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ABSTRACT

Spiking Neural P (SN P) systems are parallel distributed models developed by
mimicking bio-nervous systems. Past decades have emerged a lot of efforts on
theoretical characterizations and modeling plasticity of SN P systems; however,
it still remains challenging that interacts with real-world environments due to the
limited expressive capacity and the non-differentiable nature of their excitation
mechanism. This paper proposes a Learnable Spiking Neural P System with In-
terval Excitation (LSNP IE) for real-valued processing. The proposed LSNP IE
employs an interval excitation mechanism and a potential adjustment module,
which improve modeling plasticity and enable excitation stability, respectively.
The whole system can be adjusted by surrogate gradients beyond hardware. Ex-
perimental results conducted on real-world datasets show that LSNP IE achieves
competitive performance compared to traditional non-spiking and spiking mod-
els. Our investigations not only reveal the potential of integrating spiking compu-
tations with parallel distributed frameworks, but also support the development of
hardware-adapted learning.

1 INTRODUCTION

Spiking Neural P (SN P) systems are a type of natural computing model that integrates spiking pro-
cessing with membrane computing (i.e., P systems) (Ionescu et al., 2006; Song et al., 2016). SN P
systems simulate the event-driven communication of biological neurons using spikes, while lever-
aging the parallel and distributed architecture of P systems to enhance computational expressive-
ness (Binder et al., 2007; Cabarle et al., 2015a;b; Chen et al., 2008; Paun, 2007; Wang et al., 2010).
Consequently, SN P systems can be implemented well on neuromorphic hardware, providing further
improvements in energy efficiency over conventional CPUs and GPUs (Păun et al., 2006). In recent
years, SN P systems have gained increased attention in brain-inspired computing and neuromorphic
system design, gradually extending into practical applications such as image recognition (Păun,
2000), graph processing (Roy et al., 2019), and brain-computer interface research (Zhang, 2024).

Currently, SN P systems rely heavily on manually constructed rules, including neuron connections
and excitation conditions (Wang et al., 2016), without support for automatic optimization methods,
such as backpropagation in deep learning (Wang & Peng, 2013) or spike-timing-dependent plasticity
in spiking neural networks (Tavanaei & Maida, 2019). The practical success of SN P systems and
its variants usually demands extensive expert knowledge, thus struggling to scale to complex prob-
lems and large datasets. In recent years, several efforts have emerged to tackle this challenge, such
as enhancing modeling plasticity using weighted SN P systems on simple classification tasks (Er-
mini & Zandron, 2024; Ples.a et al., 2024; Zhang et al., 2022) and developing heuristic optimization
techniques including Hebbian learning (Song et al., 2019) and evolutionary algorithms (Dong et al.,
2021). However, SN P systems still lack a unified and flexible learning framework, making it diffi-
cult to achieve adaptive learning in real-world environments.

In this paper, we propose the Learnable Spiking Neural P System with Interval Excitation
(LSNP IE) for neuromorphic image classification. The proposed LSNP IE consists of a feed-
forward perceptron-based network topology, an interval excitation mechanism, and a potential ad-
justment module, as illustrated in Figure 1. These components together enhance the expressive
capacity of LSNP IE. In addition, LSNP IE supports joint training with surrogate gradients. Exper-
imental results conducted on neuromorphic image datasets demonstrate our method’s effectiveness.
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Our main contributions are summarized as follows.

• We propose LSNP IE, which integrates an interval excitation mechanism and a potential
adjustment module into SN P systems, thereby enhancing their expressive capacity.

• We introduce a surrogate gradient-based backpropagation algorithm, enabling end-to-end
training and adaptive learning for LSNP IE on large-scale neuromorphic datasets.

• Experimental results conducted on neuromorphic image datasets show that our method
achieves competitive performance compared to traditional non-spiking and spiking models.

The remainder of this paper is organized as follows. Section 2 reviews related work on SN P sys-
tems. Section 3 introduces the proposed LSNP IE model. Section 4 presents the experiments, and
Section 5 concludes the paper.

