Published in Transactions on Machine Learning Research (05/2025)

Node Feature Forecasting in Temporal Graphs:
an Interpretable Online Algorithm

Aniq Ur Rahman aniq.rahman@eng.oz.ac.uk
Justin P. Coon justin.coon@eng.ox.ac.uk
Department of Engineering Science, University of Ozxford, U.K.

Reviewed on OpenReview: https: //openreview. net/ forum? id=TeulBlr2YJ

Abstract

In this paper, we propose an online algorithm mspace for forecasting node features in
temporal graphs, which captures spatial cross-correlation among different nodes as well as the
temporal auto-correlation within a node. The algorithm can be used for both probabilistic
and deterministic multi-step forecasting, making it applicable for estimation and generation
tasks. Evaluations against various baselines, including temporal graph neural network
(TGNN) models and classical Kalman filters, demonstrate that mspace performs comparably
to the state-of-the-art and even surpasses them on some datasets. Importantly, mspace
demonstrates consistent performance across datasets with varying training sizes, a notable
advantage over TGNN models that require abundant training samples to effectively learn the
spatiotemporal trends in the data. Therefore, employing mspace is advantageous in scenarios
where the training sample availability is limited. Additionally, we establish theoretical
bounds on multi-step forecasting error of mspace and show that it scales linearly with the
number of forecast steps ¢ as O(g). For an asymptotically large number of nodes n, and
timesteps T', the computational complexity of mspace grows linearly with both n, and T,
i.e., O(nT), while its space complexity remains constant O(1). We compare the performance
of various mspace variants against ten recent TGNN baselines and two classical baselines,
ARIMA and the Kalman filter across ten real-world datasets. Lastly, we have investigated the
interpretability of different mspace variants by analyzing model parameters alongside dataset
characteristics to jointly derive model-centric and data-centric insights. [Link to Code]

1 Introduction

Temporal graphs are a powerful tool for modelling real-world data that evolves over time. They are increasingly
being used in diverse fields, such as recommendation systems (Gao et all |2022)), social networks (Deng et al.l
2019), and transportation systems (Yu et al.; 2018), to name a few. Temporal graph learning (TGL) can be
viewed as the task of learning on a sequence of graphs that form a time series. The changes in the graph can
be of several types: changes to the number of nodes, the features of existing nodes, the configuration of edges,
or the features of existing edges. Moreover, a temporal graph can result from a single or a combination of
these changes. The TGL methods can be applied to various tasks, such as regression, classification, and
clustering, at three levels: node, edge, and graph (Longa et al., [2023).

In this work, we focus on node feature forecasting, also known as node regression, where the previous temporal
states of a graph are used to predict its future node features. Forecasting is a fundamental problem in various
domains, such as weather, finance, and traffic, enabling informed decision-making (Petropoulos et al.l [2022)),
and the problem still remains relevant today in light of the advances in machine learning. In the context of
temporal graphs, node feature forecasting exploits the structure of the evolving network assuming that the
future value of a node is influenced by its neighbours (Huang et al., 2023)).

In most temporal graph neural network (TGNN) models, the previous states are encoded into a super-state
or dynamic graph embedding (Barros et al., [2021)), guided by the graph structure. This dynamic embedding

https://openreview.net/forum?id=Teu1Blr2YJ
https://github.com/Aniq55/mspace

Published in Transactions on Machine Learning Research (05/2025)

is then used to forecast the future node features. Although TGNN models perform well, their interpretability
is often overlooked, and their performance is not explained through the data. Furthermore, the relationship
between the node features and the node or graph embeddings is not human-understandable. Furthermore,
most embedding aggregation mechanisms impose a strong assumption that the neighbours influence a node
in proportion to their edge weight (Wang et al., |2021]).

TGNN methods (Li et al.l 2018; [Micheli & Tortorella, |2022; [Wu et al., |2019; [Fang et al., |2021} [Liu et al.)
2023) typically involve a training phase where the model learns from training data and is then deployed on
test data without further training due to computational costs. If the test data distribution differs from the
training data, an offline model cannot adapt (Wang et al., |2024)). Therefore, when dealing with time-series
data, it is crucial to use a lightweight online algorithm that can adapt to changes in data distribution while
also performing forecasts. Moreover, TGNN models are typically trained to forecast a predetermined number
of future steps. If we want to increase the number of forecast steps, even by one, the model needs to be
reinitialized and retrained. Alternatively, the output can be fed back as input to the TGNN, extending the
forecasting scale of the same model without additional training.

Inspired by the simplicity of Markov models, we define the state of a graph at a given time in an interpretable
manner and propose a lightweight model that can be deployed without any training. The algorithm is
designed with a mechanism to prioritize recent trends in the data over historical ones, allowing it to adapt to
changes in data distribution.

Contributions The contributions of our work are summarized as follows:

e We have proposed an online learning algorithm mspace for node feature forecasting in temporal
graphs, which can sequentially predict the node features for ¢ € N future timesteps after observing
only two past node features.

e The algorithm mspace can produce both probabilistic and deterministic forecasts, making it suitable
for generative and predictive tasks.

o The root mean square error (RMSE) of g-step iterative forecast scales linearly in the number of steps
q, i.e. RMSE(q) = O(q).

e For asymptotically large number of nodes n, and timesteps 7', the computational complexity of
msapce grows linearly with both n, and T, i.e., O(nT), while the space complexity is constant O(1).

o We have compared the performance of different variants of mspace against ten recent TGNN baselines,
and two classical baselines ARIMA, and Kalman filter.

o We have evaluated mspace on four datasets for single-step forecasting and six datasets for multi-step
forecasting.

e In addition to the evaluation on ten real-world datasets, we have proposed a technique to generate
synthetic datasets that can aid in a more thorough evaluation of node feature forecasting methods.
The synthetic datasets have the potential to serve as benchmark for future research.

e We have investigated the interpretability of different mspace variants by analyzing the model
parameters along with the dataset characteristics to jointly derive model-centric and data-centric
insights.

e To facilitate the reproducibility of results, the code is made available here,

Notation We denote vectors with lowercase boldface @, and matrices and tensors with uppercase boldface
X. Sets are written in calligraphic font such as V,U,S,C, with the exception of graphs G, and queues Q.
The operator > is used in two contexts: & > 0 is an element wise positivity check on the vector , and A > 0
indicates that the matrix A is positive definite. I(-) is the indicator function, and [m] £ {1,2,--- ,m} for any
m € N. We denote the distributions of continuous variables by p(-), and of discrete variables by P(-). The

https://github.com/Aniq55/mspace

Published in Transactions on Machine Learning Research (05/2025)

statement @ ~ p means that x is sampled from p. The Hadamard product operator is denoted by ® while
the Kronecker product operator is denoted by ®. The trace of a matrix A is written as tr(A).

We denote the neighbours of a node v for an arbitrary number of hops as U,,. The neighbours of node v up
to K number of hops is defined as follows. Let N = ZkE[K] AF then U, = {u: N, . > 0,Yu € V}. Since
A,, =1,velU, Weintroduce the operator (-) to arrange the nodes in a set U in ascending numerical
order of the node IDs. When another set or vector is super-scripted with (i), the elements within that set or
vector are filtered and arranged as per ().

A Markov chain is represented using 3 with different subscripts for identification. The transition kernel of a
Markov chain is denoted as P with Pg s representing the probability of transitioning from state a to b.

Organization In Sec. [2] we formulate the problem of node feature forecasting and also a propose a model
to solve it. In Sec. [3] we expand upon the solution and present it as an algorithm. We discuss the related
works in Sec. [and present the results on single-step and multi-step node feature forecasting in Sec.[5] In
Sec. [6] we discuss the interpretability of the proposed algorithm and then discuss the limitations in Sec. [7}
Finally, we conclude in Sec. [§

2 Methodology

Problem Formulation A discrete-time temporal graph is defined as {G; = (V, &, X;) : t € [T]}, where
V = [n] is the set of nodes, £ C V x V is the set of edges, and X; € R"*¢ is the node feature matrix at time
t. The set of edges £ can alternatively be represented by the adjacency matrix denoted as A € {0,1}"*".

The node feature vector is denoted by x;(v) € R? such that X; = [mt(v)]zev, and we refer to the first-order
differencing (Shumway & Stoffer| [2017)) of a node feature vector as shock. For a node v € V we define the
shock at time ¢ as &;(v) £ x;(v) — 2;_1(v). The shock of the nodes in an ordered set U at time ¢ is denoted

u) c RlUld

by &, . The shock at time ¢ for an arbitrary set of nodes is &;.

To address the problem, we make certain assumptions. The first is a Markov assumption, stated as follows:

Assumption 2.1. The shocks {&1,€3,€5-er} is assumed to be sampled from a continuous-state Markov
chain defined on R™? for some m € [n], such that p(e;y1 | €r,60-1.-++) = p(€rs1 | €1)-

Although the Markov assumption can be extended to higher orders, in this work, we consider only a first-order
Markov chain, which limits the model’s ability to capture long-range dependencies in the data. In theory, a
continuous-state Markov chain has infinite number of states which makes it impossible to learn the transition
kernel from limited samples without additional assumptions. To circumvent this, linear dynamical systems
and autoregressive models are used in the literature (Barber} [2012)) where the next state is determined through
a function of the current state.

