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Abstract

Post-training compression has been a widely employed approach to scale down
large language model (LLM) and facilitate efficient inference. In various proposed
compression methods, including pruning and quantization, calibration data plays
a vital role by informing the weight importance and activation dynamic ranges.
However, how calibration data impacts the LLM capability after compression is
less explored. Few of the existing works, though recognizing the significance of
this study, only investigate the language modeling or commonsense reasoning per-
formance degradation from limited angles, like the data sources or sample amounts.
More systematic research is still needed to examine the impacts on different LLM
capabilities in terms of compositional properties and domain correspondence of
calibration data. In this work, we aim at bridging this gap and further analyze
underlying influencing mechanisms from the activation pattern perspective. Espe-
cially, we explore the calibration data’s impacts on high-level complex reasoning
capabilities, like math problem solving and code generation. Delving into the un-
derlying mechanism, we find that the representativeness and diversity in activation
space more fundamentally determine the quality of calibration data. Finally, we
propose a calibration data curation framework based on such observations and
analysis, enhancing the performance of existing post-training compression methods
on preserving critical LLM capabilities. Our code is provided in Link.

1 Introduction

Recent large language models (LLMs) like GPT4 [Achiam et al., 2023], LLaMA2/3 [Touvron et al.,
2023, Dubey et al., 2024], Qwen2.5 [Yang et al., 2024], Phi-3 [Abdin et al., 2024], have achieved the
remarkable performance on human-level challenging tasks and found great application potentials.
However, due to the fast expansion of model scales and energy consumptions, most of them can
only be deployed to the server clusters currently. Post-training LLM compression methods like
pruning [Ma et al., 2023] and quantization [Xiao et al., 2023], aiming at reducing the model memory
usage and improving inference speed, have paved the way for on-device deployment of such powerful
LLMs. Due to the training-free property, these methods exhibit obvious advantages on efficiency
and convenience compared with other schemes like sparsity-aware training [Jaiswal et al., 2022] and
quantization-aware training [Liu et al., 2024], thus gaining widespread adoption[Tan et al., 2024].

In the post-training LLM compression, calibration data serves as a small set of sampled inputs
used to analyze layer activations and guide the compression process to minimize capability degrada-
tion [Williams and Aletras, 2024]. In detail, for pruning, calibration data enables the evaluation of
weight importance with activation-aware metrics, helping determine which connections to remove.
For quantization, this data is vital for identifying the dynamic ranges of activations, thus informing the
adjustment of quantization parameters and quantization strategies regarding symmetry and granularity.
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Though playing such a significant role, calibration data is less investigated by researchers whose
attentions are mainly focused on developing more intricate compression strategies [Liu et al., 2025].

Figure 1: Calibration data in LLM compression.

In fact, conventional LLM compression
ways generally assume robustness to cali-
bration data distributions and characteris-
tics by default [Sun et al., 2024a], as shown
in Figure 1. However, some recent works
have noticed the calibration data variations
can also bring unnegelectable influence to
LLM compression performance [Wu et al.,
2023, Zhang et al., 2024, Williams and
Aletras, 2024]. Early works [Zhang et al.,
2024, Lin et al., 2024, Jaiswal et al., 2024]
explore the influence of calibration data
amounts and concluded that additional calibration examples offer diminishing performance gains.
Some further works [Williams and Aletras, 2024, Ji et al.] investigate the impact of calibration
sources and found this can introduce even more significant performance variations than different
compression methods. Besides, aligning the sample length between quantization calibration data and
benchmark data is also regarded as important for maintaining evaluation performance [Lee et al.,
2023]. Though bringing some insights, these works are still one-sided and only focus on a certain
perspective of calibration data. In addition, most of them are limited to the basic language modeling
perplexity and commonsense reasoning capability evaluation. Most importantly, they overlook the
exploration of the underlying influence mechanism and what constitutes optimal calibration data.

To address these limitations, we first conduct a comprehensive and systematic study on the impact
of calibration data for different LLM capabilities, especially high-level reasoning capabilities. In
detail, we try to answer following two questions with empirical evidence: Q1: How do compositional
properties of calibration data influence capability preservation? Q2: How does domain correspon-
dence of calibration data influence capability preservation? Different from previous works that only
recognize the superficial phenomenon of the sensitivity to calibration data variations [Williams and
Aletras, 2024], we attempt to analyze the underlying influence mechanism when answering such
two questions. Furthermore, based on these observations and analysis, we ask: Q3: What is optimal
calibration data for preserving critical capabilities in LLM compression? Q4: How to curate the
calibration data for best preserving capabilities given available sources? To answer them, we try to
bridge the capability preservation with calibration data characteristics and then define the optimality
from several dimensions. Finally, we design a curation framework by selecting and processing
optimal calibration data from available sources to achieve the best capability preservation effect.

In a summary, our contributions are as three folds: 1) we conduct extensive empirical exploration
on the impact of calibration data variations from different compositional properties and domain
correspondence perspectives; 2) we analyze the underlying influence mechanism and point out that
the activation space pattern determines the calibration data’s optimality more fundamentally; 3)
we propose a three-stage calibration data curation framework for optimizing the LLM capability
preservation, which can be integrated with existing compression strategies due to the orthogonality.
The evaluation in specific and general deployment scenarios both demonstrate its empirical advantages.

2 Related Works
Large Language Model Compression employs post-training pruning and quantization to enhance
efficiency while maintaining performance. Pruning techniques span unstructured approaches [Frantar
and Alistarh, 2023, Yin et al., 2024] removing individual weights; semi-structured methods [Sun
et al., 2024a, Dong et al., 2024] eliminating predetermined weight blocks for hardware compatibility;
and structured strategies [Ma et al., 2023, Ashkboos et al., 2024] removing entire architectural
components like attention heads. Quantization reduces parameter and activation precision through
weight quantization [Frantar et al., 2023, Dettmers et al., 2024, Lin et al., 2024], converting high-bit
floating-point to low-bit integers; activation quantization [Xiao et al., 2023], calibrating layer output
dynamic ranges; and KV cache quantization [Hooper et al., 2024], optimizing memory for extended
sequence tasks. Critically, calibration data guides compression by informing pruning decisions and
establishing quantization parameters. Its compositional characteristics and domain correspondence
profoundly impact model capability preservation, which is the focus of our this work.
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Calibration Data guides post-training compression by aligning with typical input distributions
to preserve model capabilities. Beyond computer vision studies [Zhang et al., 2025, Shang et al.,
2024], prior LLM compression research has examined calibration data from isolated perspectives:
sequence lengths [Lee et al., 2023], data sources [Wu et al., 2023, Williams and Aletras, 2024, Ji
et al., Khanal and Capone, 2024, Bandari et al., 2024], sample amounts [Williams and Aletras, 2024,
Jaiswal et al., 2024, Zhang et al., 2024], and languages [Zeng et al., 2024, Kurz et al., 2024] for
multilingual models. However, these works typically offer superficial descriptions of calibration
data effects. In this work, we systematically investigate how calibration data characteristics affect
capability preservation, especially the complex reasoning capabilities. Furthermore, we explore
underlying influence mechanisms and develop appropriate curation strategies.

3 Exploring Calibration Data Variation’s Impact on LLM Capabilities

3.1 Experiment Preparation

Large Language Models We employ the following two powerful and representative open-sourced
LLMs to conduct the exploration: LLaMA3-8B-Instruct [Dubey et al., 2024] and Qwen2.5-7B-
Instruct [Yang et al., 2024]. They are both multilingual LLMs, possessing general knowledge and a
certain level of reasoning ability.

LLM Compression Schemes To ensure comprehensiveness, we select two representative post-
training pruning methods: SparseGPT [Frantar and Alistarh, 2023] for unstructured pruning and
Wanda [Sun et al., 2024a] for semi-structured pruning. The pruning ratio is set as 50% for SparseGPT,
and the block pattern is set as 4 : 8 for Wanda. We did not conduct experiments with structured
pruning methods, considering their performance degradation is super significant under high pruning
ratios. As for the post-training quantization, we choose the widely adopted GPTQ [Frantar et al.,
2023] and more recent AWQ [Lin et al., 2024] with the bit number set as 4.

Calibration Data Sources The calibration data can be generally classified into two categories:
pre-training data and downstream data. As for the first category, similar to previous works, we
take the following datasets as the calibration data sources: C4 [Raffel et al., 2020], WikiText, and
SlimPajama. Except for the experiments investigating the impact of sample amounts and sequence
lengths, we randomly sample 128 sequences with the token length as 2048 from corresponding
sources as calibration data. As for the downstream data, like commonsense/math/code/multilingual
domains, we only employ them for calibration when investigating the impact of data format and
domain correspondence.

Evaluation Benchmarks To comprehensively evaluate the capability preservation of compressed
LLMs, we take the benchmarks focusing on different capabilities, especially some high-level
complex reasoning ones: 1) Language modeling: WikiText2 [Merity et al., 2022], PTB [Mar-
cus et al., 1993]; 2) Commonsense reasoning: BoolQ [Clark et al., 2019], PIQA [Bisk et al.,
2020], HellaSwag [Zellers et al., 2019], WinoGrande [Sakaguchi et al., 2021], ARC-Easy [Clark
et al., 2018], ARC-Challenge [Clark et al., 2018], and OpenbookQA [Mihaylov et al., 2018];
3) Mathematical problem solving: GSM8K [Cobbe et al., 2021], MATH(including subtasks
like algebra, counting-and-prob, geometry, intermediate-algebra, num-theory, prealgebra, math-
precalc) [Hendrycks et al.], Minerva-Math [Lewkowycz et al., 2022] with custom prompts; 4)
Code generation: HumanEval [Chen et al., 2021], MBPP [Austin et al., 2021]; 5) Multilingual
comprehension: ARC-Multilingual [Lai et al., 2023], HellaSwag-Multilingual [Lai et al., 2023].

3.2 Variation on Calibration Data Compositional Properties (Q1)
The compositional property variations of calibration data can bring non-negligible influence to the
LLM capability preservation. To reveal the connection between them, we conduct the exploration
from the perspectives including sequence lengths, sample amounts, data sources, and data format.

Variation on Calibration Data Sequence Lengths To investigate the effect of calibration data
sequence lengths on capability preservation, we vary the lengths across a range of values (128, 256,
512, 1024, and 2048 tokens) while evaluating four compression methods across both LLaMA3-8B
and Qwen2.5-7B models. Our experimental results, as shown in Figure 2, reveal that mathematical
problem-solving shows significant sequence length sensitivity in pruning methods (SparseGPT’s
performance drops by 25.5% at short sequences), while code generation exhibits non-monotonic
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Figure 2: Impact of calibration data sequence length on capability preservation across different
compression methods for LLaMA3-8B and Qwen2.5-7B. Note the varying sensitivity to sequence
length across capabilities and compression methods.

