
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MADCLUSTER: MODEL-AGNOSTIC ANOMALY DE-
TECTION WITH SELF-SUPERVISED CLUSTERING NET-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose MADCluster, a novel model-agnostic anomaly detection
framework utilizing self-supervised clustering. MADCluster is applicable to var-
ious deep learning architectures and addresses the ‘hypersphere collapse’ prob-
lem inherent in existing deep learning-based anomaly detection methods. The
core idea is to cluster normal pattern data into a ‘single cluster’ while simulta-
neously learning the cluster center and mapping data close to this center. Also,
to improve expressiveness and enable effective single clustering, we propose a
new ‘One-directed Adaptive loss’. The optimization of this loss is mathemati-
cally proven. MADCluster consists of three main components: Base Embedder
capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and
Sequence-wise Clustering for continuous center updates. Its model-agnostic char-
acteristics are achieved by applying various architectures to the Base Embedder.
Experiments on four time series benchmark datasets demonstrate that applying
MADCluster improves the overall performance of comparative models. In con-
clusion, the compatibility of MADCluster shows potential for enhancing model
performance across various architectures.

1 INTRODUCTION

In modern infrastructures such as industrial equipment and data centers, numerous sensors operate
continuously, generating and collecting substantial amounts of continuous measurement data. Effec-
tive detection of abnormal system patterns through real-time monitoring in these large-scale systems
helps prevent significant monetary losses and potential threats (Djurdjanovic et al., 2003; Leon et al.,
2007; Yang et al., 2021b). However, detecting anomalies in complex time-series systems is chal-
lenging due to factors such as the diversity of abnormal patterns (irregular, unusual, inconsistent,
or missing data) (Ruff et al., 2021), temporal dependencies of adjacent data, and the complexity
where boundaries between normal and abnormal can be ambiguous (Yang et al., 2021b). More-
over, anomalies are generally rare, making it difficult to obtain labels and thus challenging to apply
supervised or semi-supervised learning methods (Yang et al., 2021a). Researchers have designed
various time-series anomaly detection methods to address these issues. In unlabeled environments,
unsupervised learning is primarily used over supervised and semi-supervised learning. Classical
unsupervised learning-based methods include density estimation methods (Parzen, 1962; Bishop,
1994; Breunig et al., 2000), kernel-based methods (Schölkopf et al., 2001; Tax & Duin, 2004),
while deep learning-based unsupervised methods include clustering-based (Zong et al., 2018) and
deep one-class classification-based approaches (Ruff et al., 2018; Hojjati & Armanfard, 2023; Shen
et al., 2020).

Deep one-class classification-based methods learn normal patterns of complex high-dimensional
data and identify the boundaries of normal data in feature space. The main goal of these meth-
ods is to find a minimum volume region (e.g., hypersphere or hyperplane) that contains normal data,
thereby detecting anomalies as data points that fall outside the learned boundary. These unsupervised
anomaly detection algorithms are gaining attention due to their powerful representation learning ca-
pabilities for complex high-dimensional data and their ability to effectively model the distribution
of normal data. Moreover, from the perspective of improving performance through integration with
other models, one-class classification methods can be seen as model-agnostic methodologies appli-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cable to various models. For example, in Log Anomaly detection tasks, they are used as an objective
function to map embeddings of normal data near the normal center ((Guo et al., 2021), (Almodovar
et al., 2024)). However, these methods may face the ‘hypersphere collapse’ problem, a persistent
issue in one-class classification where network weights converge to a trivial solution of all zeros.
This leads to the problem of falling into local optima rather than global optima due to the limited
expressiveness of weights in the feature space.

In this paper, we propose the Model-agnostic Anomaly Detection with self-supervised Clustering
network called MADCluster, which is applicable to existing deep learning anomaly detection mod-
els and solves the hypersphere collapse problem. The core idea of MADCluster is to cluster normal
pattern data into a single cluster while simultaneously learning the cluster center and mapping data
close to this center. This is motivated by the desire to achieve model-agnostic characteristics with-
out constraints on expressiveness in the feature space. Specifically, we propose a structure with
two modules: a distance mapping module and a clustering module. The first is a distance map-
ping module for mapping normal data near the center, and the second is a clustering module that
learns central coordinates by single-clustering normal data. In particular, for the clustering module,
we newly define an ‘One-directed Adaptive loss’ for effective single clustering and provide a proof
of optimization for this One-directed Adaptive loss. The main contributions of MADCluster are
summarized as follows:

• Model-Agnostic Methodology: MADCluster model-agnostic nature ensures compatibility
with a wide range of deep neural network-based models, thus overcoming the limitations of
specific network architectures. MADCluster offers improved performance and adaptabil-
ity across diverse analytical scenarios. Unlike model-specific anomaly detection methods,
MADCluster proposes a more flexible and universally applicable approach.

• Preventing Hypersphere Collapse: MADCluster, a clustering-based anomaly detection
method, effectively addresses the hypersphere collapse problem. It distinctively updates
central coordinates through network parameters, efficiently preventing the all-zero param-
eter problem and enabling richer representational power in the feature space.

• Optimization Proof for Single Clustering: MADCluster enables more accurate clustering
when performing single clustering for anomaly detection tasks by simultaneously learning
the cluster center and decision boundary. We provide a mathematical proof for optimizing
the One-directed Adaptive loss ensures the theoretical soundness of this method, providing
a robust foundation for its practical application.

• Performance on Public Datasets: Despite its simple structure, the anomaly detection model
applying MADCluster demonstrates improved performance on four real-world benchmark
datasets compared to existing methods. It is noteworthy that the model simplicity does not
compromise its effectiveness. Furthermore, there is considerable potential for performance
enhancement if various techniques that are more complex and more effective at feature
extraction are integrated.

2 RELATED WORK

Anomaly Detection. Classical anomaly detection methods have explored the unsupervised learning
paradigm, including density estimation methods such as Local Outlier Factor (LOF) (Breunig et al.,
2000), kernel-based methods like One-Class SVM (OC-SVM) (Schölkopf et al., 2001), and Sup-
port Vector Data Description (SVDD) (Tax & Duin, 2004). These methods typically assume that
the majority of the training data represents normal conditions, enabling the model to capture and
learn these characteristics. Anomalies are detected when new observations do not conform well to
the established model (Chen et al., 2001; Liu et al., 2013; Zhao et al., 2013). Recent advances in
deep learning (LeCun et al., 2015; Schmidhuber, 2015) have led to attempts to integrate the pow-
erful representation learning capabilities of deep networks into traditional classifiers. For example,
DAGMM (Zong et al., 2018) combines Gaussian Mixture Model (GMM) with Deep Autoencoder,
and DeepSVDD (Ruff et al., 2018) replaces the kernel-based feature space with a feature space
learned by deep networks. However, DeepSVDD faces a significant issue known as hypersphere
collapse, where the network weights converge to a trivial solution of all zeros (Ruff et al., 2018).
To mitigate this, modifications such as fixing the hypersphere center and setting the bias to zero
have been implemented. While these measures help prevent hypersphere collapse, they can limit

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the overall performance and effectiveness of the algorithm. In recent years, several studies have
proposed solutions to the hypersphere collapse problem. DASVDD (Hojjati & Armanfard, 2023) is
structured as an autoencoder network. It involves fixing the hypersphere center c to train the encoder
and decoder, and then fixing the network parameters to learn the hypersphere center c based on latent
representations. This approach jointly trains the autoencoder and SVDD to update c. The Temporal
Hierarchical One-class (THOC) model (Shen et al., 2020) updates the center coordinates by map-
ping multi-scale temporal embeddings at various resolutions near multiple hyperspheres, clustering
features from all intermediate layers of the network. Both methods address the hypersphere collapse
by updating the center c.

