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Abstract

This work tackles the fundamental challenges in Federated Learning (FL) posed
by arbitrary client participation and data heterogeneity, prevalent characteristics in
practical FL settings. It is well-established that popular FedAvg-style algorithms
struggle with exact convergence and can suffer from slow convergence rates since
a decaying learning rate is required to mitigate these scenarios. To address these
issues, we introduce the concept of stochastic matrix and the corresponding time-
varying graphs as a novel modeling tool to accurately capture the dynamics of
arbitrary client participation and the local update procedure. Leveraging this
approach, we offer a fresh decentralized perspective on designing FL algorithms
and present FOCUS, Federated Optimization with Exact Convergence via Push-pull
Strategy, a provably convergent algorithm designed to effectively overcome the
previously mentioned two challenges. More specifically, we provide a rigorous
proof demonstrating that FOCUS achieves exact convergence with a linear rate
regardless of the arbitrary client participation, establishing it as the first work to
demonstrate this significant result.

1 Introduction

Federated Learning (FL) has emerged as a powerful paradigm for distributed learning, enabling
multiple clients to collaboratively train models without sharing raw data. Yet, a central challenge in
FL is the arbitrary and unpredictable nature of client participation. In real-world FL, clients may
join or leave at will, participate intermittently, or drop out due to connectivity or resource constraints.

Recall the goal of the FL. problem is to minimize the following sum-of-loss function:

an ), fu(2) = Egap, fulw:8), (1)

where z € R? represents the d- dlmensmnal model parameter and f,, stands for the local cost function.
It is well established that when clients perform multiple local updates on non-i.i.d. data, their
local models tend to diverge. This leads to client drift from the optimal solution of problem (TJ),
a phenomenon that persists even under the often impractical uniform client sampling assumption
[Karimireddy et al., 2020} L1 et al.,[2020]]. Moreover, arbitrary client participation introduces another
objective bias: instead of converging to the true global optimum, the global model converges to a
stationary point of a distorted, participation-weighted objective [Wang et al.l 2020 |Wang and Ji,
2022]. To mitigate this persistent error, existing methods typically require decaying the learning rate
asymptotically to zero, at least in theory. While this strategy can reduce the bias in the limit, it often
leads to slower convergence. Hence, a key question naturally arises:

Question: Is it possible to achieve exact convergence under both arbitrary client participation
and multiple local updates without decaying the learning rate?

We will provide an affirmative answer to this question in this paper. We begin by introducing a novel
analytical framework that reformulates the core operations of FL - client participation, local updates,
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and model aggregation over time-varying graphs - as a sequence of stochastic matrix multiplications
[Horn and Johnson, [2012]. Next, with this tool, we develop a new algorithm FOCUS, Federated
Optimization with Exact Convergence via Push-pull Strategy, which is inspired by decentralized
optimization algorithms [Nedic and Ozdaglar, 2009, Sayed et al., 2014, [Lian et al., 2017, |Lan et al.,
2020]. More specifically, we leverage the push-pull technique [Xin and Khan| 2018}, |Pu et al.| |2020]
with the time-varying graphs [Nedic et al., 2017, [Ying et al., 2021} Nguyen et al., [2025]] instead of
commonly used static or strongly connected communication graphs, since FOCUS is designed for
the FL setting. Compared to the variance reduction technique [Johnson and Zhang}, [2013| [Defazio
et al.} 2014] or the adaptively learning participation probabilities, the push-pull approach handles the
unknown client participation scenario much better both empirically and theoretically.

Our main contributions are summarized as follows:

* We provide a systematic approach to reformulate all core processes of FL — client participation,
local updating, and model aggregation through the stochastic matrix multiplication.

* We proposed Federated Optimization with Exact Convergence via Push-pull Strategy (FOCUS),
which is designed based on the optimization principle instead of heuristic design.

 Even under arbitrary client participation, FOCUS exhibits linear convergence (exponential decay)
for both strongly convex and non-convex (with PL condition) scenarios without assuming the
bounded heterogeneity or decaying the learning rates.

* We also introduce a stochastic gradient variant, SG-FOCUS, which demonstrates faster conver-
gence and higher accuracy, both theoretically and empirically.

Algorithm Exact Strongly-Convex Non-Convex Assumptions®
g Converg.! Complexity” Complexity | Participation Hetero. Grad. Extra C
i :teslAVZ%ZO\ X o) o(%) Uniform Bounded Bounded gradient assumption
i Kolostgxcfslebt(;? 5020 X O(%) O( 1) Uniform Bounded Doubly stochastic matrix
[WangierﬂiAJlij 5004 X - O(}Z) Arbitrary Bounded Bounded global gradient
[ Xianl;e(eitix\;VEZOZ 7 X - o(%) Arbitrary Bounded Doubly stochastic matrix
[KadmbirLe?(iIFglgll) 3020| x° O(log(2)) o) Uniform None Comm. 2d vector per round®
[ Mifé‘hs;:lff;af\]%n X O(log(2)) - Full None Comm. 2d vector per round
MIFA - 1 : Bounded delay Assump. +
|Gu et al.||2021] x O<€Z ) Ay ol Server stores each client model
(Tlfigigier) O(log(1)) O(log(1)) * Arbitrary None No need to learn partici. prob.

Table 1: Comparison of multiple algorithms. * Exact convergence refers to the algorithm’s ability to converge
to the exact solution under arbitrary sampling, without requiring a decaying learning rate. > Complexity refers
to the number of iterations required for the algorithm to achieve an error within e of the optimal solution. We
have removed the impact of the stochastic gradient variance in all rates. ® There is no convergence proof of
SCAFFOLD under arbitrary client participation scenario. Empirically, we observed it may be possible. *
This rate is established with PL condition. ® Arbitrary participation refers to Assumption [1{and the bounded
heterogeneous gradient are the assumptions that || f;(x) — F(x)|| < o¢. © It is possible to reduce the uplink
communication into d while downlink one is still 2d [Huang et al., [2024].

2 Related Work

FedAvg [McMahan et al., 2017] is the most widely adopted algorithm in FL. It roughly consists of
three steps: 1) the server activates a subset of clients, which then retrieves the server’s current model.
2) Each activated client independently updates the model by training on its local dataset. 3) Finally,
the server aggregates the updated models received from the clients, computing their average. This
process can be represented mathematically as:

o) =, Vies, (Pull Model) (2a)
For t=0,1,--- ,7—1: (Local Update)

2D =2l —nVfi(al)) Vi € S, in parallel (2b)
Tri1 < |571T| 1%; x(:? (Aggregate Model) (2¢)




where the set S, represents the indices of the sampled clients at the communication round r. The
notation z, € R? stands for the server’s model parameters at r-th round, while xﬁ? stands for
the client 7’s model at the ¢-th local update step in the r-th round. We use <= to indicate that

communication has happened between clients and the server.

Because of the data heterogeneity and multiple local update steps, L1 et al.|[2020] has shown that
the fixed point of FedAvg is not the same as the minimizer of (I)) in the convex scenario. More
specifically, they quantified that

l2? = 2*|1> = Q((r — 1)) ll=*|1%, ©)

where z° is the fixed point of the FedAvg algorithm and x* is the optimal point. This phenomenon,
commonly referred to as client drift [Karimireddy et al., [2020], can be mitigated by introducing a
control variate during the local update step, an approach inspired by variance reduction techniques
[Johnson and Zhang||2013]]. Prominent examples of this strategy, including SCAFFOLD [Karimireddy
et al.|[2020] and ProxSkip [Mishchenko et al.;[2022]], can further circumvent the need for a bounded
heterogeneity assumption. Yet, this approach incurs increased communication costs, doubling them
due to the transmission of a control variate with the same dimensionality as the model parameters.

Many analytical studies on FL assume that the sampled clients are drawn from a uniform distribution,
an assumption shared by the literature cited in the preceding paragraph, but this is almost impractical in
reality [Kairouz et al., 2021} Xiang et al., 2024, L1 et al.,|2025]]. 'Wang and Ji|[2022]] shows that FedAvg
might fail to converge to * under non-uniform sampling distributions, even with a decreasing learning
rate 77. To address the challenges posed by non-uniformity, a common approach involves either
explicitly knowing or adaptively learning the client participation probabilities during the iterative
process and subsequently modifying the averaging weights accordingly [Wang and Ji, [2024] Wang
et al.| 2024, Xiang et al.,|2024]]. Yet, neither of them can achieve exact convergence, and the learning
process may slow down the convergence. An alternative approach is to use Variance Reduction (VR)
techniques, as seen in methods like MIFA |Gu et al.|[2021]] and FedVARP Jhunjhunwala et al.| [2022].
Yet, the heuristic integration of VR with FL often fails to jointly address the client drift issue. This
results, once again, in inexact convergence when a constant learning rate is used.

It is known that FL and decentralized optimization are closely related [Lalitha et al., 2018 [Koloskova
et al., 2020, [Kairouz et al., 2021]], and this work is closely related to the tools introduced in the
decentralized optimization society. We leave a detailed decentralized literature review in Appendix [A]

3 Graph, Stochastic Matrix, and Arbitrary Client Participation

FL algorithms are commonly expressed in a per-client style, as exemplified by the previously
highlighted FedAvg formulation (2a)-(2c). While this representation offers ease of understanding
and facilitates straightforward programming implementation, a stacked vector-matrix representation
can unlock more powerful mathematical tools for the design and analysis of FL algorithms.

To illustrate the concept, let us consider two toy examples of vector-matrix multiplication:

1 0 07 [xo o 0 0.5 0.57 [xo (z1 + 22)/2
Wassign® = |1 0 0| [z1| = [wo|, Wagz=1]0 1 0 T| = T1
0 0 1] [x9 X9 0 0 1 X2

T2
While the calculations themselves are straightforward, their significance lies in the appropriate
interpretation of the matrices and vectors within the FL context. We interpret z; € R'*? as the model
parameter stored in the worker ¢. Index 0 is assigned for the server, and the result indices are for
clients. Then, the first Wi can be viewed as the server assigning its value x to client 1 while
the value of client 2 is unchanged as the same as not participated scenario. The second W, can
be viewed as the server setting its own value as the average of the value of worker 1 and worker 2.
These two toy matrices reflect the pull and aggregate model — two key steps in the FedAvg algorithm.

More formally, given a sampled client indices set .S,., subscript r for the r-th round, we define the
model-assign matrix R(.S,) and the model-average matrix A(S,.) as

1 ifieS.andj=0 1 ifi=45=#£0
R(S.)[4,j]=41 ifi¢ S.andj=1i, A(Sy)|i,j]=<1/|S:| ifieS.andj=0 (4)
0 otherwise 0 otherswise

While the mathematical notation of the matrix may not be immediately apparent, its structure should
be clear to see the illustration provided in Figure[I] In the figure, we utilize the graph language to
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Figure 1: The graph representation of the communication pattern of 5 nodes and its possible corresponding
stochastic matrices. For clearness, the self-loop is not drawn. If the node 0 is treated as server and node 1 to 4 as
clients, the leftmost is a typical pull-model step, i.e. client 1 and 3 are participated; the second left graph depicts
the model average step in the FedAvg; the third graph is a same graph but using column-stochastic matrix, which
is uncommon in the FL literature; The last one is a typical (symmetric) doubly stochastic matrix case used in the
decentralized optimization algorithm.

visualize the matrix WW. We can treat W as a weighted adjacency matrix; the non-zero value entry
Wi, j] implies a link from node j to node i. Hence, W is also commonly referred as the mixing
matrix. Suppose S, = {1, 3}, then the matrices R(.S,) and A(SS,) correspond to the leftmost and
second leftmost matrices and graphs depicted in the figure, respectively.

The weights are selected to ensure the resulting matrix is a stochastic matrix. Specifically, a matrix
W is called row stochastic if W1 = 1, where 1 is a all-one vector; it is called column stochastic if
1TW = 17; and it is doubly stochastic if it satisfies both row and column stochastic properties [Horn
and Johnsonl 2012} Meyer, [2023]. It is straightforward to verify that the above two matrices both
are row-stochastic matrices. Analogously, for the participation set, we can define a corresponding
column stochastic matrix C'(.S,) and a doubly stochastic matrix W (S,.).

e N v
C(S))li,jl={1 ifj¢ Spandi=j, W(S.)[ij]= oo ifjeS andi=
i 1=32, Wli,j] ifi=j
0 otherswise i .
0 otherswise

Suppose S, = {1, 3}, then the matrices W (S,.) and C(S,.) correspond to the rightmost and second
rightmost ones depicted in the figure. These four matrices will play the critical role in the following
algorithm design and convergence proof section. In contrast to decentralized algorithms, where
assumptions are directly imposed on the mixing matrix, we do not make any assumption about
them in this paper since we utilize them to model the client participation process. For completeness,
a brief review of stochastic matrices and their properties is provided in the Appendix [C]

3.1 Arbitrary Client Participation Modeling

FL focuses on the process of generating the arbitrary client participation set S,.. Inspired by [Wang
and J1|[2022], in this paper, we model the arbitrary client participation by the following assumption.

Assumption 1 (Arbitrary Client Participation). In each communication round, the participation of
the i-th worker is indicated by the event ;, which occurs with a unknown probability p; € (0, 1].
I; = 1 indicates that the i-th worker is activated while |; = 0 indicates not. The corresponding

averaging weights are denoted by q;, where q; = E [I]Z/(Z;V:1 1;)].