Let p(¢’ | €) denote the transition probability € — &’ in a continuous-state Markov chain 3¢ defined over a
set C. A discrete-state Markov chain 3; defined over finite set S with transition probability Ps ¢ can be
constructed from p(e’ | €) through a mappingﬂ V:C— S as

J [p(E | e)ple)[(¥(e) = s)I(V(e') = &) de de’
p,, —cc¢

- [[p(e' | e)p(e) (T (e) = s) de de’ (1)
ccC

For a continuous-state Markov chain sample {ei,e9,---er}, we can estimate P directly from
{U(e1),¥(ez), - ¥(er)} without the need of p(e’ | €). Now, consider a random function Q : S — C,
such that: (a) ¥(g) = s, (b) ¥(e') = ¢/, (c) € = Q(s), from which follows p(Q(s)) = p(e’ | s).

The approximate transition kernel P due to (T, Q) can be written as:

A

P, = /{ N CIDICE [o) uwE) =) e @)

Published in Transactions on Machine Learning Research (05/2025)

Figure 1: (left) state and sampling functions visualized, (right) Markov approximation.

In Fig. [1| (left) we depict the functions ¥ mapping from continuous space in C to a discrete space S. We also
depict © mapping from S to C. In a red patch we show the range of 2(s), and in the green patch we show
the domain of ¥(s). In Fig. [1] (right), we visualize Assumption [2.1| wherein the shocks evolve as a Markov
chain through the functions W, ().

We refer to U as the state function, and 2 as the sampling function. The approximated Markov chain
defined over S resulting from (¥, Q) is denoted as 3(¥,Q), with p(¢’ | €) = p(Q o ¥(e)). Ideally, the goal is
to find the pair of functions (¥, Q) such that: (a) Ps o = P, o Vs, s' € S, (b) p(e'le) = p(Qo U(e)) Ve € C.
However, in practice this is quite ambitious as the state and sampling functions will induce some error in the
encoding and decoding process. Therefore, we frame the problem as follows.

The sequence of shocks drawn from the original Markov chain 3 is represented as {e; : t € [T']} ~ 3¢. Then,
for each ; we generate a sequence of ¢ future shocks using the Markov chain 3(¥,) as

éry = (QoWY(e)), VEe[T—qljeld.

2
The problem is to design ¥, Q such that sze[k] €t4j — Ettj H is minimized Vk € [q],t € [T — q], which can
be written alternatively as:

Problem 2.1 (g-step node feature forecasting). Design the state and sampling functions ¥, Q) such that

2

min Z Z Z Et4j — (Q o \I/)jéft . (3)

te[T—q] kelq] ||s€lK]

In a deep learning context, both ¥ and 2 would typically be neural networks trained directly using the
objective in Problem In this work, however, we explicitly define ¥ and 2 and learn their parameters
through the same objective.

Proposed Model Instead of creating a single model to approximate p (eg_)l | €§v>>, we create a model for

(Us) Uy)

each node v € V to approximate p (et 1 €§) where U, denotes the neighbours of node v within a certain

number of hops. We present this in the following assumption.

Assumption 2.2. The shock of node v at time ¢ + 1 can be estimated from the shock of its neighbouring
nodes in U, at time ¢.

While g;(u') for any node u’ ¢ U, may help in estimating &;11(v), we assume that enough information is
already conveyed by the nodes in U, that the impact of considering node ' would be minimal. It must be
noted that U, denotes the neighbours of node v up to an arbitrary number of hops, therefore if we consider
U, to mean k hops, then all the nodes that neighbours v with 1,2,--- |k hops are all in U/, and their impact

1For example, C is the set R™ for some integer m, and S is the set {1, —1}™ or simply {1,2,---, L} for some integer L.

Published in Transactions on Machine Learning Research (05/2025)

is considered. Assumption [2.2]is important to create a scalable model, because in a connected graph every
node will be correlated with every other node which will make the state space prohibitively large.

We propose two variants of the state function, one which captures the characteristics of the shock ¥g, and
the other which is concerned with the timestamps ¥t and captures seasonality.

o Ug:RUIA 5 {1 1} Wy (e)) = sign(ef)).

o Ur:N—{0,1,---79—1}, U(t) = tmod g, where 7y € N is the time period.
We also define two variants of the sampling function:

o deterministic ,(s) = pu(s), Vs € S.

o probabilistic Qpr(s) ~ N (e’; u(s), X(s)), Vs € S.

In Ug, we binarize the shock values of a node and its neighbors, creating a vector that indicates whether each
value has increased or decreased. This vector serves as the state on which the next shock value is conditioned.
Similarly, in Wy, we transform the timestamp into an integer based on a predefined time period, then use this
integer to condition the next shock value. A comprehensive explanation of the state functions is provided
in Sec. [0l The proposed model is presented as an online algorithm and discussed in detail in the following
section.

3 Algorithm

We name our algorithm mspace with a suffix specifying the state and sampling functions. For example,
mspace-SA represents the algorithm with state function ¥g, and sampling function Qxr. For each node v € V,
we approximate p(eﬂ“l) | Ug (sﬁu”) = 5) as a Gaussian distribution with mean vector p,(s) € R“I¢ and
covariance matrix X, (s) € RI“|4xUld indexed by the state s € {1, 1}/% ¢, The parameters p,(s), =,(s)
are learnt through maximum likelihood estimation (MLE). For each node v € V, and state s we maintain a
queue Q,(s) of maximum size M in which the shocks succeeding a given state s are collected. The MLE
solution is calculated as p,(s) < mean(Q,(s)), and X,(s) + covariance(Q,(s)).

|:| state MLE MU(S)
(O shock L QU(S: I DME)
D‘/ ; U Normal

sampling

/ / \ i

/ \ 1

BO O HO O =
S S!

past t future

Figure 2: Operation of a queue.

The use of a fixed-size queue (see Fig. [2]) ensures that the model prioritises recent data over historical data,
thereby allowing the system to adapt to prevailing trends.

As mspace is an online algorithm, we might encounter unobserved states for which the queue is empty, and
therefore cannot employ MLE. To facilitate inductive inference, as a state s; is encountered, we find the state
s* € 8§, which is the closest to s, i.e., s* + argminges, || — 8¢||, where S, is the set of states observed
before time t.

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 1 mspace-SA

Input G = (V,&,X),r€[0,1), g M Online learning (B)
Output &,(v), Vo e V,t e [|r-T],T] 13: fort € [|r-T|,T —q] do

1: g+ @y — x4y, VEEIT] 14: forv eV do)

Offline training (A) 15: st Us (&

2: for t € [|r-T]] do 16: s*earg;lelgan—stH

3: forveVdo : %

4 8 U (€<Z4v>) 17: t+1 ! N (5 o (57), B (57))

' ¢ S\7t 18: for k € [¢] \ {1} do
5: Sy + S, U{s}
" o s angmin o0 (e8]

6: Q, (s¢) + enqueue €, s€ES,

7. end for 20: €M) o N (&5 po(57), B0 (57))

8: end for 21: end for)

o for v eV do 22: Etrr(v) < €3 (v), VEk€]q]

10: Nv(s) — mean(gv(s))7 Vs € Sv 23i [(Jivpffiate S'U7 Q'U7 Nv(s)a EU(S),VS € Sv
11: 3,(s) < covariance(Q,(s)), Vs € S, 24 end lor

25: end for

12: end for

Example For the purpose of explaining mspace-SA we
consider an example with two nodes n = 2, and feature ‘
dimension d = 1. In Fig. [3| we first show the shock vector s ‘
€; € R2. The state of shock &, denoted by ¥(e;) is marked R2 €441
in S € {—1,1}2. Corresponding to this state, we have a X
Gaussian distribution NV (e; u(¥(e;)), X(¥(e¢))) depicted
as an ellipse. The next shock ;41 is sampled from this
distribution. This distribution is updated as we gather —

more information over time. The volume of the Gaussian 1 o(
density in a quadrant is equal to the probability of the S
next shock’s state being in that quadrant, i.e., the tran-

sition kernel Py o = [, .o N (€5 14(5), £(5)) de. There- Figure 3: Shock Distribution.
fore, mspace- SN can be viewed as a Markov chain whose

transition function is a multivariate Gaussian.

4 Related Works

Correlated Time Series Forecasting A set of n time series data denoted as x;(v),Vv € [n],t € [T] is
assumed to exhibit spatio-temporal correlation (Wu et al., [2021a; [Lai et al.l|2023). The correlations can then
be discerned from the observations to perform forecasting. The correlated time series (CTS) data can be
viewed as a temporal graph G = (X;, A), with X; = [:ct(v)]ve[n] where the spatial correlation between x(u)
and x,(u) is quantified as the edge weight A, ,, and A, , signifies the temporal correlation within x,(u).
The architecture of existing CTS forecasting methods consist of spatial (S) and temporal (T) operators. The
S-operator can be a graph convolutional network (GCN) (Kipf & Welling} [2017)) or a Transformer (Vaswani
et all [2017)). As for the T-operator, convolutional neural network (CNN), recurrent neural network (RNN)
(Chung et al 2014) or Transformer (Zeng et al., [2023]) can be used.

Temporal Graph Neural Network A Graph Neural Network (GNN) is a type of neural network that
operates on graph-structured data, such as social networks, citation networks, and molecular graphs. GNNs
aim to learn node and graph representations by aggregating and transforming information from neighbouring
nodes and edges (Wu et al.| 2021b). GNNs have shown promising results in various applications, such as
node classification, link prediction, and graph classification.