Clustering. Clustering is a data mining technique that aids in discovering and understanding natural
structures in large datasets. The primary goal of clustering is to group data points with similar char-
acteristics, thereby identifying inherent patterns and structures within the data (Pavithra & Parvathi,
2017). Traditional clustering methods include density-based clustering (Ester et al., 1996; Comani-
ciu & Meer, 2002) and distribution-based clustering (Bishop, 2006). These methods are effective
when features are relevant and representative in finding clusters. However, they struggle to cluster
high-dimensional complex data effectively as the dimensionality increases, leading to a decrease in
the significance of distance measurements (Pavithra & Parvathi, 2017; Ren et al., 2024). To map
complex data into a feature space conducive to clustering, many clustering methods focus on feature
extraction or feature transformation, such as PCA (Wold et al., 1987), kernel methods (Hearst et al.,
1998), and deep neural networks (Liu et al., 2017). Among these methods, deep neural networks
represent a promising approach due to their excellent nonlinear mapping capabilities and flexibility.
Deep Embedded Clustering (DEC) (Xie et al., 2016) is a methodology that utilizes an autoencoder
structure to learn low-dimensional representations of data and perform clustering based on these
representations. Specifically, DEC defines a clustering objective function using soft cluster assign-
ments and an auxiliary target distribution, optimizing network parameters and cluster centers while
minimizing this function. However, DEC optimizes using only the clustering loss function, making
it difficult to maintain important local structures of the data, potentially distorting the learned feature
space. Improved Deep Embedded Clustering (IDEC) (Guo et al., 2017) simultaneously optimizes
clustering loss and reconstruction loss, enabling it to learn features while preserving the local struc-
ture of the data. Proposed method allows for consideration of both the overall cluster structure and
local data relationships.

3 METHOD

In monitoring a system, we sequentially record d measurements at regular intervals. In the context
of time-series anomaly detection, we are given a set of time-series X = {x1, x2, . . . , xT }, where
each point xt ∈ Rd indicates the observation at time t. The goal is to detect anomalies in periodic
observations to identify any deviations from normal behavior. Detecting anomalies in time-series
systems presents challenges such as temporal dependencies and pattern diversity, which is why we
focus on time-series anomaly detection in an unsupervised learning setting.

We have developed the model-agnostic anomaly detection with self-supervised clustering (MAD-
Cluster) network for unsupervised time-series anomaly detection, addressing the aforementioned
hypersphere collapse problem while maintaining model-agnostic characteristics. MADCluster lever-
ages the self-learning technique to update the center of the normal cluster, mapping data closer to
the updated centroid and minimizing the hypersphere in the feature space. Proposed method, using
dynamic centers instead of fixed ones, enables more diverse and richer representations in the fea-
ture space, thereby enhancing anomaly detection performance. Therefore, due to its model-agnostic
design, MADCluster can be applied to various deep learning architectures to improve performance,
and as a lightweight model with fewer parameters and faster computational speed, it poses minimal
burden in terms of time cost.

3.1 OVERALL ARCHITECTURE

Figure 1 illustrates the overall architecture of MADCluster, which consists of three main compo-
nents: Base Embedder module, Sequence-wise Cluster module, and Cluster Distance Mapping
module. On the left side, Base Embedder (section 3.1.1) initially processes the input to extract
high-dimensional temporal dynamics. Extracted features are then fed into two modules on the right:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The proposed Model-agnostic Anomaly Detection with self-supervised Clustering (MAD-
Cluster) network architecture. Base Embedder captures high-dimensional temporal dynamics. Out-
put of Base Embedder, denoted as hf

t , is fed into Cluster Distance Mapping and Sequence-wise
Clustering modules.

Cluster Distance Mapping (section 3.1.2) and Sequence-wise Cluster (section 3.1.3). Cluster Dis-
tance Mapping module projects data from data space into feature space, concentrating it near the
center coordinates. Sequence-wise Cluster module calculates cluster similarity for each instance
and computes a One-directed Adaptive loss to update the center coordinates. Outputs of these two
modules are combined through element-wise summation, which can be utilized either as an anomaly
score itself or added to the anomaly score of the base model.

3.1.1 BASE EMBEDDER

To effectively detect anomalies in time-series data, it is crucial to extract the temporal characteristics
of the data well. In the Base Embedder, we use the Dilated Recurrent Neural Network (D-RNN)
(Chang et al., 2017) as the base model, which is designed to efficiently extract multi-scale temporal
features from the time series data. D-RNN employs skip connections and dilated convolutions,
allowing it to capture long-term dependencies and diverse temporal patterns across different time
scales. The base model is not limited; it can utilize other anomaly detection models as well, all
of which aim to extract complex hidden temporal dynamics within the data. When we consider a
scenario where each process handles an input time series of length T , denoted as X ∈ Rd×T , the
extracted dynamics are formalized as follows:

hf
t = Fbase model(xt), (1)

The output of the base model at time t, denoted as hf
t ∈ Rf×1, where f represents dimensionality of

the hidden feature space, reflects the learned features and extracted temporal dynamics. This flexible
approach allows for the use of various models that can effectively capture the underlying temporal
patterns in the data.

3.1.2 CLUSTER DISTANCE MAPPING

The MADCluster measures the deviation of the high-dimensional temporal dynamics hf
t from the

cluster center ĉ. Unlike DeepSVDD, where the center is a pre-determined fixed point, MADCluster
considers ĉ as a learnable parameter. The objective for Cluster Distance Mapping is expressed as
follows:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Ldistance = R2 +
1

ρ

T∑
t=1

max
{
0, ∥NN(xt;W)− ĉ∥2 −R2

}
+ λΩ(W). (2)

In this case, NN(xt;W) = hf
t , where NN(·;W) represents a Base Embedder with parameters W .

Ω(W) is a regularizer (such as the l2-regularizer) and ρ ∈ (0, 1] is a hyperparameter that balances
the penalties against the sphere volume. R is the radius and λ is the learning rate. R is determined
based on the neural network output and the given hyperparameter ν, rather than being a parameter.
Instead, R is computed using a specific quantile of the neural network outputs and the data loss
values.

The goal is to minimize the distance loss function Ldistance with respect to the neural network weights
W and the cluster center parameters ĉ. If Ldistance is updated without updating the center coordinates
ĉ through Sequence-wise Clustering, it may lead to hypersphere collapse. To mitigate this issue,
MADCluster utilizes Sequence-wise Clustering to update ĉ, ensuring a continuously evolving cen-
troid that accurately reflects the ‘normal’ data distribution. The cluster center can be viewed as
the parameters that the Sequence-wise Clustering network needs to learn. The learning process is
designed to ensure that each temporal feature embedding is closely mapped to the cluster center.