Assumption [T]is a general one covering multiple cases:

= 11, for all client indices .
Case 2: Active Arbitrary Participation. Each client ; independently determines if they will
participate in the communication round The event [; follows the Bernoulli distribution p;, where

€ (0,1]. (Note >°, p; # 1.) If {p; } Y, are close to each other, then ¢; ~ pi/ (32, pi)-

Case 3: Passive Arbitrary Participation. The server randomly samples m clients in each round.
Each client is randomly selected without replacement according to the category distribution with the

Case 1: Full Client Participation. This is simply as p; = 1 and ¢; =



normalized weights g1, g2, - - - , gn, Where Y. ¢; = 1,¢; > 0. p; does not have a simple closed form.
But if it is sampled with replacement, then p; = 1 — (1 — ¢;)™.

Case 3a: Uniform Sampling. This is a special case of case 3, where p, =m/N and ¢; =1/m.

Passive arbitrary participation is often referred to as arbitrary client sampling. We also use "sampling"
and "client participation” interchangeably throughout this paper. Now, considering that .S, is generated
according to Assumption|[I] it can be readily verified that the corresponding assigning matrix and
averaging matrix possess the following property:

1 0 0 0 ¢ - qn

- a l—-q - 0 - 0 1 --- 0

R=ER(S,)=|. . . | A=EAS)=|. . . | ©®
av 0 1-gy 00 o 1

The column-stochastic matrix equals (C' = E[C(S,.)] = R") by definition. While doubly stochastic
matrices are prevalent in the decentralized literature, they are not often applicable to FL-style
algorithms, and therefore we do not discuss them further. With this approach, we effectively
transform the problem of arbitrary client participation probabilities into an analysis of the matrix
properties of R(S,), A(Sy), and C'(S,) as which we will exploit in the subsequent section.

4 From Interpretation to Correction: A New Federated Optimization with
Exact Convergence via Push-pull Strategy — FOCUS

In this section, we demonstrate how leveraging the graph and stochastic matrix can facilitate the
development of more powerful FL algorithms.

4.1 Interpret FedAvg as Decentralized Algorithm with Time-Varying Graphs

A direct application of the above mixing matrix is that we can concisely represent the FL algorithm
in vector-matrix form, similar to decentralized algorithms [Li et al., [2020} Koloskova et al., 2020]].

First, let ¢y, = vstack[zk,0; Tr1;- -+ ; :z:k,N} e RIN+1xd denote the state at iteration k. This matrix
is formed by vertically stacking the server’s model parameters z; o € R and the model parameters
7k, € RY from the N workers. Similarly, let V f(zx) = vstack[0; V f1(v1.1); -+ ; VIn(2rn)] €
RWV+1xd represent the corresponding stacked vector of local gradients at iteration km Note that the
first component of the stacked gradient is 0 because the server holds no data. This implies that the
server’s local loss function is identically zero, fo(x) = 0, and consequently, V fo(zx,0) = 0. This
also ensures that including the server’s term fo does not alter the original loss function defined in (T).

Next, observe that during the local update phase of FedAvg, nodes compute updates independently
without communication. In the context of our stochastic matrix, this corresponds to using the identity
matrix, I. To represent the algorithm with a single iteration index k, we map the ¢-th local update
in the r-th communication into the k-th iteration, where £ = r7 4 t. Using the tools previously
introduced, we can now reformulate FedAvg (2a)-(2c) as the following one-index iterative form:

Yy, =Rrxi (Pull model) (6a)
v =y, — 1DV f(yy) (Local update) (6b)
Ti1 =Ary; (Agg. model) (6¢)

where the time-varying matrices Ry, A, and Dy, are defined as

R(S,) k=rr+1 A(Sy) k=(r+1)r . 1 ifi=jebs,

= A = _D == . 7
B {I otherwise = " {I otherwise ' kli-g) 0 otherswise ™
This diagonal matrix Dy, serves to deactivate unparticipated workers and the server during local
updates. .S, is the set of participated clients’ indices at round r, which can be determined by the
iteration k, i.e., 77 < k < (r + 1)7. An illustration of this process using graphs is shown in Figure

'In the decentralized optimization literature, it is common to represent parameters x and gradients V f(z) as
row vectors (dimension 1 X d). This allows the graph mixing operation, defined by a matrix W € RVFDX(N+D),
to be concisely expressed as W xy,.
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Figure 2: Represent FedAvg using graphs. The dashed line means no communication.

Mixing Matrices in FedAvg. It is feasible to further condense (6a)-(6¢) into a single-line form
Tpr1 =Wi(xr — 0V f(zk)) ®)

The specific selection of W, is detailed in the Appendix. But W, cannot be a doubly stochastic
matrix unless it is a full client participation case. Consequently, the theorem presented in [Koloskova
et al.,[2020] is not directly applicable to FedAvg in this context.

Convergence Result of FedAvg with Arbitrary Participations. In the appendix |D| we provide a
new proof of FedAvg under the arbitrary participation scenario through this decentralized optimization
formulation. When the algorithm & — oo, the limiting point of FedAvg is around an irreducible
neighborhood depending on the local update steps 7, data heterogeneity af], and the extra bias 63
introduced due to non-uniform participation probabilities. This motivates us to develop a new FL
algorithm capable of addressing and eliminating all aforementioned errors and biases.

Local Update @ A Push Gradients
Pull Model = i (z, y) pair Tt (column style)
i T times P

Iteration k = r7 + 1 Iteration k = (r + 1)1

(Finish round r and make a new sample for next round)

Figure 3: Illustration of our new FOCUS algorithm. There are two key differences from FedAvg style
algorithm. One is it pulls the model variable = but pushes the gradient variable y, and another is the
push matrix is the column stochastic matrix instead of the row stochastic.

4.2 FOCUS Corrects Arbitrary Client Participation and Local-Update Bias
4.2.1 Push-Pull Strategy for FL Settings
To eliminate the biases introduced by arbitrary client participation, we move beyond heuristic designs

and adopt a formal optimization framework. This involves reformulating the FL problem as a
constrained optimization task, a structure commonly employed in decentralized algorithms:

min F(z) =+ SN filz) )

{zo,x1,- N}

s.t. R(S)x=a, VS, (10)

Note a minor but critical difference from the formulation (1)) is that there are /N 4 1 model parameters
x; applied in each local cost function f; instead of a single z. To see the equivalence between this
and (II]), notice R(S,)x = x implies x; = ¢, Vi € S,.. Consequently, if the union of all sampled
client sets {.S,.} covers the entire client population, then all individual client models and the server
model are constrained to converge to the same state.

This formulation motivated us to explore a primal-dual approach to solve this constrained problem.
Among the various primal-dual-based decentralized algorithms, the push-pull algorithm aligns
particularly well with the FL setting. It is characterized by the following formulation:
Tp1 =R(Tr — M6Yy) (1D
Yir1 =C (Y + VF(@ry1) — VF(zi)), (12)



Algorithm 1 FOCUS: Federated Optimization with Exact Convergence via Push-pull §trategyE]

1: Notation: z, and y, are the server’s values while mg? and yt(c) are clients’ values.

2: Initialize: Choose learning rate 1 and local update 7. Server randomly chooses x( and sets
yo = 0. All clients initiate with V f;(z) ) = y%).
3: forr=0,1,.... R—1do

4:  Get S, an arbitrary client participation index set
5. for i in S, parallel do
6 al) =z, yyl =0 > Pull - (No need to pull )
7: fort=0,---,7—1do
8: ygi)u = yt(j;) + Vf; (LEZ)) —Vf; (mg?ljz) > See le(x(fiz) around (22).
9: (GO () NN ()
: Liv1i = Tri — Mg,
10: end for
11:  end for
120 yrr1 < yr + Ziesr y,(rrl) > Push y(fz (Not Averaged)
13: Tr41 = Tp — NYr41
14: end for
where y, = Vf(xzo), and R and C represent row-stochastic and column-stochastic matrices,

respectively. The algorithm name “push-pull” arises from the intuitive interpretation of these matrices.
The row-stochastic matrix R can be interpreted as governing the “pull” operation, where each node
aggregates information from its neighbors. Conversely, the column-stochastic matrix C' governs
the “push” operation, where each node disseminates its local gradient information to its neighbors.
Moreover, recalling the definition of row and column stochastic matrices R1 = 1 and 1T =1T,
push-pull algorithm has the following interesting properties:

T* = Rx™, (consensus property)
1Ty, = 1TV f(xy), Vk (tracking property)

where z* is the fixed point of the algorithm under some mild conditions on the static graph R and C'.
The first property, consensus, implies that all workers’ model parameters eventually converge to a
common value. The second property, tracking, indicates that the sum of the variables y (aggregated
across workers) approximates the global gradient, ensuring the algorithm’s iterates move in a direction
that minimizes the global loss function. It is worth pointing out that when consensus is reached such
that all relevant local models in . equal some Z, the sum of the local gradients 17V f () becomes
exactly NV F(Z). For more details, we refer the readers to |Pu et al.[[2020], Xin and Khan|[2018].

We are interested in solving the optimization problem with multiple constraints problem (9)-(10). The
original push-pull algorithm is not sufficient. Analogous to the approach taken in the FedAvg section,
Here, we extend it to the time-varying matrices R and C}, to model the client sampling and local
update processes, respectively. These modifications lead to the following algorithmic formulation:

41 =Ri(xr — nDryy,) (13)
Y1 =Cr(yp + VI (@rs1) — V(r)), (14)

where the definition of Ry, is the same as the one in FedAvg and C), = R} while Dy, is slightly
different from (7)) about the server’s entry. Dg[0,0] = 1 if k¥ = r7 + 1 otherwise 0. The graph
representation of this algorithm is shown in Figure

4.2.2 Convert Vector-Matrix Form Back To FL-Style Algorithm

Substituting the definition of the mixing matrix into (I3) and (I4), we will get a concrete FL
algorithm as listed in Algorithm [I] with non-trivial transformations. The steps to establish this
new FL algorithm effectively reverses the process outlined in the previous subsection. Here we
provide a few key steps. First, it is straightforward to verify that z;, ; and gy, ; are not moved if the
client 7 is not participating in the corresponding round, so we will ignore them in the next derivation.
At the beginning of the r-th round, i.e. £k = r7 + 1, @]) becomes

Th41,0 = Th,0 — MYk,0 (server updates) (15)

The code is available at https://github.com/BichengYing/FedASL. The algorithm was originally
named Federated Learning for Arbitrary Sampling and Local Update (FedASL). The acronym ASL also stands
for the Adaptation System Laboratory at UCLA and EPFL, where Dr. Ying completed his Ph.D.


https://github.com/BichengYing/FedASL

Thtl,i <= Thy1,0, Vi E Sy (client pulls model) (16)
While at the end of the 7-th round, i.e. k = (r + 1)7, becomes

Yer1i = ki + Vi(@rtrs) — Vilor), Vi e S, (17)

Yk+1,0 <= Yk,0 T Z y;c-s—l,i (server collects info) (18)
i€Sy

Yk+1,i =0, Vi €S, (client resets yx) (19)

Note that we introduce a temporary variable ;, +1,; because the matrix multiplication C, is applied

on the updated value y;, instead of y;, directly. During local updates, the server does not update the
value while the client executes the local update in the gradient tracking style:

Tht1,i =Tk, — NYk,i (20)
Yrt1,i =Yk,i + VI i(@rr1,:) — VS i(Trs) 21

Next, we revert to the standard two-level indexing used in FL by mapping the single iteration index
k = r7 + ¢ to the r-th iteration and ¢-th local update step and replacing x1,; by xﬁ?

Finally, assembling all the above equations together and switching the order of x and y, we arrive at
the FOCUS shown in Algorithm [T} Because of the switched order, at the beginning of each round, i.e.
k = rr, the y-update becomes

y\) —yé’?sz(xol) Vi) (22)

Note that in the original update rule (2I), the gradient V f;(z ;) is computed in the preceding step
and then reused, thus avoiding redundant computation at the current step. This principle of gradient
(T) will not change if the

worker ¢ does not participate. Hence, we can establish, by induction, that V fl(x( i z) corresponds to

the stored gradient from the end of the most recent round in which the worker participated.

reuse carries over directly to the two-level index notation. Recall that x;

5 Performance Analysis

Now we are ready to present the necessary assumptions and convergence property for FOCUS. Due to
limited space, all proofs are deferred to Appendix [E}

Assumption 2 (L—Smoothness). All local cost functions f; are L—smooth, i.e., f;(z) < fi(y) +
(@ =y, Vi) + 5le -yl

Assumption 3 (u—Strong Convexity). All local cost functions f; are p—strongly convex, that is,

file) = fily) + {z =y, Vi(y)) + §llz -yl

Assumption 4 (PL Condition). The global loss function F satisfies the Polyak-Lojasiewicz condition
[VFE(z)||? > 28(F(x) — F*), Vx, where 3 > 0 and F* is the optimal function value.

Theorem 1. Under arbitrary participation assumption|[I\and L—Smoothness assumption[2} it can be
proved that FOCUS converges at the following rates with various extra assumptlbns On fz

* u—Strongly Convex: Under extra assumption |3} if n < min{ 5= SN 3T ( 85%}

El|Zrr41 —2*[]* < Wg < (1—nuN/2)"0 (23)

32N * 128N 16L2> gL\F
EF(ZTpri1) — F* < ®r < (1 —nBN)ED, (24)

e B—PL Condition: Under extra assumption ifn < min{3%min  dmin min iy }

3/2
* General Nonconvex: Under no extra assumption, if n<min{ (i_l) , B‘imir}v , 16‘?131\[, 74L1N I3

- 8(f(x1) — f*)

E|V ~1)|? < ) 25
Z IVf(@rr+1)]" < INE (25)
where the Lyapunov functions ¥, := E ||Z,,+1 — 2*||> + (1 — 8n7LN)E 11Z ¢ —1yrs1 —

. = EF(jTT+1) -+ (1 - 477L2) E ||]1j7"7'+1 - mT‘THQ and Guin = min; g;. O



Remark. Note the top two error terms are exponentially decayed, which implies the iteration
complexity is O(log(1/€)). For the general non-convex case, we improve the typical 1/v/R rate
into 1/ R thanks to the exact convergence property. See the comparison of our proposed algorithm
with other common FL algorithms in Table O(1/€*) > O(1/e) > O(log(1/e)) in terms of
communication and computation complexity. Table [1] highlights the superior performance of
FOCUS, which achieves the fastest convergence rate in all scenarios without particular sampling
or heterogeneous gradients assumption.