Published in Transactions on Machine Learning Research (05/2025)

Temporal GNN (TGNN) (Longa et al., |2023) is an extension of GNNs which operates on temporal graphs
G = (X4, Ay) where X; denotes the node features, and A; is the evolving adjacency matrix. The TGNN
architecture can be viewed as a neural network encoder-decoder pair (fg,) (see Fig. [4)).

A sequence of m past graph snapshots is first encoded into ~

an embedding h; = fg({gt,mﬂ,-..gt}), and then a se- gt—m+1 gt—i—l
quence of ¢ future graph snapshots is estimated by the de- .

coder as {Giy1,- - Girq} = go(hy). The parameters (6, ¢) are : f9 9¢
trained to minimize the difference between the true sequence

{Gi+1,- - Gi+q} and the predicted sequence {Qt+1, e Qt+q}. gt h't gt+q
In node feature forecasting, the objective is to minimize the
difference between the node feature matrices { X1, - Xiyq} Figure 4: TGNN architecture.

and {X41, - Xi44}, while in temporal link prediction, the
goal is to minimize the difference between the graph structures {At+17 e AHq} and {A;y1,- - Aigq)

There are two main approaches to implementing TGNNs: model evolution and embedding evolution. In
model evolution, the parameters of a static GNN are updated over time to capture the temporal dynamics of
the graph, e.g., EvolveGCN (Pareja et al., |2020). In embedding evolution, the GNN parameters remain fixed,
and the node and edge embeddings are updated over time to learn the evolving graph structure and node
features (Li et al., |2018; |Zhao et al., [2019; Micheli & Tortorella, [2022; Wu et al.l 2019; Fang et al.| [2021; [Liu
et al.l |2023)). The TGNN methods are described in Appendix

Linear Dynamical System In a linear dynamical system (LDS) (Barber) 2012)), the observation y;
is modelled as a linear function of the latent vector h;. The transition model dictates the temporal
evolution of the latent state hy = Ayhy_1 + 1y, with i, ~ N (n; ﬁt, 3:), and the emission model defines
the relation between the observation and the latent state y; = Bihy + (i, & ~ N (Ce;9¢, ;). The LDS
describes a first-order Markov model p((y;, hi)_;) = p(h1)p(y1 | h1) Hf,ng p(he | hi—1)p(y: | he), where
p(h | hi—1) = N(hg; Athe 1 +he, X), and p(y —t | hy) = N(ys; Bihe + §i, =}). Therefore a LDS is defined
by the parameters (A, By, X, Eg,ﬁt,gt) and initial state hqi. In simplified models the parameters can
be considered time-invariant. In the literature, LDS is also referred to as Kalman filter (Welch, |1997)), or
Gaussian state space model (Eleftheriadis et al., [2017)).

Gaussian Mixture Model A Gaussian mixture model (GMM) (McLachlan et all [2019) is a weighted
sum of multiple Gaussian distribution components. An M-component GMM is defined as:

p(x) = Zie[M] w; - N(z 5 pi, 24), Zie[M] w; = 1. (4)

where w; denotes the probability of the sample belonging to the i*" component. The parameters of the
GMM {(w;, i, ;) : Vi € [M]} are learnt through expectation-mazimisation (EM) algorithm (Barber) 2012),
mazimum a posteriori (MAP) estimation, or mazimum likelihood estimation (MLE) (Barber} 2012, Def. 8.30).

Network Vector Autoregression Network Vector Autoregression (NVAR) builds upon traditional vector
autoregression models which capture the relationship among multiple time series by incorporating a network
structure (Zhu et al., 2017). Developments, such as Graph VARMA (Isufi et al. 2019)) and Graph GARCH (Hong
et al.l [2023) further refined the NVAR framework by addressing issues related to non-linear dependencies and
heteroskedasticity. Although in this work, we have not compared our approach with NVAR methods, future
work can be dedicated to comparing mspace with different variants of NVAR.

Published in Transactions on Machine Learning Research (05/2025)

5 Results

Baselines & Datasets We compare the performance of mspace with the following recent TGNN baselines:
DCRNN (Li et al 2018)), TGCN (Zhao et all 2019), EGCN-H (Pareja et al 2020), EGCN-0 (Pareja et al., 2020),
DynGESN (Micheli & Tortorellal [2022)), GWNet (Wu et all 2019), STGODE (Fang et al., |2021)), FOGS (Rao et al.l
2022)), GRAM-0DE ([Liu et al.,[2023), LightCTS (Lai et al., 2023). Additionally, we also evaluate the performance
of classic autoregressive method ARIMA (Box & Pierce, [1970)), and the famous LDS, the Kalman filter (Welch,
1997). We introduce two variants of the Kalman filter: Kalman-, which considers the node features as
observations, and Kalman-€, which operates on the shocks. For more details, please see Appendix

Table 1: We use the datasets tennis, wikimath, pedalme, and cpox for single-step forecasting as they are
relatively smaller in terms of number of nodes n and samples T'. For multi-step forecasting we use the larger
traffic datasets PEMS03, PEMS04, PEMSO7, PEMS08, PEMSBAY, and METRLA. The datasets PEMS03/04/07/08
report traffic flow, while PEMSBAY, and METRLA report traffic speed.

tennis wikimath pedalme cpox PEMSO3 PEMS04 PEMSO7 PEMS08 PEMSBAY METRLA

n 1000 1068 15 20 358 307 883 170 325 207
T 120 731 35 520 26K 17K 28K 18K 52K 34K

Single-step Forecasting In Table[2] we have single-step forecasting RMSE results for various models with
training ratio 0.9. The best result is marked bold, and the second-best is underlined.

The models DCRNN, ECGN, and TGCN exhibit similar Table 2: Single-step forecasting RMSE, (u = 20).
performance across all datasets, which may be at-
tributed to their use of convolutional GNNs for spa-

tennis wikimath pedalme cpox

tial di Kal _ f] 1 DynGESN 150.41 906.85 1.25 0.95
ial encoding. Kalman-e performs poorly across a DERNN 15543 1108.87 191 105
datasets, indicating challenges in establishing a state- EGCN-H 155.44 1118.55 1.19 1.06
space relation for shocks. In contrast, Kalman- EGCN-0 155.43 1137.68 1.2 1.07
performs notably well, outperforming other meth- TGCN 155.43 1109.99 1.22 1.04
ods on tennis and pedalme datasets. We did not é;fﬁtggg ;8393 iéigg égg 8—58);1
. . - 0 . . .
1nves't1gate why Kalman ﬁlters.perform poorly wh(?n STGODE 17216 279.87 0.91 0.83
applied to shocks. However, it can be explored in
future work mspace-Su 105.32 563.69 0.86 1.58
’ mspace-SN 117.23 725.42 1.35 2.11
For wikimath and cpox, STGODE shows the best per- Kalman-z 73.01 792.6 0.66 1.42
formance, followed by LightCTS and GRAM-0ODE, po- Kalman-e 7.5K 64K 1.79 10.2

tentially due to a higher number of training samples.
The light-weight methods such as Kalman-x and mspace exploit the unavailability of enough training samples
and perform better on tennis and pedalme.

We notice that mspace-Su achieves a balanced performance between TGNN models and Kalman-x across all
datasets except for cpox. The subpar performance of mspace-S* on the cpox dataset may be attributed to
the seasonal trend, given that it represents the weekly count of chickenpox cases.

Multi-step Forecasting For the TGNN models, we use the 6 : 2 : 2 train-validation-test chronological split
in line with the experiments reported by the baselines. For mspace and Kalman, the train-test chronological
split is 8 : 2, as they do not require a validation set. In Table [3| we report the multi-step ¢ = lﬂ forecasting
RMSE, and mean absolute error (MAE) on the test set. For mspace, the queue size M = Qqﬂ

Figure [5] shows the RMSE of the models, normalized to the minimum RMSE for the dataset, plotted
against the number of available training samplesﬂ We observe that mspace-Tu performs competitively
across all datasets with the exception of METRLA. Moreover, mspace-Tyu demonstrates superior performance
compared to mspace-Su across all the datasets which suggests that temporal auto-correlation dominate
spatial cross-correlation among the nodes.

2q = 12 corresponds to one hour in the traffic datasets used.
3a higher value of M might give better estimates at the cost of higher memory usage and lower adaptability.
4We refer to the number of training samples as the training size.

Published in Transactions on Machine Learning Research (05/2025)

Table 3: Multi-step forecasting RMSE and MAE, (u = 20).
PEMSO03 PEMS04 PEMSO7 PEMS08 PEMSBAY METRLA

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
GRAM-0DE 26.40 15.72 31.05 19.55 3442 21.75 25.17 16.05 3.34 1.67 6.64 3.44

STGODE 27.84 16.50 32.82 20.84 37.54 2299 2597 16.81 489 230 737 3.7
DCRNN 30.31 1818 38.12 2470 3858 2530 2783 17.86 4.74 2.07 760 3.60
ARIMA 4759 33,51 4880 33.73 59.27 3817 4432 31.09 6.50 3.38 13.23 6.90
GWNet 32.94 19.85 39.70 2545 4278 2685 31.056 19.13 485 195 781 3.53
LightCTS 30.14 18.79 23.49 1463 432 189 7.21 3.42

FOGS 24.09 15.06 31.33 1935 33.96 20.62 24.09 14.92 - - - -

mspace-Sp 36.51 26.43 18.85 13.25 54.39 38.83 14.61 1036 4.27 247 1024 6.56
mspace-Tp 26.53 18.31 13.49 8.70 38.63 24.02 10.35 6.33 3.77 219 10.08 6.77

Kalman-zx 4538 33.21 33.75 1526 64.95 48.01 2740 1240 571 3.87 1397 10.7
Kalman-& 749 619 818 709 2313 1988 460 399 50.2 43.1 1271 109

| —— GRAM-ODE LightCTS
4.0 | —=— STGODE FOGS
© | —— DCRNN —=— mspace-Sy
35 a ARIMA —e— mspace-Tu
S’J E + GWNet -e- Kalman-xl
230 > n < %
= < (=} - <
£ ’) 0o~ = &
E25 4 2 2 w =
o & o s = L
g g LW P S =
=20 g D PPt it iy
1.5 o
——
=—
1.0]
2 x10% 3x10% 4 x10%
samples

Figure 5: Multi-step forecasting normalized RMSE.