3.1.3 SEQUENCE-WISE CLUSTERING

In our Sequence-wise Clustering approach for anomaly detection in time-series data, we primarily
focus on a single cluster representing ‘normal’ data. Data points are classified as normal if they ex-
hibit a high similarity of belonging to this cluster, and abnormal otherwise. While our method shares
similarities with DEC (Xie et al., 2016) in its use of self-learning for soft assignment, it diverges sig-
nificantly in its approach to single clustering. Unlike conventional DEC, we discard the student’s
t-distribution, instead employing cosine similarity and a one-directed threshold to generate labels
for single clustering. When the number of clusters is k, the clusters are denoted as {ĉj ∈ Rf}kj=1.
For scenarios with a single cluster center (k = 1), we avoid using the student’s t-distribution. In a
single-cluster scenario typical of anomaly detection tasks, the student’s t-distribution would yield a
constant similarity value of 1, resulting in ineffective learning of the cluster centroid. By modifying
the similarity function for soft assignment, our Sequence-wise Clustering method enables a more
focused approach on the single cluster representing normal data.

Sequence-wise Clustering conducts soft assignment and auxiliary target assignment. Soft assign-
ment calculates a cluster auxiliary distribution for each temporal feature embedding. Then, auxil-
iary target assignment assigns cluster labels based on a learnable one-directed threshold parameter.
Sequence-wise Clustering actively performs the learning process by comparing target labels with
the auxiliary distribution, in order to train closely with the normal cluster.

Step 1 (Soft Assignment): We used cosine similarity as the metric to compare high-dimensional
temporal dynamics hf

t from Base Embedder with the centroid vector ĉ ∈ Rf×1, where ĉ is a learn-
able parameter. This decision enables effective centroid learning and enables our model to differenti-
ate between normal and abnormal data in a simplified single cluster approach. The cosine similarity
between high-dimensional temporal dynamics hf

t at time t and the centroid vector ĉ is computed as:

qt =
(hf

t)
⊤ · ĉ

∥hf
t ∥∥ĉ∥

, (3)

q ∈ RT×1 indicates the soft assignment similarity, and qt is subsequently normalized to a range of
0 ≤ qt ≤ 1, through the transformation qt =

qt+1
2 .

Step 2 (Auxiliary Target Assignment): The soft assignment similarity qt is normalized and then
classified into binary categories based on a one-directed threshold ν to obtain the auxiliary target.
The auxiliary target is calculated as follows:

pt =

{
1 if qt ≥ ν,

0 otherwise,
s.t. 0 < ν < 1 (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

p ∈ RT×1 plays the role of actual labels, and cluster center ĉ and one-directed threshold ν are trained
according to the difference between the similarity of belonging to the normal cluster, represented by
qt, and the auxiliary distribution pt.

One-directed Adaptive loss function: We introduce a novel loss function called the One-directed
Adaptive loss function. Through this proposed loss function, the one-directed threshold ν is trained
to increase in value as learning progresses. The One-directed Adaptive loss function is defined as:

Lcluster = −
T∑

t=1

pt log

[
1− ν1−ν

1− ν
(qt − 1) + 1

]
+ (1− pt) log

[
q1−ν
t

]
. (5)

The One-directed Adaptive loss function has the following characteristics: First, when the value of
qt is fixed, the value of ν must increase to reduce the total loss, meaning the threshold increases as it
is learned. Second, the distribution of qt should approach 1, not 0, during the learning process. Cal-
culating the derivatives ∂Lcluster

∂qt
and ∂Lcluster

∂ν shows that the loss Lcluster decreases as qt and ν increase,
and a detailed explanation of this is provided in appendix A.

Objective Function: In MADCluster, the total objective function is a sum of the losses from Cluster
Distance Mapping and Sequence-wise Clustering, and it is defined as follows:

Ltotal = Ldistance + Lcluster. (6)

The entire procedure is detailed in Algorithm 1.

Algorithm 1 Model-agnostic Anomaly Detection with self-supervised Clustering network
Require: time-series X = {x1, x2, . . . , xT }

1: repeat
2: for each time step t in X do
3: Process xt using Base Embedder to get hf

t

4: Compute cosine similarity qt between hf
t and ĉ

5: Normalize qt to range [0, 1]
6: Assign auxiliary target pt by thresholding qt with ν

7: end for
8: Compute Ldistance

9: Compute Lcluster

10: Set Ltotal = Ldistance + Lcluster

11: Update W , ĉ, and ν based on Ltotal using backpropagation
12: until convergence

Anomaly Score: For a given time-series X , consider an unseen observation at time t, denoted as xt.
The anomaly score is defined as:

Anomaly Score(xt) =−
{
pt log

[
1− ν1−ν

1− ν
(qt − 1) + 1

]
+ (1− pt) log

[
q1−ν
t

]}
+
∥∥∥hf

t − c∗
∥∥∥2 −R2.

(7)

In this case, c∗ represents the cluster center of the trained model, and Anomaly Score(xt) ∈ RT×1

serves as the point-wise anomaly score for X . The anomaly threshold is determined using the per-
centile method based on the distribution of anomaly scores. Specifically, we set the threshold as
the (100 − α)-th percentile of the anomaly scores, where α is the expected anomaly ratio. An ob-
servation xt is labeled as abnormal if Anomaly Score(xt) exceeds anomaly threshold, and normal
otherwise.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Comparison of anomaly detection approaches: (a) Cluster Distance Mapping, (b)
Sequence-wise Clustering without Distance Mapping, and (c) Proposed approach combining Clus-
ter Distance Mapping and Sequence-wise Clustering.

Finally, to provide an intuitive understanding of the mechanism behind our proposed method, Fig-
ure 2 illustrates the key differences between our approach and existing techniques. This visual
comparison demonstrates how our method integrates the strengths of both Cluster Distance Map-
ping and Sequence-wise Clustering, addressing the limitations of each approach. Red dots represent
potential anomalies, black plus-sign are normal data points, and the blue circle indicates the learned
hypersphere.

1. Cluster Distance Mapping (DeepSVDD): This approach uses a fixed center coordinate
ĉold and minimizes the hypersphere radius R to map data points close to the center. While
the hypersphere shrinks around the fixed center, it potentially constrains data to cluster
around a suboptimal point in the feature space.

2. Sequence-wise Clustering (without Distance Mapping): This method computes the sim-
ilarity qt between the Base Embedder output hf

t and the center coordinate ĉ, then performs
labeling based on a threshold ν. Data points with similarity qt below the threshold are clas-
sified as anomalies. As shown, anomalies are scattered sporadically, indicating that this
approach fails to capture local information effectively, potentially leading to inconsistent
labeling of similar data points.

3. Combined Cluster Distance Mapping and Sequence-wise Clustering: By integrating
both techniques, our method achieves several advantages. The center coordinate ĉold is
learned and shifts to a position ĉnew with richer representational power. The hypersphere
is then minimized around this new center. Simultaneously, the approach incorporates local
information, ensuring that similar data points are consistently labeled as normal or abnor-
mal. Unlike the scattered anomalies in (b), our approach in (c) reflects local information,
resulting in anomaly predictions that are more coherent within similar regions of the data
space.