Numerical Validation. To validate our claims, we conducted a numerical experiment using synthetic
data since this is the common approach to verify the exact convergence property. The results,
presented in Figure[d were obtained by applying the algorithms to a simple ridge regression problem
with the parameters d = 100, N = 16, K = 100, A = 0.01, and 7 = 5. The loss function
is F(z) = & Zf\;l Zszl Hazkx — bik||?> + Al|z||* All algorithms employed the same learning
rate, = 2e — 4. Three distinct sampling scenarios were examined: full client participation,
uniform participation, and arbitrary participation. Notably, our FOCUS exhibits linear convergence
and outperforms the other algorithms in all scenarios, particularly under arbitrary participation.
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Figure 4: Convergence performance comparison of various FL algorithms. Under full client participation,
FedAvg, FedAU, and MIFA exhibit identical performance, as do SCAFFOLD and ProxSkip, due to their
theoretical equivalence in this setting. FedAvg and FedAU fail to converge to the optimal solution across all
scenarios because their inherent error and bias cannot be eliminated using a fixed learning rate. ProxSkip diverges
under uniform and arbitrary participation, as it is not designed for these conditions. We do not understand
why MIFA diverges but it works in ML applications. While SCAFFOLD converges in all cases, our proposed
algorithm, FOCUS, demonstrates faster convergence, especially under arbitrary participation.

5.1 Why FOCUS Can Converge Exactly for Arbitrary Participation Probabilities?

At first glance, the ability of FOCUS to achieve exact convergence under arbitrary client sampling prob-
abilities may appear counterintuitive. Unlike other approaches, FOCUS neither requires knowledge
of the specific participation probabilities nor necessitates adaptively learning these rates. The
sole prerequisite for convergence is that each client maintains a non-zero probability of participation.
Plus, the push-pull algorithm was never designed to solve the arbitrary sampling problem.

From an algorithmic perspective, FOCUS closely resembles the delayed/asynchronous gradient descent
algorithm even though it is derived from a push-pull algorithm to fit the FL scenario. To see that,
leveraging the tracking property of the variable y, and special construction of matrix C, we can
establish that the server’s y,41 = Zf\; V fi(zk+1,;). Due to arbitrary client participation, at
the iteration k, x341,; may hold some old version of the server’s model if it does not participate.
Thus, we arrive at an insightful conclusion: FOCUS effectively transforms arbitrary participation
probabilities into an arbitrary delay in gradient updates. Hence, any client participation scheme,
as long as each client participates with a non-zero probability, will still guarantee exact convergence.

5.2 Extension to Stochastic Gradients and ML Applications

In practical machine learning scenarios, computing full gradients is often computationally prohibitive.
Therefore, stochastic gradient methods are commonly employed. Our proposed algorithm can be
readily extended to incorporate stochastic gradients, resulting in the variant SG-FOCUS. However,
due to space constraints, we focus on the deterministic setting in the main body of this paper.
A comprehensive description of SG-FOCUS, along with its convergence analysis, is provided in
Appendix[F] The appendix also benchmarks SG-FOCUS’s performance on the CIFAR-10 classification
task, highlighting its faster convergence and improved accuracy over other FL algorithms. This
performance trend echoes that of its deterministic counterpart.



Theorem 2 (Informal Convergence Theorem of SG-FOCUS). Under arbitrary participation assump-
tion[l} L—Smoothness assumption 2} and unbiased and bounded variance assumption on stochastic
gradient (See assumption[0lin appendix[F)), it can be proved that SG-FOCUS converges at the following
rates with various extra assumptions on f;:

* pu—Strongly Convex: Under extra assumption[3| for sufficiently small learning rate 1), we have

N7 4(Guin + N2
Tr < (1 _ 77'“) To+ Mvaa (26)
2 MNQmin
where the Lyapunov functions I'y. := E ||Z(,£1)r41 — x*]|% + (1 — 877L2N/u)[E 112 —1yr g1 —
T(r—1)r |% and o is the variance upper bound of the stochastic gradient noise.
* B—PL Condition: Under extra assumption[d} for sufficient small learning rate 1, we have
R L 272 8 N 2
Or <(1—=nBN)* Qo + §+32(T—1)L + — Ba, 27
Gmin
where Q. := F(Zyr41) — F* + (1 = 4nL?) E | 1Z(p—1)r 41 — 1) || %

e General Nonconvex: Under no extra assumption, for sufficient small learning rate n, we have

R—1 _
1 8(F(z1) — F*) SN2
— E|VF(Z,, R S 2LN + ——————— | %02, 28
R; IVE@ )l <=— S+ s )T @
See the formal statement and the proof in Appendix|[F] O

Remarks on Linear Speedup. A common expectation in FL theory is the demonstration of a linear
speedup in the convergence rate, where the rate scales proportionally with the number of clients, N.
By inspecting the general non-convex convergence rate in Theorem[I] we see the error residual term is
O(1/(nNR)). Yet, the stability of FOCUS necessitates a learning rate 7 that is restricted by O(1/N).
This N dependence cancels out. We want to highlight that this result is expected. The linear speedup
typically holds when N is used to average out stochastic noise (like in Stochastic Gradient Descent
variants). Since FOCUS is an exact algorithm, it does not introduce this stochasticity, and therefore,
it is natural that the linear speedup benefit from increasing the number of clients is not reflected in
the convergence bound. In contrast to the analysis of FOCUS, the convergence rate of SG-FOCUS in
the general non-convex setting does indeed reflect the benefits of client aggregation. Specifically,
by setting the learning rate 1) to O(1/N), the stochastic variance term diminishes proportionally to
O(1/N), which confirms the presence of the linear speedup.

6 Conclusion

This work addresses the critical challenges of arbitrary client participation and client drift in Fed-
erated Learning, two factors that prevent traditional algorithms from achieving exact convergence.
By introducing a novel framework based on stochastic matrices and time-varying graphs, we model
these dynamics and reformulate the FL problem as a constrained optimization task. This principled
approach, moving beyond simple heuristics, led to the development of FOCUS, an algorithm derived
from the push-pull optimization strategy. Our theoretical analysis and numerical experiments demon-
strate that FOCUS can achieve exact linear convergence under any client participation scheme, without
needing to know or learn participation probabilities. The extension to a stochastic gradient setting,
SG-FOCUS, further validates its practical effectiveness.

Limitations The arbitrary client participation modeling used in the proof of this paper did not
consider the Markov process, i.e., the client participation probabilities depend on the participation
status in the last round. We believe that FOCUS still converges exactly under this scenario since
the stochastic matrix modeling and push-pull strategy still hold for any realizations. However, the
extension of the proof is non-trivial due to the correlation between stochastic matrices. We leave this
and a more general arbitrary participation scenario for future research directions.

Future Works. The framework of stochastic matrices and time-varying graphs provides a novel
tool for modeling arbitrary client participation and local update dynamics in FL. By leveraging
this approach, we establish a formal connection between FL and the rich field of decentralized
optimization. While this paper focused on FedAvg and the Push-Pull algorithm as initial examples, a
promising avenue for future research is to adapt other sophisticated decentralized algorithms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: This is a theoretical paper and all the claims are provided with rigorous proof.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We add a limitation subsection at the end of this paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions clearly stated and referenced in the statement of all theorems.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the source code to verify the algorithm.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the source code to verify the algorithm.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have appendix to disclose the experiment details and provide the source
code to verify the algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We focus on the optimization problem and it can converge exactly without any
erTor.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is a theoretical oriented paper. The experiment is quite easy to be
reproduced by any CPU or GPU resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors have made sure to preserve anonymity.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the code package or dataset in the
end of appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We don’t have any LLM in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

Appendix

[A" Review of Decentralized Algorithms| 21
[B_Conventions and Notations| 22
[C Brief Review about Stochastic Matrices and their Properties| 23
[DProof of the Convergence of FedAvg under Arbitrary Client Parficipation| 24
ID.1  Reformation and Mixing Matrices| . . . . . . ... ... ... ... ... ..., 25
ID.2 Convergence Proof| . . . . ... ... ... ... ... ... .. 26
ID.2.1 Descentlemmal . ... ... ... ... ... .. .. 27

ID.22 Consensuslemmal . . . . . ... ... L o 28

ID.2.3  Proof of Convergence Theorem|[3| . . ... ... ... ........... 29

[E Proof of the Convergence of FOCUS| 30
[E.1 Reformulate the Recursion| . . . . ... ... ... ... 0000 30
[E2  Useful Observationsl. . . . . . .. ... ... ... . ... 30
IE3  DescentlLemmafor FOCUS| . . . . . .. ... ... . ... . .. ... 31
E4 ConsensusTemmafor FOCUS]. . . . . .. .. ... ........ .. ...... 33
IE.5  Proof of the Convergence of FOCUS (u-Strong Convexity) . . . . . . . . . . . . .. 34
|[E.6  Proot of the Convergence of FOCUS (Non-Convexity with PL Assumption)| . . . . . 35
|[E.7 Proof of the Convergence of FOCUS (General Non-Convexity)|. . . . . .. ... .. 36

[ Extensions to Stochastic Gradient Case (SG-FOCUS)| 38
[ET_DescentLemmafor SG-FOCUS| . . . . .. .............. .. ...... 38
IE2  Consensus Lemma for SG-FOCUS|. . . . . . . . ... ... ... ... 40
|[E.3 Proof of the Convergence of SG-FOCUS (p-Strong Convexity)|. . . . . . . . . . .. 42
[F.4 Proof of the Convergence of SG-FOCUS (Non-Convexity with PL Assumption)|. . . 42
.5 Proof of the Convergence of SG-FOCUS (General Non-Convexity)| . . .. ... .. 44

|G Supplementary Experiments for SG-FOCUS| 45
|G.1 Experiment Setup| . . . . . . . . . . ... 45
|G.2  Experiment Results of SG-FOCUS|. . . . . ... ... ... .. ... .. ...... 46

A Review of Decentralized Algorithms

The most widely adopted decentralized algorithm is decentralized gradient descent (DGD)
[and Ozdaglar, 2009} [Yuan et al., 2016]], along with its adapt-then-combine version diffusion algorithm

[Cattivelli et al., 2008 |(Chen and Sayed| 2012
workers collaboratively train a model without s

]. It is also a distributed algorithm where multiple
haring local data. In contrast to FedAvg, DGD has

three key distinctions. First, it operates without a central server; instead, workers communicate
directly with their neighbors according to a predefined network topology [Nedic and Ozdaglar,

2009, [Sayed et al, 2014} [Lian et all, 2017].

aggregation and synchronizing models, workers

Second, rather than relying on a server for model
keep their local models, which differ (slightly) from

each other typically. In each iteration, they exchange and combine model parameters with their
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neighbors through linear combinations dictated by the network structure. This process can be formally
expressed as

xkﬂ =Tk — NV fi(Tr,i) (Local Update) (29)
Thyri= Y wigT (Graph Combination) (30)
JEN;

where xj,; stands for the i-th worker’s parameters at the k-th iteration, the set ; represents the
neighbor’s indices of worker 7, and the non-negative weights w; ; satisfy > ., w;,; = 1 for all
1. Third, the algorithm is typically written as a single for-loop style instead of a two-level for-loop
representation. It is straightforward to incorporate the multi-local-update concept into decentralized
algorithms. However, it is not popular in the decentralized community.

J}k+1,1 = Z w,;,j (.Tk.j — T]ij(l'k_j))

Figure 5: An illustration of Decentralized Gradient Descent.

It is well-known that the DGD with a fixed step size 7 only converges to an O(n)-sized neighborhood
of the solution of the original algorithm [Yuan et al.,[2016]]. This resembles the FedAvg algorithm
exactly. Subsequently, several extract decentralized optimization algorithms have been proposed, such
as Extra [Shi et al., 2015]), exact-diffusion/NIDS [Yuan et al., 2018 [Li et al., 2019]], DIGing/Gradient
tracking [Nedic et al., [2017], etc. The key advancement of these algorithms is their capability to
achieve extra convergence under a fixed step size. They formulate the original sum-of-cost problem
into a constrained optimization problem and then apply the primal-dual style approach to solve the
constrained problem [Ryu and Yin} 2022].

While it is common in the analysis of decentralized algorithms to assume a static and strongly
connected underlying graph structure, a significant body of research also investigates time-varying
graph topologies [Lan et al., 2020, [Saadatniaki et al., [2020} |Assran et al., 2019} |Ying et al.l 2021}
Nguyen et al., 2025]. These studies often adopt one of two common assumptions regarding the
dynamics of such graphs: either the union of graphs over any consecutive 7 iterations or the expected
graph is strongly connected [Nedi¢ and Olshevskyl 2014} Koloskova et al.,[2020]. Whereas previous
research on time-varying topologies often relies on specific graph assumptions, this paper takes a
different approach. We model client sampling and local updates using a graph representation, thereby
avoiding any presuppositions about the underlying graph structure.

Lastly, we want to point out that this work focuses quite differently from the decentralized FL work
[Beltran et al., | 2023} |Shi et al., 2023} [Fang et al., 2024], which is more closely related to decentralized
algorithms instead of FL settings.