TGNN models, being neural networks, rely heavily on the amount of training data available. With the
relatively small number of training samples in PEMS04 and PEMS08, these models underperform. In contrast,
both variants of mspace significantly surpass the state-of-the-art (SoTA), demonstrating their effectiveness
with smaller datasetsﬂ Furthermore, mspace-Tu ranks as the second-best model for the largest dataset,
PEMSBAY. Therefore, we conclude that mspace offers consistent performance across datasets with varying
sample Sizesﬂ and it is particularly advantageous when training data is limited.

In Fig. 6] we illustrate how the RMSE scales with the number of forecast steps ¢ for different variants of
mspac The scaling law for mspace-S* appears linear, while for mspace-T*, it appears sublinear. We
investigate this theoretically in Appendix [A]

The TGNN baselines perform forecasting for ¢ = 12 future steps, relying on the node features from the
preceding 12 time steps as input. In contrast, mspace requires only the node features from the two previous
time steps. Additionally, mspace has the flexibility to forecast for any ¢ € N, whereas TGNN models are
limited to forecasting up to the specified number of steps they were trained on. Moreover, mspace offers
both probabilistic (2x) and deterministic (£2,) forecasts, a capability absent in the baselines. Finally, while
TGNN baselines exploit the edge weights information for predictions, mspace achieves comparable results
using only the graph structure.

Ssingle-step forecasting datasets have prohibitively low number of samples (< 800), likely limiting mspace’s performance
compared to multi-step forecasting with 17k+ samples.

6 Another approach to study the impact of training size is to use a fixed test set and vary the training fraction on a given
dataset. While we did not run this experiment, it was suggested by a reviewer during the discussion and is worth mentioning.

"We acknowledge that including error scaling for the baselines could have provided a more comprehensive comparison.

Published in Transactions on Machine Learning Research (05/2025)

120 o0 4> pPEMS08
PEMS03 PEMS04 150 PEMSO07
40 20 50 15
12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48
q q q q

Figure 6: Scaling of error with the number of forecast steps ¢ using different mspace variants:
A mspace-TN, m mspace-S/i, @ mspace-T/.

6 Interpretability

In this section, we examine mspace in light of the following definition of Interpretability.

Definition 6.1. Consider data @ € D which is processed by a model Fy to produce the output g € Y, i.e.,
y = Fy(x), where 6 denotes the model parameters. Moreover, consider a true mapping f : — y, V& € D
where y is the ground truth associated with the input data . Then, an interpretable or explainable model
Fy fulfils one or more of the following properties (Gilpin et al.| 2018} [Du et al., [2019):

o The internals of the model Fy can be explained in a way that is understandable to humans.

e The output g can be explained in terms of the properties of the input @, the input data distribution
D, and the model parameters 6.

e The failure of a model on a given input data can be explained.

o For a certain distance metric A : Y x Y — R7T, theoretical bounds on the expected error
Ez~p[A(y, Fo(x))] can be established based on the description of Fy, supported by the assumptions
on the input data distribution D.

e It can be identified whether the model Fy is susceptible to training bias, and to what extent.

6.1 Explaining Vg

In Fig. [} we depict two consecutive snapshots of a subgraph, focused on node v. The dashed circle highlights
the corresponding 1-hop neighbourhood U,. At any time ¢, we draw green and red arrows next to the nodes
to depict whether its node feature value increased or decreased, respectively.

1 1
. ® \ ®
T 1
— ¢ — ¢
VN v 1
» °
U, U,
t=t t=t+1

Figure 7: Consecutive subgraph snapshots.

The design of Wg was inspired by the correlation dynamics of the stock market (Caraiani, [2014), where the
inter-connectedness of various stocks exerts mutual influence on their respective prices. For instance, within
the semiconductor sector, stocks such as NVDA, AMD, and TSMC often exhibit synchronised movements, with
slight lead or lag. Similarly, the performance of gold mining stocks can offer insights into the future value of
physical gold and companies engaged in precious metal trade. This concept transcends individual industries
and encompasses competition across multiple sectors.

10

Published in Transactions on Machine Learning Research (05/2025)

Let us record the states at two consecutive time-steps s;, = [1 -1 1 —l]T, and Sy 41 =
[—1 -1 -1 1]T. At the state-level, we iterate through the time-steps, and collect all the states succeeding

T . . .
s = [1 -1 1 —1] . If we then draw a random sample from this collection of succeeding states, we can
predict whether the node feature value is more likely to increase or decrease. However, we are interested in pre-

dicting the amount of change. Therefore, at every time step when the state s; matches s = [1 -1 1 —1]

we collect the succeeding shock ei) ina queue Q,(s), i.e., at time 7, Q,(s) = {sézj{r“ﬁ 18 =8,V < T} with

|Qu(s)| < M. The queue entries are then used to approximate a distribution from which a random sample is
drawn during forecast.

In Fig. |8 we plot the normalized histogram of the trace tr(-) of the covariance matrix 3(s) of all the states
s € 8,,v € [n] for all the datasets used in multi-step forecasting. We notice that in both PEMS04 and PEMS08
the distribution of values is skewed to the left, with a concentration of data points at values close to zero .
This explains the better-than-SoTA performance of mspace-Syu on these datasets. In contrast, the histogram
of METRLA is completely away from zero, while for PEMS03, and PEMSO7 there are peaks near zero, but a major
mass of the histogram is skewed away from zero. This explains the poor performance of mspace-Su on these
datasets.

0.002

s PEMSO03 0.003 mmm PEMSO04
0.002
0.001
I IIII 0.001
0'000 I II--_ _ 0.000 [T [- _|
1000 1500 2000 2500 0 500 1000 1500 2000 2500
0.0015
PEMSO07 PEMSO08
0.0010 0.004
0.0005 0.002
0.0000 o.ooo
0 500 1000 1500 2000 2500 1000 1500 2000 2500
0.4
mmm PEMSBAY 0.02 s METRLA
0.2
II - I II
0.0 Il..-- 0.00 . I...---__-
0 2 4 6 8 10 100

Figure 8: Normalized histogram of {tr(X(s)) : Vs € S,, Vv € [n]} for different datasets.

We represent data variance using the trace of the covariance matrix. Thus, if the variance histogram is close
to zero, it indicates low variance. The error in estimating samples from a distribution is lower if the variance
of the distribution is lower, and vice versa.

6.2 Explaining Uy

Next, we discuss the rationale behind Wy, which is designed to identify periodic patterns. For instance, in
many traffic networks, trends exhibit weekly cycles, with distinct patterns on weekdays compared to weekends.
Moreover, on an annual basis, the influence of holidays on traffic can be discerned, as people engage in
shopping and other leisure activities. In Fig. EI, we have shown the traffic flow value of PEMS04 with weekly (a)
and daily (b) periodicity. For the weekly periodic view (a), the trend is more pronounced with less deviation
from the mean while for the daily view (b), a scattered trend is visible with high variance across states.

11

Published in Transactions on Machine Learning Research (05/2025)

600 ; 600
500 500
400 400
300 300
200 200
100 100
0 0
0 250 500 750 1000 1250 1500 1750 2000 0 50 100 150 200 250 300
tmod T tmod 7o
(a) PEMS04: Weekly (b) PEMS04: Daily

Figure 9: Periodic trends in the traffic dataset PEMS04; the black points represent the data-points, and the
red line is the mean estimate for each state ¢t mod 7.

6.3 Error Bounds

We present the error bounds of mspace in the following theorem, a detailed proof of which can be found in
Appendix [A]

Theorem 6.1. The RMSE of mspace for a g-step node feature forecast is upper bounded as RMSE(q) <
\/ozq2 + (Ba+ B)q + (2a + B), where a, 3 € R are constants that depend on the data, as well as the variant
of the mspace algorithm.

Corollary 6.1. In the asymptotic case of large q, the RMSE grows linearly with q: RMSE(q) = O(q).