2 RELATED WORK

SN P systems are a natural computing model that integrates Spiking Neural Networks (SNNs) and
membrane computing (P systems). They were initially proposed by Ionescu et al. (2006), aiming to
simulate spike-based, event-driven communication between neurons while enhancing computational
expressiveness through the parallel and distributed structures of membrane computing. While both
models employ spikes, SN P systems fundamentally differ from SNNs in their theoretical underpin-
nings and structural paradigms. SNNs focus on modeling biological neuron dynamics, whereas SN
P systems, originating from the more computation-oriented membrane computing theory, possess an
inherently parallel, distributed, and modular structure. Unlike monolithic SNNs, the clear separation
of membranes and rules in SN P systems facilitates modular hardware design, paving a unique path
toward efficient, low-energy implementations. Early research on SN P systems primarily focused
on foundational aspects such as model definitions, syntax, excitation rules, and Turing complete-
ness (Păun et al., 2006). Subsequently, various system variants, including those with and without
delays, were developed, and their capabilities in formal language recognition, recursive function
simulation, and complexity analysis were explored in depth (Leporati et al., 2022). SN P systems
have garnered increasing attention in fields such as brain-inspired computing (Zahra et al., 2022) and
hardware-software co-design (Zhang et al., 2024), gradually expanding into practical applications
like image recognition (Song et al., 2019) and graph mining (Bai et al., 2025). The study of SN P
systems holds profound theoretical and practical significance. Theoretically, as a Turing-complete
model, they provide a novel modeling approach with temporal and parallel characteristics, pushing
the boundaries of formal computational models. In brain-inspired intelligence, the spiking mech-
anism of SN P systems closely aligns with biological neuronal dynamics, offering new modeling
tools for neuromorphic computing and brain-computer interface research (Zhang, 2024). Addition-
ally, their inherent parallelism and distributed structures align well with modern multi-core comput-
ing architectures (Odasco et al., 2023). Currently, research on SN P systems is progressing toward
integration with deep learning, the development of efficient simulators, and hardware-software co-
design, showing strong interdisciplinary potential and broad applicability.

For classification problems, Wang et al. (2010) proposed the weighted SN P system, introducing
adjustable synaptic weights to enable dynamic regulation of spike transmission intensity. This
approach laid the groundwork for integrating SN P systems with machine learning optimization
methods. More details about the concept of weighted SN P systems are provided in AppendixA.1.
Subsequently, Wang et al. (2016) realized an SN P system with 87 neurons capable of computing
any Turing-computable recursive function, envisaging the application of SN P systems in learning
mechanisms and image classification. Following this, Song et al. (2019) employed simple Hebbian
learning functions in an SN P system to recognize alphabetic digits, demonstrating its potential in
pattern recognition tasks. As inherently parallel systems, SN P systems also offer significant en-
ergy efficiency advantages (Odasco et al., 2023), highlighting their applicability to learning-based
classification tasks. Building on these foundational works, several variants of SN P systems have
been proposed to improve classification performance, including approaches incorporating hierar-
chical structures (Zhang et al., 2022), fuzzy logic (Wang & Peng, 2013), modularity (Ermini &
Zandron, 2024), and modified learning rules (Cabarle et al., 2015a). These methods have enabled
applications ranging from nonlinear classification of multidimensional data to malware, phishing,
spam detection, and multiclass recognition tasks. However, they often exhibit limitations such as
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scalability issues with high-dimensional data, difficulty tuning synaptic strengths via gradient-based
learning, and restricted temporal modeling capabilities. Dong et al. (2024) proposed a learnable
numerical SN P system, introducing arbitrary numerical variables and production functions to over-
come the discontinuities of traditional SN P systems. The system was validated on eight bench-
mark datasets from machine learning repositories, confirming its feasibility and effectiveness. How-
ever, its dimensionality-lifting structure suffers from rapidly increasing computational complexity
in high-dimensional scenarios and still fails to address inter-layer learning effectively. The LSNP IE
proposed in this paper effectively addresses these limitations, as it can process large-scale temporal
data and support gradient-based joint training across multiple layers.

3 LEARNABLE SPIKING NEURAL P SYSTEM WITH INTERVAL EXCITATION

This section introduces the LSNP IE, as illustrated in Figure 1, which consists of the network topol-
ogy, interval excitation mechanism, potential adjustment module, and back-propagation.

Figure 1: The workflow of LSNP IE.

3.1 NETWORK TOPOLOGY

The proposed LSNP IE employs the Multi-Layer Perceptron (MLP) architecture. The propaga-
tion computation between two adjacent layers follows the feed-forward Weighted Spiking Neural P
(WSN P) system (Wang et al., 2010), which is an extended model of SN P systems equipped with
synaptic weights. Consider the l-th layer with ml neurons for l ∈ [L] and ml ≥ 1; the feed-forward
WSN P system of degree ml is a construct of the form Π(l) = (σ1, σ2, . . . , σml

, syn, in, out), where

1. σi = (pi, Ri) (1 ≤ i ≤ ml) denotes the i-th neuron, where
• pi(t) ∈ R+: the potential value of the i-th neuron at timestamp t;
• Ri(pi): a finite set of excitation rules, in the form Ri : pi(t) 7→ 1.

2. syn ⊆ [ml−1] × [ml] × R+ is the set of weighted synapses, where (i, j, wij) denotes a
synapse from neuron σi in layer l−1 to neuron σj in layer l with synaptic weight wij , It is
required that i ̸= j, wij ̸= 0, and each pair (i, j) appears at most once in syn.