Figure 3: Effect of calibration sample amount on capability preservation for LLaMA3-8B and
Qwen2.5-7B models. Note the diminishing returns beyond 64-128 samples for most capabilities,
with AWQ showing particular robustness to small sample sizes.

patterns across all methods (AWQ’s performance varies from 38.71% to 47.53%). These effects
stem from gradient estimation quality, where longer sequences provide more diverse activation
patterns crucial for quantization methods like GPTQ, and task-specific representation requirements,
where different capabilities have distinct optimal context windows. Pruning methods generally show
greater sensitivity to sequence length than quantization approaches, with AWQ’s per-channel scaling
providing remarkable robustness even at short sequences.

Variation on Calibration Data Sample Amounts We explore the effect of varying the number of
calibration samples by testing configurations with 16, 32, 64, 128, and 256 samples. Our results in
Figure 3 demonstrate significant capability-dependent effects, with code generation showing unex-
pected patterns: for LLaMA3-8B with AWQ, code performance decreases from 46.40% at 16 samples
to 38.71% at 128 samples, while Qwen2.5-7B with GPTQ shows a dramatic drop from 57.67% at
16 samples to 34.03% at 128 samples. Pruning methods show greater sensitivity to sample count,
with SparseGPT on LLaMA3-8B experiencing 17.9% drop in math performance with fewer samples,
while AWQ maintains consistent performance even with just 16 samples across all capabilities. These
effects stem from representation diversity saturation, where additional samples provide diminishing
returns after capturing core activation patterns, and calibration data quality variance, where increasing
samples may introduce suboptimal examples that skew results for specialized tasks. Different com-
pression methods exhibit varying information utilization efficiency, with AWQ extracting essential
patterns from minimal samples while pruning methods require more comprehensive sampling.

Variation on Calibration Data Sources We examine the impact of calibration data source selection
by comparing three widely used pre-training datasets: C4, Wikipedia, and SlimPajama. Figure 4
reveals that source selection significantly impacts capability preservation, often exceeding the perfor-
mance difference between compression methods themselves. The most striking variations appear
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Figure 4: Impact of calibration data sources on capability preservation for LLaMA3-8B and Qwen2.5-
7B. Note the significant advantage of C4 for code generation tasks, while Wikipedia provides more
balanced performance across capabilities.

Figure 5: Impact of calibration data format on compressed LLM capability preservation.

in mathematical reasoning and code generation capabilities—for Qwen2.5-7B, SlimPajama pro-
vides an 8.7% relative improvement in math tasks over Wikipedia (38.98% vs. 35.85%), while for
LLaMA3-8B, C4 dramatically improves code generation by 19.4% relative to Wikipedia (44.29%
vs. 34.83%). These effects stem from domain-specific activation pattern coverage, where C4’s
web-crawled nature better preserves code generation capabilities while SlimPajama’s diverse content
maintains mathematical reasoning. Compression-specific information leverage also plays a role, with
quantization and pruning methods showing different source preferences—AWQ performs best on
math tasks with SlimPajama while SparseGPT achieves better results with Wikipedia. These findings
highlight that strategic calibration data source selection aligned with deployment scenarios can yield
substantial improvements beyond what compression method optimization alone can achieve.

Variation on Calibration Data Format Different from format-free continuous sequences from
pre-training corpus, calibration data from downstream tasks usually follows specific formats [Bandari
et al., 2024]. We investigate how different QA formats affect capability preservation using Common-
seQA 1 [Talmor et al., 2019] dataset in three formats: question-only (QD), question-answer pairs
(Q&A), and question-answer pairs with explicit reasoning chains (Q&A w/ ERC). Figure 5 shows
that Q&A w/ ERC yields the best performance across all methods, with the most dramatic impact on
complex reasoning tasks—for Qwen2.5-7B with AWQ, Q&A w/ ERC calibration achieves 51.84%
on math tasks compared to 47.34% with standard pre-training data (9.5% improvement), while for
LLaMA3-8B with GPTQ, it improves commonsense reasoning by 8.0% relative to question-only
format (68.27% vs. 63.21%). These effects stem from reasoning pathway preservation, where explicit
reasoning chains activate and maintain internal reasoning mechanisms during compression, and
task-specific knowledge preservation, where detailed formats help preserve domain-specific weights

1https://huggingface.co/datasets/tau/commonsense_qa

5

https://huggingface.co/datasets/tau/commonsense_qa


Figure 6: Impact of calibration data language on compressed LLM capability preservation.

that might otherwise be deemed less important. The substantial performance gains achievable through
format optimization underscore that calibration data should include explicit reasoning chains for
applications focused on reasoning tasks.

3.3 Variation on Calibration Data Domain Correspondence (Q2)

When the compressed LLM is intended for deployment in specific applications, downstream data is
often utilized for calibration rather than pretraining data. To uncover the effect of downstream cali-
bration data’s domain variation on model capability presentation, we select three most representative
perspectives to conduct this study: data languages, subjects, and reasoning difficulties.

Variation on Calibration Data Languages To investigate the impact of calibration data language on
capability preservation, we evaluate how using data from different language subsets of C4 affects
compressed model performance. Figure 6 illustrates that the most pronounced language effects
appear in specialized capabilities—for mathematical tasks on LLaMA3-8B with GPTQ, English
calibration data (31.22%) outperforms other languages by up to 46.4% (vs. Japanese at 16.72%),
while for code generation, the performance gap reaches 62.0% (34.83% vs. 13.25%). These effects
stem from alignment with pre-training distribution, as both models were primarily trained on English-
dominant corpora, and language-specific activation pattern coverage, where different languages
activate different regions of the model’s parameter space. We also observe model-specific differences,
with Qwen2.5-7B showing better resilience to non-English calibration (only 3.8% gap between
English and Chinese for code generation vs. 54.3% for LLaMA3-8B). Notably, on multilingual
benchmarks, using calibration data in the same language as the evaluation yields better performance
than English calibration for that specific language, suggesting that for language-specific applications,
matching calibration language to target language can be more effective than defaulting to English.

Variation on Calibration Data Subjects To investigate how calibration data from different subjects
affects capability preservation, we calibrate models using three subject-specific datasets: Common-
senseQA [Talmor et al., 2019] for commonsense reasoning, MathQA2 for mathematical problem
solving, and CodeQA 3 for code generation. Table 1 shows that subject-specific calibration signifi-
cantly enhances matching capabilities—MathQA calibration boosts mathematical performance by
5.92 percentage points for quantization methods and 4.35 points for pruning methods, while CodeQA
enhances code generation by 7.49 points for quantization and 4.28 points for pruning. However,
this enhancement comes at the cost of increased perplexity, with MathQA causing the largest degra-
dation (average increase of 2.73 points for quantization and 3.52 points for pruning). The relative
improvement is more pronounced for pruning methods—CodeQA improves code generation by up
to 29.7% for SparseGPT compared to 17.9% for AWQ. These effects stem from activation pathway
preservation, where calibration data activates and helps preserve subject-specific neural pathways

2https://huggingface.co/datasets/allenai/math_qa
3lissadesu/code_qa_updated

6

https://huggingface.co/datasets/allenai/math_qa
lissadesu/code_qa_updated


Table 1: Impact of calibration data subject on capability preservation. Lower perplexity and higher
accuracy for other capabilities are better. Best performing subject for each capability is in bold.

Compression Calibration Data Subject LLaMA3-8B Qwen2.5-7B

PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

SparseGPT (50%)

WikiText 20.15 41.85 19.18 15.34 21.54 42.23 17.85 13.45
CommonsenseQA 22.42 45.23 17.45 13.76 23.85 46.82 16.24 12.31

MathQA 23.87 39.62 23.56 14.21 24.72 40.58 22.26 12.87
CodeQA 23.14 38.95 16.82 19.28 24.15 40.13 15.73 17.46

Wanda (4:8)

WikiText 33.41 40.87 18.44 14.72 32.84 40.21 17.32 12.97
CommonsenseQA 35.26 44.36 16.83 13.25 34.96 44.73 15.85 11.84

MathQA 36.82 38.75 22.94 13.86 36.21 38.42 21.74 12.15
CodeQA 36.15 37.94 16.21 18.52 35.92 38.06 15.26 16.82

GPTQ (4-bit)

WikiText 16.29 65.23 31.22 34.83 17.22 65.84 35.85 34.03
CommonsenseQA 18.54 68.75 28.36 31.42 19.36 71.25 33.75 31.56

MathQA 19.87 63.21 36.92 32.18 20.14 64.36 42.36 32.41
CodeQA 19.34 62.84 29.75 39.26 19.58 63.78 32.61 42.85

AWQ (4-bit)

WikiText 15.86 65.26 36.46 38.71 17.36 66.42 47.34 62.10
CommonsenseQA 17.23 69.37 34.21 36.22 18.53 72.86 45.21 58.64

MathQA 18.41 64.15 41.85 35.89 19.25 65.38 54.42 57.21
CodeQA 18.26 63.92 33.42 44.62 18.95 64.97 43.85 68.73

during compression, particularly important for pruning methods that directly eliminate weights rather
than approximating them (see Appendix for visualization). These findings suggest pruning methods
require more precise subject alignment in calibration data, while quantization methods may benefit
from mixed-subject calibration for balanced capability preservation.

In addition, we also explored the effect of calibration data’s reasoning difficulty to the critical LLM
capability preservation, detailed in Appendix D.

4 Optimizing Capability Preservation with Calibration Data Curation

4.1 Discussion on Calibration Data Optimality for Capability Preservation (Q3)

Based on our above empirical explorations, we characterize optimal calibration data through two
key dimensions that affect capability preservation. Compositional Properties show that 1⃝ longer
sequences generally improve performance, 2⃝ sample amounts exhibit diminishing returns beyond
64-128 samples, 3⃝ data sources impact capabilities differently (C4 excels for code, SlimPajama
for math), and 4⃝ explicit reasoning format benefits preserving reasoning capability. Domain
Correspondence reveals that 5⃝ matching calibration data language to the deployment language is
crucial for multilingual applications, 6⃝ subject-aligned data significantly enhances target capabilities
(e.g., MathQA improves math performance by 5.92 points for quantization), and 7⃝ mixed difficulty
calibration provides optimal balance between specialized reasoning and general performance.