6.4 Complexity Analysis

We denote the computational complexity operator as €(+), and the space complexity operator as M(-), where
the argument of each operator is an algorithm or a portion of an algorithm. The optional offline part of
mspace is denoted by A, while the online part is denoted by B. In Table [d] we exhibit the computational
and space complexities of the different mspace variants, where b £ max,e[n] |[Uy| is the maximum degree. For
more details please refer to Appendix

Table 4: Computational and space complexity of different mspace variants.

| Vs | Ur
€(A) = O (ndb (rT + dbM min{rT,2*4})) €(A) = O (nrT + d*Mnry)
O | €(B) = 0 ((1—r)Tnd¥? (qdb+ Mmin { ST, 20})) | €(B) = O (1 =)Tnd?(gd + M)
M(AUB) = O (db(M + db) min{T, 24}) MAUB) = O(d(M +d)no)
Q. | eB) =0 ((1 — r)Tndb(q + M) min {@T, 2bd}) ¢(B) = O ((1 — r)Tnd(q + M)m)
M(AUB) = O (Mdbmin{T,2""}) M(AUB) = O (Mdr)

Theorem 6.2. For asymptotically large number of nodes n and timesteps T, the computational complexity
of mspace is O(nT'), and the space complezity is O(1) across all variants.

The proof is detailed in Appendix [B.2]

12

Published in Transactions on Machine Learning Research (05/2025)

7 Discussion

In this section we discuss the limitations of mspace and how they can be overcome. Firstly, mspace only
considers binary edges, i.e.. A € {0,1}"*" instead of a weighted adjacency matrix A € R"*". This does not
imply that we have used datasets with binary edges, rather it means that we have used a binarized version of
the adjacency matrix as input to mspace while the baselines exploited weighted edges. Secondly, we assume
that the graph structure is fixed throughout, while for a truly dynamic graph, the graph structure should
also be dynamic. Lastly, we have proposed two state functions: one that focuses on cross-correlation among
the nodes, and the other that considers seasonality. Therefore, a state function which combines both can be
studied in an extension of our work in the future.

On creating a state function which combines Vg and 1 We can define gy : RUIdx N — {-1, 1}‘u|d X
T

{0,1,---79 — 1} as Ugr (s<”>,t) £ [sign(es@”)T tmod ’7'0] . In essence, the queues Q,(s),Vs € S,,Vv € [n]

in mspace-ST would have lesser entries compared to mspace-S which might lead to poor estimates and

consequently make the algorithm data-intensive. Furthermore, in the step where we find the closest state s*, the

] o (e)]

On benchmarking using diverse datasets Experiments on more diverse datasets would help establish
the performance of the proposed algorithm. In this work, we have used 4 non-traffic datasets for single-step
forecasting, and 6 traffic datasets for multi-step. The proposed algorithm mspace has a general formulation,
and is not designed specifically for traffic datasets; mspace can be applued to any graph whose node features
(of any dimension) evolve with time. We also proposed a synthetic temporal graph generation method in
Appendix [C] to alleviate the data scarcity issue in temporal graph learning.

spatial and temporal parts can be assigned different weights: s* <— argminges,

where v € RT.

8 Conclusion

In conclusion, our proposed algorithm, mspace, performs at par with the SOoTA TGNN models across various
spatio-temporal datasets. As an online learning algorithm, mspace is adaptive to changes in data distribution
and is suitable for deployment in scenarios where training samples are limited. The interpretability of mspace
sets it apart from black-box deep learning models, allowing for a clearer understanding of the underlying
mechanisms driving predictions. This emphasis on interpretability represents a significant step forward in the
field of temporal graph learning. In Sec. [7] we discussed the potential limitations of mspace.

In addition to the algorithm, we also introduce a synthetic temporal graph generator (see Appendix in
which the features of the nodes evolve with the influence of their neighbours in a non-linear manner. These
synthetic datasets can serve as a valuable resource for benchmarking algorithms.

References

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

Claudio DT Barros, Matheus RF Mendonga, Alex B Vieira, and Artur Ziviani. A survey on embedding
dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1-37, 2021.

Ferenc Béres, Robert Péalovics, Anna Oldh, and Andras A Benczur. Temporal walk based centrality metric
for graph streams. Applied network science, 3:1-26, 2018.

G. E. P. Box and David A. Pierce. Distribution of Residual Autocorrelations in Autoregressive-Integrated
Moving Average Time Series Models. Journal of the American Statistical Association, 65(332):1509-1526,
December 1970. ISSN 0162-1459. doi: 10.1080/01621459.1970.10481180.

Petre Caraiani. The predictive power of singular value decomposition entropy for stock market dynamics.
Physica A: Statistical Mechanics and its Applications, 393:571-578, 2014.

13

Published in Transactions on Machine Learning Research (05/2025)

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling, December 2014. URL http://arxiv.org/abs/1412]|
3555, arXiv:1412.3555 [cs].

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting social
events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1007-1016, 2019.

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communications of
the ACM, 63(1):68-77, 2019.

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of gaussian
process state space models. Advances in neural information processing systems, 30, 2017.

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-Temporal Graph ODE Networks for
Traffic Flow Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 364-373, August 2021. doi: 10.1145/3447548.3467430. URL http://arxiv.org/abs/
2106.12931. arXiv:2106.12931 [cs].

Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender system. In
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1623-1625,
2022.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining
explanations: An overview of interpretability of machine learning. In 2018 IEEFE 5th International
Conference on data science and advanced analytics (DSAA), pp. 80-89. IEEE, 2018.

Junping Hong, Yi Yan, Ercan Engin Kuruoglu, and Wai Kin Chan. Multivariate time series forecasting
with garch models on graphs. IEEFE Transactions on Signal and Information Processing over Networks, 9:
557-568, 2023.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure
Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph benchmark for
machine learning on temporal graphs. Advances in Neural Information Processing Systems, 36:2056-2073,
2023.

Elvin Isufi, Andreas Loukas, Nathanael Perraudin, and Geert Leus. Forecasting time series with varma
recursions on graphs. IEEE Transactions on Signal Processing, 67(18):4870-4885, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Zhichen Lai, Dalin Zhang, Huan Li, Christian S Jensen, Hua Lu, and Yan Zhao. LightCTS: A lightweight
framework for correlated time series forecasting. Proceedings of the ACM on Management of Data, 1(2):
1-26, 2023.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=SJiHXGWAZ.

Zibo Liu, Parshin Shojaee, and Chandan K. Reddy. Graph-based multi-ODE neural networks for spatio-
temporal traffic forecasting. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=095XKRVYpQ.

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio, Andrea Passerini,
et al. Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities.
Transactions on Machine Learning Research, 2023.

14

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2106.12931
http://arxiv.org/abs/2106.12931
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=Oq5XKRVYpQ

Published in Transactions on Machine Learning Research (05/2025)

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite Mixture Models. 2019.

Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo state networks. Neurocomputing,
496:85-95, 2022. Publisher: Elsevier.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao Schardl, and Charles Leiserson. Evolvegen: Evolving graph convolutional networks for dynamic graphs.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5363-5370, 2020. Issue: 04.

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K Barrow,
Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan, et al. Forecasting:
theory and practice. International Journal of forecasting, 38(3):705-871, 2022.

Xuan Rao, Hao Wang, Liang Zhang, Jing Li, Shuo Shang, and Peng Han. FOGS: First-Order Gradient
Supervision with Learning-based Graph for Traffic Flow Forecasting. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, pp. 3926-3932, Vienna, Austria, July 2022.
International Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi:
10.24963/ijcai.2022/545. URL https://www.ijcai.org/proceedings/2022/545.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Aste-
fanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric temporal:
Spatiotemporal signal processing with neural machine learning models. In Proceedings of the 30th ACM
international conference on information & knowledge management, pp. 4564-4573, 2021a.

Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci. Chickenpox cases in
hungary: A benchmark dataset for spatiotemporal signal processing with graph neural networks. In
Workshop on Graph Learning Benchmarks@ The WebConf 2021, 2021b.

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Ezxam-
ples. Springer Texts in Statistics. Springer International Publishing, Cham, 2017. ISBN 978-3-319-
52451-1 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-8. URL http://link.springer.com/10.1007/
978-3-319-52452-8.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. Neural Information Processing Systems, 2017.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in linear
graph convolutional networks. In NeurIPS, pp. 5758-5769, 2021. URL https://proceedings.neurips)
cc/paper/2021/hash/2d95666e2649f cfc6e3af75e09fbadb9-Abstract.html,

Greg Welch. An Introduction to the Kalman Filter. 1997.

Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Christian S Jensen. AutoCTS:
Automated correlated time series forecasting. Proceedings of the VLDB Endowment, 15(4):971-983, 2021a.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-
temporal graph modeling. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pp. 1907-1913, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive
Survey on Graph Neural Networks. IEEFE Transactions on Neural Networks and Learning Systems,
32(1):4-24, January 2021b. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2020.2978386. URL
https://ieeexplore.ieee.org/document/9046288/.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: a deep learning
framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pp. 3634-3640, 2018.

15

https://www.ijcai.org/proceedings/2022/545
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://ieeexplore.ieee.org/document/9046288/

Published in Transactions on Machine Learning Research (05/2025)

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
Proceedings of the AAAI conference on Artificial Intelligence, volume 37, pp. 11121-11128, 2023.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: A
temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation
systems, 21(9):3848-3858, 2019. Publisher: IEEE.

Xuening Zhu, Rui Pan, Guodong Li, Yuewen Liu, and Hansheng Wang. Network vector autoregression. 2017.

A Error Bounds

Upper Bound We derive the upper bound on the RMSE for ¢-step iterative forecast below.