3. in ⊆ [ml−1] and out ⊆ [ml] denote the disjoint sets of input channels and output neurons,
where input channels receive spike trains from the environment or equivalently the previous
layer and output neurons emit spikes to the environment or equivalently the next layer.

The propagation computations of WSN P systems enable dynamic regulation between neurons and
provide a mathematical foundation for system parameter optimization and parallel distributed com-
puting (Odasco et al., 2023).

3
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3.2 INTERVAL EXCITATION MECHANISM

Existing SN P systems usually employ the point-triggered mechanism where the rules can only
be triggered when the potential pi is exactly equal to the excitation threshold Ei for neuron σi.
In other words, Ri comprises one excitation rule of pi(t) → 1 if and only if pi = Ei, which
contributes to integer-valued computations (Wang et al., 2010). However, when one applies the SN
P system and its variants to environments with real-valued or floating-point numbers, such point-
triggered mechanisms are overly strict when triggering neuron rules, directly causing interruptions
in information flow, since the continuous probability of neuron excitation approaches zero, i.e.,
P (pi = Ei) ≈ 0.

In this work, we propose an interval excitation mechanism with ϵ-neighborhood, which extends the
triggering domain from a single point Ei to an interval [Ei−ϵ, Ei+ϵ] where ϵ denotes the threshold
tolerance. The proposed interval excitation mechanism can be formulated as follows.

• If pi(t) < Ei − ϵ, then pi(t) is reset to zero.
• If pi(t) > Ei + ϵ, then pi(t) remains unchanged.
• If Ei − ϵ ≤ pi(t) ≤ Ei + ϵ, then

1. A rule Ei/d → 1 is randomly selected and applied from the rule set Ri, where d
denotes potential decay coefficient.

2. The neuron potential decreases to Ei − d.
3. A unit potential is emitted through the weighted synapse to the connected neurons.

To provide a concise formulation of the interval excitation process, we introduce the potential emis-
sion function F(x) and the potential update function G(x), which represent the dynamics of the
emitted potential and the updated potential after excitation, respectively. As shown in Figure 2(a)
and Figure 2(c), F(x) and G(x) are separately defined as follows

F(x) =

{
1 , |x− Ei| ≤ ϵ ,

0 , otherwise .
and G(x) =


0 , x < Ei − ϵ ,

x− d , Ei − ϵ ≤ x ≤ Ei + ϵ ,

x , x > Ei + ϵ .

(1)

This modification enables LSNP IE to better handle data with real-valued and floating-point formats,
improving operational smoothness and robustness.

3.3 POTENTIAL ADJUSTMENT MODULE

Here, we introduce a potential adjustment module, defined as

M(x) = γ
x− µ

ς + δ
+ β , (2)

where x denotes the received signals, µ and ς are the mean and standard deviation of x, γ and β
are preset scale and shift parameters, whose specific settings are listed in Table 1, and δ = 10−8 is
a small constant ensuring numerical stability.

Figure 1 illustrates the integration of the potential adjustment module and the workflow of LSNP IE.
As shown, each neuron contains two such modules. The input potential pin is first processed by the
first potential adjustment module (M1), yielding the aligned potential pal, which are aligned with the
residual potential pre. Subsequently, the aligned potential pal and the residual potential pre undergo
potential fusion, resulting in the fused potential pfu. The fused potential is then passed through
the second potential adjustment module (M2) to produce the adjusted potentials pad, effectively
shifting the distribution toward the excitation interval. Finally, the adjusted potential pad is subjected
to interval excitation, as detailed in Section 3.2.

M1 addresses the distribution mismatch that may occur between pin and pre, and prevents the useful
information in pre from being overwhelmed during potential fusion. M2 shifts potentials toward
the excitation interval, thereby enabling excitation stability. We also conduct ablation experiments
in Section 4.3 and Appendix A.2 to verify the empirical effects of the two potential adjustment
modules. Note that for the input layer, only positive potentials are adjusted due to its sparsity.
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3.4 BACK-PROPAGATION

This subsection presents the training computations with back-propagation and surrogate gradients,
which enable the proposed LSNP IE to achieve learning flexibility. Here, we adopt the supervised
learning paradigm. Given the target y, we formulate an optimization problem by minimizing the
loss function L(ŷ, y), where ŷ denotes the output of LSNP IE. It is recommended to use the cross-
entropy loss with one-hot label for classification tasks and the square loss for regression tasks.

For any synaptic weight wij , its update amount is computed from the gradient according to

∂L(ŷ, y)
∂wij

=

T∑
t=1

∂L(ŷ, y)
∂ŷ

∂ŷ

∂Rj(p
ad
j )

∂Rj(p
ad
j )

∂pad
j

∂pad
j

∂pfu
j

∂pfu
j

∂pal
j

∂pal
j

∂pin
j

∂pin
j

∂wij
, (3)

where T denotes the maximum number of timestamps, p·j represents various potentials of the j-th
neuron, and the time index t is omitted for brevity. The term ∂L(ŷ, y)/∂ŷ represents the gradient
of the loss function L(ŷ, y) with respect to the predicted output ŷ, and ∂ŷ/∂Rj(p

ad
j ) denotes the

gradient of ŷ with respect to the excitation output Rj(p
ad
j ). In addition, ∂pfu

j /∂p
al
j and ∂pin

j /∂wij

represent the gradients of the fused potentials pfu
j with respect to the aligned potentials pal

j and of the
input potentials pin

j with respect to the synaptic weight wij , respectively.