These dimensions ultimately reflect a deeper mechanism: Representativeness and Diversity in
Activation Space. Representativeness concerns how well calibration samples trigger activation
patterns typical of the target domain—explaining why domain-matched data preserves correspond-
ing capabilities so effectively. Diversity involves the breadth of unique activation patterns trig-
gered—demonstrated by the success of higher sample amount, mixed difficulty, and format richness
with explicit reasoning chains. We thus define optimal calibration data as a strategically curated set
of samples that maximizes both representativeness and diversity in the model’s activation space, with
the balance determined by deployment requirements. Actually, we also provide the internal influence
mechanism analyze from spectral perspective in Appendix E to further demonstrate this point.

4.2 Calibration Data Curation Framework (Q4)

Based on our analysis of how calibration data characteristics affect capability preservation and above
discussion on calibration data optimality, we propose a three-stage framework for Curating Optimal
LLM compression cAlibration data, named as COLA.
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Stage 1: Dataset Selection (Domain Correspondence) The first stage focuses on selecting
source datasets that align with the target deployment domain. This involves analyzing whether the
compressed model is intended for general-purpose use or specialized tasks. For general-purpose
deployment, we recommend selecting a balanced mix of pre-training datasets (e.g., WikiText for
language modeling, SlimPajama for commonsense reasoning, C4 for code generation). For targeted
deployment, domain-matched datasets should be prioritized (e.g., MathQA for mathematical problem
solving applications). Language alignment is crucial in this stage, where datasets in the primary
language of intended use should be selected. For multilingual applications, calibration data in
each target language should be included, with proportions reflecting deployment priorities. Subject
coverage must ensure all critical domains required for deployment are represented. Reasoning
difficulty is also determined at this stage. Based on our experiments, mixed difficulty provides the
best balance for general-purpose deployment, while hard samples may be preferable for specialized
reasoning applications. The dataset selection can be formulated as an optimization problem:

S = argmax
S⊆D

∑
c∈C

wc · coverage(S, c), (1)

where S is the selected dataset, D is the pool of available datasets, C is the set of target capabilities,
wc is the importance weight for capability c, and coverage(S, c) measures how well dataset S covers
capability c.

Stage 2: Dataset Processing (Compositional Properties) The second stage optimizes the com-
positional properties of the selected datasets. This includes sequence length optimization, where
datasets are processed to generate sequences of appropriate length (typically 2048 tokens for most
methods, but adaptable based on the specific compression method). For AWQ, which showed robust-
ness to sequence length variation, shorter sequences (512-1024 tokens) may be sufficient. Format
enrichment is another key processing step. For datasets lacking structural richness, we enhance them
by converting to Q&A format with explicit reasoning chains where possible. This involves identifying
implicit reasoning in text passages, reformulating as question-answer pairs, and adding intermediate
reasoning steps when beneficial.

Stage 3: Sample Selection (Representativeness and Diversity in Activation Space) The final
stage selects individual samples to maximize representativeness and diversity in activation space.
This begins with activation pattern extraction, where for a candidate pool of processed samples, we
run a forward pass through the uncompressed model and extract layer-wise results. For each sample
xi, we obtain an activation vector ai =

[
h1
i ,h

2
i , . . . ,h

L
i

]
, where hl

i represents the aggregated hidden
state activations at layer l for sample xi. We then apply dimensionality reduction to the activations
using random projection which exhibits obvious efficiency advantages [Bingham and Mannila, 2001]:

a′i =
1√
d
Rai, {C1, C2, . . . , Ck} = k-means({a′1,a′2, . . . ,a′n}, k), (2)

where R is a d×D random matrix with entries drawn from a standard normal distribution, D is the
original dimension, d is the reduced dimension (d ≪ D), k is the target number of clusters. From
each cluster Cj , we select samples closest to the centroid to form the final calibration set:

x∗
j = arg min

xi∈Cj

∥a′i − µj∥2, (3)

where µj is the centroid of cluster Cj . These samples from all clusters C1, C2, ...Ck ensures the
diversity in the activation space, while the closeness to the centroid in each cluster guarantees the
representativeness. Note the number of clusters k directly controls the final calibration sample
amount, allowing precise adjustment based on the compression method’s requirements—smaller
yet diverse sets for methods like AWQ that show robustness to sample quantity, and larger sets for
pruning methods that exhibit higher sensitivity to calibration data amount.

By systematically addressing dataset-level domain correspondence, compositional characteristics, and
ultimately sample-level activation space representation, our curation framework produces compact,
high-quality calibration datasets that maximize capability preservation for LLM compression across
diverse deployment scenarios.
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Table 2: Performance comparison of different calibration data approaches on general deployment
scenario. The best performing approach under each capability is in bold.

Compression Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

AWQ (4-bit)

WikiText (random) 15.86 65.26 36.46 38.71 17.36 66.42 47.34 62.10
C4 (random) 15.48 66.21 37.19 39.87 17.00 67.42 48.29 63.72
SlimPajama (random) 15.55 66.53 37.36 39.48 17.08 67.75 48.46 63.28
Self-Gen 15.59 67.08 37.51 39.75 17.12 68.04 48.66 63.67
COLA 15.41 67.42 37.85 40.17 16.95 68.47 49.02 64.15

SparseGPT (50%)

WikiText (random) 20.15 41.85 19.18 15.34 21.54 42.23 17.85 13.45
C4 (random) 19.36 42.67 19.64 15.88 20.85 43.12 18.24 13.87
SlimPajama (random) 19.58 42.81 19.78 15.77 20.98 43.29 18.37 13.80
Self-Gen 19.65 43.61 19.85 15.92 21.07 43.92 18.42 13.92
COLA 19.31 44.23 20.12 16.14 20.72 44.47 18.65 14.10

Wanda (4:8)

WikiText (random) 33.41 40.87 18.44 14.72 32.84 40.21 17.32 12.97
C4 (random) 32.62 41.52 18.82 15.14 32.15 40.83 17.66 13.31
SlimPajama (random) 32.83 41.65 18.98 15.06 32.24 40.92 17.83 13.24
Self-Gen 32.87 42.61 19.07 15.28 32.32 41.82 17.87 13.42
COLA 32.14 43.15 19.36 15.46 31.65 42.34 18.15 13.59

GPTQ (4-bit)

WikiText (random) 16.29 65.23 31.22 34.83 17.22 65.84 35.85 34.03
C4 (random) 15.93 66.15 31.87 35.80 16.86 66.89 36.50 34.92
SlimPajama (random) 16.01 66.47 32.00 35.56 16.95 67.17 36.68 34.68
Self-Gen 16.03 67.14 32.22 35.91 16.98 67.74 36.89 35.02
COLA 15.83 67.52 32.56 36.18 16.79 68.15 37.23 35.22

4.3 Empirical Performance Evaluation

We evaluate our calibration data curation framework across two settings: general deployment and
targeted deployment. For general deployment, we compare against random samples from standard
pre-training datasets (WikiText, C4, SlimPajama). Besides, we consider the recent Self-Generating
then Sampling (Self-Gen) baseline [Ji et al.]. As for the targeted deployment, we provide our settings
and results in Appendix F due to the space limitation. More details regarding the implementation of
our proposed COLA framework can be seen in Appendix G. In general deployment scenarios (Table
2), our activation-aware curation framework consistently outperforms both random sampling and Self-
Gen approaches across all capabilities and compression methods. For LLaMA3-8B with SparseGPT,
our approach achieves 44.23% on commonsense reasoning tasks compared to 41.85% for WikiText
random sampling and 43.61% for the Self-Gen approach. While the absolute improvements appear
modest (around 1-2 percentage points), they are consistent across different models, capabilities, and
compression methods. The improvements are particularly noticeable for pruning methods (SparseGPT
and Wanda), which aligns with our earlier observation that pruning methods exhibit higher sensitivity
to calibration data quality. Besides, the observation in targeted deployment scenarios (Appendix F)
also demonstrates the effectiveness our COLA.

The performance gains from our curation framework demonstrate that strategically selecting cali-
bration data based on activation patterns provides significant benefits for capability preservation in
compressed LLMs. By optimizing both representativeness and diversity in the activation space, our
approach successfully preserves critical capabilities and achieves better performance on correspond-
ing evaluations. These results validate our hypothesis that the efficacy of calibration data stems from
how it activates the model’s parameter space rather than solely from its observable characteristics.

5 Conclusions and Future Works
This work systematically investigates calibration data’s impact on LLM capability preservation
through compositional properties and domain correspondence. We analyze the underlying mecha-
nisms from the activation pattern perspective, further finding that representativeness and diversity in
activation space fundamentally determine calibration data optimality. Based on these observations
and analysis, we develop a three-stage framework for curating optimal calibration data from available
sources. Its effectiveness is validated across both general and targeted deployment scenarios. Future
work will focus on developing compression method-specific calibration data curation strategies that
account for algorithmic characteristics and the intrinsic properties of target LLMs.
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A Comparison of calibration data in LLM pruning and quantization

To facilitate understanding the role and effect of calibration data in LLM pruning and quantization,
we highlight their difference in Table 3.

Table 3: Comparison of calibration data in LLM pruning and quantization.

Task Pruning Quantization

Goal Remove redundant weights,
reduce model size/computation

Reduce precision of weights/activations,
decrease storage/computation costs

Role of Calibration Data Evaluate weight importance (e.g.,
via gradients, activation sparsity)

Determine dynamic ranges, adjust
quantization parameters and strategies

Core Method Sensitivity analysis Statistical distribution analysis
(e.g., min-max, KL divergence)

B Recapping the LLM Compression Pipelines

To facilitate understanding the context of our this work, we recap the LLM compression pipeline here.
In fact, the post-training LLM quantization (e.g., GPTQ [Frantar et al., 2023] and AWQ [Lin et al.,
2024]) and pruning (e.g., SparseGPT [Frantar and Alistarh, 2023] and Wanda [Sun et al., 2024a])
methods can be jointly concluded as solving a layer-wise reconstruction problem:

argmin
Ŵl

∥WlXl − ŴlXl∥F . (4)

Here, the Frobenius norm is taken as the objective function. The Wl indicate the weights corre-
sponding to a linear layer l and the Xl denote the layer input corresponding to the calibration data
S running through the model. Ŵl is the compressed version of Wl. S is generally a subset of
LLM pre-training datasets (e.g., WikiText and C4 [Raffel et al., 2020]) for general deployment, or
domain-specific datasets for targeted deployment.