B Conventions and Notations

Under the decentralized framework, it is common to use matrix notation. We adopt the convention
that the bold symbol, such as x, is the stacked vector and the normal symbol, such as z, is the vector.
With slight abuse of notation, we adopt the row vector convention and denote that

— Tpo0— [V fo(zk,0)
= | 7T | eRNFIX U (ay) = Vf1.('5fk,1) CRN+1xd,
— Tp,N— |V in(zk,N)
V fo(Tr) ]
V(1) = Vf.l.(.i'k) cRN+1xd,
VIn(Zk)]
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where 1 is an all-one vector. Note that in V f (), each entry uses different f; and zj ;. Similar
usage for y,, as well. Except for x, y, and V f, other vectors are standard column vectors. Unlike
most matrix conventions, the index of the matrix element starts from O instead of 1 in this paper since
we set the index 0 to represent the server. Another common identity we used in the proof is

NVF(z) =1"Vf(1z), (31)

This can be easily verified when substituting the definition of F'. The rest usage of symbols is
summarized in Table 2l

Table 2: Notations in this paper

Notation Meaning

Index of clients

Index of iterations

Index of communication round and r = |k/7 |7
The number of local update steps

Indices set of clients sampled at »—th round
Model parameter dimension

U, q Uniform / Arbitrary weighted averaging vector
fi, F Local and global loss function

RV Some row stochastic matrix

Some column stochastic matrix

a5 >

In this paper, || - || denotes (induced) ¢5 norm for both vector and matrix usage while || - || p denotes
the Frobenius norm.

C Brief Review about Stochastic Matrices and their Properties

Before applying the formalism of stochastic matrices to FL algorithm, we review the key properties
of row- and column-stochastic matrices, as a clear understanding of these concepts is essential for the
analysis that follows. There are three different types of stochastic matrices.

1. A row stochastic matrix, also called right stochastic matrix, is a square matrix of nonnegative
real numbers denoted as R € RZj", with each row summing to 1, i.e., R1 = 1, where 1
denotes the all-ones vector of size n.

2. A column stochastic matrix, also called left stochastic matrix, is a square matrix of nonnega-
tive real numbers denoted as C' € RZ3", with each column summing to 1,i.e., 17C = 1T,

3. A doubly stochastic matrix is a square matrix W € RZ5™ that is both row stochastic and

column stochastic, i.e., P1 = T and 1TW = 17.

Consensus property of Row Stochastic matrix A row-stochastic matrix exhibits a consensus
property. By the definition of row stochastic matrix R, we know R1 = 1. If the matrix R is also
primitive, the Perron-Frobenius theorem guarantees that all its other eigenvalues have a magnitude
strictly less than 1. Consequently, the recursion

x4, = Rxy, where zp € RV*, (32)

converges to a consensus vector, o, := limy_, ., xx, Where all elements of x., are identical.
However, unlike the doubly stochastic matrix case, o, # %]l]lTa:O in general. Suppose that the

corresponding left eigenvector of R with eigenvalue is p, that is. p" R = p'. Then, it is easy to show
that

ZToo = lim RFay = pl'xo (33)
k—o0

In general, the Perron vector p is not a uniform vector %]l. Hence, the recursion of a row stochastic
matrix typically converges to the consensus value of some weighted average of initial values.
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To provide some concrete examples, consider the following row stochastic matrix:

1010 101 0

1t 100 o 1)1 010

B=511 0 1 0o B7=3(1 01 0 (34)
100 1 101 0

That is p = [0.5,0, 0.5, 0] in this case.

Mass preservation property of Column Stochastic matrix A column-stochastic matrix exhibits
properties markedly different from a row-stochastic matrix. While repeatedly multiplying a vector by
a row-stochastic matrix leads to consensus, this is generally not true for a column-stochastic matrix.

Instead, column-stochastic matrices possess a crucial property we call mass (or information) preser-
vation. To understand this property, consider the following recursion:

xpp1 = Crxp, where xy € RV*4, (35)
Note the subscript in C};, indicates that a different column-stochastic matrix can be applied at each
step k of the recursion. If we imagine that each element @ (%) represents the mass of the i—th object,
then the recursion x;; = Cixy can be interpreted as a mass redistribution process where the total
mass is conserved at every step. To see that, left multiplying the 17 to both sides of above equation
we get

172k =170k = 172k (36)
By induction, we can conclude 17z* = 1720, Vk.

Finally, since a doubly-stochastic matrix is both row- and column-stochastic, it automatically inherits
both of the properties discussed above. Combining the consensus-driving property (from being
row-stochastic) with the mass-preservation property (from being column-stochastic) allows us to
recover (unbiased) average consensus. The recursion converges to an average consensus, where every
element of the final vector is equal to the average of the elements in the initial vector.

D Proof of the Convergence of FedAvg under Arbitrary Client Participation

This section presents a convergence analysis of the FedAvg algorithm with an arbitrary sam-
pling/participation scheme. We focus on the strongly-convex case with a constant step size since
this setting best illustrates the impact of client drift induced by local updates and bias introduced
by non-uniform sampling. The following proof draws inspiration from and synthesizes several
existing works [Wang and Ji, 2022} |Koloskova et al., 2020}, |Li et al.,|2020], adapting their insights
to a decentralized framework. Leveraging this framework, we are able to present a more concise
proof and provide a clearer conclusion. Unlike FOCUS, most FL algorithms require an extra bounded
heterogeneity assumptions:

Assumption 5 (Bounded Heterogeneity). For any x and the local cost function f;,
VF(.%‘)H <oq.

Vfi(x) -

We further introduce a quantity, denoted as 53, to bound the discrepancy between the unbiased

gradient average and that resulting from arbitrary distribution.

HqTVf z) — "V f(z H <2, 37)
where u! is a uniform distribution vector: W[O, 1,1,---,1] and ¢" = [0,q1, 2, - ,qn], the one
introduced in Assumption This quantity J; must exist because 6, < o, due to Jensen’s inequality

2
Hquf(ﬂf) - VF(Q:))H < N GlIVfi(@r) — VE@)|? = 0. If ¢ = u, ie., the uniform
sampling case, 52 =0.
Theorem 3 (Convergence of FedAvg Under Arbltrary Actlvatlon) Under the assumption[1} 2} [3]
and when the learning rate satisfies n < mln{ 3L m} the limiting point of FedAvg satisfies:

limsupE ||Zx — 2*[|> < 80n°k*L*(1 — 1)*(07 + 0&) + 10K6; + 16072 /(67 + 0&),
K—oo

——
client drift by local update biased sampling  data heterogeneity
where Ty, = q' xy, x* is the optimal point of (1)) and k = L/ is the condition number O
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Remark of Theorem [3| Each of these three terms possesses a distinct interpretation. Notably, when
7 = 1, indicating a single local update step, the first term, representing client drift introduced by
local updates, vanishes. Both the first and third terms are scaled by the step size, 7, implying that
their magnitudes can be controlled and reduced below an arbitrary threshold, €, by employing a
sufficiently small step size. The second term, however, is a constant related to the non-uniform
sampling distribution and is, therefore, independent of the learning rate. This term underscores the
significant impact of non-uniform sampling on the convergence behavior. Even under the simplified
conditions of 7 = 1 and uniform sampling, FedAvg fails to converge to the optimal solution unless
the objective functions are homogeneous. This observation aligns with previous findings that a
diminishing learning rate is necessary for FedAvg to achieve exact convergence.

D.1 Reformation and Mixing Matrices

First, we rewrite the FedAvg algorithm using the decentralized matrix notation as introduced before:

Ypr1 =Rixi (38)
Tp1 =Ak (Y1 — MOkV F(Ypi1)), (39)

where both Ry, and Ay, are row-stochastic matrices, and they are some realizations of random matrices
representing the arbitrary sampling and Dy, are the diagonal matrices with value O or 1 to control the
turning on and off of clients. For 7 local update, it satisfies

R — {R(ST), ifk=rr+1 A, — {V(ST), itk=rr

I, otherwsie. I, otherwsie. “40)

See the definition of R(S,) and V'(S,) in main context and example in Figure[6] A noteworthy
observation from [Li et al.,[2020] is that FedAvg can be equivalently reformulated without altering
the trajectory of the server’s model. This reformulation considers activating all devices, where each
device pulls the model from the server and performs a local update, while maintaining the same set of
contributing clients for averaging. See Figure[/|as an illustration. Swap the order of x and y update,
we arrive at

Y1 =Tk — nV f (k) (41)
Trpr1 =Wiypia 42)
where W}, is a row-stochastic matrix:
I, k#rm Vr=1,2,---

W%{W@H,k:rr Vr=1,2,--

(43)

To better understand the property of W (S,.), we provide a few concrete examples of W (.S,.). Suppose
there are 4 clients. Under the arbitrary participation case, each round the number of participated
clients is not fixed. Maybe in one round, client 1 and 3 are sampled while in another round, clients 2,
3, and 4 are sampled. The corresponding matrices are

0 1/2 0 1/2 0 00 1/3 1/3 1/3
0 1/2 0 1/2 0 00 1/3 1/3 1/3
Waap = [0 1/2 0 1/2 0|, Wiysg =0 0 1/3 1/3 1/3 (44)
0 1/2 0 1/2 0 00 1/3 1/3 1/3
0 1/2 0 1/2 0 00 1/3 1/3 1/3

It is crucial to observe that W, has identical rows for any possible subset S,.. Thus, it suffices to
compute the expected value of the entries in any single row.

Now, we can state the property of W (S,.). As the consequence of arbitrary participation assumption
E] and previous single row observation, we can show that

— 4 - 0 @1 ¢ - gqn
_ - - 0O @1 ¢ - gqn
W =Eg W(S,) = o =1|. . . . ) 45)
- R :
- - 0 @1 ¢ - qn

where the values g; is value defined in the assumption. It follows directly that this row vector is also a
left eigenvector of EWg , i.e., q'E Ws, = q", since >0 =1
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Figure 6: Illustration of federated learning using a graph and mixing matrix. The top row depicts the
pull model step, while the bottom row shows the push model and subsequent averaging step.

1 00 0 0] 1 0 0 0 0
Pull Model: 1 00 00 01 00 0
Rau=[1 00 0 0|, Agg=10 0 1 0 0

@@@@ 100 00 00010

1 0 0 0 0 0000 1

10 0 0 0] 0 2 0 3 0
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TeO® proiy
00 0 0 1] 000 0 1

Figure 7: An equivalent FedAvg algorithm as Figure[6]in terms of the server model. The difference is
that all clients (virtually) pull the model and run the local update but server run the partially average.

D.2 Convergence Proof

As previously discussed, we will analyze FedAvg in its decentralized form using the following
simplified representation:

Y1 =Tk — NV F(xk) (46)
Trpr1 =Wiypi1 47
To start with, we define the virtual weighted iterates Ty := qTa:k, recalling that vector ¢ is the

averaging weights introduced in Assumption[I} The crucial observation is that conditional expectation
Ey Tk = q"E Wy, = q"y, holds for any k, including both local update step and model average
step. When there is no ambiguity, we will just use E for conditional expectation instead of E |, .
Expanding the conditional expectation of E ||Zj+1 — 2*||?, we have

El|Zxt1 — 2*||° =E |Ze11 — EZagr + EZpyr — ¥
=E|Z1 — EZppa|? + |EZppr — 2
_ 2
_{ kafanVf(wk)f:c*H , k#rT

- T 2 - T *||2 (48)

E ka+1 —q kaH + H:ck —nqg' Vf(xg) —x || , k=rT,
where the first equality is because the cross term is zero and the second equality holds because
E||Zk+1 — ¢"Yp41 || = O during the local update iterations (k # rT).

The subsequent proof follows a standard framework for analyzing decentralized algorithms. It initially
establishes a descent lemma, showing that the virtual weighted iterates Z;, progressively approach
a neighborhood of the optimal solution in each iteration. Subsequently, a consensus lemma is
established, showing that the individual client iterates, x, ;, gradually converge towards this weighted
iterate T. Finally, by combining these two lemmas, we will derive the overall convergence theorem.
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D.2.1 Descent Lemma

Lemma 1 (Descent Lemma of FedAvg). Under the assumption[l} 2] and 3] the following inequality
holds when the learning rate satisfies N < - 1 :

5nL?
|2 = na™V F@n) - 2| <= )@k - a4+ T Sl — ol + sz @)

i=1

Proof: To bound the common descent term ||z, — nq" V f(xx) — z*||?, we have

- w112

|2 = ng"V (1) — 27|
7, — px||2 20,7 2 = % T
—l@ — a2 + w2l V £ @02~ 20(@n — ¥, a"V F @)

2 2

<o — o + 302V F @) - VL) + 302 VI Az) — uTVE (2|

+ 37| VF(2x)|1* - 2n(@x — 2*, 4"V f (1))

N

<@k = a2+ 3P L2 S qillons — @l + 30%0% + 6P L(F(h) — F(a*)) = 20(z, — o*, 4"V f (@),

i=1
(50)

where the first inequality results from Jensen’s inequality, and the second inequality utilizes and
the consequence of L— Lipschitz smooth condition with a convex function, we have F'(z) — F'(z*) >
3r IVE(2)]?, V.

Next, an upper bound for the cross term can be given by
—2n(xp — 2*,q" VF(zr))
= —2(z), — 2%, u' V(@) + 20(zp — 2w V(@) — ¢ V()
* = * = * 2 ~
< = 2(E(@) = F) + glloe =2 )+ o = 2P 4 etV f @) = aT 9 f (@)
" _ N 4 _
< o =P = 2 (F () = F() + V(@) — "V f )
4 _ _
+ ;”nuTvmk) — "V (@)

anr2 &
<= MYz — 2|2 — 2 (F(3y) — F(z*)) + —2

= B I

4
Gillwns — T4))> + 82, (51)
=1 /J

where the first inequality is obtained from Young’s inequality 2(a, b) < €l|a||* 4+ 1||b||? with e = /2,
the second inequality is due to Jensen’s inequality, and the third inequality is obtained by (37).