The term ∂pad
j /∂p

fu
j denotes the gradient of the adjusted potentials pad

j with respect to the fused
potentials pfu

j . Similarly, ∂pal
j /∂p

in
j denotes the gradient of the aligned potentials pal

j with respect to
the input potentials pin

j . Both of them can be derived based on Eq. (2), yielding
∂pad

j

∂pfu
j

=
∂M(pfu

j )

∂pfu
j

=
ςγ (ml − 1)(ς + δ)− γ (pfu

j − µ)2

ςml (ς + δ)2
,

∂pal
j

∂pin
j

=
∂M(pin

j )

∂pin
j

=
ςγ (ml − 1)(ς + δ)− γ (pin

j − µ)2

ςml (ς + δ)2

The term ∂Rj(p
ad
j )/∂p

ad
j denotes the gradient of the excitation output Rj(p

ad
j ) with respect to the

adjusted potentials pad
j . Based on the interval excitation mechanism, it is given as

∂Rj(p
ad
j )

∂pad
j

=
∂Rj(p

ad
j )

∂F(pad
j )

∂F(pad
j )

∂pad
j

+
∂Rj(p

ad
j )

∂G(pad
j )

∂G(pad
j )

∂pad
j

, (4)

Note that Rj is non-differentiable, as evident from the functions F and G defined in Eq. (1), respec-
tively. To solve Eq. (4), we employ the surrogate gradient (SG) approach (Che et al., 2022; Li et al.,
2021; Neftci et al., 2019; Wu et al., 2018),

∂Rj(M(pad
j ))

∂M(pad
j )

≈ SG .

Surrogate Gradients. To address the non-differentiability of Rj , we adopt the surrogate gradient
approach to approximate the derivatives of F and G with suitable continuous functions.

Ei Ei Ei+
x

1

0

1 (x)
′(x)

(a) F(x) / F ′(x)

Ei Ei Ei+
x

4

0

4 f1(x)
f2(x)
f3(x)

(b) f1(x) / f2(x) / f3(x)

0 Ei Ei Ei+
x

0

1

2 (x)
′(x)

(c) G(x) / G′(x)

0 Ei Ei Ei+
x

0

1 g(x)

(d) g(x)

Figure 2: Surrogate gradient functions used for the potential emission and potential update functions.

First, the theoretical derivative of F is given by the Dirac function δ(x) in Figure 2(a),

F ′(x) = δ(x− (Ei − ϵ))− δ(x− (Ei + ϵ)) .
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Here, we employ three surrogate gradients to approximate F ′(x), including a bimodal Gaussian
surrogate f1, a piecewise linear surrogate f2, and a rectangular pulse surrogate f3, as illustrated in
Figure 2(b) and defined as

f1(x) =
1√
2πσ1

[
exp

(
− (x− (Ei − ϵ))2

2σ1

)
− exp

(
− (x− (Ei + ϵ))2

2σ1

)]
,

f2(x) =


−16|x− (Ei − ϵ)|+ 4 , |x− (Ei − ϵ)| ≤ 0.25 ,

16|x− (Ei + ϵ)| − 4 , |x− (Ei + ϵ)| ≤ 0.25 ,

0 , otherwise ,

f3(x) =


4 , |x− (Ei − ϵ)| ≤ 0.125 ,

−4 , |x− (Ei + ϵ)| ≤ 0.125 ,

0 , otherwise ,

where σ1 = 0.01. All surrogate gradients satisfy
∫ +∞
−∞ |fi(x)| dx = 2 to ensure consistency with

δ(x). The effects of three surrogate gradients on model performance are investigated in Section 4.3.

For G, the discontinuity at x = Ei±ϵ is negligible, as illustrated in Figure 2(c). Since the probability
of a value falling exactly at these points in the continuous domain is virtually zero, we adopt a
surrogate formulation g, which is illustrated in Figure 2(d) and defined as

g(x) =

{
0 , x < Ei − ϵ ,

1 , x ≥ Ei − ϵ .

Therefore, Eq. (3) can be implemented. Note that Eq. (4) is intended to detail the gradient prop-
agation path within a single neuron through our novel modules, such as the interval excitation and
potential adjustment. As for the inter-layer gradient propagation, it is encapsulated in the term
∂ŷ/∂Rj(p

ad
j ). This term represents the accumulated gradient propagated backward from the fi-

nal output ŷ to the output of neuron j, Rj , thereby containing the gradient information from all
subsequent layers. As the network’s gradient calculation follows the standard chain rule, this train-
ing framework inherently supports network architectures of arbitrary depth. The detailed training
procedure for LSNP IE is listed in Algorithm1.