In typical LLM compression pipelines, the preparation of calibration data S follows a standardized
process. The pipeline first loads the calibration datasets and processes them through the model’s
tokenizer with appropriate error handling mechanisms. A critical preprocessing step involves proper
handling of special tokens, particularly ensuring the pad token is properly defined, typically defaulting
to the eos token if undefined. For generating calibration samples, the pipeline concatenates the text
data with delimiters and tokenizes it into a continuous sequence of token IDs. Fixed-length segments
are then extracted through random sampling within the valid range of the input sequence, ensuring
each calibration sample maintains proper context and structure.

C Complementary Introduction to Experiment Preparation

Pre-training Corpus as Calibration Data Sources Here, we make a more detailed introduction
to the three pre-training corpus as calibration data sources in our exploration: C4 4 [Raffel et al.,
2020] is a massive web-text dataset derived from filtered Common Crawl snapshots, widely adopted
for pre-training general-purpose language models due to its broad domain coverage and rigorous
deduplication; WikiText 5 provides curated, multilingual encyclopedic text with structured semantic
relationships, making it a foundational resource for knowledge-intensive NLP tasks and cross-lingual
model training; SlimPajama 6 is a refined, deduplicated version of the RedPajama[Weber et al.]
dataset, streamlining its multi-source composition (scientific papers, books, code, and web content)
through rigorous filtering and standardized preprocessing to enhance efficiency in large-scale language
model pre-training.

4https://huggingface.co/datasets/allenai/c4
5https://huggingface.co/datasets/Salesforce/wikitext
6https://huggingface.co/datasets/DKYoon/slimpajama-200k
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Table 4: Impact of calibration data reasoning difficulty on capability preservation. Values show
relative performance change (%) compared to WikiText baseline calibration. For perplexity, negative
values indicate improvement; for other metrics, positive values indicate improvement. Best perform-
ing difficulty level for each capability is highlighted in bold.

Compression Reasoning Difficulty LLaMA3-8B Qwen2.5-7B

PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

SparseGPT (50%)

Easy +5.8 +2.1 +1.8 +0.7 +4.9 +2.3 +1.5 +0.5
Medium +9.4 +3.6 +5.2 +2.4 +8.3 +4.1 +4.8 +2.2

Hard +12.1 +5.7 +8.4 +3.5 +11.5 +6.2 +7.9 +3.2
Mixed +4.2 +4.9 +7.2 +3.1 +3.8 +5.3 +6.8 +2.9

Wanda (4:8)

Easy +3.6 +1.9 +1.5 +0.6 +3.2 +2.2 +1.2 +0.4
Medium +6.3 +3.2 +4.7 +2.1 +5.8 +3.8 +4.3 +1.9

Hard +9.7 +5.3 +7.8 +3.2 +8.9 +5.9 +7.4 +2.8
Mixed +2.8 +4.5 +6.7 +2.8 +2.4 +5.0 +6.3 +2.5

GPTQ (4-bit)

Easy +3.4 +0.7 +0.9 +0.5 +3.2 +0.8 +0.7 +0.4
Medium +5.1 +1.8 +4.3 +1.8 +4.7 +2.0 +3.9 +1.6

Hard +8.2 +2.9 +7.1 +3.0 +7.8 +3.2 +6.8 +2.7
Mixed +2.1 +3.4 +6.2 +2.6 +1.9 +3.6 +5.9 +2.3

AWQ (4-bit)

Easy +2.1 +0.5 +0.7 +0.3 +1.9 +0.6 +0.5 +0.2
Medium +3.7 +1.5 +3.8 +1.5 +3.3 +1.7 +3.5 +1.3

Hard +6.8 +2.5 +6.7 +2.8 +6.2 +2.8 +6.2 +2.5
Mixed +1.5 +3.1 +5.8 +2.4 +1.2 +3.4 +5.4 +2.2

Implementation Details For all experiments in this work, we use the Ubuntu 22.04 LTS system,
Python 3.11.11 environment, and vLLM 0.7.2 library7 for LLM local inference of both LLaMA3-
8B-Instruct and Qwen2.5-7B-Instruct. For vLLM inference hypermeters, we set the max tokens
to 1024, temperature to 0.7, top k to 50, top p to 0.7, and repetition penalty to 1. We run all
experiments on a server with 128 Intel Xeon Platinum 8538 CPU @ 2.60GHz and 8 Nvidia RTX
6000 Ada GPU having 48 GB GDDR6 VRAM. We utilize official checkpoints from HuggingFace:
LLaMA3-8B-Instruct8 and Qwen2.5-7B-Instruct9. The evaluation part is based on the open-source
repository lm-evaluation-harness 10, v0.4.7 version. As for the hyperparameter setting of LLM
compression methods, we directly follow their original papers which are also detailed in Appendix
A. Each experiment is performed for five times with different seeds and then reports the averaged
performance to mitigate the randomness. Statistical significance is also assessed using two-tailed
independent t-tests, with results considered significant when p < 0.01. For two multilingual
benchmarks utilized in our experiments, they are only performed when evaluating the impact of
calibration data’s language. Different from other capabilities, code generation correctness is evaluated
with the pass@1 rate. The three math benchmarks and code benchmark MBPP are evaluated with
4-shot and 3-shot manner, respectively, while others are evaluated with 0-shot manner. For the ease
of understanding, without specified, the performance under each capability presented in the main text
is the average among corresponding benchmarks. For example, the reported code scores (pass@1)
are actually the average of HumanEval and MBPP. We provide the code repository for our proposed
COLA framework in https://github.com/BokwaiHo/COLA.git.

D Variation on Calibration Data Reasoning Difficulties

To investigate how the difficulty level of calibration data impacts capability preservation, we stratify
samples from Easy2Hard-Bench 11 [Ding et al., 2024] into three difficulty tiers including Easy(0-
0.33), Medium(0.33-0.67), Hard(0.67-1.0) and create a Mixed set containing samples from all
tiers. Table 4 reveals that harder samples yield greater improvements in reasoning tasks but cause
larger perplexity degradation—Hard calibration improves mathematical reasoning by up to 8.4% for

7https://github.com/vllm-project/vllm
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
9https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

10https://github.com/EleutherAI/lm-evaluation-harness
11furonghuang-lab/Easy2Hard-Bench
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SparseGPT but increases perplexity by 12.1%. Meanwhile, Mixed difficulty calibration provides
the most balanced preservation, achieving near-optimal improvements for reasoning tasks (within
1.5% of Hard calibration’s gains) while minimizing perplexity degradation (only 1.5-4.2% increase
versus 6.2-12.1% for Hard). Sensitivity to calibration difficulty varies significantly by method,
with pruning methods showing up to 2.3× higher sensitivity than quantization methods. These
effects stem from representational richness, where hard samples activate more complex reasoning
pathways that compression methods must preserve, and activation diversity, where mixed calibration
benefits from complementary patterns that better maintain both reasoning and language capabilities.
These findings suggest reasoning-critical applications should use Hard or Mixed calibration, while
general-purpose applications should favor Mixed calibration to balance capability improvements with
minimal perplexity degradation.

E Internal Influence Mechanism Analysis - A Spectral Perspective

To further understand the underlying mechanism behind calibration data variations’ impact on
capability preservation, we conducted a layer-wise spectral analysis of feed-forward networks (FFNs)
weights before and after compression [Bai and Silverstein, 2010]. This analysis reveals how different
calibration strategies affect the frequency domain representation of model parameters, which directly
influences capability preservation. The FFNs in transformer layers are known to be the primary
knowledge storage components in LLMs [Dai et al., 2022]. Our spectral analysis decomposes the FFN
weights into frequency components to visualize how compression affects different frequency bands.
This approach is motivated by frequency-domain interpretation of large language models, where
low-frequency components (0-0.2) typically correspond to general language modeling capabilities,
mid-frequency components (0.2-0.6) to common knowledge and pattern recognition, and high-
frequency components (0.6-1.0) to specialized reasoning capabilities like mathematics and code
generation.

We take the GPTQ (4-bit) as the example compression method for visualization. Figure 7 shows
the spectral analysis of FFN weights across all 32 layers of the LLaMA3-8B model with Fourier
Transformation. When comparing the original model with models compressed using different
calibration data, we observe two critical patterns. First, when calibration data lacks representativeness
(red line), it results in well-preserved low-frequency components but non-uniform compression
and distortion in the mid-frequency bands. This explains why models compressed with random
calibration data often maintain basic language modeling capabilities but show degraded performance
on commonsense reasoning tasks that rely on these mid-frequency components. Second, when
calibration data lacks diversity, we observe loss of high-frequency information and frequency band
energy redistribution, manifested as truncation of the spectral tail and energy migration toward lower
frequencies. This directly corresponds to the degradation of high-level reasoning capabilities like
mathematics and code generation, which rely heavily on high-frequency components.

Figure 8 provides a more direct visualization of compression quality by showing the ratio of com-
pressed to original magnitude across frequency bands. Our COLA approach (green line) maintains a
ratio closer to 1.0 across all frequency bands, indicating more faithful preservation of the original
information. In contrast, random calibration (red line) shows greater deviation from the ideal ratio,
particularly in mid and high-frequency bands. This deviation is especially pronounced in deeper
layers (e.g., layers 25-32), which are often responsible for higher-level reasoning capabilities in
transformer models. The compression ratio analysis reveals an important insight: the most significant
differences between COLA and random calibration occur in the high-frequency region (0.6-1.0),
especially in the middle and deeper layers of the network. This explains why mathematical reasoning
and code generation capabilities—which rely on these high-frequency components—show the most
dramatic improvements when using our COLA framework compared to random calibration.

To quantify these observations, Figure 9 shows the normalized energy distribution across frequency
bands for each layer. When using COLA (green line), the energy distribution more closely tracks
the original model (black line) across all frequency bands, particularly in the high-frequency region.
In contrast, random calibration (red line) shows excess energy in low-frequency bands and energy
loss in high-frequency bands, particularly in deeper layers where complex reasoning capabilities
are typically encoded. The energy distribution analysis further confirms that the high-frequency
components experience the most significant energy loss during compression with random calibration
data. This energy redistribution explains why models compressed with suboptimal calibration data
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Figure 7: Layer-wise spectral analysis of FFN weights before and after compression using GPTQ
(4-bit) quantization. The frequency spectrum is divided into low (0-0.2, language modeling), mid
(0.2-0.6, general knowledge), and high (0.6-1.0, specialized reasoning) frequency bands.
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Figure 8: Layer-wise compression ratio analysis in frequency domain for GPTQ (4-bit) quantization.
Values near 1.0 indicate perfect preservation of the original frequency components, while lower
values indicate information loss and higher values indicate distortion.
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Figure 9: Energy distribution across frequency bands by layer for GPTQ (4-bit) quantization. The
plots show how energy is preserved or redistributed across low, mid, and high-frequency bands after
compression with different calibration approaches.