4 EXPERIMENTS

4.1 DATASETS

Description of the five experiment datasets: (1) PSM (Pooled Server Metrics, (Abdulaal et al., 2021))
is collected internally from multiple application server nodes at eBay with 26 dimensions. (2) Both
MSL (Mars Science Laboratory rover) and SMAP (Soil Moisture Active Passive satellite) are public
datasets from NASA (Hundman et al., 2018) with 55 and 25 dimensions respectively, which contain
the telemetry anomaly data derived from the Incident Surprise Anomaly (ISA) reports of spacecraft
monitoring systems. (3) SWaT (Secure Water Treatment, (Mathur & Tippenhauer, 2016)) data,
which is collected from a water treatment testbed over 11 days. It is obtained from 51 sensors of
the critical infrastructure system under continuous operations. During the training process, 20% of
the training data was used for evaluation. The statistical details of the five benchmark datasets are
summarized in Table 5 in appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 IMPLEMENTATION DETAILS

Following the established protocols as outlined in previous studies (Shen et al., 2020; Xu et al.,
2021), with a fixed window size of 100 for all datasets. Anomalies are identified among time points
when their anomaly score, as defined in Equation equation 7, exceeds a specific threshold denoted
as δ. Our approach aligns with a widely-adopted adjustment strategy (Xu et al., 2018; Su et al.,
2019; Shen et al., 2020; Xu et al., 2021): if a time point within a consecutive abnormal segment
is marked as anomalous, we consider all anomalies within that segment as correctly detected. This
strategy is based on the real-world observation that an anomalous time point often triggers an alert,
directing attention to the entire segment. During the experiments conducted for MADCluster, we
addressed over-confidence in the output pt resulting from Sequence-wise Clustering by applying
label-smoothing. The smoothing process modifies the original label pt by applying a factor τ which
serves to soften the label. The softened label pt is computed using the formula pt = pt×(1−τ)+(1−
pt)× τ . In this context, τ is the smoothing factor that is constrained by the condition 0 ≤ τ ≤ 0.5,
facilitating the transition of pt from a hard to a soft label. We extensively compare our model with
11 baselines, including the reconstruction based models: USAD (Audibert et al., 2020), Anomaly
Transformer (Xu et al., 2021), DCdetector (Yang et al., 2023); the density estimation models: LOF
(Breunig et al., 2000) ; the clustering based methods: DeepSVDD (Ruff et al., 2018), ITAD (Shin
et al., 2020), THOC (Shen et al., 2020); the autoregression based models: VAR (Anderson, 1976);
the classic methods: OC-SVM (Tax & Duin, 2004), IsolationForest (Tony Liu et al., 2008); the
sequential data processing models: D-RNN (Chang et al., 2017).

4.3 QUANTITATIVE RESULTS

Table 1 shows the evaluation results before and after applying MADCluster to 11 baseline models
across four real-world datasets: MSL, SMAP, SWaT, and PSM. The proposed model improved the
balance between precision and recall. Notably, the D-RNN model on MSL saw a 13.6% F1 score
increase (81.24 to 94.84), due to a 23.26% improvement in recall. Similarly, the USAD model on
PSM showed a 16.65% F1 score increase, also from improved recall. Conversely, the THOC model
on SWaT and PSM had slightly decreased recall but substantially increased precision, improving
overall performance. Except for these cases, all models showed increased recall. In summary,
all models demonstrated enhanced F1 scores after applying MADCluster, with lower-performing
models showing more significant improvements in recall.

Table 1: Performance metrics (Precision, Recall, F1-Score) for 11 models before and after applying
MADCluster on four datasets. Results are in percentages, with best results in bold.

DATASET MSL SMAP SWAT PSM

METRIC P R F1 P R F1 P R F1 P R F1

OC-SVM 59.78 86.97 70.82 53.85 59.07 56.34 45.39 49.22 47.23 62.75 80.89 70.67
IF 53.94 86.54 66.45 52.39 59.07 55.53 49.29 44.95 47.02 76.09 92.45 83.48

LOF 47.72 85.25 61.18 58.93 56.33 57.60 72.15 65.43 68.62 57.89 90.49 70.61
VAR 74.68 81.42 77.90 81.38 53.88 64.83 81.59 60.29 69.34 90.71 83.82 87.13
ITAD 69.44 84.09 76.07 82.42 66.89 73.85 63.13 52.08 57.08 72.80 64.02 68.13

D-RNN 88.88 74.81 81.24 93.58 99.29 96.35 78.59 100.00 88.01 97.59 96.52 97.05
+ MADCLUSTER 91.83 98.07 94.84 93.58 99.36 96.39 93.02 100.00 96.39 97.42 97.94 97.68

USAD 92.47 86.03 89.13 93.51 94.26 93.88 94.41 75.93 84.16 97.61 68.66 80.62
+ MADCLUSTER 92.99 94.46 93.72 93.64 99.24 96.36 99.44 77.06 86.83 97.61 96.94 97.27

THOC 88.45 90.97 89.69 92.06 89.34 90.68 83.94 86.36 85.13 88.14 90.99 89.54
+ MADCLUSTER 91.87 95.74 93.76 93.07 92.36 92.71 92.63 83.80 87.99 96.82 88.05 92.23

ANOTRANS 91.92 96.03 93.93 93.59 99.41 96.41 89.10 99.28 94.22 96.94 97.81 97.37
+ MADCLUSTER 92.05 97.93 94.90 93.64 99.50 96.48 93.25 100.00 96.51 97.42 98.59 98.00

DCDETECTOR 92.37 97.34 94.79 94.94 97.81 96.35 93.08 100.00 96.41 97.19 98.34 97.76
+ MADCLUSTER 92.60 97.90 95.18 94.39 99.04 96.66 93.18 100.00 96.47 97.23 98.99 98.10

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of centroid movement, captured every 5 epochs using UMAP.

4.4 QUALITATIVE RESULTS

We have addressed the limitations of previous models, particularly the issue of fixed center co-
ordinates, through our proposed method, MADCluster. To visualize how the center coordinates
move and converge, we employed UMAP (McInnes et al., 2018), a dimensional reduction tech-
nique, to represent the high-dimensional centroid in two-dimensional space. Figure 3 presents
the two-dimensional mapping results across four datasets. This figure illustrates the evolution of
cluster center coordinates, updated through MADCluster, visualized in two dimensions over 300
epochs. Throughout the training process, we observe that the cluster center converges towards spe-
cific points, exhibiting vibrating behavior within the converged area. This convergence, as opposed
to divergence, indicates that the center coordinates are learning to represent more complex feature
spaces. In Figure 4 to verify the effectiveness of the moving center coordinates during training
and provide an intuitive understanding, we conducted a visual comparison between DeepSVDD and
MADCluster.

Figure 4: Hidden embedding visualization for DeepSVDD (top) and MADCluster (bottom) at
epochs 1, 150, and 300. σ represents the standard deviation from the center of hidden embed-
dings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of the changes in threshold, radius, distance, and loss during training on four
datasets.