Algorithm 1 Training Procedure of LSNP IE.
Input: Training set D = {(xk, yk)}mk=1, learning rate η, neuron counts ml for l ∈ [L]

Output: Final weights W (l) for l ∈ [L]
Procedure:

1: Initialize weights: W (l) ∼ N (0,
√

2/(ml−1 +ml)) for l ∈ [L]
2: repeat
3: Forward propagation:
4: for t = 1 to T do
5: All neurons perform parallel potential emission and update
6: end for
7: Backward propagation:
8: for t = T to 1 do
9: Compute ∂L/∂W (l) using Eq. (3) for l ∈ [L]

10: end for
11: Update W (l) using ∂L/∂W (l) for l ∈ [L]
12: until stopping condition is met

4 EXPERIMENTS

This section conducts experiments to demonstrate the effectiveness of the proposed LSNP IE.

4.1 CONFIGURATIONS

We evaluate our models on two neuromorphic datasets, namely N-MNIST and MNIST-DVS (Or-
chard et al., 2015), whose sample images are shown in Appendix A.3. The N-MNIST dataset con-
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tains 60,000 training and 10,000 test samples, each represented as an event stream of (x, y, t, p) with
x, y ∈ [0, 34] and p ∈ {0, 1}. For our experiments, the event streams are discretized into 300 time
frames with a duration of 1,000µs each. From the training set, 54,000 samples are used for training
and 6,000 for validation. Model training is performed over 50 epochs. The batch size and learn-
ing rate are determined via grid search, yielding optimal values of 256 and 0.01, respectively. The
MNIST-DVS dataset comprises 30,000 samples, evenly divided into three spatial scales (commonly
named scale 4, 8, and 16), with 10,000 samples per scale. Each sample is encoded as an event stream
with x, y ∈ [0, 127] and p ∈ {0, 1}, and is discretized into 500 time frames, each with a duration of
5,000µs. For each scale, the dataset is split into 8,000 for training, 1,000 for validation, and 1,000
for testing. Independent models are trained for each scale using a batch size of 64, a learning rate of
0.01, and 20 training epochs. For consistency across datasets, we adopt identical core hyperparam-
eters: the excitation threshold is set to Ei = 1.2, threshold tolerance ϵ = 0.3, and potential decay
coefficient d = 0.6. All weights are initialized using Xavier initialization (Glorot & Bengio, 2010)
and updated via the Adam optimizer (Kingma & Ba, 2014) with gradient clipping (Pascanu et al.,
2013). The specific hyperparameters are listed in Table 1. Each configuration is evaluated across
five runs to ensure result robustness. The output neuron with the highest membrane potential is se-
lected as the predicted output. Here, we employ several non-spiking and spiking models as baseline
methods. All models are trained on an NVIDIA RTX 4090 GPU with 24GB VRAM and 120GB
system memory, requiring approximately 4 hours per model.

Table 1: Hyperparameter settings for N-MNIST and MNIST-DVS.
Parameters N-MNIST MNIST-DVS
Batch size 256 64
Learning rate η 0.01 0.01
Excitation threshold Ei 1.2 1.2
Threshold tolerance ϵ 0.3 0.3
Potential decay coefficient d 0.6 0.6
Shift parameter β (l ∈ [L− 1]) 1 1
Scale parameter γ (l ∈ [L− 1])

√
0.1

√
0.1

Shift parameter β (l = L) 0 0
Scale parameter γ (l = L)

√
0.5

√
0.5

Network architecture 2312-500-500-10 32768-500-500-10
Number of time frames 300 500

4.2 EXPERIMENTAL RESULTS

N-MNIST. Table 2 lists the accuracy of LSNP IE and baseline methods on the N-MNIST dataset,
where the best performance is marked in bold. It is observed that SLAYER, the typical spiking MLP
method, achieves the best performance. In comparison, our proposed LSNP IE model outperforms
both traditional MLP and SKIM, with only a 0.98% gap from SLAYER. These results demonstrate
that LSNP IE achieves competitive performance against traditional spiking and non-spiking models.

We plot the training and validation accuracy curves throughout the training process on the N-MNIST
dataset in Figure 3(a). It can be observed that our model achieves over 95% accuracy on both the
training and validation sets after only two epochs. Furthermore, the model consistently exhibits
stable convergence during training, with the validation accuracy steadily increasing and eventually
reaching a peak of 98.10%. The training and validation curves remain closely aligned throughout,
implying not only stable learning, but also strong generalization performance. In conclusion, the
experimental results show that LSNP IE has fast and stable convergence characteristics.