Table 5: Performance comparison of different calibration data approaches for targeted deployment
scenarios. GPQ is taken as the compression scheme.

Deployment Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

Math
MathQA (random) 19.87 63.21 36.92 32.18 20.14 64.36 42.36 32.41
Self-Gen 19.65 63.84 37.65 32.78 19.96 64.98 43.17 32.95
COLA 19.43 64.15 38.92 33.12 19.74 65.42 44.62 33.27

Code
CodeQA (random) 19.34 62.84 29.75 39.26 19.58 63.78 32.61 42.85
Self-Gen 19.28 63.25 30.21 40.05 19.49 64.13 33.18 43.76
COLA 19.05 63.67 30.64 41.73 19.24 64.52 33.64 45.28

Commonsense
CommonseQA (random) 18.72 64.87 30.24 33.45 18.95 65.98 34.26 33.82
Self-Gen 18.65 65.32 30.65 33.92 18.83 66.57 34.75 34.24
COLA 18.41 65.94 31.12 34.26 18.62 67.32 35.21 34.85

often retain basic functionality but lose specialized capabilities. COLA’s ability to better preserve
the energy distribution across all frequency bands is a direct result of its focus on maximizing both
representativeness and diversity in activation space.

These visualizations confirm our hypothesis that representativeness and diversity in activation space
are the fundamental determinants of calibration data quality. Representative calibration data ensures
more uniform compression across frequency bands, while diverse calibration data better preserves
the critical high-frequency components that enable complex reasoning. By optimizing for both
representativeness and diversity in activation space, our COLA framework effectively preserves
the spectral characteristics of the original model across all frequency bands, resulting in superior
capability preservation. This spectral analysis provides a mechanistic explanation for why capability-
aligned calibration data significantly improves compression quality: it ensures the preservation of
the full frequency spectrum necessary for maintaining the model’s complete range of capabilities,
from basic language modeling to complex mathematical reasoning and code generation. The findings
from this analysis directly validate the design principles behind our COLA framework and explain its
consistent performance improvements across different capabilities and compression methods.

F Empirical Performance Evaluation on Domain-Specific Datasets

For targeted deployment scenarios (see Table 5, 6, 7, 8 under GPTQ, AWQ, Wanda, and SparseGPT,
respectively), we evaluate three targeted applications: mathematical problem solving, code generation,
and commonsense reasoning. We compare our proposed COLA framework with random samples
from domain-specific datasets (CommensenseQA, MathQA, CodeQA) and Self-Gen [Ji et al.]. Our
results consistently demonstrate the effectiveness of our calibration data curation framework across
all evaluation settings, which further validates the rationality of optimality points in Section 4.1. For
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Table 6: Performance comparison of different calibration data approaches for targeted deployment
scenarios. AWQ is taken as the compression scheme.

Deployment Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

Math
MathQA (random) 18.41 64.15 41.85 35.89 19.25 65.38 54.42 57.21
Self-Gen 18.28 64.62 42.84 36.14 19.14 65.95 55.73 57.94
COLA 18.12 65.06 44.35 36.75 18.87 66.42 57.28 58.46

Code
CodeQA (random) 18.26 63.92 33.42 44.62 18.95 64.97 43.85 68.73
Self-Gen 18.14 64.48 33.85 45.78 18.82 65.42 44.31 70.05
COLA 17.92 64.95 34.26 47.31 18.53 65.89 44.92 72.18

Commonsense
CommonseQA (random) 17.23 69.37 34.21 36.22 18.53 72.86 45.21 58.64
Self-Gen 17.15 70.16 34.58 36.74 18.40 73.54 45.78 59.26
COLA 16.94 70.87 35.12 37.23 18.24 74.31 46.42 59.85

Table 7: Performance comparison of different calibration data approaches for targeted deployment
scenarios. Wanda is taken as the compression scheme.

Deployment Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

Math
MathQA (random) 36.82 38.75 22.94 13.86 36.21 38.42 21.74 12.15
Self-Gen 36.45 39.21 23.46 14.03 35.93 38.87 22.18 12.32
COLA 36.07 39.84 24.32 14.28 35.62 39.35 22.87 12.57

Code
CodeQA (random) 36.15 37.94 16.21 18.52 35.92 38.06 15.26 16.82
Self-Gen 35.86 38.32 16.52 18.94 35.64 38.42 15.51 17.15
COLA 35.47 38.75 16.84 19.58 35.31 38.93 15.87 17.74

Commonsense
CommonseQA (random) 35.26 44.36 16.83 13.25 34.96 44.73 15.85 11.84
Self-Gen 35.02 44.95 17.12 13.41 34.72 45.24 16.07 11.97
COLA 34.68 45.67 17.43 13.62 34.35 45.91 16.34 12.15

mathematical problem solving, COLA achieves significant improvements over random calibration,
with the most pronounced benefits observed in AWQ compression where our approach improves
performance by 2.50 percentage points on LLaMA3-8B (from 41.85% to 44.35%) and 2.86 points
on Qwen2.5-7B (from 54.42% to 57.28%). Similarly, for code generation, our framework yields
substantial improvements across all compression methods, with the largest gains seen in AWQ
compression on Qwen2.5-7B (3.45 percentage points improvement from 68.73% to 72.18%).

The performance improvements are particularly noteworthy for pruning methods (SparseGPT and
Wanda), which aligns with our earlier observation that these methods exhibit higher sensitivity to
calibration data quality. For instance, with SparseGPT compression, COLA improves mathematical
reasoning by 1.51 percentage points on LLaMA3-8B and 1.38 points on Qwen2.5-7B compared to
random calibration, while also enhancing code generation by 1.14 and 0.95 points respectively.

Across all deployment scenarios, COLA consistently outperforms the Self-Gen approach, demon-
strating that our activation-aware curation strategy more effectively captures the representativeness
and diversity required for optimal capability preservation. The performance advantage of COLA is
most evident in complex reasoning tasks, suggesting that our approach is particularly valuable for
preserving high-level capabilities in compressed LLMs.

Interestingly, we observe that the relative improvements from our framework are generally consistent
across model architectures (LLaMA3-8B and Qwen2.5-7B), indicating that the benefits of activation-
aware calibration data curation generalize well across different model families. This finding supports
our hypothesis that the fundamental mechanism of optimization—maximizing representativeness and
diversity in activation space—is a model-agnostic principle for effective calibration data curation.

G Calibration Data Curation Framework Implementation

To evaluate our calibration data curation framework, we conduct comprehensive experiments on
LLaMA3-8B-Instruct and Qwen2.5-7B-Instruct. For dataset selection (Stage 1), we implement the
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Table 8: Performance comparison of different calibration data approaches for targeted deployment
scenarios. SparseGPT is taken as the compression scheme.

Deployment Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

Math
MathQA (random) 23.87 39.62 23.56 14.21 24.72 40.58 22.26 12.87
Self-Gen 23.54 40.25 24.18 14.45 24.38 41.24 22.87 13.05
COLA 23.21 40.94 25.07 14.78 24.05 41.87 23.64 13.32

Code
CodeQA (random) 23.14 38.95 16.82 19.28 24.15 40.13 15.73 17.46
Self-Gen 22.96 39.42 17.15 19.75 23.92 40.58 16.02 17.85
COLA 22.65 39.87 17.48 20.42 23.64 41.12 16.35 18.41

Commonsense
CommonseQA (random) 22.42 45.23 17.45 13.76 23.85 46.82 16.24 12.31
Self-Gen 22.15 45.86 17.78 13.94 23.67 47.35 16.53 12.48
COLA 21.78 46.54 18.12 14.23 23.32 48.04 16.92 12.75

Table 9: Performance comparison of different calibration data approaches on three larger language
models for general deployment scenario. The best performing approach under each capability is in
bold.

Models Calibration Data LLaMA3.1-70B Qwen2.5-14B Qwen2.5-32B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

SparseGPT (50%)

WikiText (random) 14.28 48.56 36.24 31.42 16.52 45.38 24.92 18.65 13.28 47.65 28.52 22.85
C4 (random) 13.86 49.32 36.87 32.05 16.12 46.15 25.48 19.23 12.94 48.37 29.18 23.42
SlimPajama (random) 13.95 49.58 37.12 31.84 16.24 46.29 25.62 19.14 13.02 48.54 29.34 23.26
Self-Gen 13.89 50.42 37.35 32.18 16.18 47.14 25.84 19.36 12.96 49.23 29.58 23.61
COLA 13.65 50.86 37.72 32.54 15.94 47.68 26.15 19.62 12.78 49.76 29.85 23.94

Wanda (4:8)

WikiText (random) 23.64 47.42 34.85 29.63 26.45 44.26 23.56 17.82 24.63 46.34 26.94 21.63
C4 (random) 23.15 48.18 35.36 30.24 25.92 44.96 24.15 18.34 24.12 47.08 27.48 22.17
SlimPajama (random) 23.28 48.37 35.58 30.12 26.04 45.12 24.28 18.25 24.24 47.24 27.63 22.05
Self-Gen 23.18 49.22 35.86 30.43 25.96 45.95 24.46 18.48 24.15 47.94 27.84 22.36
COLA 22.84 49.65 36.24 30.82 25.54 46.48 24.82 18.72 23.85 48.46 28.15 22.68

GPTQ (4-bit)

WikiText (random) 14.92 71.36 52.54 62.46 15.36 68.42 38.65 42.35 14.58 70.24 45.62 48.65
C4 (random) 14.64 72.28 53.36 63.52 15.08 69.38 39.42 43.31 14.32 71.25 46.38 49.53
SlimPajama (random) 14.72 72.54 53.58 63.24 15.18 69.62 39.64 43.15 14.38 71.46 46.52 49.32
Self-Gen 14.68 73.18 53.82 63.74 15.12 70.26 39.94 43.68 14.34 72.05 46.84 49.85
COLA 14.42 73.65 54.28 64.15 14.94 70.72 40.35 43.95 14.21 72.54 47.26 50.24

AWQ (4-bit)

WikiText (random) 14.28 71.84 56.72 67.38 15.18 69.24 52.46 67.24 14.38 70.52 58.64 71.35
C4 (random) 13.96 72.76 57.65 68.54 14.86 70.34 53.42 68.46 14.08 71.56 59.52 72.48
SlimPajama (random) 14.05 73.12 57.84 68.32 14.95 70.58 53.68 68.25 14.15 71.82 59.76 72.24
Self-Gen 13.98 73.64 58.12 68.74 14.92 71.24 53.96 68.74 14.12 72.28 60.05 72.65
COLA 13.82 74.15 58.65 69.23 14.74 71.78 54.42 69.28 13.95 72.86 60.54 73.12

coverage function in Equ. 1 as follows:

coverage(S, c) = α · EmbSim(S,Dc) + (1− α) · KL(PS ∥ PDc
) (5)

where EmbSim is the average cosine similarity between sentence embeddings from both datasets,
KL is the KL-divergence between token distributions, and α is a balancing hyperparameter set to 0.6
in our experiments. This scoring function helps select calibration data sources that best match the
target deployment domain in both semantic content and statistical properties. As for wc in Equ. 1,
for general deployment, we set balanced weights across capabilities, while for specific deployment
scenarios, we increase weights for the corresponding target capabilities. For data processing (Stage
2) and sample selection (Stage 3), we follow the implementation details described in Section 4.2. For
clustering in the activation space, we run k-means with k = 128 after dimensionality reduction to 64
components via random projection.