This visualization illustrates how well the embeddings learned through each model are clustered
around the center on the MSL dataset. Each model embeddings are visualized in two dimensions
after training for 1, 150, and 300 epochs. All visualized data represents normal instances only,
with blue points indicating correctly classified normal data and red points showing false anomaly
detections. At epoch 1, both DeepSVDD and MADCluster display a dispersed distribution of data
around the center. For our proposed method, 9.1%, 29.1%, and 63.3% of the data fall within 1,
2, and 3 sigma, respectively. At epoch 150, DeepSVDD exhibits a scattered distribution, while
MADCluster shows data converging towards the center. MADCluster encompasses 21.0%, 51.3%,
and 79.6% of the data within 1, 2, and 3 sigma, demonstrating that more data points have moved
closer to the center compared to the initial epoch. By epoch 300, DeepSVDD forms multi-cluster
at various points away from the center, whereas MADCluster continues to draw data closer to the
center. MADCluster now includes 23.4%, 55.2%, and 82.4% of the data within 1, 2, and 3 sigma.
In conclusion, as training progresses, our proposed MADCluster method shows hidden embeddings
converging closer to a single cluster center, as intended. In contrast, DeepSVDD does not exhibit this
tendency towards a central coordinate. Instead, it appears to form multi-cluster in the feature space,
with data points grouping together with their nearby neighbors, resulting in a multi-cluster-like
distribution rather than a single, centralized cluster. This visualization effectively demonstrates the
enhancements over previous model constraints, addressing not only the limited expressiveness issue
but also preventing the hypersphere collapse that can occur when using fixed centroids. By allowing
dynamic center updates, MADCluster enables a more flexible and expressive representation of the
normal data distribution in the feature space.

Figure 5 visualizes the changes in threshold, radius, distance, and loss during the training process
across four datasets illustrating how each metric evolves as training progresses. The threshold,
which refers to the one-directed threshold, shows a pattern of gradual increase in the early stages
of training before eventually converging. After the threshold converges, radius, distance, and loss
generally exhibit a decreasing trend. This pattern is consistently observed across all datasets. The
proposed one-directed threshold method can serve as an indicator to assess whether the training is
proceeding correctly.

5 CONCLUSION AND FUTURE WORK

This paper proposes a novel model-agnostic anomaly detection with self-supervised clustering net-
work called MADCluster, which is applicable to existing deep learning anomaly detection models
and addresses the hypersphere collapse problem. MADCluster consists of three modules: a Base
Embedder that captures high-dimensional temporal dynamics, Cluster Distance Mapping that maps
data close to normal cluster centers, and Sequence-wise Clustering that utilizes a self-learning mech-
anism for continuous updating of cluster centers. When applying MADCluster to comparative mod-
els across four benchmark datasets, we empirically observed that the learning of center coordinates
gains more expressiveness, leading to performance improvements. Notably, MADCluster effectively
improves anomaly scores by enhancing recall, though this remains an experimental observation with
limitations in clearly understanding how specific structural characteristics of the model improve re-
call. Furthermore, as Base Embedder is only effective when it can extract temporal dynamics with
sufficient expressiveness, future research should focus on developing methodologies that increase
applicability not only to traditional machine learning techniques but also to deep learning models
with various architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical Approach to Asynchronous
Multivariate Time Series Anomaly Detection and Localization. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2485–2494. ACM, 2021.

C. Almodovar, F. Sabrina, S. Karimi, and S. Azad. LogFiT: Log anomaly detection using fine-tuned
language models. IEEE Transactions on Network and Service Management, 2024.

Oliver D. Anderson. Time-Series. 2nd edn., 1976.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. USAD:
UnSupervised Anomaly Detection on Multivariate Time Series. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404.
ACM, 2020.

Christopher M. Bishop. Novelty detection and neural network validation. IEE Proceedings-Vision,
Image and Signal processing, 141(4):217–222, 1994.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF: Identifying
Density-Based Local Outliers. 2000.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A. Hasegawa-Johnson, and Thomas S. Huang. Dilated recurrent neural networks.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Yunqiang Chen, Xiang Sean Zhou, and Thomas S. Huang. One-class SVM for learning in im-
age retrieval. In Proceedings 2001 international conference on image processing (Cat. No.
01CH37205), volume 1, pp. 34–37. IEEE, 2001.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

Dragan Djurdjanovic, Jay Lee, and Jun Ni. Watchdog Agent—an infotronics-based prognostics
approach for product performance degradation assessment and prediction. Advanced Engineering
Informatics, 17(3-4):109–125, 2003.

M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, volume 96, pp. 226–231, 1996.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. LogBERT: Log anomaly detection via BERT. In 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with
local structure preservation. In Ijcai, volume 17, pp. 1753–1759, 2017.

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. IEEE
Intelligent Systems and their Applications, 13(4):18–28, 1998.

Hadi Hojjati and Narges Armanfard. Dasvdd: Deep autoencoding support vector data descriptor for
anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 2023.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom.
Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 387–395. ACM, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521:436–444, 2015.

Ramon A. Leon, Vijay Vittal, and G. Manimaran. Application of sensor network for secure electric
energy infrastructure. IEEE Transactions on Power Delivery, 22(2):1021–1028, 2007.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bo Liu, Yanshan Xiao, Longbing Cao, Zhifeng Hao, and Feiqi Deng. SVDD-based outlier detection
on uncertain data. Knowl Inf Syst, 34(3):597–618, 2013.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A survey of deep neural network
architectures and their applications. Neurocomputing, 234:11–26, 2017.

Aditya P. Mathur and Nils Ole Tippenhauer. SWaT: A water treatment testbed for research and
training on ICS security. In 2016 international workshop on cyber-physical systems for smart
water networks (CySWater), pp. 31–36. IEEE, 2016.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform Manifold
Approximation and Projection. JOSS, 3(29):861, 2018.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065–1076, 1962.

Mudamala Pavithra and R. M. S. Parvathi. A survey on clustering high dimensional data techniques.
International Journal of Applied Engineering Research, 12(11):2893–2899, 2017.

Yazhou Ren et al. Deep clustering: A comprehensive survey. IEEE Transactions on Neural Networks
and Learning Systems, 2024.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402. PMLR, 2018.

Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon, Wojciech Samek,
Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Müller. A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE, 109(5):756–795, 2021.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson.
Estimating the support of a high-dimensional distribution. Neural computation, 13(7):1443–1471,
2001.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems, 33:13016–13026,
2020.

Youjin Shin, Sangyup Lee, Shahroz Tariq, Myeong Shin Lee, Okchul Jung, Daewon Chung, and
Simon S. Woo. ITAD: Integrative Tensor-based Anomaly Detection System for Reducing False
Positives of Satellite Systems. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pp. 2733–2740. ACM, 2020.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust Anomaly Detection
for Multivariate Time Series through Stochastic Recurrent Neural Network. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2828–2837. ACM, 2019.

David M.J. Tax and Robert P.W. Duin. Support Vector Data Description. Machine Learning, 54(1):
45–66, 2004.

F. Tony Liu, K. Ming Ting, and Z. H. Zhou. Isolation forest ICDM08. Icdm, 2008.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning, pp. 478–487. PMLR, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao,
Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, and Dan Pei. Unsupervised Anomaly
Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, pp. 187–196. ACM
Press, 2018.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly Transformer: Time Series
Anomaly Detection with Association Discrepancy. In International Conference on Learning Rep-
resentations, 2021.

Yiyuan Yang, Haifeng Zhang, and Yi Li. Long-distance pipeline safety early warning: a distributed
optical fiber sensing semi-supervised learning method. IEEE sensors journal, 21(17):19453–
19461, 2021a.