Combining (30) and (51)), we have
25— g™V £ (x) — o

AL? al 4
< - B)llz — |+ (M + 3nL2) > aillan — @l + (: + 377"’) 7

i=1

+ (6n°L — 2n) (F(z1,) — F(a¥)) (52)
Letting n < min(5, i) = -, we further have
|2 — g™V f () —a*||” <1~ —)Hx ot + 5"52 iqilla‘:k —xp))* + 5—/763, (53)
i=1
where we discarded the (6n*L — 2n)(F(Z) — F(z*)) term since it is always negative. O
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D.2.2 Consensus Lemma

Lemma 2 (Consensus Error of FedAvg). Under the assumption[I} 2| and [} the followzng two
(weighted) consensus errors hold for any iteration k when the learning rate satisfies 1 < i

71)1;'
Zqz‘ka —zpil? <80 (1 — 1)*(0; + 02), Vk (54)
=1

N

D @il gk — yrall® <80°73(5; + 02), Vk (55)
=1

Proof: To evaluate the consensus error, the key observation is at the model average iteration, i.e.,
k = r7 that all clients’ model parameters x, ; are the same. Hence, we can express the consensus
error by referring back to that point:

2

N k—1
> aillEk — wpll? Z% Tho — 1] Z q"VE(@e) —ak +1 Y Vii(ze )
i=1 k'=kq k'=ko
N k-1 9
(r-1)) Z 4 ||q"V f () = V filwr )| (56)
i=1k'=

where kj is the iteration that model averaging is performed, which can be calculated via kg = 7 Léj
The above inequality utilizes Jensen’s inequality and observation that k — kg < 7 — 1. Then, we have

la"V # (@) — Vfiewo)|
<4V F(xr) — "V FLae)|” + 4] qTV (o) - uTV (1)
ATV S (87) TV f (L )|+ 4 0TV F (L) — V(L)

’ 2

N
<4 4|V fi(ew o) = V@) +AL%| 2w — wwl|* + 467 + 402,
=1
N
<AL gollaw i — Zwl® 4 AL | Ty — 2 )| + 457 + 40 (57)
=1

where we plus and minus ¢V f (12 ), u"V f(1Z}) and "V f(1x ;) then apply Jensen’s in-
equality. Plugging (37) back to (56), we have

N k—1 N
Z qillZk — zrl* <n*(r — 1) Z <8L2 Z%ka',i — T ||? + 407 + 402;) (58)
i=1 k' =ko i=1

Finally, we can establish a uniform bound for the consensus error using mathematical induction.
Initially, note that 7 | ;|| Zx, — &k, || = 0. Now, assume that 3~ | ¢;[|Zx — 242 < A for any
k <ky+7—1,then

N
D il Trir — Thopril® < 40T — 1)?(2LPA + 57 + 05) = A (59)

1=1
2(K—1)2(62 402
It holds when A = T 0at76) qp ) <

the uniform upper bound of consensus error is
N
> aillzk — wral)? < 80 (r = 1)%(5] + o) (60)
This upper bound holds for lg:kland Yk,; similarly with only one difference that y,, has one more inner
iteration before applying the W), compared to xy.
N
> Gillge — yr,ll* < 89?7202 + o) 61)
i=1

1z then A < 87(7 — 1)*(67 + 0¢). Hence,

O
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D.2.3 Proof of Convergence Theorem 3]

Proof: Combining the above two lemmas, we conclude that for k # 77

403 L3 (1 — 1)?

E|[Zpr1 — 2| < (1 —np/2)|zx — 2*|* + q

5
(&2 +02)+ 2152 (62)
!
To establish the case k = 7, we need to consider the variance after the local update is done. Through
previous established the consensus lemma, it is easy to verify that

t=E g™ We, yp4s = quk+1H2

E||Zx1— ¢ Ypin ]

2
=E ||Ws,,, [0, 3]yk+1 - quk+1 ||
al 2
< Z gi ||yk+1,i —q¢" Y ||
i=1
<8n?r? (53 + aé),
where the first equality holds because any row in the W is the same, the first inequality applies

Jensen’s inequality and the last inequality utilizes the consensus lemma. Substituting back to (#8)),
we have for k # r7

El|Zpr1 — 2> < (1 —np/2)||Zk — o ||* + w(cﬁ +02) + 5*”52 + 8772K2(5§ + o)
H 2 63)
We can simplify above two recursion as
Ap+1 <(1 — a)Ax + B, k#rr (64)
Ak+1 S(l—a)Ak—l-B—i-Q k=nrr (65)

3r2 2
where Ay = E ||z —2*||?, B = %(524—0&)—1— 57"53, and C' = 89> K?(67 +0¢). Making
it a K(-step recursion together, we have

K LK/7]
A <(1-a)f4+>Y 1-a)"B+ Y (1-a)fC (66)
k'=0 k'=0

Letting K — oo and substituting back, we conclude
limsupE||Zx — 2*||* < 80n°k*L*(1 — 1)*(0; + 0&) + 10k4, + 1607/ (6} + o),
K

— 00

. . . W_/ . .
client drift by local update ~ biased sampling  data heterogeneity
(67)
where we introduce the conditional number k = L/ . O
As we discussed in the main context, these three terms have their own meanings. We can easily
establish the following corollaries. Note 63 = 0 under the uniform sampling case. We have

Corollary 1 (FedAvg Under the Uniform Sampling). Under the same conditions and assumptions as
theorem|[3] the convergence of FedAvg with uniform sampling satisfies

limsupE ||Zx — 2*||* < 80n*k*L2 (1 — 1)%02 + 16972/ uo, (68)
K—oo
Corollary 2 (FedAvg Under the Uniform Sampling and Single Local Update). Under the same

conditions and assumptions as theorem 3| the convergence of FedAvg with uniform sampling and
7 = 1 satisfies

limsupE ||Zx — 2*||* < 16072/ uo, (69)
K—oo

Lastly, if the function is homogeneous among f;, it implies 02, = 0. Further notice 6, < o¢, = 0.

Corollary 3 (FedAvg with Homogeneous Functions). Under the same conditions of theorem 3]
FedAvg can converge exactly when f; is homogeneous

lim E||Zx —2*|*=0 (70)
K—oo

Notably, Corollary 3| holds without requiring the assumptions of 7 = 1 or uniform sampling. This is
intuitive because arbitrary sampling becomes irrelevant in the case of homogeneous functions.
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E Proof of the Convergence of FOCUS

E.1 Reformulate the Recursion

Similar to the proof of FedAvg under arbitrary client participation, we first rewrite the recursion of
FOCUS so that it is easier to show the proof. Recall that the original matrix-vector recursion is
Zp1 =Ri(zr — nDryy) (711)
Y1 =Ck(yp + Vf(@rs1) — V(zr)) (72)
This form is not easy to analyze when noticing the following pattern on the mixing matrix choices:

Iter. k | O 1 2 T 741 - rr—1 o orr+1
Re | Imt R(S) I T RS - T R(S) 1
Cpo |it. I I cSy) I - CS,_y) I I

R(S,) and C(S,) are not applied at the same iteration. Even worse, R(S,) and C(S, ) are random
variables and depend on each other. To avoid these difficulties, we switch the order of z— and
y—update and get the following equivalent form:

Yis1 =Cr(yp + VF(zi) — VF(zio1)) (73)
Tp1 =R(Tr — NDrYpi1) (74)

Notice the subscript’s modification. The initial condition becomes y, = V f (ac,l)ﬂ and x_; = xo,
which can be any values. Now, the matrices follow this new pattern

Iter. k | -1 0 1 2 .- T T+1 v rr—1 T rT+1
. | - It I I - C®) I - T 06 1
Ry | it R(S) I I RS I - R(S,) I

With this shift, both the row stochastic matrix (R) and column stochastic matrix (C') operations are
applied within the same iteration. However, it is crucial to note that these operations do not correspond
to the same indices of sampled clients, i.e. S, versus S,_;. To further simplify the analysis, we can
leverage a technique similar to the one used in the FedAvg proof: considering the collecting full
set of client y rather than just a subset. This is valid because the y;, ; of non-participated clients are
effectively zero. Consequently, we no longer need to take care about the correlation between R and
C, significantly simplifying the analysis.

Y1 =Choan(yy, + VF(xr) = VI(wp-1)) (75)
11 =Rp(xr — 1DrYs11), (76)
where the definition of C, a1 are

I ifk #rr

. 1 1 --- 1 -
k,all =
00 0 ifk=rr
00 --- 0

The rest of proof will use this new form - (7).

E.2 Useful Observations

Before we proceed with the proof, there are a few critical observations.

Introducing a server index selecting vector ug = [1,0,0,-- - , 0], it is straightforward to verify that it
is the left-eigenvector of R, for all :

upRy = uk, Vk. (78)

3We do not really need to calculate the value of Y, since it will be canceled out in the first iteration.
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Now we denote the T;, = u-lrza:k and ¥ = u};yk, which can be interpreted as the server’s model
parameters and gradient tracker. Utilizing the eigenvector properties and definition of 2 and Dy, we
obtain

k#rT

Yk
{]lTVf(a:k) k=r7’ (79

P {.’L‘k k#rr _
k+1 =9 - _ ) k+1 =
+ Tk — NYk+1 k=rr Yhr

where 7., 1 = 1TV f(x,.) is due to the tracking property that
1y =17Ck(yy, + V() = VF(xTho1)) = - = 1TV f(xp), (80)

and the client’s y,.-1,; = O for any clients. The main difficulty of the analysis lies in the iteration r7
to r7 + 1, i.e., the gradient collecting and model pulling step. Given the information before step r,
it can be easily verified that
N
2 —
E ||w7‘7'+1 - erHF = Z qi”xr‘r+1 — Trryi
i=1
N
_ 2 _
El1Zr 11 — @prqa |2 = Z(l = @i)||Zrrt1 — @rr il
i=1

|2 = ||]ljr7'+1 - wr‘r”é (81)

2= 1% g1 — w7, (82)

where the first equation means the difference between the model before pulling and the server’s
model, and the second equation means the difference between the clients’ models after pulling and
the server’s model. The last observation is the difference between model update

0 if i ¢S,
L ) (D)7
T(r41)ri — Lrr+l,i = y (33)
> oy ifi€s,
k=rt+4+2
0 if i ¢S,
rr ’ i = . . 5 84
YrrekreL {vfi(xTT+k',i) - Vfi(xr‘r,i) if 1€ Sr ( )
Using the client-only notation: &y := [a:k,l; Th,25 ;mk,N] € RV*4 we have the compact form
(r+1)7
E(ri1)r — Berp1 =Dy Y Wy (85)
k=r7+2
Gorerrer =D (VI @rrin) = VF(@rr)) (86)

E.3 Descent Lemma for FOCUS

Lemma 3 (Descent Lemma for FOCUS). Under assumptions [I| (arbitrary client participation), [2]
(L-smooth) and (u-strongly convex), if the learning rate n < m the conditional expectation

of server’s error can be bounded as

1
€ v [snyrss = < (1= G008 ) U7 = @2 = 208 (0L~ 20N ) (F@r7i) = Fo")

SnL:N

+ 12711 — e ||, (87)
where x* is the optimal point.

Note that this lemma can only be used for the strongly-convex case, which is the most complicated
case. Non-convex proof is simpler than the strongly convex one, and a similar idea can be applied
there, so we make this lemma outstanding here.

Proof of Lemma 3}

The server’s error recursion from the (r 4 1)-th round to the r-th round is

E [|Z(s1yre1 = |
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=E ||Zrr41 — 3" — U]lTVf(l'(rH)T)Hz

=[|Zr 41 — &*|* = 20E (Zrri1 — 25 VTV F(2(11),)) + 0°E ||]1va(m(r+1)r)||2

NZrrg1 — 2*))* = 20E (Zprs1 — 25, LTV F(@(y1)r)) + 20°E [ 1TV F (@ (p1)r) — ]lva(ﬂi‘rT-H)HQ
+ 2P N?||VE (Zrr 1) |2

L Zrrg1 — ¥ = 20E (Zpr g1 — 2%, LTV (@ (041)r)) + 20°E || 1TV F(2(p1)r) — ﬂTVf(]lfrTH)HQ
+ 4’ N?L(F (Zyr11) — F(2)), (88)

where the first inequality is obtained by Jensen’s inequality and the second inequality utilizes the
Lipschitz condition with convexity 5~ ||V F(z)||? < F(z) — F(2*). The cross term can be bounded
as

- 277[E <fErT+1 - 1'*7 ]lva(w(r+1)T)>
= — 277<j7“7'+1 - $*, NVF(@‘TT+1)> — 27’]|E <.i'7~7—+1 — x*, ILTVf($(T+1)7-) — ILTv‘f(IlfrT+1)>
- * o= * -
S =N (F(Zrry1) — F(2") + §||xr‘r+1 —*|*) + nel|Trr i1 — 2|
n _ 2
+-E |17V f(2(ri1)r) — 1TV F(1Zpr i) ||

_ nuN
2

B N B N 2 _ 2
< — 2N (F(#rr11) — F(a*)) |Zrrr — 2| + ;”E 0TV f (@ (i1yr) = 1TV (L)
(39)

where the first inequality utilizes Young’s inequality with ¢, and we set ¢ = /2 in the second
inequality.