H Scalability to Larger Language Models

To further whether our COLA framework can still keep effective on larger language models, we
conduct experiments on LLaMA3.1-70B-Instruct 12, Qwen2.5-14B-Instruct 13, and Qwen2.5-32B-
Instruct 14. Note in the following text, the word “-Instruct” is omitted to simplify the expression.
Due to the resource limitation, for those models, we only perform the compression and evaluation in

12https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
13https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
14https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
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Table 10: Performance comparison of different calibration data approaches under other LLM compres-
sion methods for general deployment scenario. The best performing approach under each capability
is in bold.

Compression Calibration Data LLaMA3-8B Qwen2.5-7B
PPL↓ CS↑ Math↑ Code↑ PPL↓ CS↑ Math↑ Code↑

RIA (2:4)

WikiText (random) 23.25 39.68 18.42 14.95 24.68 40.12 17.24 13.06
C4 (random) 22.73 40.32 18.85 15.36 24.12 40.85 17.68 13.45
SlimPajama (random) 22.86 40.47 18.92 15.28 24.25 41.02 17.83 13.38
Self-Gen 22.68 41.34 19.21 15.52 24.07 41.78 18.08 13.62
COLA 22.24 41.95 19.58 15.84 23.68 42.34 18.36 13.85

LLM-Pruner (50%)

WikiText (random) 19.65 42.35 20.08 16.24 20.84 42.76 18.65 14.12
C4 (random) 19.12 43.15 20.52 16.76 20.32 43.48 19.05 14.58
SlimPajama (random) 19.28 43.32 20.65 16.65 20.46 43.65 19.18 14.52
Self-Gen 19.15 44.08 20.94 16.92 20.38 44.45 19.35 14.78
COLA 18.82 44.65 21.32 17.28 20.04 45.04 19.72 15.06

LLM-Streamline (50%)

WikiText (random) 16.68 43.53 20.41 17.65 18.03 45.17 22.34 19.53
C4 (random) 16.35 44.32 21.10 18.28 17.75 45.87 23.02 20.15
SlimPajama (random) 16.47 44.64 21.42 18.13 17.86 46.25 23.39 20.02
Self-Gen 16.33 45.18 21.81 18.54 17.64 45.81 23.70 20.73
COLA 15.90 46.25 22.79 19.41 17.32 47.68 24.48 21.97

SmoothQuant (4-bit)

WikiText (random) 16.84 64.38 33.26 36.58 17.65 65.06 38.24 36.48
C4 (random) 16.48 65.24 33.95 37.62 17.28 65.98 38.92 37.36
SlimPajama (random) 16.56 65.48 34.12 37.34 17.36 66.24 39.15 37.18
Self-Gen 16.42 66.15 34.38 37.82 17.25 66.84 39.48 37.54
COLA 16.15 66.72 34.85 38.26 16.94 67.38 39.86 37.95

FlatQuant (4-bit)

WikiText (random) 15.64 64.82 34.52 37.25 16.85 65.62 42.65 56.48
C4 (random) 15.28 65.72 35.18 38.24 16.48 66.54 43.42 57.35
SlimPajama (random) 15.36 65.95 35.34 38.05 16.56 66.78 43.58 57.18
Self-Gen 15.24 66.42 35.62 38.48 16.42 67.35 43.82 57.62
COLA 14.98 66.95 36.08 38.85 16.15 67.92 44.25 58.04

general deployment scenario. As shown in Table 9, our COLA framework consistently outperforms
baseline calibration approaches across all capabilities and compression methods for larger models.
For LLaMA3.1-70B with AWQ compression, COLA achieves 74.15% on commonsense reasoning
tasks compared to 71.84% for WikiText random sampling, demonstrating a 2.31 percentage point
improvement. Similarly, for Qwen2.5-32B with GPTQ compression, COLA improves mathematical
reasoning capability by 1.64 percentage points over random sampling (47.26% vs. 45.62%). We
observe that the benefits of our activation-aware calibration data curation strategy scale well with
model size, often showing larger absolute performance gains for these larger models compared to the
7B-8B models presented in the main paper. This suggests that as models grow in size and complexity,
their sensitivity to calibration data quality increases, making optimization of calibration data even
more important. Interestingly, we find that larger models exhibit varying sensitivities to calibration
data quality across different compression methods. For quantization methods (GPTQ and AWQ),
LLaMA3.1-70B shows particularly strong improvements in mathematical reasoning when using
COLA versus random WikiText samples, suggesting that larger models’ complex reasoning capabili-
ties are especially sensitive to calibration data representativeness in quantization scenarios. We also
observe that the LLaMA3.1-70B model consistently achieves better perplexity scores than Qwen2.5-
14B across all calibration methods, despite the latter having worse capability scores, highlighting that
perplexity alone is not always predictive of downstream task performance. For code generation tasks,
the Qwen2.5-32B model with AWQ compression achieves remarkable performance (73.12% with
COLA), showing that certain model architectures may have specialized capabilities that can be better
preserved through optimized calibration data. The consistent improvements across different model
architectures and sizes validate that our approach’s core mechanism—maximizing representativeness
and diversity in activation space—is a foundational principle for effective calibration data curation
that generalizes across the model size spectrum.

I Generalizability to Other LLM Compression Methods

Considering our observations and discussion regarding the optimal calibration data is based on the
pre-choosen four LLM compression methods, the generalizability of our proposed COLA framework
to other models warrants the further validation. Thus, we integrate three recent pruning methods
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RIA [Zhang et al., 2024], LLM-Pruner [Ma et al., 2023], LLM-Streamline [Chen et al.], and
two quantization methods SmoothQuant [Xiao et al., 2023], FlatQuant [Sun et al., 2024b], with
COLA. Following Table 2 in the main body, we also take the WikiText, C4, and SlimPajama as
the original calibration data sources. As shown in Table 10, our COLA framework consistently
outperforms baseline calibration approaches across all evaluated compression methods for both
LLaMA3-8B and Qwen2.5-7B models. The performance improvements are particularly notable for
pruning methods like LLM-Pruner, where our approach achieves 44.65% on commonsense reasoning
tasks for LLaMA3-8B compared to 42.35% with WikiText random sampling, representing a 2.30
percentage point improvement. For quantization methods, FlatQuant with COLA achieves the best
mathematical reasoning performance on Qwen2.5-7B at 44.25%, outperforming random WikiText
calibration by 1.60 percentage points. We observe that the effectiveness of COLA generalizes well
across different compression paradigms, with several interesting patterns emerging. The structured
pruning method RIA shows higher sensitivity to calibration data quality than the unstructured
pruning approach SparseGPT examined in the main paper, with RIA seeing a 2.27 percentage point
improvement in commonsense reasoning for LLaMA3-8B when using COLA instead of WikiText
random sampling. This suggests that methods targeting specific structural components may benefit
more from optimal activation coverage in calibration data. For quantization methods, we find that
FlatQuant, which utilizes flatness-aware quantization, shows better preservation of mathematical
reasoning capabilities on Qwen2.5-7B (44.25% with COLA) compared to SmoothQuant (39.86% with
COLA), highlighting that more sophisticated quantization approaches can better leverage optimized
calibration data. Notably, code generation performance on Qwen2.5-7B with FlatQuant shows
dramatic improvements (58.04% with COLA vs. 56.48% with WikiText), indicating synergistic
effects between certain compression algorithms and our activation-aware calibration approach. These
results demonstrate that the principles of representativeness and diversity in activation space that
underpin our COLA framework are fundamental to effective calibration data curation, irrespective
of the specific compression mechanism employed. The consistent improvements across diverse
compression methods validate the general applicability of our approach and suggest that it can be
incorporated as a standard preprocessing step in LLM compression pipelines to enhance capability
preservation regardless of the chosen compression technique.

J Pilot Exploration on COLA Pipeline Automation

While Stage 1 of COLA does incorporate domain knowledge (e.g., selecting MathQA for math
capability), our framework is not restricted to hard-coded, manually defined mappings. In practice,
the capability-domain correlation can be inferred using lightweight proxy evaluations. For instance, a
user can evaluate a small subset of target benchmark tasks using compressed models calibrated on
each candidate dataset, measuring capability preservation scores as a proxy for correlation. In this
part, we explore integrating lightweight proxy evaluation method, which can further automate and
strengthen Stage 1 (capability–domain correlation) in our COLA framework.

J.1 Reliability of Proxy-based Coverage Estimation

Table 11: Correlation between proxy-based cover-
age values and that obtained from full evaluations.

Capability Proxy vs. Full Eval Correlation (r)
Commonsense 0.97

Math 0.93
Code 0.91

We first validated whether proxy evaluation
can reliably estimate capability–domain correla-
tion. Specifically, for each candidate calibration
dataset, we selected only 32 samples to cali-
brate a compressed model and evaluated it on a
small set of representative benchmarks (one per
capability: BoolQ for commonsense, GSM8K
for math, HumanEval for code). The relative
performance scores obtained from these proxy
evaluations were then used as the coverage(S, c) term in Equation 1 of Section 4.2. To verify the
reliability of these proxy-based coverage values, we measured their correlation with the coverage
values obtained from full evaluations (average correlation coefficients between proxy scores and full
evaluation scores over 5 runs), as shown in the Table 11. These high correlations confirm that proxy
evaluation provides a reliable and efficient estimate of capability–domain correspondence.
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Table 12: COLA Performance comparison between full coverage and proxy-based coverage.