Proof of Theorem[6.1} For nodes in U,,v € [n], the shock at time ¢ is sampled from a Gaussian distribution,

the parameters of which depend on the previous shock éﬁlf”f through the state function:

41 (e (1 (6)) 3 (0 (44) g
We denote the shock estimated for node v at time ¢ as:

&(v) = &1 (v) ~ N (é; Mo (‘I’s (é§u1)>) > (‘I’s (éﬁul)))) (6)

The mean square error for ¢g-step iterative node feature forecasting is defined as:

2

MSE é TqE Z Z Z €t+J €t+j(v)

vEn]i€q] ||FE[

= Z Z Z Eryj(v) —errj(W)| |- (7)

UE[”] i€lq] jeld]

The shock difference between the true shock and predicted shock also follows a Gaussian distribution:

Errj(v) —ergj(v) ~ N (s;uv (‘I’S (AW >1)> — e (v), 3o (\IIS (éﬁj 1))) ®)

Since, the sum of Gaussian r.v.s is also Gaussian, we have:

Z Et1j(v) — €44 (v Z Ko (\115 ()) —€t45(v), Z DI (‘I’s (éﬁ;ll)) : (9)

JEld] JEl] J€ld]

Moreover, for a Gaussian r.v. x ~ N (x; u, 2), E [Hmﬂ = l))? + tr(D).

B[S i) — s @) | = |13 mo (s (6851)) = ernso)
JEld] JEli]
+ Ztr (EU ((s§ﬂ> 1))) (10)
JEld]

16

Published in Transactions on Machine Learning Research (05/2025)

5 (05 (51,)) et

(‘IIS (€t+j> 1)) - 5t+j(U)H

JE[i] JE€i]
<i- g (M) - ;
<1 nlea)](Mo (Us (€05 €45 (v)
J 'L
. AUy
< e (v (88551)) — a0
=i Jan. (11)

Z tr (Ev (\Ifs (éﬁ’;lJ)) <i-maxtr (Ev (\I/s (ég} 1))) <i-ayo. (12)

i€t Jetd

2

E Z Et4j(v) — €145(v) Sty i,y aps € R (13)
jeli]

MSE(q) € —— 57 3 a2 4 s -

q

vE[n] i€[q]
Zve[n] Qy,1 Zve[n] Qy,2
= 1 2 _ 1). 14
ong @t D@+2)+——"—(¢+1) (14)
Let a £ g3 cpy w1, and 2 5537 a2, then
MSE(q) < ag® + (3a+)q + (2a + B). (15)
By Jensen’s inequality,
RMSE(q) < vMSE(q) < vag? + (3a+ 8)q + 2a + j). (16)
O

The above proof is for mspace-SN and also applies to mspace-TA . For mspace-Sy and mspace-Tu, 3 = 0.

Lower Bound Similarly, we can find a lower bound on the MSE for ¢-step iterative forecast:

2

E Z €ryj(v) —&115(v) = Ztr(((éé%ﬂ) 1)))

JEli] JE[]

> i mintr (= (ws (6801))) =i+ v (17)

MSE(q) > —- ZZZ avs—(niZav,3)~(q+1)=6’q+ﬁ’- (18)

€[n] i€lq] vE[n]

17

Published in Transactions on Machine Learning Research (05/2025)

B Complexity Analysis

B.1 Computational Complexity

We denote the computational complexity operator as €(-), the argument of which is an algorithm or part of
an algorithm. The optional offline part of the algorithm is denoted as A while the online part is denoted as B.

Algorithm 2 mspace-SA

IHPUt g:(V,E,X),TE [071)7 (LM
Output é,(v), YweV,te[|r-T|,T]
1 g (v) < ze(v) —xi—1(v), Yo eV, telT]
Offline training (A):
2: for t € [|r-T]] do
3: forveVdo
4: sﬁu” — v (sﬁu")
5 SoeSufs
6: Q. (siz’{“)) + enqueue sﬂ‘f
7. end for
8: end for
9: py(8) < mean(Q,(s)), VseS,,veV
10: 3, (s) < covariance(Q,(s)), Vse S,,veV
Online learning (B):
11: for t € [|r-T|,T —q] do
122 forv eV do
13: sﬁ“” — U (€§u”>
14: s" « arg nelgn ’s — sﬁu”>
15 €Y~ Nepu(s7), Bu(s7))
16: for k € [2,¢] do
* - AUy
17: s§" + arg Snelgnv s—Vv (€t+k>71> H
18: el N (e p0(57), B0 (5%))
19: end for y
20: Erri(v) — M (v), V€ [g]
21: Update S,, Q,
22: Update p,(s),3,(s), VseS,
23: end for
24: end for

> ey dlty|

>n

>n

> Sy |15, |M
> T s 1S, M

> vev dith]
> vey AU [0
> ey (Us|d)®

>(q = 1) X X yey dUh|(1 +[S0])

> (q - 1) X Zvev(‘uvw)?)

>2n
DY ey (dlty] + d2|Uy]?)|S, | M

Computational complexity of offline training for mspace-SN can be written as:

¢(A) = 0([PT)d > U]+ [rT)2n +dM > Uy ||Su| +d>M > Uy 1S, |) (19)
v v v v
(51,[6]
[4] [9](mean) [10](covariance)

18

Published in Transactions on Machine Learning Research (05/2025)

Computational complexity of online learning for mspace-SA can be written as:

T—q
¢<B)=0< > {dqzuv|+dq2|uv|lsv|+ &gy [Uf® +2n,

t= [rT'\ v v v [21]
[13],[17] [14],(17] [15],[18](sampling)
—s—dMZMU||SU|+d2MZ|uv|2SU|}>. (20)
[22](mean) [22](covariance)

Lemma B.1. The computational complezity of mspace-SN is:
¢(A) = @(dban + d?b*Mn - min{rT, de}),
eB)=0 <(1 — r)Tnd*b? <qdb+ M - min {(IQT)T’ 2bd}>> ’

where b = max, e[, |Uy|.

Proof. We denote the maximum degree of a node as b £ max,e[n] |[Uy| < n which does not necessarily scale
with n unless specified by the graph definition. Furthermore, the total number of states observed for a node
till time step t € N cannot exceed t, i.e., |S,| < t. We also know the total number of states theoretically
possible for node v is 241 for Wg(-). Therefore, the number of states observed till time ¢ for node v is upper
bounded as: |S,| < min {¢,2°}. Based on this, we can simplify equation (19} and equation [20|as follows:

€(A) = O (dbnrT + 2nrT + (dbM + d*v* M) - nmin{rT, de})
-0 (dban + d®b®Mn - min{rT, de}).
T—q
¢B)=0 Z qdbn + qd>b*n + 2n + db(q + M)n - min{t, 2*} 4 d*b*> Mn - min{t, 2°?}
t=[rT]
T—q
O > qd®®*n+ (db(g + M) + d°b>M)n - min{t, 2"}

t=[rT]

O((1 =)T - qd*¥*n + d?*Mn - min{(1 = r2)T2,2(1 —)T}

~0 ((1 —r)Tn (qd3b3 + d®b®M - min { (1 JQF Do zbd})) .

Lemma B.2. The computational complexity of mspace-Su is:

CA) =0 (dme +dbMn - min{rT, de}) :

¢B)=0 ((1 — #)Tndb(q + M) - min { (1 ;L I, 2bd}> .

Proof. The sampling steps [15], and [18] in Algorithm [2| are replaced with éﬁuw < p(s*) which has a

computational complexity of O(d|U,|). Moreover, ,(-) does not require the covariance matrix, therefore we

19

Published in Transactions on Machine Learning Research (05/2025)

do not need to compute it. We simplify the computational complexity expressions as:

¢(A) =0 (LTTJdZ U] + [rT)20 +dM Y IMUIISUI>

O(dbnrT + dbMn - win{rT, 21}).

T—q

¢(B) = 0(> {dad ol +da Y UlS. + day uv|+2n+dMZ|uv||sv|}>

t=[rT]

(sampling)

—q
=0 (Z 2qdbn + 2n + db(q + M)n - min{t, 2°7}
t=[rT

=0 <(1 —7r)Tndb(q + M) - min {ﬂgr)T 2bd}> .

Lemma B.3. The computational complexity of mspace-TN is:

CA=0 (m‘T + dQMTLTQ) ,
¢(B) = (’)((1 —) Tnd? - (Mo + qd)).

Proof. For the state function Wy, the total number of states for any node is the period 19 € N, i.e., |Sy| < 7p.
Moreover, the state calculation s; < ¥(¢) has computational complexity of O(1). Most importantly, for Wy,
b =1 as it only focuses on the seasonal trends.

CA) =0 (wj S 14 [rT)2n+dM Y |U]|S,| +d2MZ|L{v|2|SU|>

= O (3T + dMno + d*Mnry) = O (nr'T + d*Mnry) .

T—q
¢(B) = 0(> a1+ da Y IS+ d*a Y ol + 20
t=[rT] v v v

+dM Y Us][S,| +d2MZ|uv|2sv|}>
=0 ({g+dgro + qd* + 2+ dMmy + d*Mmo} - n(1 —r)T)
= o(u — ") Tnd? - (Mo + qd)),

Lemma B.4. The computational complexity of mspace-Tu is:

¢(A) = O (nrT + dMnry),
¢(B) = o((1 —)T d(g+ M)TO).

20

Published in Transactions on Machine Learning Research (05/2025)

Proof. Based on the explanation provided for mspace-TA/, we simplify the computational complexity expres-
sions for mspace-Tu as:

CA) =0 (LTTJ S 1+ rT)2n+dM |SU|)

= O (3nrT + dMnty) = O (nrT + dMnry) .