Yiyuan Yang, Haifeng Zhang, and Yi Li. Pipeline safety early warning by multifeature-fusion CNN
and LightGBM analysis of signals from distributed optical fiber sensors. IEEE Transactions on
Instrumentation and Measurement, 70:1–13, 2021b.

Yuanzhe Yang, Chen Zhang, Tong Zhou, Qingsong Wen, and Lixin Sun. Dcdetector: Dual attention
contrastive representation learning for time series anomaly detection. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3033–3045, August
2023.

Yang Zhao, Shengwei Wang, and Fu Xiao. Pattern recognition-based chillers fault detection method
using Support Vector Data Description (SVDD). Applied Energy, 112:1041–1048, 2013.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Inter-
national conference on learning representations, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THE ONE-DIRECTED ADAPTIVE LOSS FUNCTION

In this chapter, we will explain our own loss function. First, we analyze why Binary Cross Entropy
(BCE) is inadequate for our situation. What we’re trying to achieve serves as a clear motivation
for a newly constructed loss function. Then, using the properties of a function whose exponent is a
positive rational number less than 1, a new loss function is defined. In the last part of this chapter,
the derivative of this loss function and the sign of the derivative are mathematically considered, to
ensure that the total loss function actually decreases during the learning process. For simplicity in
this Appendix, we will use q and p to represent qt and pt respectively, without loss of generality.
This notation will be used consistently throughout the following proofs and explanations.

A.1 MOTIVATION FOR PROPOSING ONE-DIRECTED ADAPTIVE LOSS

A.1.1 ANALYSIS TO BINARY CROSS ENTROPY

We will first examine a brief analysis of the BCE. The loss function is constructed as follows:

Lcluster = −
∑

p log q + (1− p) log(1− q) (8)

Before calculating p by equation 4 using one-directed threshold, assume that the threshold is fixed
as 0.5 in the loss function. Then, p is determined by the following rule:

p =

{
0, 0 ≤ q < 0.5

1, 0.5 ≤ q ≤ 1
(9)

So the loss function is calculated by different functions depending on which interval the value of q
belongs to. In the BCE, the total interval [0, 1] for the available value of q is divided by a threshold,
which is 0.5, into two different intervals: [0, 0.5) and [0.5, 1]. To simplify the analysis, let’s consider
a function where the variable q is on the x-axis and the value inside the logarithm is on the y-axis.
Then we can reconstruct the original BCE into:

y =

{
1− q, 0 ≤ q < 0.5

q, 0.5 ≤ q ≤ 1
(10)

Figure 6 shows the value inside the logarithm in the BCE loss function. To reduce the total loss, the
value inside the logarithm must be increased.

Figure 6: The black dashed line represents the position of the threshold that acts on the value q to
classify whether the label is 0 or 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Therefore, the closer the value of y is to 1, the smaller the total loss. The distribution of q can
therefore be classified into two different labels. One will be located in the neighborhood of 0 and the
other will be located in the neighborhood of 1. However, this approach poses a problem in anomaly
detection tasks using single clustering, particularly when training only on normal data. The issue
arises because the BCE loss function allows normal data to be correctly classified whether it’s close
to 0 or 1. We typically want normal data to cluster towards one direction - either 0 or 1, not both.
The learning process should encourage normal data to converge towards a single value (either 0 or
1), rather than allowing it to be distributed at both extremes.

A.1.2 DESIRED GOALS

What we are aiming for requires two differences from the original loss function. The first one is
that the threshold must be learned, and the threshold must increase as it is learned. And second, the
distribution of q should only be close to 1, not to 0, during the learning process. If the threshold is
denoted by ν, we will take a monotonic function such that the overall graph should approach y = 1
as the value of ν increases as a value part of the logarithm of a new loss function.

A.2 THE ONE-DIRECTED ADAPTIVE LOSS FUNCTION MODELING

At first, the total interval [0, 1] in which all possible q values is divided into [0, ν) and [ν, 1]. Then
the value p is determined as follows:

p =

{
0, 0 ≤ q < ν

1, ν ≤ q ≤ 1
(11)

To avoid the situation where the loss function is not defined, assume that the possible ν is in the
range 0 < ν < 1. The simplest monotonic function connecting two points (0, 0) and (1, 1) is of the
form y = qn. For n which satisfies the inequality 0 < n < 1, the functions y = qn are close to
y = 1 as n decreases. So consider the following function to match the increasing trend of ν with the
decreasing trend of n:

y = q1−ν (12)

Figure 7 shows the graphs of the above function with different values of ν between 0 and 1. As ν
increases, it can be seen that starting from y = x and approaching y = 1 rapidly. This effect is more
pronounced at lower values of q.

Figure 7: The graph of y = q1−ν with different values of ν between 0 and 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Qualitatively, this function is rapidly increasing to 1 for small q when ν is increasing. So we
adopt the function q1−ν in the interval [0, ν) as the value inside the logarithm of the loss func-
tion. Meanwhile, in the interval [ν, 1], we define the function as a linear function connecting two
points (ν, ν1−ν) and (1, 1), ensuring the continuity of the entire function over the interval [0, 1] and
reflecting the simplest form.

y =
1− ν1−ν

1− ν
(q − ν) + ν1−ν =

1− ν1−ν

1− ν
(q − 1) + 1 (13)

In summary, we adopt the following function as the value inside the logarithm of our new loss
function.

y =

{
q1−ν , 0 ≤ q < ν
1−ν1−ν

1−ν (q − 1) + 1, ν ≤ q ≤ 1
(14)

Corresponding graphs with different ν are shown in Figure 8. Each colored dashed line indicates
the position of the threshold at different values of ν. Before the threshold, the function is concave;
after it, the function is linear.

Figure 8: The graph of our new loss function with different values of ν between 0 and 1.

Thus, the final loss function can be expressed as follows:

Lcluster = −
∑

p log

(
1− ν1−ν

1− ν
(q − 1) + 1

)
+ (1− p) log

(
q1−ν

)
(15)

A.3 DERIVATIVE OF LOSS FUNCTION

In order to mathematically confirm that the new loss function really decreases when q and ν are
increasing, to simplify the derivative procedure, let us define f1 and f2 as:

f1 ≡ 1− ν1−ν

1− ν
(q − ν) + ν1−ν =

1− ν1−ν

1− ν
(q − 1) + 1, f2 ≡ q1−ν (16)

Since both f1 and f2 satisfy the conditions for a valid logarithm argument, f1 and f2 are positive in
the entire interval [0, 1]. The derivative of total loss Lcluster with respect to q and ν can be expressed
as:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

∂Lcluster

∂q
= −p

1

f1

∂f1
∂q

− (1− p)
1

f2

∂f2
∂q

,
∂Lcluster

∂ν
= −p

1

f1

∂f1
∂ν

− (1− p)
1

f2

∂f2
∂ν

. (17)

A.3.1 ∂LCLUSTER/∂q

Since both f1 and f2 are positive, we need to verify the signs of ∂f1/∂q and ∂f2/∂q. Let’s consider
the derivative of f1 with respect to q first:

∂f1
∂q

=
1− ν1−ν

1− ν
(18)

The condition 0 < ν < 1 implies 0 < ν1−ν < 1. Therefore, both the denominator and the
numerator are positive, ensuring that ∂f1/∂q > 0 is satisfied. Meanwhile, the derivative of f2 with
respect to q can be written as:

∂f2
∂q

= (1− ν)q−ν =
1− ν

qν
(19)

Similarly, because 0 < ν < 1 and 0 < q < 1, both the denominator and the numerator are also
positive, so ∂f2/∂q > 0 is satisfied. Thus, we can determine the sign of the derivative of our new
loss function with respect to q:

∂Lcluster

∂q
< 0 (20)

This means that the total loss Lcluster decreases as q increases.