Plugging (89) into (88), we have

N
E [|Z(rt1)r41 — DE*HQ < (1 - TWT

) Woress = a2 = 2081 = 20N D) (F(orn) - Fla')
1 2
+2n (u + n) E 1TV F(xii1)) — 1TV F(LZ )| (90)
Next, we focus on this gradient difference term:

B 2
E|1TVF1Zrr11) — 1TV E(@(s)) |
SLQN[E ||IL’ET7—+1 - x(r+1)‘r”%

(r+1)7
=L*N ﬂfrT-ﬁ—l —Zrr41+7 Z Dkyk
k=rt+2 F
(r+1)7 2
S2L°N|[1Zpr 1 — @rrpa||* +2L°N n Y Dry,,
k=rt+2 P
(r+1)7
<2L°N|[1Zprg1 — Trra |+ 207 = D? LN > || Dyl 1)
k=rt+2

where the above two inequalities use Jensen’s inequality || 21111 ai|> <N Zi\il lla:]|.

Lastly, we need to bound y;, ; by using L-Lipschitz assumption and Jensen’s inequality. We just need
to focus on the index ¢ that is the index among the sampled clients otherwise yi ; = 0, Vi & S,.

2 :||Vfi(9€k71,i) - Vfi(frr,i)HQ
L2V fixr-14) = VIil@rri1) 1P + 20V fi(@rrs1,0) = Vil@rra) 1P
<L2L2||zp—1i — Trryrill? + 2L @1 — T

k

<Lk —r7—=2) > |lywil
k'=rT+2

(7%

2 + 2L2||mrr+l,i - xr‘r,iHQ
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(r+1)7
<2’ L?(1 — 1) Z lyrr i ll” + 2L |Tprg1,i — Trr il 92)
k'=r7+42
where, in the last inequality, we just expand the non-negative term to the maximum difference cases.
Hence, taking another summation of k from 77 + 2 to (r + 1)7, we obtain

(r+1)7
(1=2022 =) D7 lgwll® <207 = DL @yrs1, = worl® ©93)
k=rt4+2
When 7 < ﬁm, we conclude
(r+1)7
> Mlykall® <A = DL 2prgri — Teril® = 407 = DL2|[Zrrgr — 20 (94)
k=rv+2

Plugging (94) back to (@T)), we obtain
E HI[TVf IL.’I?TTJ,_l) — 1TVf w(r+1 H
<2L2N|[1Zyr 41 — @07 |F_ ) + 877 (1 — 12 L N|[1Z,7 41 — @1 |3, (95)

where the first equation means the difference between the model before pulling and the server’s
model, and the second equation means the difference between the clients’ models after pulling and
the server’s model. The weighted Q and I — @ (ref. (81)-(82)) are strictly smaller than 1, which can
make the convergence proof tighter. But for simplicity, we just loosen it to 1 and got

E|[1TVfAZr41) — 1TV F(@(ry1)r) H L2LAN|1Zyr g1 — s |2 + 872 (T —1)2LAN 127 41 — 200 |2
§3L NH]]-‘rr'qul - wr'r” (96)

where the last inequality holds when n < O

1
3(r—1)L"
E.4 Consensus Lemma for FOCUS

Lemma 4 (Consensus Lemma for FOCUS). Under assumptions[I|and 2] if the learning rate n <
3/2 3/2
min 8‘2‘%, 3 Lq(‘;‘jl) }, the difference between the server’s global model and the client’s local model

can be bounded as

16n2N?
3qmin

Note that this consensus lemma is not related to any convex or strongly convex properties, so it can

also be applied in nonconvex cases.

_ Gmin _ 2 _ 2
E ||1xr7'+1 - SUTTHQF < (1 - T) H]lx(’rfl)‘rJrl - m(rfl)THF + HVF(J:TT-‘rl)H (97)

Proof of Lemma @}

Here, we focus on how different the server’s model at the r-round and the client’s model just before
pulling the model from the server. Taking the conditional expectation, we have

El1Zr41 — :I’TT”?J

=k \|[1Z(—1)r41 — M Grr41 — Tr—1)r41 + 1 Z Dyyy,
k=(r—1)7+2 P
2

1 - 2 2772 _ 2 2772 C
<=E |1Z¢—1)r+1 = B—1yrs1||p + T —EMGrial> + ——E || > Diyyl| , (98)
P 1- p 1- P k=(r—1)7+2
where the inequality above uses Jensen’s inequality ||a + b||? < %HQHZ + ilp [|b]|? and p here can be
any value between 0 and 1 (exclusively). For each term, we know
N

E H]]"/'f(’r‘—l)T"rl - m(r—l)T-‘rlHj;v = Z(l - Qz’)”i'(r—l)r-&-l - x(r—l)r,i”2
=1
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< (1= guin) [ 18 (—1yr41 — (o1 || (99)

and the second term

2
g1 ? 21TV f(207) = 1TV (12| + 2 [NVE(@pr0) |

ONLA|1Zpr gy — Tpr||% + 2| NVE(Zrr i) | (100)
and the third term
rr 2 (r+1)7
E Y. Dyl <C-DE Y Dyl
k=(r—1)7+2 k=r7+2
N
<4(r — 1)2L2 Z GillTrr1 — wrm'Hg
=1
<A(T — 1)L 1%y g1 — Tpr || (101)

; ; 1—gmin_ _ min :
Putting (©9) (T00), (TOT) back to (98) and selecting p = 225 = 1 — ;22— we obtain
E1Zrri1 — & |7
4772NL2(2 - Qmin)

min

8n° (7 —1)*L*(2 — Gmin)

Gmin _ _
< (1 - T) H]lx(rfl)TJrl - m(’l"*l)TH%‘ + ||]ll'7-7—+1 - mT"FHQF

4772N2 (2 — Qmin)

_ 2 _
+ q . HVF(‘ITT"Fl)H + q X H]leT-i-l _xTTH2
dmin _ 8772NL2 _
< (1 - 2 ) H]lx(rfl)‘rJrl - :B(’l"fl)TH%' + 7.||]1er+1 - wTTHZF
8n2 N2 B 16092 (1 — 1)2L%
- Z | VE(@r1) | + "(q,)ﬂxrm — x| (102)

3/2 3/2

Itn < min{;]{:i/“ﬁ, SLq(r;ijl)},wehave

(1 - qum) E 1241 — 20 |7 < (1 - qn;n) 112 —1yrg1 — ﬂf(r—l)r||2p + 877::72 IVE(zZpr11))?
(103)
Simplifying it further, we obtain
E1Zrri1 — &7
< (1 - ngn) 02 1yrs1 = @(rnye |50 + 12;71::2 IV F(Zpr 1) || (104)
O

E.5 Proof of the Convergence of FOCUS (u-Strong Convexity)

Proof of Theorem[I|(-Strongly Convex Case):

By Lemmas [3]and @] we have two recursions

N
E ||Z(41yrs1 — 2] < (1 - ’7’;) EZrri1 — a*|* = 20N (1 = 20N L) (F(Zy741) — F(¥))

8nL2N
+ U E ||]1er+1 - wr‘r”2 (105)
1612 N2

3Gmin HVF(ETT+1) H 2

(106)

E ||]1er+1 - wr'r”%‘ < (1 - qm%) ||]lj(r—1)7-+1 - w(’l"—l)THi“ +

34



3202N2L
3Qmin

(F(@rrs1) — F(a"))
(107)

< (1 - qrgin) ||]1f(7'—1)7'+1 - w(T'_l)THi‘ +

To lighten the notation, we let A, 1 = E||Z(41)-41 — 2*||* and B, = E|[1Z,41 — 2|7
Therefore, we have

2
Argr < (1 - 7w2_7V> Ay = 2N(1 = 2pNL)(F(Zr741) — F(27)) + Sl NBr (108)
Gmin 32’172N2L _ %
B <(1-%) B,y + S (F@en) = F@)) (109)

After summing up them, the term about (F(Z,.41) — F(2*)) is negative, so we directly remove it in
the upper bound. Then, we get

L?N N i
AT+1+ (1_ 877 )BTS (1_77/;) Ar“v‘ (1_ ql];)m)Brfl
M

2
< (1— WN) (AT+ (1- 8"i N)BT_1>, (110)

where (TT0) holds when n < :W&ﬁ .
2

n

Hence, we conclude that FOCUS achieves the linear convergence rate of (1 — nuN/2) under the
strongly-convex condition.

E.6 Proof of the Convergence of FOCUS (Non-Convexity with PL. Assumption)

Proof of Theorem[I|(Nonconvex Case with PL Assumption):

Using the L—Lipschitz condition, we have
F(£(7‘+1)‘r+1)

2
_ n°L 2
<F(Z(ri1)r) = {VF(Z(i1)r), 1TV F(@(rs1)r)) + 5 |17V (x|

2
_ _ n°L 2
=F(Zr41) = (VE(ZTrr41), 1 V.f( (r+1) 7))+ N HILTv.f(w(TJrl)T)H
_ _ 2
<F(Zyri1) = n{VF(Zrr41), ]lTVf( (r+1)7)) + n*L HNVF(xT'T-H) - ]lva(m(rJrl)T)H
+ 02 N2L|VF(Zrrs1) |2, (111)
where the last inequality uses Jensen’s inequality.

Using the parallelogram identity to bound the cross term, we have

— )V (Err41), 1TV f (@(11)7)
=- %ww@-rm, UV F(@(ri1)r)

2
I

N
S TV (1 ri0) = UV E @ sye)|| = L IVE @) |2 = 5o [TV E @00 |

< 0TV F 1) ~ 179 F (@)~ IV F )2 (112)
where we discard the non-positive term in the last step. Substituting back, we have
F(Z(ry1)r41)
<F(Zr1) + (ﬁ +2L) [ 1V f Ly 1) = 1TV @) | (’75 - nQNQL) IVF (@7 1)

2 _
<F(xr‘r+1 + = Hﬂvf le’l‘T-‘rl) -1 V.f( (r+1) )H _77NHVF(x7‘T+1)||2
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2 N
SF(Ui'rv'+1) + % H]lv.f(]lfrv'+1) - ]lva(w(r+1)'r)H - 77/3N (F(jr‘rJrl) - F*) - 777||VF(CETT+1)||27
(113)

where the second inequality follows i < min{ﬁ, m} and the last inequality we split

—nN||VF(Z,7+1)||? into two parts and applying PL-condition for one part. Next, we minus F™* on
the both sides to obtain:

F(Z(q1yrq1) — F*
- * n - T 2 nN - 2
(10BN (FlErrin) ~ F) L 195 (1) ~ TV )|~ 2 IV E ()]
(114)
Recalling the previous result (93)):

- 2 -
E H]lva(]lfCrrJrl) - ]lTVf(w(r+1)'r)H §(2L2N + 8772(7' - 1)2L4N)||]lxr7-+1 - erHQ
(115)

Putting (TT3)) back to (I14), we have
= * - . - N _
F(Z(ry1)r1) = F* <(1—nBN) (F(xr‘r+1) —F ) + 4L |12 1 — @ ||” — %HVF(ZTT+1)”2
(116)

Recalling the Lemmafd] we know

_ dmin _ 2 16772N2 _ 2
E Hﬂer—i-l - wTTH%‘ < (1 - 3 ) H‘ﬂx(rfl)TJrl - w(rfl)THF + 3qmi ‘IVF(']:TT+1)“
(117)
With a condition < min{ 33‘12"}\‘;‘, SQN?rinqm;n) , s}, we denote A, = F(Zyrq1) — F* and B, =
E||1%,r+1 — x,-||?, and then we have
Arr + (1= 49L2) B, <(1— nBN) A, + (1 - qrgi“) By
1— QIgin
—(1-n8N) (A, +—3 _B._
(1—nBN) < Tz BN 1)
<(1-n8N) (A + (1 - 222)B, )
<(1=nBN) (A, + (1 = 49L?) B,—1) (118)

Therefore, we conclude that FOCUS achieves the linear convergence rate of (1 — nSN) in the
nonconvex case with PL condition. 0

E.7 Proof of the Convergence of FOCUS (General Non-Convexity)
Proof of Theorem|I|(General Nonconvex Case):
We begin with L—Lipschitz condition:

’L
F(j(r+1)7’+1) SF(:Z.’I‘T+1) =" <VF(:ETT+1>7 ]lva(w(r+1)T)> + 777 H]}-Tv-f(w(TJrl)T)HQ

SF(:ETT-‘H) -1 <VF(:Z'7“T+1)7 ]]'va(m(T'+1)T)>
_ 2 _
+ 2L |NVF(Zrr41) = V'V f(@(r11)r) || + P N2LI|VE(Z,r41) |12, (119)
where the last inequality utilizes the Jensen’s inequality.