MNIST-DVS. Table 2 lists the accuracy of LSNP IE and baseline methods on the MNIST-DVS
dataset, where the best performance is marked in bold. It is clear that LSNP IE delivers robust
performance across different input scales. Notably, LSNP IE achieves the best accuracy at 99.80%,
outperforming all listed baselines. Although accuracy comparisons may be influenced by variations
in data splits and ambiguous reporting of input scales across studies, the overall results confirm the
adaptability and promise of LSNP IE for neuromorphic computing tasks.
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We also plot the training and validation accuracy curves during the training process on the MNIST-
DVS dataset at scale 8 in Figure 3(b). It is observed that LSNP IE achieves over 98% accuracy
on both the training and validation sets by the fourth epoch. Moreover, LSNP IE shows stable
convergence, with validation accuracy continually rising and eventually reaching a peak of 98.60%.
The training and validation curves remain closely aligned throughout, reflecting rapid and stable
convergence as well as strong generalization capability. In summary, LSNP IE not only exceeds
prior non-spiking, spiking MLP and spiking CNN models in accuracy, but also shows desirable
convergence properties.

Table 2: Accuracy of the proposed LSNP IE and baseline methods on N-MNIST and MNIST-DVS.
Datasets Methods Type Accuracy (%)

N-MNIST

MLP (Lee et al., 2016) Non-spiking MLP 97.80
SKIM (Cohen et al., 2016) Spiking MLP 92.87
STBP (Wu et al., 2018) Spiking MLP 98.78
HM2-BP (Jin et al., 2018) Spiking MLP 98.84
SLAYER (Shrestha & Orchard, 2018) Spiking MLP 98.89
LSNP IE (this work) Spiking MLP 97.91 ± 0.04

MNIST-DVS

SSFE (Fang et al., 2024) Non-spiking CNN 99.10
LIAF-Net (Wu et al., 2021) Spiking CNN 99.10
GEM-SNN (Jang & Simeone, 2022) Spiking MLP 97.20
SCTFA (Cai et al., 2023) Spiking CNN 98.70
LSNP IE (scale4, this work) Spiking MLP 99.02 ± 0.28
LSNP IE (scale8, this work) Spiking MLP 99.60 ± 0.20
LSNP IE (scale16, this work) Spiking MLP 97.48 ± 0.18
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Figure 3: Accuracy curves for the (a) N-MNIST and (b) MNIST-DVS datasets, while (c) accuracy
curves of the three Surrogate Gradients.

4.3 VERIFICATION OF ALTERNATIVE CONFIGURATIONS

This subsection conducts experiments on the N-MNIST dataset to investigate the effects of different
configurations on the performance of LSNP IE.

Weight Initialization. Here, we employ two typical weight initialization techniques, namely Xavier
initialization (Glorot & Bengio, 2010) and uniform initialization (U [−1, 1]), as commonly used in
prior studies (Jin et al., 2018; Wu et al., 2018). Table 3 shows that Xavier initialization achieves
higher accuracy than uniform initialization. Therefore, we recommend Xavier initialization to ini-
tialize the weights.

Potential Decay Coefficient d. Here, we investigate the effect of the potential decay coefficient d by
conducting an ablation study across several typical values of 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Table 4
summarizes the results, showing that the highest accuracy is obtained with d = 0.6. Performance
noticeably degrades when d deviates from this optimal value in either direction. Specifically, larger
values such as d = 0.8 tend to induce excessive decay, causing insufficient potential accumulation
and information loss, while smaller values, such as d = 0.3, result in overly persistent membrane
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Table 3: Accuracy of two weight initializations.
Methods Accuracy
Uniform Initialization 97.03%
Xavier Initialization 97.93%

Table 4: Accuracy of different d values.
d Accuracy d Accuracy
0.3 97.03% 0.6 97.93%
0.4 97.04% 0.7 97.49%
0.5 97.36% 0.8 97.16%

Table 5: Ablation study on M1.
Methods Accuracy
Without M1 97.49%
With M1 97.93%

Table 6: Accuracy of surrogate gradients.
Methods Accuracy
Bimodal Gaussian 97.93%
Piecewise Linear 97.46%
Rectangular Pulse 97.22%

potential and frequent excitation. Therefore, we recommend setting d = 0.6, as it offers the best
balance between efficient gradient propagation and biologically plausible membrane potential decay.

The First Potential Adjustment Module. Here, we conduct an ablation study comparing LSNP IE
with and without M1 to assess the effectiveness of the module introduced in Section 3.3. Ta-
ble 5 shows that applying M1 improves test accuracy by approximately 0.5%. This result indicates
that M1 effectively harmonizes potential distributions and enhances information integration across
timestamps. We conclude that M1 plays a crucial role in improving overall model performance.

