle
SLF Superior longitudinal fasciculus
UF Uncinate fasciculus
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Appendix D. Definitions of WM bundle and connectomics measures

D.1. Bundle measures

We note that while voxel-based measures allow for comparison of bundle coverage,
streamline-based measures provide additional insight into shape that the voxel-based ones
do not (Rheault, 2020).

• Bundle adjacency: a streamline-based distance metric representing the minimum pair-
wise direct-flip distance on bundle centroids in mm (Garyfallidis et al., 2012, 2018).

• Dice coefficient: a voxel-based similarity metric representing the ratio of intersecting
over total volume ranging from 0 to 1 (Schilling et al., 2021).

• Streamline count: the number of streamlines identified in the bundle.

• Bundle volume: a voxel-based metric, the volume of the bundle (Yeh, 2020).

• Bundle length: a streamline-based metric, the average length of the streamlines in the
bundle (Yeh, 2020).

• Bundle span: a streamline-based metric, the average distance between the ends of
streamlines in the bundle (Yeh, 2020).

• Bundle surface area: a voxel-based metric, the surface area covered by the streamlines
in the bundle (Yeh, 2020).

D.2. Connectomics measures

• Connectome Pearson correlation: the Pearson correlation between the edges of two
connectomes

• Maximum modularity: the degree to which the nodes of the connectome may be
subdivided into separate non-overlapping groups, computed from connectomes with
edges weighted by streamline count (Rubinov and Sporns, 2010).

• Average betweenness centrality: the average fraction of shortest paths through the
connectome in which the brain regions participate, computed from connectomes
weighted by average streamline length (Rubinov and Sporns, 2010).

• Characteristic path length: the average shortest path between brain regions, computed
from connectomes weighted by average streamline length (Rubinov and Sporns, 2010).
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Appendix E. Bundle-wise geometric comparisons

We provide Figure A2 to illustrate the geometric agreements by bundle between different
methodologies.

Figure A2: Geometric comparisons of bundles, plotted for each bundle in the left panels and
as the distribution of bundle-wise medians in the right. (a) Bundle adjacency,
a streamline-based metric, is lower with increasing agreement. (b) The Dice
coefficient, a voxel-based metric, is higher with increasing agreement. The right
panels are a reproduction of Figure 3a.
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Appendix F. Comparison against non-linear registration of an atlas

To further place our method in the literature, we provide an additional analysis against
a common T1w MRI-only method of bundle and connectomics analysis: non-linear reg-
istration of streamlines from an atlas. We provide Figure A3 to illustrate the geometric
agreement across bundles and the correlations between connectomes generated from non-
linear registration of an atlas compared to the methodologies investigated presently. We use
the FOD and T1w MRI atlases provided by Lv et al. (2023), computing 1 million stream-
lines in atlas space with anatomically constrained SDStream tractography as described in
section 2.4. The T1w MRI atlas is subsequently non-linearly registered to each subject’s
T1w MRI and the resultant transform is used to warp the streamlines from atlas space to
subject space. Bundles and connectomes are then computed and compared to the reference
method following section 2.4. We find improved similarity between our method and the
reference compared to registration of the atlas and the reference in all cases, suggesting
improved subject-specificity with our method over non-linear registration of atlases.

Figure A3: Comparisons of bundle geometry (a) and connectomes (b) by methodology in-
cluding non-linear registration of an atlas.
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