Then, we deal with the cross term:

-n <VF(‘f7‘T+1)a 1TVf(w(T+1)T)>
= - 77NHVF('frT+1)H2 + n <VF(jr‘r+1)a NVF(er+1) - 1va(m(r+1)7)>
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2
<- —HVF(acrm)HQ +ox HllVf (LZpry1) = 1TV F (@11, || (120)
Substituting @) back to (TT9), we have

niv ,
7(1 - 277NL)I]E ||VF(er+1)||2

<F(Zrr41) — EF(Zgi1yr41) + (ﬁ + 772L) E|[1TVF(@rrs1) — LV f (@) (12D

To bound the term ||]1TVf(§3TT+1) — ]lTVf(a:(TH)T)
will obtain:

2 .
|, we can directly use the result (93), so we

niN _
7(1 — 2pNL)E||VE(Z7r41)|°
<F(Zrri1) — EF(Za1yri) + (ﬁ n 772L> (2L2N + 8n2(r — 1)2LAN) E 1341 — s |2

(122)

Then, when 1 < min{ 75, ﬁ} we can get 1/2 < (1 —2nNL), n?L < /2N and 8n?(1 —
1)2LAN < 2L%N. Thus, we can simplify the coefficients further as follows:

_ 4 _ _ 16L2
E ||VF(xTT+1)||2 §n7N<F($rT+1) - F(m(r+1)7+1)) + T[E 11Zr 11 — wr‘r||2 (123)

Recalling the Lemma[d] we know

[E||ﬂ3frr+1 mrTHF (1 - qrgm> H]lil? (r—1)7+1 — w(r 7 H2F

162 N2
3¢min

IVF@rri1)]”
(124)

We denote that A, = E |VE(Zr41)||%, By = F(Zyr41) and Cp = E[|[1Z,41 — @, ||

Through (124) and (123), we have the following two recursions:

4 1612
A, <— (B, — B, —0C, 125
SON ( +1> t— (125)
Qmin 16772N2
C.<(1- C,_ A, 126
< ( 3 ) 1+ 0o (126)

Taking the summation from r = 0 to R — 1, we have

| B = donin R-1 16172N2
IR DL (Rl S DI :mmﬁz

R—1 o R—
Gmin 1 167] N
<(i-Tm) 2> §;Ar 127
- ( 3 R o Cr+ 3RQmin o ( )

Note Cy = 0 and we shift the subscripts in the second inequation since adding a non-negative term
always holds. Therefore,

Cr < =0 A, (128)

Lastly, noting

256n2L2N\ 1 = 4
= (1—2) EZATS —_(By — Bg)

Zmin —o0 n
| 8(P(@) - F@))
= 3 Z E|[VEF(Zrri1)|? < —NE : (129)
where the last inequality follows7_7 < —fmin__ [

16LV2N
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F Extensions to Stochastic Gradient Case (SG-FOCUS)

When applying the optimization algorithm to the machine learning problem, we need to use stochastic
gradients instead of gradient oracle. Only one line change of FOCUS is required to support the
stochastic gradient case, which is highlighted in Algorithm[2| Notably, the past stochastic gradient
is Vfi(xr—1,;&k—1) instead of Vf;(xy_1,;&x). This choice preserves the crucial tracking
property. Furthermore, this approach offers a computational advantage by allowing us to store and
reuse the prior stochastic gradient, thus avoiding redundant computations.

Algorithm 2 SG-FOCUS (Stochastic Gradient Version of FOCUS)
1: Initialize: Choose learning rate 7 and local update 7. At server, set a random xg, yo = 0 and set
Vfi(x(_oi’i; 1) = y(() 7) at all clients.

2: forr=0,1,...,R— 1do

3:  Arbitrarily sample client index set .S,

4:  foriin S, parallel do

5: ;Cé Z) =z, y(()rl) <=0 > Pull model z, from server while y,- is NOT pulled
6 for t = 0, - —1do

7 ygr)l ; yt Vv fl(wt ) ) -V (mfﬁu, &-1) © Current and last stochastic grad.
8: Tit1, = Teg — MYt41,i

9: end for
10:  end for
1 Y1 = Yr + D ic s, y”) > Pushing yZ(TT) to server (Not averaging)
120 Zpy1 = Tp — NYrt1 > Client model bL(T’? is NEVER pushed.
13: end for

Before showing the lemmas and proof of SG-FOCUS, we introduce an assumption of unbiased
stochastic gradients with bounded variance as follows.

Assumption 6 (Unbiased Stochastic Gradients with Bounded Variance). The stochastic gradient
computed by clients or the server is unbiased with bounded variance:

E[Vfi(w:§)) = Vfi(x) and E|Vfi(a;€) - Vfilo)|* < o, (130)
where £ is the data sample.

F.1 Descent Lemma for SG-FOCUS

Lemma 5. Under assumptlo jj Iand@ ifn < min{ 128(T7‘1)2L2N, 2\/5(7171)L }, the expectation
of server’s error can be bounded as

N
[ — (1 ”‘; ) E|[Zrrs1 — %[> = 20N (1 = 29N L) (F(Zyr11) — F(2))

16nL2N
b O g e | 4 20202

where x* is the optimal point. Note that this lemma can only be used for strongly convex cases.

Proof of Lemma 3}

The server’s error recursion from the (r 4 1)-th round to the r-th round is
E |Zs1yrer — ||
=E ||jr7'+1 -t — T]ﬂva(m(r-i-l)T;§(T+1)T)||2
=Zrr41 — 2| = 20E(Zyrgr — 2, VTV F (@ (rt1)r3 Eoryr)) + 0°E || 1TV F (@ (rs1) 5 €1y r)
P = 2@ g1 — 2% 1TV f(2(oy1y,)) + 0°0°
+ 202 | 1TV f (2 s1)r) = VTV F(UTrri) | + 20 N2V E(Zpr) |2

I

§‘|:ET’T+1 -
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<NZpr g1 — ¥ = 20(Frrg1 — 2%, LTV F((p1)r)) + 1707
2 *
+ 207 UV f(@(ri1)r) = VTV (UZ 1) || + 49° NP L(F (T 1) — F(27)), (131)

where the first inequality is obtained by Jensen’s inequality and the second inequality utilizes the
Lipschitz condition 5-||VF(z)||* < F(x) — F(*). The cross term can be bounded as

- 27]<ir‘r+1 - :L'*7 1va<w(r+1)'r)>
= - 277<i‘7'7'+1 - x*a NVF(£TT+1)> - 27]<er+1 - $*7 ]lTVf(w(r+1)T) - 1va(ni7'7+1)>
- * Lo * -
< =2N(F(Trry1) — F(2¥) + §||xr‘r+1 - ”2) + nel|Zrri1 — 55*”2

n _ 2
+ ; H]lva(m(r+1)7') - ]lTv.f(]ler+1)|‘
_ N N . 2 _ 2
< = 2N (F(prs1) = F (@) = o= forris =P+ STV @y0) = 1TV (L)
(132)
where the first inequality utilizes Young’s inequality with ¢, and we set ¢ = 1/2 in the second
inequality.

Plugging (132) into (I3T)), we have

N
E forssyer =t < (1= 255 ) Uarras = o2 = 208 (L~ 20N L) (F(@y7a) ~ Fo")
1
+ 2 (u + n) 1TV f((i1)r) — 1TV F(1yr 1) || + 0?0
(133)

Now, we focus on this gradient difference term:

_ 2
E ||11TVf(]11'7~7-+1) - ]lva(m(T-‘rl)T)H
SLQN[E 12741 — w(rJrl)‘rH%“

(r+1)7
=L*NE ]l'fr'r-‘rl —Zpr41+ 7 Z Dkyk
k=rT+4+2 F
(r+1)7
<2L*N|1Zpr11 — Trrpa|> + 2L°NE || Y Dyy,
k=rt+2 P
(r4+1)7
2LPN|[1Zyrg1 — Tprga || + 200 = D?LNE Y | Dyyyl 7, (134)
k=rT42

where the last two inequalities use the Jensen’s inequality || Zi\;l ai|> <N Zfil lla:]|?.

Next, we need to bound yy, ; by using L—Lipshitz assumption and Jensen’s inequality. Assume ¢ is
the index among the sampled clients:

E ||ykz||2 =E ||Vfi($k—1,z';§k—1,z') - vfi(IrT,i; fw,z‘)”z
<AE ||V fi@h—1,i3 Eh—1,1) — VSilzr—1,0) 1> +AE |V fi(zr-1,6) — Vfi(@rrs10) [
+AE |V fi(@rri14) = Vi(@rr ) I + 4B |V fi(2rr i) = V fi(@rri5 6rri) |2
<ALP||wp—1,i — Tprgril|? + AL @rr 41,0 — Trri|® + 807

k
<ALk —rr=2) Y ywill® + AL 21 — @il + 807
k'=rt+2
(r+1)7
§4772L2(T - 1) Z Hyk’,i||2 + 4L2er7'+1,i - er,iHQ + 8027
k'=rT4+2
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where, in the last inequality, we just expand the non-negative term to the maximum difference cases.
Hence, taking another summation of & from r7 + 2 to (r + 1)7, we obtain

(r+1)7
(1 — 4L (7 - 1)) Z E HykaQ <4(r — 1)L2||13r7+1,¢ - er,in +8(1 —1)o
k=r7+2
When 1/2 < (1 —4n?L*(1 — 1)) i.e., n < m\/ﬁ we conclude
(r1)7
E D lywil® <8(7 = D2 ||2rryri — 2pri|* 4+ 16(7 — 1)o7
k=r7+2
=8(1 — V)L2||Zrrs1 — Trril|® +16(7 — 1)0? (135)

Plugging (I33)) back to (I34), we obtain

E 1"V F(1Zrs1) — 1TV F(®(p1)r)
<(2L*N +160°(1 — 1)°L*N) || 1Zyr41 — @, ||> + 320*(r — 1)°L*No?, (136)

Plugging (136)) into (133), we obtain

N
E ||Z(rr1yrn — 2| < (1 - 77/;) El|Zrrs1 —2*|? = 20N (1 = 20N L) (F(Zy741) — F(z*))

I

1
+ 21 (u + n) (2L2N +161*(1 = 1)°LN) 12141 — 200 |2
1
+n%0? +2n ( + n) 32n% (1 — 1)?L?>No?
w
N
< (1= ) Bl — 2P = 2081~ 2NL)(F(orn) - Fla')
16nL2N
+ = B 1 — |2 + 20707,
where the last inequality follows:

M 1 } = min{ L 1 )
128(7 — 202N 2v2(r — )L’ UI28(r — 202N 2va(r — DL

Co1
7 < min{—
1

F.2 Consensus Lemma for SG-FOCUS

Lemma 6 (Consensus Lemma for SG-FOCUS). Under assumptions [I} 2} [6] if the learning rate

3/2 3/2
7 < min 1 gm, 3 \/ian(T— ) } the difference between the server’s global model and the client’s
local model can be bounded as
_ Gmin _ 2 87)2N2 _ 2 8772N
E ||]1-Tr‘r+1 - wr‘r”%" < (1 - 3 ) H]lx(r—l)r+1 - w(r—l)THF + - ||VF(-TTT+1)|| + oo 02

Note that this consensus lemma is not related to any convex or strongly convex properties, so it can
also be applied in nonconvex cases.

Proof of Lemma 6}

Here, we focus on how different the server’s model at the r-round and the client’s model just before
pulling the model from the server. Taking the conditional expectation, we have

E|1Zyr41 — wr‘rH%‘

T

=E | 1Z¢—1)r+1 — MYpr+1 — T(r—1)r41 T Z Dy,

k=(r—1)7+2 F
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1 2 | 2 _ 2n°
S;[E H]]-x(r—l)T—i-l - fB(r—l)r+1||F + m[E (LGrr1]® + E[E Z Dryyg||

(137)

where the inequality above uses Jensen’s inequality ||a + b||? < %HCLHQ + flp [|b]|? and p here can be
any value between 0 and 1 (exclusive). For each term, we know

N
_ 2 _
E | 1Z¢—1)r41 — Zr—1)rs1]| = Z(l = @) Z—1yr1 — T—1yrill?
1=1
_ 2
< (1 - Qmin) H]lm(rfl)rjtl - :B(rfl)'rHF (138)
and
_ _ 2
Her—i-lH2 Sg ||1va(wrr;§r7') - ]lTv.f(ller)H
2
+3[[1TVFAZ,,) — 1V AT )| + 3 INVE(Zrri)|”
<3No? + 3NL*|[1Zrg1 — Trr||% 4 3 INVF (Zrrs1)|? (139)
and
rr 2 (r+1)7
Ell > Dyl <C—DE D | Dryl?
k=(r—1)7+2 k=rT+2
N
AT =1L il Zrri1 — Tl
=1
<A1 = 1) L1 Z gy — x0r || (140)

Putting (138)), (139), (140) back to (137) and selecting p = 11_%‘?““/‘2 =1 -z we obtain
E 1% 1 — 20 |7
Gmi _

< (1 - m21n) H]lx(r—l)r-i-l - x(r—l)‘r”%‘ +

612N2(2 — quin
Lo (2 — Gumin)

6772NL2(2 - Qmin)

62]\72*min
"N (2 = gmin) >

[1Z7 41 — mrT”%

IVE(@r0)]” +

Gmin Gmin
827712L227 min _
- e )q i ( ! )”]1567"7'-"-1 -z ?
Gmin _ 12772NL2
< (1 5 ) 112 (- 1)yr1 = To)el[f + ————1Zrrp1 — @ ||
1212 N2 B 122N L? 1602 (1 — 1)2L%
+ qn . ||VF($7-T+1)||2 + :’I i 0'2 + n (q ) ) ||1$7.7—+1 — CE',-T”Q

3/2 3/2

Ifn < min{ Dnin Dnin }, we have

4L/6N’ 8V2L(T—1)

Ui
(1 - T) E Hﬂ-fr‘l'+1 - w’I‘TH%‘

12n2 N2 1202 N
T V@) + =02

Gmin Gmin

Gmin _ 2
< (1 - 9 ) H]lx(rfl)‘rJrl - :B(rfl)THF +
Simplifying it further, we obtain

8772

= Gmin _ 2
E (12,741 — & ||7 < (1* 3 )||]1217(7-—1)T+1*m(r—1)r|}F+ IVF(Zr ) [* +

min

O

41
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F.3 Proof of the Convergence of SG-FOCUS (u-Strong Convexity)

Theorem 4 (Convergence of SG-FOCUS for Strongly Convex Functions). Under assumption[l} 2] 3]
3/2 3 /z

. . . 2qmi q 9m
and |6} if the learning rate n < min min min
f 8 n= 3N<16:/2+;2) ALVEN 8fL(T 1)’ 128(7— 1)2L2N