Surrogate Gradients. Here, we assess the impact of different surrogate gradients on the training of
our model. Specifically, we compare three commonly used candidates—bimodal Gaussian, piece-
wise linear, and rectangular pulse surrogates. These surrogates approximate the non-differentiable
potential emission function F , as detailed in Section 3.4. According to Table 6, the bimodal Gaus-
sian surrogate yields the highest accuracy, outperforming the piecewise linear and rectangular pulse
surrogates. We attribute this superior performance to its smooth gradient shape. Unlike the rectan-
gular pulse with its abrupt boundary changes and the piecewise-linear function with its non-smooth
kinks, the bimodal Gaussian is continuous and smooth. This property facilitates a more stable gra-
dient descent, helping to prevent oscillations or overshooting in weight updates and thus promoting
convergence to a high-quality local optimum. This superiority is further illustrated in Figure 3(c),
where the bimodal Gaussian surrogate consistently leads in validation accuracy throughout training.
Therefore, we recommend using the bimodal Gaussian surrogate for LSNP IE.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed LSNP IE to address key limitations of traditional SN P systems in inter-
acting with real-world environments. Our approach introduces a differentiable training framework
through an interval excitation mechanism, a potential adjustment module, and surrogate gradients,
enabling robust excitation dynamics. LSNP IE demonstrates strong performance on large-scale neu-
romorphic datasets, achieving competitive accuracy on N-MNIST, outperforming non-spiking MLPs
and early spiking MLPs while approaching the performance of state-of-the-art methods. LSNP IE
also sets a new benchmark on MNIST-DVS and surpasses all existing approaches. These results
highlight LSNP IE’s effectiveness and underscore the potential of SN P systems for scalable, deep
learning tasks. To our knowledge, this is the first work to demonstrate the feasibility of applying SN
P systems to complex visual classification within a parallel distributed framework, paving the way
for hardware-adapted intelligent computation.

While LSNP IE offers substantial improvements in training flexibility and classification accuracy
for SN P systems, there remain key avenues for exploration. For example, integrating convolutional
structures or advanced modules from cutting-edge spiking neural networks could further enhance
spatial feature extraction and model generalization. In addition, future work will focus on extending
LSNP IE to more challenging and diverse real-world tasks, such as gesture recognition and event-
stream video classification, to assess scalability and robustness in dynamic real-world environments.
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resulting from this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, this paper fully discloses all necessary details to replicate
the main experimental results. Section 4.1 provides a comprehensive description of the training and
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for independent reproduction of our findings. We commit to releasing the complete source code
publicly upon acceptance of the paper.
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A APPENDIX

A.1 WEIGHTED SPIKING NEURAL P SYSTEMS

Weighted Spiking Neural P (WSN P) systems (Wang et al., 2010) are an extended form of SN P
systems, which introduce synaptic weights to enable dynamic regulation of spike transmission and
establish a mathematical foundation for parameter optimization.

A.1.1 FORMAL DEFINITION

A WSNP system of degree m ≥ 1 is a construct of the form
Π = (σ1, σ2, . . . , σm, syn, in, out),

in which

1. σi = (pi, Ri) (1 ≤ i ≤ m) denotes the i-th neuron, where
• pi(t) ∈ R+: the potential value of the i-th neuron at timestamp t;
• Ri: a finite set of excitation rules, in the form Ei/d → 1, where

– Ei ∈ R+, Ei ≥ 1, which denotes the excitation threshold shared by all rules of
σi.

– d ∈ R+, 0 < d ≤ Ei, which denotes the potential decay coefficient.
2. syn ⊆ [m]× [m]×R+ is the set of weighted synapses, where (i, j, wij) denotes a synapse

from neuron σi to neuron σj with synaptic weight wij , subject to
• No self-loops: ∀(i, j, wij) ∈ syn ⇒ i ̸= j
• Non-zero weights: ∀(i, j, wij) ∈ syn ⇒ wij ̸= 0

• Unique connectivity: ∀(i, j) ∈ [m]2, there exists at most one synapse (i, j, wij) ∈ syn

3. in, out ⊆ [m] denote the disjoint sets of input and output neurons, where input channels
receive spike trains from the environment, while output neurons emit spikes back to it.

A.1.2 DYNAMIC EVOLUTION MECHANISM

Similar to standard SN P systems, the WSN P system operates under a global clock that tracks
discrete timestamps t = 0, 1, 2, . . .. The system evolves step by step until a halting condition is met,
which occurs when no neuron has any applicable excitation rules at a given timestamp. At each
timestamp t, the following phases are executed in sequence.

Potential Reception At each timestamp t, each neuron receives potentials from the environment
or from other neurons. For every synapse (i, j, wij) ∈ syn, the potential received by neuron σj at
timestamp t is given by

∆pj(t) =
∑

(i,j,wij)∈syn

wij · δi(t− 1) ,

where δi(t− 1) = 1 if and only if σi excites at timestamp t− 1.