A.3.2 ∂LCLUSTER/∂ν

This part is very similar to proving the sign of ∂Lcluster/∂q, but it requires a more technical proce-
dure. The derivative of total loss Lcluster with respect to ν can be written as follows:

∂Lcluster

∂ν
= −p

1

f1

∂f1
∂ν

− (1− p)
1

f2

∂f2
∂ν

(21)

Since both f1 and f2 are positive, we need to verify the signs of ∂f1/∂ν and ∂f2/∂ν. Let’s consider
the derivative of f1 with respect to ν first:

∂f1
∂ν

=
(q − 1)

(1− ν)2

[
−ν1−ν

(
1− ν

ν
− log ν

)
(1− ν) + (1− ν1−ν)

]

=
(q − 1)

(1− ν)2

[
1 + ν1−ν

(
− (1− ν)2

ν
+ (1− ν) log ν − 1

)]

=
(q − 1)

(1− ν)2νν
{
νν + ν − ν2 − 1 + ν(1− ν) log ν

}
(22)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We have a condition for c and q, which is 0 < ν < 1 and 0 < q < 1. The outermost factor satisfies
the following inequality:

(q − 1)

(1− ν)2νν
< 0 (23)

Let us define g1, g2, g3 as:


g1 = νν + ν

g2 = ν2 + 1

g3 = ν(1− ν) log ν

(24)

To express the formula inside the braces as g1−g2+g3, we will confirm the sign of each function for
ν ∈ (0, 1), thereby justifying the sign of the formula inside the braces. g3 satisfies g3 < 0 because
of two inequalities:

log ν < 0, ν(1− ν) > 0 (25)

From the limit limν→0+ νν = 1, we can obtain the values of g1 and g2 at ν = 1 and the left-side
limit values of g1 and g2:

{
g1(0+) = g2(0+) = 1

g1(1) = g2(1) = 2
(26)

The derivative of g1 with respect to ν is:

∂g1
∂ν

= νν(1 + log ν) + 1 (27)

Here, the first term νν(1 + log ν) is negative when ν ∈ (0, e−1), while it is positive due to the
factor (1 + log ν) when ν ∈ (e−1, 1). Consequently, the function g1 − ν decreases in the interval
(0, e−1) and increases in the interval (e−1, 1). Additionally, the first term νν(1 + log ν) diverges
to −∞ as ν approaches 0 from the positive side. While the interval of increase or decrease might
differ by adding the constant 1 to the first term, the overall trend of g1 remains the same even when
considering g1 − ν. The derivative of g2 with respect to ν is:

∂g2
∂ν

= 2ν (28)

This quantity is always positive if ν ∈ (0, 1), so the function g2 increases in the interval (0, 1).
Therefore, in the interval (0, 1), the function g1 is always smaller than the function g2; g1 − g2 < 0.
This means that the formula g1 − g2 + g3 satisfies the following inequality where ν ∈ (0, 1):

g1 − g2 + g3 < 0 (29)

Indeed, the graph of g1 − g2 + g3 represents negative values in the interval (0, 1), as shown in
Figure 9.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: The graph of g1−g2+g3 in the interval [0, 1]. The black line represents the x-axis; values
below this line indicate that the function is negative.

Therefore, the sign of the derivative of f1 with respect to ν is positive, so ∂f1/∂ν > 0. On the other
hand, for ∂f2/∂ν, we have:

∂f2
∂ν

= −q1−ν log q (30)

The value of q1−ν is between 0 and 1, and log q < 0, so ∂f2/∂ν > 0. Thus, we can determine the
sign of the derivative of our new loss function with respect to ν:

∂Lcluster

∂ν
< 0 (31)

This means that the total loss Lcluster decreases as ν increases.

B MULTI-CLUSTER (k > 1) FOR MADCLUSTER

MADCluster employs cosine similarity with a One-directed Adaptive loss function, initially assum-
ing a single cluster (k = 1). This design overcomes the trivial solution where the soft assignment
of a student’s t-distribution always yields a value of 1 when only one cluster is present. Whereas,
with several modifications, MADCluster can be extended utilizing student’s t-distribution to sup-
port multi-cluster based clustering (k > 1). The soft assignment qtj and the target distribution ptj
represent the assignment of the t-th representation to the j-th cluster and is defined as:

qtj =
(1 + |hf

t − ĉj |2)−1∑
j=1(1 + |hf

t − ĉj |2)−1
, ptj =

q2tj/
∑

t=1 qtj∑
j=1(q

2
tj/

∑
t=1 qtj)

(32)

Sequence-wise Clustering loss Lcluster is calculated using the Kullback-Leibler (KL) divergence in-
stead of the One-directed Adaptive loss. It is defined as follows:

Lcluster = KL(P |Q) =

K∑
j=1

T∑
t=1

ptj log
ptj
qtj

(33)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

And for the Cluster Distance Mapping loss Ldistance we have adopted a simplified notation, omitting
some details for clarity, is also defined as follows:

Ldistance =
1

n

K∑
j=1

T∑
t=1

∥hf
t − ĉj∥2 + λΩ(W) (34)

Consequently, during training, we sum two components for each time step t: the KL-divergence
values across all clusters for the t-th representation, and the distances from the t-th representation to
each cluster center. The anomaly score is also defined as follows:

Anomaly Score(xt) =

K∑
j=1

ptj log
ptj
qtj

+
∥∥∥hf

t − c∗j

∥∥∥2 (35)

For the multi-cluster case, the anomaly score does not incorporate ν, and therefore ν is not learned.
Similar to the single-cluster case, Anomaly Score(xt) ∈ RT×1 serves as the point-wise anomaly
score for X .

Furthermore, we conducted experiments using multi-cluster with k=1,2,3,4,5,6,7,10. The experi-
mental results for multi-cluster, which utilize the modified equation, are presented in Table Table 2.

Table 2: Results of evaluating MADCluster performance on four real-world datasets with multi-
cluster (k = 1 to 10).