T—q

¢B)=0| > {qZquZm +2n+dMZ|SU|}

t=[rT]

= O({q+dq7'o +2+dMm}-n(1 fr)T> = (9((1 *T)Tn'd(quM)To).

B.2 Space Complexity

We denote the space complexity operator as 9M(-), the argument of which is an algorithm or part of an

algorithm. The variables in offline training A are re-used in online learning B. Therefore, we can say that
M(B) = M(AUB).

In an implementation of mspace where forecasting is sequentially performed for each node v € [n], memory
space can be efficiently reused, except for storing the outputs. This approach optimises memory usage,
resulting in a space complexity characterised by:

MAUB) = O | max ditdy||So] + My |[Su] + cdlihy|[S] + c(dth])?1So] + dlthy] | - (21)
VEN], e —————— | ——) ——— N~
te[T) S, 9, (8)VseS, Ko (8) VSES, 2, (8) VSeS, s*

Lemma B.5. The space complexity of mspace-SN is M(AUB) = O(db(M + db) - min{T, 2bd}>.

Proof. Simplifying equation 2] results in:

IMAUB) =0 g (db + ecMdb + cdb + cd®b?)|S,| + db
ven,
te[T]

=0 ((chb + cd?b?) - max min(, 2bd}) ~0 (db(M + db) - min{T, 2bd}).
te

O
Lemma B.6. The space complexity of mspace=-Su is M(AUB) = O(Mdb -min{7T, 2bd}).
Proof. Some space is saved in mspace-Su, as we do not need to store the covariance matrices.
MAUB)=0 mfn]((db+ cMdb + ¢db)|S,| +db | = O(Mdb -min{T, 2bd}).
ve|n|,
te[T]
O

Lemma B.7. The space complezity of mspace-TN is M(AUB) = O(d(M + d)TO).

21

Published in Transactions on Machine Learning Research (05/2025)

Proof. As explained earlier, for the state function Wy, b = 1. Therefore, the queues only store the shock
vectors for a single node, and not the neighbours. The space complexity expression is simplified as:

MAUB) = O | max (d+ cMd + cd + cd?)|Sy| + db | = O(d(M + d)ro).

vEn],
te[T]
O
Lemma B.8. The space complexity of mspace-Tu is O(MdTO).
Proof. M(AUB) = O (maxve[nL (d + cMd + cd)|S,| + d) = O(Mdm). O
te[T]

Asymptotic Analysis Theorem states that for asymptotically large number of nodes n and timesteps
T, the computational complexity of mspace is O(nT), and the space complexity is O(1) across all variants.

Proof. We analyse the lemmas [B.1{B.8| introduced in this section for the asymptotic case of very large n
and T. For very large T, min %ﬂT, 2bd} — 204, Similarly, min{7,2°?} — 2%¢. Considering the terms
r,d, M,q,Ty,b as constants, the computational complexity for both offline and online parts of all the mspace
variants becomes O(nT) for asymptotically large n, T

Furthermore, the space complexity terms lack n or T for very large T', which allows us to conclude that the
space complexity of all the variants of mspace is constant, i.e., O(1). O

C Synthetic Datasets & Experiments

In traffic datasets, seasonality outweighs cross-nodal correlation, making it challenging to assess the efficacy
of a TGL algorithms on node feature forecasting task. To address this gap, we propose a synthetic dataset
generation technique in line with the design idea of mspace which is described in Algorithm

Algorithm 3 Synthetic Data Generation

IHPUt g - (V75)’ d’ Hmin, Hmax, 0121'11n7 0.1211&)(7 Ho, 0(2)a T, Hr, 072—'
1: €y ~ Bernoulli™ (%)
2: g ~ N(z; pol,o51)
3: for t € [T] do

81 < Ws(er—1)
if ;.1 ¢S then
S+ Su {St—l}

4
5
6:
7: wu(si—1) ~ Uniform™? (Lmins fmax)
3:
9

3 ~ Uniform™>*™ (g2, o2)
L S l(mes)

10: B(s;1) « 2O (A® 14xq)

11: end if

12: €t NN(E;M(St_l),E(St_l))

13: Ty =Ty_1 + &

14: end for

15: if 7 > 0 then

16: yr ~N(y;p-1,02I) Vte|[r]

17: Tt < Tt + Ytmod 7 vt € [T]

18: end if

22

Published in Transactions on Machine Learning Research (05/2025)

In steps 8-10, we construct a covariance matrix adhering to Assumption and in step 12, we sample the
shock from a multivariate normal distribution. In steps 16-17, a random signal y is tiled with period 7 and
added to the node features to introduce seasonality into the dataset.

The synthetic datasets can be utilized to analyze how various factors such as graph structure, periodicity,
connectivity, sample size, and other parameters affect error metrics.

We generate datasets through Algorithm [3] by supplying the parameters outlined in Table[f] For each dataset,
we create multiple random instances and report the mean and standard deviation of the metrics in the results.

Table 5: Parameters for different synthetic dataset packages.

Dataset g ~ d T HMmin Mmax Omin Omax Mo g0 T Hr Or
SYNO1 ®pgr(20,0.2) 1 10° —200 200 40 50 2x10° 5000 100 100 20
SYNO2 ®pgr(20,0.2) 1 10° —200 200 40 50 2x10° 5000 O
SYNO3 ®pg (40,0.5) 1 10° —400 400 30 40 10+ 2000 0
SYNO4 ®pg (40,0.5) 1 10* —400 400 30 40 10+ 2000 0
24000 28000
22000 26000
20000 24000
‘418000 “22000
X 16000 X 20000
14000 18000
12000 16000
10000 14000
0 200 400 600 800 1000 0 200 400 600 800 1000
t t
(a) syno1 (b) syno2

50000
40000
30000
20000
10000 Pk

Xt

—10000

0 200 400 600 800 1000 0 2000 4000 6000 8000 10000
t t

(c) sYNO3 (d) sYNO4

Figure 10: Exemplary synthetic dataset samples shown for 5 nodes.

C.1 Periodicity

The generator parameters for SYNO1 and SYNO2 are same except for the periodic component added to SYNO1
which has a period of 7 = 100 timesteps consisting of shocks sampled from N(100,20). An algorithm which
can exploit the periodic influence in the signal should perform better on SYNO1 compared to SYNO2. The
models which perform worse on periodic dataset are marked red.

23

Published in Transactions on Machine Learning Research (05/2025)

Table 6: Impact of data periodicity on RMSE achieved by different models.

SYNO1 SYNO2 % increase

mean std. dev. mean std. dev. (W)
mspace-Sp 299.18 =+ 6.55 29499 £ 8381 —0.63
mspace-SA/ 400.99 + 3.74 395.33 £+ 3.24 —1.52
STGODE 420.86 £+ 103.29 420.25 £+ 52.17 —9.87
GRAM-0DE 921.94 + 537.63 853.77 + 340.45 —18.18
LightCTS 419.43 £+ 176.5 334.59 £+ 79.01 —30.6
Kalman-x 781.94 £ 32.35 776.75 £+ 30.38 —0.88
Kalman-& 393.76 + 4.72 390.45 + 3.54 —1.13

C.2 Training Samples

The generator parameters for SYNO3 and SYNO4 are same except for the total number of samples being ten
times more in SYNO4. If a model perform better on SYNO4 compared to SYNO3, it would indicate that it is
training intensive, requiring more samples to infer the trends. On the other hand, if the model performs
worse on SYNO4, it would indicate that there are scalability issues, or the training caused overfitting. An
ideal model is expected to have similar performance on SYNO3 and SYNO4. The models with ideal behaviour
are marked teal, and the models susceptible to overfitting are marked red. Moreover, model(s) that require
more training samples are marked violet.

Table 7: Impact of number of training samples on RMSE achieved by different models.

SYNO3 SYNO4 % increase

mean std. dev. mean std. dev. (W)
mspace-Sj 793.41 £ 5.86 789.36 £+ 3 —0.86
mspace-SA 79393 + 5.73 792.61 + 2.02 —0.63
STGODE 830.63 + 127 931.33 =+ 191.87 +17.29
GRAM-0DE 1382.48 + 80.78 1423.93 + 190.13 +10.31
LightCTS 769.34 + 196.6 998.01 + 319.72 +36.42
Kalman-x 785.7 + 8.95 721.88 4+ 1.73 —8.94
Kalman-& 782.6 =+ 6.5 783.36 + 1.45 —0.54

D Evaluation

D.1 Metrics

The root mean squared error (RMSE) of ¢ consecutive predictions for all the nodes is:

RMSE(q) 2 E

2
g vey 2iclq HZJ'G[i] €t45(v) — étﬂ(”)HQ} ' (22)
The mean absolute error (MAE) of ¢ consecutive predictions for all the nodes is:
MAE() 2 71E [Ty Siepg | Sie 1450 — €| |- (23)

D.2 Datasets

In Table [8] we list the datasets commonly utilised in the literature for single and multi-step node feature
forecasting.