Rule-based Excitation Each neuron attempts to excite before the end of timestamp t, as follows.

• If pi(t) < Ei, then pi(t) is reset to zero.
• If pi(t) > Ei, then pi(t) remains unchanged.
• If pi(t) = Ei, then

1. A rule Ei/d → 1 is randomly selected and applied from the rule set Ri.
2. The neuron potential decreases to Ei − d.
3. A unit potential is emitted through the weighted synapse to the connected neurons.

Evolution constraints are as follows.

1. Parallelism: All neurons that meet the excitation condition execute their rules in syn-
chrony.

2. Priority: When pi(t) = Ei, only one rule can be selected and applied in each neuron.
3. Halting condition: The system halts at time t if all neurons satisfy pi(t) ̸= Ei.
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A.2 ABLATION STUDY ON THE POTENTIAL ADJUSTMENT MODULE

This section validates the necessity of the potential adjustment module detailed in Section 3.3. Ex-
perimental results conducted on N-MNIST show that, without the module, the membrane potentials
of neurons exhibit pronounced distributional collapse or drift over time, as follows.

Distributional Collapse. As shown in Table 7, when applying Xavier initialization, the membrane
potentials collapse toward zero from the 30th to the 300th timestamp.

Distributional Drift. As shown in Table 7, when applying U [−1, 1] initialization, the mean mem-
brane potential drifts from 5.434 to 51.327 between the 30th and 300th timestamps, while the stan-
dard deviation increases from 8.143 to 57.150.

Additional experiments reveal that, without the potential adjustment module, the training accuracy
of LSNP IE remains around 10%, equivalent to random guessing, and the loss does not decrease.
Therefore, given the fixed threshold Ei and tolerance ϵ, the narrow triggering interval [Ei−ϵ, Ei+ϵ]
in LSNP IE hinders stable rule excitation. These findings highlight the necessity of incorporating
the potential adjustment module to ensure effective and stable learning.

Furthermore, we validate the effects of M1. As shown in Table 8, without M1, the range of pin

is mainly in [−10, 16], while the range of pre only lies in [0, 3], indicating a significant mismatch.
This disparity causes the temporal features in pre to be overwhelmed during potential fusion. Table 8
shows that after applying M1, the distributions of pin and pre are well aligned, facilitating effective
information integration across time steps.

Table 7: Distributional collapse and drift
Timestamps Collapse (Xavier) Drift (U [−1, 1])

Mean Std Min Max Mean Std Min Max
30 0.003 0.118 -0.634 0.560 5.434 8.143 -12.006 77.869
60 -0.002 0.136 -0.693 0.626 18.266 21.798 -11.418 166.069
90 0.000 0.037 -0.192 0.181 23.282 25.846 -3.336 205.856

120 0.000 0.060 -0.316 0.314 24.307 26.816 -6.515 214.550
150 0.000 0.134 -0.608 0.683 30.140 33.579 -14.304 279.520
180 -0.001 0.074 -0.431 0.368 37.317 41.349 -7.472 304.622
210 0.000 0.055 -0.308 0.281 38.730 42.818 -4.860 318.508
240 0.000 0.122 -0.556 0.587 40.544 45.629 -11.930 331.327
270 0.003 0.118 -0.546 0.514 47.997 54.023 -10.174 396.549
300 0.001 0.040 -0.213 0.218 51.327 57.150 -3.615 414.882

Table 8: Membrane potential ranges.
Timestamps Without M1 With M1

pin pre pin pre

30 [−9.361, 17.645] [0, 3.354] [−0.521, 3.108] [0, 2.628]
60 [−11.805, 18.433] [0, 3.241] [−0.472, 3.140] [0, 2.685]
150 [−10.853, 17.198] [0, 3.145] [−0.636, 3.355] [0, 2.912]
180 [−7.793, 14.842] [0, 3.596] [−0.866, 3.449] [0, 3.342]
240 [−10.149, 12.651] [0, 3.477] [−0.540, 2.984] [0, 2.936]
270 [−10.244, 16.150] [0, 3.075] [−0.444, 3.042] [0, 2.770]
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A.3 SAMPLE IMAGES OF N-MNIST AND MNIST-DVS

(a) N-MNIST (b) MNIST-DVS (scale4) (c) MNIST-DVS (scale8) (d) MNIST-DVS(scale16)

Figure 4: Visualization of Samples (first row: ON events; second row: OFF events).

A.4 USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The model’s primary role was to assist in improving the clarity, conciseness, and overall
readability of the text by refining sentence structures, polishing academic phrasing, and correcting
grammatical errors. The LLM was not used for generating core research ideas, conducting experi-
ments, analyzing results, or drawing the scientific conclusions presented in this paper. The authors
have reviewed and edited all text and take full responsibility for the final content and scientific
integrity of this work.
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