R 2
TIMN 4((1min + N ) 2
T'pn<(1- r _
R_( 2 ) T N
where Ty := E | Z(,41)r41 — @2 + (1 = 8nL2N/p)E | 1Z(r—1)r 1 — T(ro1)r |3
Proof of Theorem @}

By Lemmas [5]and[6] we have two recursions — the average iterate one:

N
[ (1 - ’7’;) El#rrs1 —a* | = 20N (1 = 20N L) (F (&y741) = F(2*))

16nL>N
2 E 1%t — @ ||? + 20207 (141)

and the consensus one:

E1Zrrq1 — wr'r”%“

- ) 8 2N B 8 2N2
< (1 B qT) [ ——— w(r—l)THi" + = @Erran)lI* + Z i -

min = 16 2N2L T ) : 2N2
< (1 - q3 ) H]lfr(r—l)r+1 - w(r—l)THi + L(F(%TH) — )) N Z i -

To lighten the notation, we let A, 1 = E||Z(y41)-41 — 2*||? and B, = E|[1Z,41 — @, [3.
Therefore, we have

N 16nL*N
Arp1 < (1 - 77/;) Ay —2qN(1 = 20N L) (F (Zyr41) — F(z¥)) + 22N B, + 220
1

1612 N2L 8n2 N2
L(F(ET‘TJFI) —F(.’L'*)) + n 0_2

Gmin Gmin

After summing up them, the term about (F(Z,.41) — F(z*)) is negative, so we directly remove it in
the upper bound. Then, we get

16nL2N min 2N2
Ar+1+<1—6’7)BT<<1—”’”;)A +(1-2 )BH+<2n2+8”)a2
I

3 Gmin
N 16nL>N 8n°N?
(1_’7“) (Aﬁ (1_77>BH) " (2n2+ 7 )
2 12 Gmin
(142)
where (142)) holds when 7 < 31\/(213‘—% Denoting I',. := A, + (1 — 16nL° N) 1, (T82) will be
m 2
nuN 8N?\ 5 5 npN 4(Gmin + N?)
Ty <(1-"22\p 4 (2 < (1= Y r Amin TV )
H_( 2 ) +( )T 2 T N
O

Hence, we conclude that FOCUS achieves the linear convergence rate of (1 — nuN/2) to O(n)-level
neighborhood of the optimal solution.

F.4 Proof of the Convergence of SG-FOCUS (Non-Convexity with PL. Assumption)

Theorem 5 (Conver@ence of SG-FOCUS for Nonconvex Functions with the PL Condition). Under

3/2 3/2
assumptions H if the learning rate n < min { Imin gmin, _Tmin nin }

3BN (4—qmin)’ 16L2° 41/6N’ 8v2L(1—1)
L 8
Qr <(1 —nBN)EQ + (2 +32(1 — 1)2L* + — ) %02,
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where Q, := F(Z;r41) — F* + (1 — 49L?) E|[1Z(,—1)r+1 — T(r—1)-||* and F* is the optimal
value.

Proof of Theorem |3}

Using the L-Lipschitz condition, we have

E[F(Z(t1)r+1)]

2
_ _ 77 L 2
SF(J:(T+1)T) —nE <VF(x(T+1) ) ]lTVf(:E(T+1)T;€ r+1) )> + E ||]1va m(r+1)r;§ r+1)7’)||

_ n?LN
SF(gj(r-ﬁ-l)T) - <VF(:C(T+1)T) 1" v.f(m(r+1)7')> + 5 ||11va m(r-i-l)T || t s 2 o
2LN
=F(Zr1) = )(VF (Trr 1), 1TV f(@(p1),)) + 7 ||11TVf(93(r+1)r)| L 5 o

_ _ _ 2
<F(Zrr41) = {VE(Zrr11), ]lTVf(w(r+1)T)> +17°L ||NVF(xr'r+1) - ]]'va(m('l""rl)T)H
n*LN o2

2 )
where the last inequality uses Jensen’s inequality. Using the parallelogram identity to address the
cross term, we have

- "7<VF(£’I‘T+1)) ILva(x(r+1)*r)>
__ %(NVF(EMHL 1V (@(rs1)r))

+ 0 N2L|VF(Zrr41) ] +

I I

n - nN N U
“oN H]lTVf(]l.r,,.H_l) - ]lTVf(m(r+1)r) - 7“VF($,--,—+1)H2 T 9N ’|]1va(m(r+1)"')
Substituting back, we have

E [F(f(r-i-l)v'-‘rl)]

<F(xr'r+l + 9N ||1vf ]lerJrl) ]lTVf(w(7"+1)T)||2

N
— L NVE @) = 5o [TV @400 |

LN
+ ﬂzL HNVF i'rTJrl) - ]lTVf(w(r+1)7-)H + 02N2LHVF(WT+1)H +— 1 D) 2
~ _ 2
<F(Zprt1) + (ﬁ + UQL) H]lVf(]lx,«TH) - ]lTVf(fE(rH)r)H
N ) LN
- (B - L) IV F @+ e
2
_ _ n°LN
<F (@) + - [1VF (A1) = UV E @ i0)0)||* = NI VE @) + 50
<E(Tyrg1) + % AV f(1Zpri1) = 1TV F(2(p1s H + BN (F* = F(Zrr41))

n”*LN 2
727 52,

2
where the third inequality follows 1 < min{ 75, m} Next, we minus F™* on the both sides
to obtain:

= * _ * n _ 2

F(z(r-i-l)f—i-l) — " <(1-npN) (F(zr7+1) - F ) + N ||]lvf(]lxr7'+1) 1" Vf(z (r+1) )H
n*LN ,
—0

2
Recalling the previous result (I36) and putting it into (I43)), we have:

nN _
- THVF(»TTTH)HZ +

N
— LR IVE @) + (143)

_ . _ . _ nN -
F(Z(r11)r41) — F* <(L=nBN)(F(Zrr41) — F*) + L | 12711 — opr ||* — 7||VF(%~T+1)II2

L
+ (2 +32(1 — 1)2L2N> n’o?
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Recalling the Lemma|f] we know

_ q _ 2 8n’N 82N

E ||]ll’7«~,—+1 mr‘r”F (1 - II;H) H]lx(r—l)r—i-l - m(T—I)THF ||VF(er+1)|| + — 2
qm min
With a condition 7 < min{ 33?2"}{;‘ NG 1art b we denote A, = F(Zy-41) — F* and B, =

E|1Z,,+1 — x,-||?, and then we have

Ar-i-l + (1 - 477L2> B,

min LN 8N
<(1—nBN)A, + (1 - q3 ) B,_1+ (2 FBAr - APIN 4 ) o

<(1=nBN) (A, + (1 —4nL?) B,_1) + (Lév +32(1 — 1)?L*N + ;N) no? (144

Denoting €2, := A, + (1 - 47]L2) B,._1, (T44) will be

LN 8N
Qi1 <(1=nBN)Q, + (2 +32(1 — 1)?L*N + “ ) n’o?
L 8
<(1—nBN)EQ + (2 +32(1 — 1)?L? + q_) %02

O
Therefore, we conclude that SG-FOCUS achieves the linear convergence rate of (1 — n8N) to O(n)-
level neighborhood of the optimal solution in the nonconvex case with PL condition.

F.5 Proof of the Convergence of SG-FOCUS (General Non-Convexity)

Theorem 6 (Convergence of SG-FOCUS for General Nonconvex Functions). Under assumptions|[I} 2]
3/2 3/2
1

andH if the learning rate n < m1n{4L‘\“ﬁ 8\/1;‘(‘: AN 4L(i_1)},

R 8(F(e) - F(a)) 8N
1 2 . BNT Y 5 g
7 go E[|VEF(Zrry1)|I” < nNR + (QLN + (N — 8L2)qmin) O

Proof of Theorem |6}
We begin with L—Lipschitz condition:

E [F(f(r-l-l)ﬂ'-i-l)]

2L
SF(-/ETT-Q—I) - 77[E <VF(jTT+1)7 IlTVf(x(r+1)T;§(r+1)’r)> + UT[E HILTVf L(r4+1)75 g(rJrl)T)HQ

2
_ _ n“L n?LN
<F(Zrry1) = 1 (VF(Zrr1), UV (@(11)0)) + TN H]lva(m(rH)r)H + TUZ
_ _ _ 2
SF(er-&-l) -n <VF(1'7"T+1)3 ILva(m(7‘+l)7')> + 772L ||NVF(337"7'+1) - 1TVf(.’B(T+1)T)||
2 72 - o, WLN
+n°N°L|VF(Zrr11)||” + — 7 (145)
where the last inequality utilizes the Jensen’s inequality. Then, we deal with the cross term:
-n <VF(-fr'r+1)a 1Tv.f(w(r+1)‘r)>
= UNHVF(@TH )+ <VF Ty 1), NVF(Zr711) = 1TV f(@(41)7))
2
< - “VF(xTT+1)“2 ToN H]lVf 1Zy741) = LTV (@(r41)7) | (146)
Substituting @) back to (T43)), we have
niN _ _ _ > LN
7(1 —2nNL)E ||VF(xr‘r+1)||2 <E [F(xr‘r-ﬁ-l) - F(.Z‘(T+1)T+1)] + o’

2
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+ (5a + L) E 1TV £ (@rr10) = 1TV F @)

To bound the term || 1TV f(Z,711) — 1TV f (@ (11)-) H2, we can directly use the result (I36)), so we
will obtain:

nN , i} _ LN
- (1-2NL)E IVE (& ri1)|[? SF(Zrri1) = F(Ei1yri1) +2 (2 + ﬁ + 772L> n’o®
+ (52 + L) (LN +812(r = D?L*N) E [ L12,741 — v

When 7 < min{ 75, ) }, we can simplify it further as follows:

4LT

8L2

_ 4 _ - -
E(VF(Zrri1)|? SW (F(xr'r+1) - F(x(T+1)T+1)) + W[E 11Z7r 11 — wr'r”z +2LNnp’o?

Recalling the Lemma|6] we know

82 N2 82N
L | VF(@r ) + 0"

min dmin

E[1Zyr41 — mr‘r”F (1 - qném) H]lf(r—l)7+1 - w(?"—l)TH; +

When n < we have

4fN’

1 R-1
R Z E ||VF(§:TT+1)||2
r=0

F(&)) 1612 i\ 2 2
Qmin _ 2 8N 2 2
1 ) 17, — OLN 4 ——
INR tNR ( 3 ) 7 —@ollr+ ( + (N—8L2)qmin) e

If the initial models of clients and the server are the same, then ||1Z; — x||% = 0. The final
convergence rate is simply

Ay E|VF( <8(F(f1)_F@*)) 2LN BN o
go H xr7+1)|‘ = UNR + < + (N_8L2)Qmin) no

G Supplementary Experiments for SG-FOCUS

G.1 Experiment Setup

To examine SG-FOCUS’s performance under arbitrary client participation and the highly non-iid
conditions, we compare SG-FOCUS with FedAU [Wang and Ji, 2024]] and SCAFFOLD [Karimireddy
et al.;,2020] on the image classification task by using the CIFAR10 [Krizhevsky et al., 2009] dataset.
The model we used is a three-layer convolutional neural network. As for our baselines, FedAU is a
typical FL algorithm designed to tackle unknown client participation, and SCAFFOLD is a classic
FL algorithm designed to deal with data heterogeneity. Therefore, it is reasonable to select these two
FL algorithms as our baselines.

The source code for the implementation is provided in the attached supplementary material.
Our hyperparameter settings are: learning rate 7 = 2e—3, local update 7 = 3, the number of clients
N = 32, total communication rounds = 10000. To ensure totally arbitrary client participation, we
do not restrict the number of participating clients in each round. To simulate highly non-iid data
distribution, we use Dirichlet distribution and use o = 0.05 to model that. Note that a smaller «
represents higher data heterogeneity. We illustrate the highly heterogeneous data distribution we used
across 32 clients in our experiments in Figure 8] The size of the bubble reflects the number of data
points of the particular class used in that client. From Figure [§] we can roughly observe that the data
of each client mainly covers 1-2 classes, so the degree of non-iid data is quite high.
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Bubble Plot of Data Distribution (Dirichlet, a=0.05)

Truck [ ] ¢ @ o . @ + *
ship [ ] . @ o o . T [ ]
Horse . —s . . L2 @ - O ® .
. rg{ @ @ - @ ] @ 1 * ( T XX B
5 Dog @ e 90 o N . e
g Deer 1 . ° ® 1 T
o] - ‘o o o0 - 9000
Bird @ . 9 . i
Automabile | ° . ° * ® . . [ ] [ B ] .
Airplane ] « @ @ ® 1 . * .
(Il i é 3 ﬁ‘l 5‘ é "l é ; lID l‘l 1‘2 1I3 ll4 £5 1‘6 1‘7 1‘8 lIB ZIO 2‘1 2‘2 2'3 2'4 2'5 2‘6 2‘7 Z‘B 2'9 36 3‘1
Client Index

From Figure[9] we observe that under highly heterogeneous data distribution (ov = 0.05) and arbitrary
client participation/sampling, our SG-FOCUS shows the best performance on convergence speed and
test accuracy, compared to FedAU, MIFA, and SCAFFOLD. These results echo the view in our main

Figure 8: Dirichlet Data Distribution (o« = 0.05)
G.2 Experiment Results of SG-FOCUS

paper: SG-FOCUS can jointly handle both data heterogeneity and arbitrary client participation.
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Figure 9: Performance Comparison of SG-FOCUS and Baselines on CIFAR10 Dataset under Arbitrary

Client Participation and High Data Heterogeneity.
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