24

Published in Transactions on Machine Learning Research (05/2025)

tennis (Béres et al., |2018) represents a discrete-time dynamic graph showing the hourly changes in the
interaction network among Twitter users during the 2017 Roland-Garros (RG17) tennis match. The input
features capture the structural attributes of the vertices, with each vertex symbolizing a different user and
the edges indicating retweets or mentions within an hour ﬂ

wikimath (Rozemberczki et al., [2021a)) tracks daily visits to Wikipedia pages related to popular
mathematical topics over a two-year period. Static edges denote hyperlinks between the pages ﬂ

pedalme (Rozemberczki et al., 2021al) reports weekly bicycle package deliveries by Pedal Me in London
throughout 2020 and 2021. The nodes are different locations, and the edge weight encodes the physical
proximity. The count of weekly bicycle deliveries in a location forms the node feature footnote E

cpox (Rozemberczki et al., [2021b) tracks the weekly number of chickenpox cases for each county of
Hungary between 2005 and 2015. Different counties form the nodes, and are connected if any two counties
share a border 1°.

PEMS03/04/07/08 (Rao et al., 2022) The four datases are collected from four districts in California
using the California Transportation Agencies (CalTrans) Performance Measurement System (PeMS) and
aggregated into 5-minutes Windowﬂ . The spatial adjacency matrix for each dataset is constructed using the
length of the roads. PEMS03 is collected from September 2018 to November 2018. PEMS04 is collected from
San Francisco Bay area from July 2016 to August 2016. PEMSO07 is from Los Angeles and Ventura counties
between May 2017 and August 2017. PEMSO08 is collected from San Bernardino area between July 2016 to
August 2016.

Variables: The flow represents the number of vehicles that pass through the loop detector per time interval
(5 minutes). The occupancy variable represents the proportion of time during the time interval that the
detector was occupied by a vehicle. It is measured as a percentage. Lastly, the speed variable represents the
average speed of the vehicles passing through the loop detector during the time interval . It is measured in
miles per hour (mph).

PEMSBAY (Li et al., 2018) is a traffic dataset collected by CalTrans PeMS. It is represented by a
network of 325 traffic sensors in the Bay Area with 6 months of traffic readings ranging from January 2017 to
May 2017 in 5 minute intervalﬂ

METRLA (Li et al., [2018]) is a traffic dataset based on Los Angeles Metropolitan traffic conditions.
The traffic readings are collected from 207 loop detectors on highways in Los Angeles County over 5 minute
intervals between March 2012 to June 20121

D.3 Baselines

DCRNN (Li et al., 2018) The Diffusion Convolutional Recurrent Neural Network (DCRNN) models the
node features as a diffusion process on a directed graph, capturing spatial dependencies through bidirectional
random walks. Additionally, it addresses nonlinear temporal dynamics by employing an encoder-decoder
architecture with scheduled sampling.

TGCN (Zhao et al., 2019) Temporal Graph Convolutional Network (TGCN) combines the graph convolu-
tional network (GCN) with a gated recurrent unit (GRU), where the former learns the spatial patterns, and
the latter learns the temporal.

8https://github.com /ferencberes/online-centrality

9wikimath dataset from PyTorch Geometric Temporal
Ohttps://github.com/benedekrozemberczki/spatiotemporal_datasets
Hhttps://github.com/guoshnBJTU/ASTGNN /tree/main/data
12PEMSBAY dataset from PyTorch Geometric Temporal

I3METRLA dataset from PyTorch Geometric Temporal

25

https://github.com/ferencberes/online-centrality
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/wikimath.html
https://github.com/benedekrozemberczki/spatiotemporal_datasets
https://github.com/guoshnBJTU/ASTGNN/tree/main/data
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/pems_bay.html
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/metr_la.html

Published in Transactions on Machine Learning Research (05/2025)

Table 8: Real world datasets for single and multi-step forecasting.

Name n T time-step T
tennis 1,000 7# tweets 1 hour 120
wikimath 1,068 # visits 1 day 731
pedalme 15 # deliveries 1 week 35
cpox 20 # cases 1 week 520
PEMS03 358 flow 5 min 26,208
PEMS04 307 flow, occupancy, speed 5 min 16,992
PEMS07 883 flow 5 min 28,224
PEMS08 170 flow, occupancy, speed 5 min 17,856
PEMSBAY 325 speed 5 min 52,116
METRLA 207 speed 5 min 34,272

EGCN (Pareja et al., |2020) EvolveGCN (EGCN) adapts a GCN model without using node embeddings.
The evolution of the GCN parameters is learnt through an RNN. EGCN has two variants: ECGN-H which uses
a GRU, and ECGN-0 which uses an LSTM.

DynGESN (Micheli & Tortorellal, [2022) Dynamic Graph Echo State Networks (DynGESN) employ echo
state networks (ESNs) a special type of RNN in which the recurrent weights are conditionally initialized,
while a memory-less readout layer is trained. The ESN evolves through state transitions wheere the states
belong to a compact space. For more details please refer to the original text.

GWNet (Wu et al., [2019) GraphWave Net (GWNet) consists of an adaptive dependency matrix which
is learnt through node embeddings, which is capable of capturing the hidden spatial relations in the data.
GWNet can handle long sequences owing to its one-dimensional convolutional component whose receptive field
grows exponentially with the number of layers.

STGODE (Fang et al., 2021)) Spatial-temporal Graph Ordinary Differential Equation (STGODE) employs
tensor-based ordinary differential equations (ODEs) to model the temporal evolution of the node features.

GRAM-ODE (Liu et al., |2023) Graph-based Multi-ODE (GRAM-0DE) improves upon STGODE by con-
necting multiple ODE-GNN modules to capture different views of the local and global spatiotemporal
dynamics.

FOGS (Rao et al., [2022) F0GS utilises first-order gradients to train a predictive model because the traffic
data distribution is irregular.

LightCTS (Lai et al.,|2023) LightCTS stacks temporal and spatial operators in a computationally-efficient
manner, and uses lightweight modules L-TCN and GL-Former.

ARIMA (Box & Piercel, [1970) ARIMA is a multivariate time series forecasting technique that combines
autoregressive, integrated, and moving average components. It models the relationship between observations
and their lagged values, adjusts for non-stationarity in the data, and accounts for short-term fluctuations.

Kalman (Welch, 1997) Since mspace is a state-space algorithm, we also use the Kalman filter as a

baseline. We introduce two variants of the Kalman filter: Kalman-x, which considers the node features as
observations, and Kalman-&, which operates on the shocks.

26

Published in Transactions on Machine Learning Research (05/2025)

E Interpretability

The poor performance of mspace-Ty on the datasets PEMSBAY and METRLA is explained through Fig. We
notice that there are many datapoints away from the mean, although the mean trend passed through the
dense collection of data points, i.e., the variance in the data is high which leads to higher error values reported
in Table [3

80 70

70 60

60 50

50 40

40 30

30

20 20

10 10

0 0 " .

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
tmod To tmod 1o
(a) PEMSBAY: Weekly (b) METRLA: Weekly

Figure 11: Periodic trends in the traffic dataset PEMSBAY and METRLA; the black points represent the data-
points, and the red line is the mean estimate for each state t mod 7.

F Runtime

In Table [J] we present the average execution time of different models. It must be noted that mspace was not
optimized for GPUs.

Table 9: Average execution time per time-step (log;, scale).

TRAIN TEST

CPU tennis wikimath ‘ tennis wikimath

DynGESN -3.73 -2.93 -4.02 -4.28 -3.33 -2.40 -3.68 -3.83
ECGN-H -0.79 -0.56 -1.34 -1.32 -2.66 -2.50 -2.95 -2.93
ECGN-0 -0.85 -0.60 -1.56 -1.57 -2.86 -2.62 -3.22 -3.24
TGCN -0.57 -0.12 -1.18 -1.17 -2.40 -2.50 -2.81 -2.82
mspace-Su -2.27 -1.54 -3.53 -3.59 -1.49 -0.30 -3.25 -3.07
mspace-SA -2.24 -1.53 -3.53 -3.61 -1.15 -0.21 -2.63 -2.72
LightCTS 1.18 1.18 -0.91 -1.15 -1.21 -1.32 -3.24 -3.70
STGODE 0.46 0.51 -0.55 -0.68 -2.06 -2.02 -2.85 -3.22
GRAMODE 1.25 1.26 -0.64 -0.90 -0.87 -0.82 -2.44 -2.86
GPU tennis wikimath ‘ tennis wikimath

DynGESN -3.99 -3.66 -2.61 -3.65 -3.52 -3.50 -3.63 -3.65
ECGN-H -0.79 -0.78 -1.00 -1.00 -2.36 -2.34 -2.60 -2.59
ECGN-0 -1.22 -1.21 -1.28 -1.30 -2.91 -2.90 -2.92 -2.92
TGCN -0.88 -0.81 -0.94 -0.92 -2.53 -2.48 -2.54 -2.53
LightCTS 0.11 0.13 -0.95 -1.41 -2.34 -2.40 -3.32 -3.98
STGODE -0.37 -0.36 -0.62 -0.91 -2.76 -2.85 -2.53 -3.25
GRAMODE 0.26 0.29 -0.71 -1.17 -1.81 -1.79 -2.32 -2.94

27

	Introduction
	Methodology
	Algorithm
	Related Works
	Results
	Interpretability
	Explaining S
	Explaining T
	Error Bounds
	Complexity Analysis

	Discussion
	Conclusion
	Error Bounds
	Complexity Analysis
	Computational Complexity
	Space Complexity

	Synthetic Datasets & Experiments
	Periodicity
	Training Samples

	Evaluation
	Metrics
	Datasets
	Baselines

	Interpretability
	Runtime