Dataset MSL SMAP SWaT PSM

Clusters P R F1 P R F1 P R F1 P R F1

1 91.83 98.07 94.84 93.58 99.36 96.39 93.24 100.00 96.50 97.42 97.94 97.68
2 91.88 95.74 93.77 93.61 99.36 96.40 92.47 100.00 96.09 97.47 98.53 98.00
3 85.89 95.74 90.55 93.67 99.25 96.38 73.44 100.00 84.69 97.19 98.76 97.97
4 87.14 95.74 91.24 93.57 97.87 95.67 50.04 100.00 66.70 72.23 98.39 83.31
5 91.88 95.74 93.77 93.67 98.88 96.20 46.17 100.00 63.17 70.41 95.63 81.10
6 84.98 95.74 90.04 93.16 98.52 95.76 58.03 100.00 73.44 70.83 96.76 81.78
7 85.10 98.07 91.13 93.34 98.08 95.65 58.83 100.00 74.08 72.37 94.00 81.78
8 85.11 98.07 91.13 93.22 93.94 93.58 43.16 100.00 60.29 71.67 94.00 81.33
9 85.09 98.07 91.12 93.35 97.13 95.20 31.93 100.00 48.40 78.92 93.94 85.77

10 85.09 98.07 91.12 93.83 96.72 95.26 12.14 100.00 21.65 91.34 93.92 92.61

Overall, across all benchmark datasets—MSL, SMAP, SWaT, and PSM—the detection performance
tends to be better with one or two clusters than with a larger number of clusters. Generally, the
best performance was observed with one cluster, and while the SMAP and PSM dataset showed
the best performance with two clusters, this improvement was not significantly better than with
one cluster and this decrease is not offset by any notable advantages. Moreover, as the number of
clusters increases, performance decreases across all datasets generally. This suggests that even a
small number of clusters can adequately model the normal features of complex datasets, offering
advantages in terms of model interpretability when compared to scenarios with more clusters.

Consequently, in the proposed framework, the performance varies with the number of clusters, and
generally, fewer clusters yield better performance. This highlights the importance as a critical ele-
ment of proposed One-directed Adaptive loss function by proven on the single cluster.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C RESULTS AFTER APPLYING MADCLUSTER TO BASELINE MODELS

C.1 COMPUTATIONAL EFFICIENCY

Table 3 lists the computational costs and validation accuracy, with all models trained on the MSL
dataset. When applying MADCluster, performance significantly improves without substantially
impacting structural complexity or efficiency. This integration results in only a slight increase in
computational demands, as measured by MACs (KMac units), with a modest increase in param-
eter size. By maintaining a balance between efficiency and performance, this method enhances
the anomaly detection capabilities of existing models without imposing significant changes. This
demonstrates the effectiveness and adaptability of MADCluster, indicating its potential to improve
existing anomaly detection techniques while balancing computational demands and performance
enhancement.

Table 3: Computational Efficiency and F1 Score Comparison on the MSL Dataset, detailing the
number of parameters (‘# Params’) indicating model size and Multiply-Accumulate Computations
(‘MACs’) reflecting processing speed.

Model MACs #Params F1

DilatedRNN 31.81M 311.55K 81.24
DilatedRNN + MADCluster 31.81M 311.62K 94.84

USAD 427.36M 256.26M 89.13
USAD + MADCluster 427.36M 256.26M 93.72

THOC 69.42M 390.78K 89.69
THOC + MADCluster 69.42M 390.91K 93.76

AnoTrans 485.23M 4.86M 93.93
AnoTrans + MADCluster 485.23M 4.86M 94.90

DCdetector 1189.00M 912.18K 94.79
DCdetector + MADCluster 1189.00M 912.30K 95.18

C.2 COMPARISON OF ANOMALY DETECTION APPROACHES

In Table 4 we evaluated the performance of the anomaly detection approaches illustrated in maintext
Figure 2. This table presents quantitative results of our proposed method, which learns center co-
ordinates and performs single clustering as we hypothesized. DeepSVDD represents only distance
mapping, while Clustering denotes the experimental results using self-labeling without distance
mapping. MADCluster, our proposed method, applies both distance mapping and clustering.

Table 4: Performance comparison of anomaly detection approaches across four datasets: (1)
DeepSVDD (Cluster Distance Mapping), (2) Clustering (Sequence-wise Clustering), and (3) MAD-
Cluster (Combined Cluster Distance Mapping and Sequence-wise Clustering)

DATASET MSL SMAP SWAT PSM

METRIC P R F1 P R F1 P R F1 P R F1

DEEPSVDD 88.88 74.81 81.24 93.58 99.29 96.35 89.80 100.00 94.63 97.59 96.52 97.05

CLUSTERING 98.95 49.91 66.35 93.37 95.84 94.59 93.17 100.00 96.47 99.38 22.32 36.45

MADCLUSTER 91.83 98.07 94.84 93.58 99.36 96.39 94.40 100.00 97.12 97.42 97.94 97.68

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Comparing DeepSVDD and Clustering alone, DeepSVDD generally demonstrates better perfor-
mance. Particularly in MSL, SMAP, and PSM datasets, DeepSVDD outperforms due to Clustering
lower recall. However, Clustering shows superior results in the SWaT dataset. MADCluster, which
improves upon both methods, consistently achieves the highest F1-scores across all models and
datasets. This indicates that MADCluster effectively enhances the balance between precision and
recall, thereby strengthening anomaly detection capabilities.

C.3 PARAMETER SENSITIVITY

We conducted experiments to assess the sensitivity of our proposed model performance to various
parameters. Figure 10 illustrates the results across all four datasets for the following parameter
ranges: window sizes (25, 50, 75, 100, 125, 150, 175, 200), number of clusters (1-10), smoothing
factors (0.0-0.5 in 0.1 increments), and thresholds (0.1-0.9 in 0.1 increments). All experiments used
the dilated RNN model with MADCluster applied.

Figure 10: Performance sensitivity to window size variations across various datasets. This illustrates
the importance of selecting an optimal window size based on the specific data patterns of each
dataset.

Our findings show that performance generally improved with larger window sizes across all datasets,
except for MSL, where smaller window sizes consistently yielded lower performance. Lower cluster
numbers generally produced better overall performance, with the SWaT dataset notably exhibiting a
dramatic performance degradation as the number of clusters increased. While performance variation
was relatively small across different smoothing factors, lower values tended to yield the best results.
For the threshold parameter, we observed similar trends to the smoothing factor up to 0.5. However,
beyond 0.6, we observed increased performance for the PSM dataset, while the SWaT dataset ex-
perienced a sharp performance drop at a threshold of 0.9. These results provide valuable insights
into the optimal parameter settings for our proposed model across different datasets and highlight
the importance of careful parameter tuning in anomaly detection tasks.

D DATASET

We summarize the four adopted benchmark datasets for evaluation in Table 5. These datasets include
multivariate time series scenarios with different types and anomaly ratios. MSL, SMAP, SWaT and
PSM are multivariate time series datasets.

Table 5: Statistics and details of the benchmark datasets used. AR (anomaly ratio) represents the
abnormal proportion of the whole dataset.

BENCHMARKS APPLICATIONS DIM WIN #TRAIN #TEST AR (TRUTH)
MSL SPACE 55 100 58,317 73,729 0.105

SMAP SPACE 25 100 135,183 427,617 0.128
SWAT WATER 51 100 495,000 449,919 0.121
PSM SERVER 25 100 132,481 87,841 0.278

22

	Introduction
	Related Work
	Method
	Overall Architecture
	Base Embedder
	Cluster Distance Mapping
	Sequence-wise Clustering

	Experiments
	Datasets
	Implementation Details
	Quantitative Results
	Qualitative Results

	Conclusion and Future Work
	Proof of the One-directed Adaptive loss function
	Motivation for Proposing One-directed Adaptive loss
	Analysis to Binary Cross Entropy
	Desired Goals

	The One-directed Adaptive Loss function Modeling
	Derivative of loss function
	Lcluster / q
	Lcluster /

	Multi-cluster (k>1) for MADCluster
	Results after applying MADCluster to baseline models
	Computational Efficiency
	Comparison of Anomaly Detection approaches
	Parameter Sensitivity

	Dataset