Compression Method Coverage Source PPL↓ CS↑ Math↑ Code↑
AWQ (4-bit) Full Eval 15.41 67.42 37.85 40.17
AWQ (4-bit) Proxy Eval 15.46 67.35 37.62 40.05

SparseGPT (50%) Full Eval 19.31 44.23 20.12 16.14
SparseGPT (50%) Proxy Eval 19.35 44.18 20.05 16.02

Table 13: Capability preservation effects under further SFT of different calibration data approaches.
The best performing approach under each capability is in bold.

Compression Calibration Data LLaMA3-8B
PPL↓ CS↑ Math↑ Code↑

AWQ (4-bit)

WikiText (random) 15.73 66.67 37.92 39.78
C4 (random) 15.41 67.54 38.45 40.59
SlimPajama (random) 15.56 67.87 38.63 40.32
Self-Gen 15.55 68.29 38.90 40.64
COLA 15.31 68.88 39.67 41.32

SparseGPT (50%)

WikiText (random) 19.93 42.54 19.82 15.68
C4 (random) 19.46 43.30 20.17 15.92
SlimPajama (random) 19.41 43.23 20.35 16.09
Self-Gen 19.61 43.57 19.82 16.34
COLA 18.83 44.85 21.79 16.96

Wanda (4:8)

WikiText (random) 33.21 41.76 19.15 14.91
C4 (random) 32.82 41.80 19.45 15.42
SlimPajama (random) 32.73 41.89 19.75 15.58
Self-Gen 32.83 42.97 19.92 15.25
COLA 32.21 43.52 20.48 16.39

GPTQ (4-bit)

WikiText (random) 16.26 65.89 31.69 35.31
C4 (random) 15.94 66.53 32.20 36.43
SlimPajama (random) 16.28 66.76 33.20 35.71
Self-Gen 16.29 67.35 32.92 36.28
COLA 15.60 68.39 34.16 37.17

J.2 End-to-End COLA Performance with Proxy-based Coverage

To further validate its practicality, we replaced the full evaluation coverage in Stage 1 of COLA with
the proxy-based coverage values, then ran the complete COLA pipeline under the same experimental
setup as Table 2 of the paper. Due to time limitation, we only conduct experiments on LLaMA3-8B.
Table 12 shows representative results: The proxy-based COLA achieves nearly identical performance
to the original COLA (average gap ≤ 0.2 percentage points), while significantly reducing Stage 1
computation cost and avoiding manual heuristics.

These results demonstrate that: 1) Proxy evaluation can accurately estimate capability–domain
correlation. 2) When integrated into COLA, it preserves almost all performance benefits of the full
evaluation version. 3) This enhancement greatly improves the automation and scalability of our
framework for unseen datasets.

K Capability Preservation under Domain Shift like Further SFT

To evaluate if our COLA can still effectively help compressed models keep capabilities even under
domain drift, we conduct instruction finetuning to various compressed models with Alpaca dataset.
We take LLaMA3-8B as the base model. From results shown in Table 13, we can notice that though
further instruction finetuning with Alpaca can help recover compressed model capabilities to some
extent, our COLA can still ensure the better capability preservation effect than other calibration data
curation baselines even after futher supervised finetuning.
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Table 14: Computation overhead of COLA breakdown and best-performing baseline Self-Gen.

Models Self-Gen COLA Ramdom Projection COLA K-Means Overall COLA
Time Consumption

LLaMA3-8B 2.58 min 3.62 min 1.94 min 6.35 min
Qwen2.5-7B 2.35 min 3.21 min 1.80 min 5.54 min

Peak Memory Usage

LLaMA3-8B 6.19 GB 7.70 GB 1.52 GB 7.90 GB
Qwen2.5-7B 5.65 GB 7.33 GB 1.26 GB 7.52 GB

L Computation Overhead Analysis

As mentioned in the Section 4.2, the use of random projection and K-means is motivated by their
computational efficiency, which makes them more suitable for our activation-space sample selection
than other alternatives. To further quantitatively analyze computation and storage cost of COLA
breakdown and the representative baseline Self-Gen, we provide the statistical results in Table 14.
Note these results are averaged over four studied compression methods in the main text, corresponding
to the general deployment scenario in Table 2. From the table, these overheads remain modest,
especially considering they are one-time offline costssure and only required for curating a compact
calibration set. Moreover, they are significantly lower than the compute/memory overhead of any
training-involved compression methods.

Table 15: COLA Performance comparison between full coverage and proxy-based coverage.

Compression Method WikiText (%) C4 (%) SlimPajama (%) Total Samples
SparseGPT (50%) 38 35 27 128
Wanda (4:8) 39 33 28 128
GPTQ (4-bit) 27 44 29 128
AWQ (4-bit) 24 45 31 128

M Proportion of Each Dataset Selected by COLA

We provide the detailed breakdown of dataset proportions selected by our COLA framework for
each compression method in Table 15 (Corresponding to experiments in Table 2). From this table,
we can find that each compression method shows different sensitivities to various capabilities: 1)
Higher C4 proportion for quantization methods (GPTQ: 44%, AWQ: 45%): Quantization methods
are particularly vulnerable to code generation degradation due to precision loss in complex reasoning
patterns, requiring more C4 data to guide optimal quantization parameter selection for preserving
code synthesis capabilities. 2) Balanced distribution for pruning methods with slight WikiText
emphasis: Pruning methods affect all capabilities more uniformly by directly removing weights,
necessitating balanced calibration coverage with slight WikiText emphasis to maintain fundamental
language modeling stability during weight elimination.

These proportions were validated through ablation studies showing that deviation from these ratios
by ± 10% results in non-negligible averaged 0.7-1.2 percentage point performance drops across key
capabilities.

N Discussion on Context Length and Sample Size Ranges

While we acknowledge that recent LLMs support context lengths of up to 32K (K=1024), most
existing LLM compression works, including AWQ and Wanda, operate within a calibration sequence
length of 2048 or shorter. Our choice of 2048 tokens in the main experiments aligns with this
established setup and is sufficient to observe meaningful performance trends. Importantly, as shown
in Figure 2, performance gains often plateau or even degrade beyond this length for certain tasks
and methods (e.g., non-monotonic patterns in code generation with AWQ), suggesting that longer
calibration data may not yield additional benefit and can even introduce noise. In fact, 2048 length
has been enough for accommodating reasoning chains for many normal questions. Similarly, max
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Table 16: Capability preservation effects under extended context lengths and sample sizes. AWQ is
taken as the compression scheme.

Evaluation Context Length Sample Size
4K 8K 16K 32K 0.5K 1K 2K 4K

PPL↓ 15.85 15.91 15.86 16.03 16.38 16.26 16.52 16.57
CS↑ 65.20 65.11 65.12 65.08 65.43 65.39 65.39 65.25
Math↑ 36.51 36.42 36.30 35.96 35.40 35.21 35.32 35.18
Code↑ 38.96 39.40 36.95 36.22 40.21 40.05 39.67 38.82

sample size of 256 is the common setting in previous works like AWQ and Wanda. Besides, as
detailed in Figure 3, we observe diminishing returns beyond 128 samples for most capabilities. Larger
sample sizes not only increase computational cost but can introduce variance that hinders capability
preservation, especially evident in AWQ and GPTQ where performance occasionally drops as more
samples are added. Therefore, we focus on the range of 16 to 256 samples to balance informativeness
and practicality.

To further validate such points, we conduct the experiments with longer context and larger sample
size. Due to resource limitation, we only run AWQ and the results are as shown in Table 16. From
the table, we may find further increasing context length/sample size does not bring obvious additional
benefit at least for our evaluation benchmarks. In fact, it may even result in slight performance drop
and significant computation overhead, as discussed above.

Table 17: The performance of different LLMs before applied to any compression methods.

Model Perplexity Commonsense Score Math Score Code Score
LLaMA3-8B 15.37 65.63 38.98 43.03
Qwen2.5-7B 16.46 66.82 48.28 50.91

O Pre-compression Performance of Studied LLMs

To facilitate a more comprehensive comparison, we supplement the performance of each model
before applied to any compression methods in Table 17.

P Fundamental Difference from Pretraining & SFT Data Curation

Here, we would like to clarify why calibration data curation in post-training compression differs from
pretraining and SFT data curation:

1. Objective and Stage Difference: Pretraining and SFT data aim to teach the model capabilities
from scratch or to align them with specific tasks, and occur during the model training stage. In contrast,
calibration data is used in a post-training setting, where the model’s capabilities are already learned,
and the goal is to preserve these capabilities during compression (e.g., pruning or quantization). This
is particularly crucial because post-training methods do not update weights via gradient descent,
making the data-dependent preservation effect more sensitive, requiring more careful calibration data
selection.

2. Scale and Constraints: Pretraining/SFT typically leverage large-scale corpora (e.g., hundreds
of GBs TBs) to improve generalization. In comparison, calibration data is extremely limited in size
(often ¡1K samples) and must be carefully curated to maximize activation representativeness and
diversity, which we show are critical for effective capability preservation.

3. Mechanistic Distinction: As detailed in Sections 3, 4 and Appendix E, we demonstrate that the
utility of calibration data lies in its ability to activate critical patterns in the model’s learned parameter
space. This is distinct from the information distribution coverage goals of pretraining/SFT data,
which is less related to the model itself. We further formalize and operationalize this insight in our
proposed COLA framework, which systematically selects calibration samples based on activation-
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space clustering, a process not applicable or meaningful in the pretraining phase considering its
initialization from scratch.

4. Empirical Evidence: Our extensive experiments (see Table 2 and Figure 2, 3, 4, 5, 6) show that
even small changes in calibration data (e.g., format, domain, language) can lead to larger drop than
changing compression method on specific capabilities, which is rarely observed in pretraining or SFT
scenarios. This further reinforces that calibration data curation principles should be capability-specific
and post-training aware.

To further illustrate the fundamental distinction, we provide the following analogy: Calibration data
is like a ”diagnostic test”, whose purpose is to evaluate whether the model’s internal functions and
capabilities in concerned domains are preserved after compression, by systematically triggering a
wide range of activation patterns. This, in turn, guides compression methods to focus on preserving
the most vulnerable or degraded capabilities (large activation discrepancy between original and
compressed models). In contrast, pretraining and SFT data resemble a ”textbook”, designed to teach
the model new knowledge or skills, or to adjust its behavior. Accordingly, good calibration data
focuses on diverse, clean examples that elicit different model capabilities, emphasizing quality over
quantity. Meanwhile, good pretraining/SFT data requires both scale and coverage, emphasizing
quantity plus quality to ensure robust generalization and task performance. For example, for enhancing
model math capabilities with SFT, we may need 10K+ samples. However, to preserve model learned
math capabilities during post-training compression, we only need to ensure selected calibration
data samples covering each subcategory of math, thus about hundreds of samples are enough. This
difference in purpose and design principle further supports the view that calibration data curation is a
unique and distinct challenge in the LLM lifecycle.

Q Examples of Curated Calibration Data for General Deployment

To illustrate the diversity and representativeness of calibration data selected by our COLA framework
for general deployment scenarios, we present several examples of high-quality calibration samples in
Figure 10, 11, 12, 13, 14, 15. In the first stage of COLA, we use a balanced mixture of WikiText,
C4, and SlimPajama as the source data, as mentioned in the Section 4.2. In the second stage, we
filter out the samples whose lengths are less than 256 tokens. Meanwhile, we favor the samples with
reasoning chains and convert those with implicit chains in the text passage to the explicit format. As
for the third stage, we follow the descriptions in the main body. From the provided figures, these
samples demonstrate the range of content types, language patterns, reasoning formats, reasoning
difficulties, and knowledge domains that effective calibration data should cover to preserve various
LLM capabilities during compression.

R Limitation Analysis

While our work provides comprehensive insights into calibration data’s impact on LLM compression,
several limitations should be acknowledged:

Model Coverage. Our experiments focus on two specific LLMs (LLaMA3-8B-Instruct and
Qwen2.5-7B-Instruct) and four compression methods. The findings may not generalize to other
architectures, especially smaller models or those with specialized designs like mixture of experts or
linear attention.

Capability Evaluation Breadth. Despite evaluating multiple capabilities, our benchmarks primar-
ily assess language modeling, general commonsense reasoning, mathematics, and code generation.
Other important capabilities like multimodal understanding, factuality, and temporal reasoning remain
unexplored.

Computational Constraints. Due to computational limitations, we restricted our experiments
to 50% pruning ratio and 4-bit quantization. Effects might differ at more aggressive compression
settings or with alternative techniques like distillation.
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Long-term Stability. Our evaluation assesses immediate post-compression performance, not long-
term stability across model updates or domain shifts. This leaves open questions about the durability
of capability preservation over time.

Framework Generalizability. While our COLA framework shows promising results, its effective-
ness across more diverse deployment scenarios or with emerging compression techniques remains to
be verified.

Theoretical Foundation. Our work is primarily empirical, lacking formal theoretical guarantees
about optimal calibration data characteristics or minimum requirements for capability preservation.

S Ethics Statement

This research focuses on improving the efficiency of large language models through better compres-
sion techniques, which has positive ethical implications for accessibility and environmental impact.
By enabling more efficient deployment of LLMs, our work contributes to reducing computational
resource requirements and energy consumption. Our research does not involve human subjects,
personal data collection, or the creation of potentially harmful technologies. The capabilities we aim
to preserve are general reasoning, mathematics, and code generation, which are core to beneficial
AI applications. All models, datasets, and benchmarks used in this research are publicly available
with appropriate licenses. We properly credit original creators throughout the paper and acknowledge
their contributions. We recognize that more efficient LLM deployment could accelerate AI adoption,
potentially raising concerns about job displacement or misuse. However, our work focuses on the
technical aspects of compression rather than specific applications, and the benefits of wider access to
efficient AI systems outweigh potential risks.

T Declaration of LLM Usage

We want to clarify that while our research focuses on large language models as subjects of study
for compression techniques, we did not use any LLMs in our research methodology or analysis
process. All core method development, experimental design, statistical analyses, and theoretical
frameworks presented in this paper were developed entirely by the human researchers without LLM
assistance. For writing assistance only, we used a general-purpose LLM (Claude 3.7 Sonnet) for
language refinement and improving the clarity of our descriptions of experimental procedures and
related work. However, all scientific content, technical details, experimental results, interpretations,
and conclusions were independently generated, verified, and formulated by the authors. The LLMs
referenced throughout our paper (LLaMA3-8B-Instruct, Qwen2.5-7B-Instruct, etc.) were strictly the
subjects of our compression experiments, not tools used to conduct the research itself. No LLMs
were used to generate code for our experiments, analyze our experimental data, or influence any
research decisions that would impact the scientific contributions or findings presented in this paper.

31



Example 1: Encyclopedic Knowledge with Structured Information

Alan Mathison Turing OBE FRS (23 June 1912 – 7 June 1954) was an English mathematician, computer
scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in
the development of theoretical computer science, providing a formalization of the concepts of algorithm
and computation with the Turing machine, which can be considered a model of a general-purpose
computer. He is widely considered to be the father of theoretical computer science and artificial
intelligence.
Born in Maida Vale, London, Turing was raised in southern England. He graduated at King’s College,
Cambridge, with a degree in mathematics. Whilst he was a fellow at Cambridge, he published a proof
demonstrating that some purely mathematical yes–no questions can never be answered by computation
and defined a Turing machine, a theoretical device that manipulated symbols on a strip of tape according
to a table of rules. This model would later become foundational in computer science.
During the Second World War, Turing worked for the Government Code and Cypher School (GC&CS)
at Bletchley Park, Britain’s codebreaking centre that produced Ultra intelligence. For a time he led
Hut 8, the section that was responsible for German naval cryptanalysis. Here, he devised a number of
techniques for speeding the breaking of German ciphers, including improvements to the pre-war Polish
bombe method, an electromechanical machine that could find settings for the Enigma machine.

Figure 10: Example of a calibration sample showcasing encyclopedic knowledge with structured
factual information, which helps preserve commonsense reasoning capabilities.

Example 2: Web-Crawled Content with Code Elements

The Fibonacci sequence is one of the most famous formulas in mathematics. Each number in
the sequence is the sum of the two numbers that precede it. So, the sequence goes: 0, 1, 1, 2,
3, 5, 8, 13, 21, 34, and so on.
The mathematical equation describing it is: Fn = Fn−1 + Fn−2

Here’s a simple implementation in Python:

def fibonacci(n):
# Return the nth Fibonacci number
if n <= 0:

return 0
elif n == 1:

return 1
else:

a, b = 0, 1
for _ in range(2, n + 1):

a, b = b, a + b
return b

# Print the first 10 Fibonacci numbers
for i in range(10):

print(fibonacci(i))

The Fibonacci sequence has fascinating applications in various fields: - In nature, the
Fibonacci sequence appears in the branching of trees, the arrangement of leaves on a stem,
and the spirals of shells. - In art and architecture, the golden ratio (approximately 1.618),
which is derived from the Fibonacci sequence, has been used in compositions. - In computing,
the Fibonacci sequence is often used as a benchmark for testing the performance of algorithms
and systems.

Figure 11: Example of a calibration sample containing code elements and mathematical concepts,
which helps preserve code generation capabilities.
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Example 3: Multi-domain Scientific Content

Title: Understanding Climate Feedback Mechanisms
Climate feedback mechanisms are processes that can either amplify or diminish the effects of climate
forcings. A feedback that increases an initial warming is called a positive feedback. A feedback that
reduces an initial warming is a negative feedback.
One of the most significant positive feedback mechanisms is the water vapor feedback. As the
atmosphere warms, it can hold more water vapor, which is a potent greenhouse gas. This additional
water vapor causes further warming, creating a positive feedback loop. According to climate models,
water vapor feedback approximately doubles the warming that would occur due to increased CO2 alone.
Another critical positive feedback is the ice-albedo feedback. Ice and snow have high albedo, meaning
they reflect a large portion of incoming solar radiation back to space. As global temperatures rise, ice
and snow cover decreases, revealing darker land or ocean surfaces underneath. These darker surfaces
have lower albedo and absorb more solar radiation, leading to additional warming.
Not all feedbacks are positive. For example, the lapse rate feedback is negative in the tropics. As the
surface warms, the upper troposphere warms even more. This increased warming with height reduces
the greenhouse effect, providing a negative feedback.
Cloud feedbacks are particularly complex and remain one of the largest sources of uncertainty in climate
projections. Different cloud types can have different effects—low clouds primarily reflect solar radiation
(cooling effect), while high clouds mainly trap outgoing longwave radiation (warming effect).
Understanding these feedback mechanisms is crucial for accurately predicting future climate change
and developing effective mitigation strategies.

Figure 12: Example of a calibration sample with scientific content that helps preserve reasoning
capabilities in specialized domains.

Example 4: Multi-lingual Commonsense Sample

English: A scientist is conducting an experiment with a new chemical compound. She needs to keep it
at exactly 0°C. What should she use?
Response: An ice bath (mixture of ice and water) would be ideal as it maintains a stable temperature of
0°C as long as both ice and water are present.
Chinese: 一位科学家正在用一种新的化合物做实验。她需要将其保持在恰好0°C。她应该使用
什么？
回答:冰水浴（冰和水的混合物）将是理想的选择，因为只要冰和水同时存在，它就能维持稳
定的0°C温度。
Español (Spanish): Una cientı́fica está realizando un experimento con un nuevo compuesto quı́mico.
Necesita mantenerlo exactamente a 0°C. ¿Qué deberı́a usar?
Respuesta: Un baño de hielo (mezcla de hielo y agua) serı́a ideal ya que mantiene una temperatura
estable de 0°C mientras haya tanto hielo como agua presentes.
Français (French): Une scientifique mène une expérience avec un nouveau composé chimique. Elle
doit le maintenir exactement à 0°C. Que devrait-elle utiliser?
Réponse: Un bain de glace (mélange de glace et d’eau) serait idéal car il maintient une température
stable de 0°C tant que la glace et l’eau sont toutes deux présentes.

Figure 13: Example of a multi-lingual calibration sample to preserve cross-lingual capabilities.
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Example 5: Code Generation with Explicit Reasoning Chains

Task: Create a function that finds all palindromic substrings in a given string.
Content:

def find_all_palindromic_substrings(s):
"""
Find all palindromic substrings in a given string.

Args:
s (str): The input string

Returns:
list: A list of all palindromic substrings

"""
result = []
n = len(s)

# Helper function to expand around center
def expand_around_center(left, right):

while left >= 0 and right < n and s[left] == s[right]:
result.append(s[left:right+1])
left -= 1
right += 1

# Check each possible center position
for i in range(n):

# For odd length palindromes
expand_around_center(i, i)

# For even length palindromes
expand_around_center(i, i+1)

return result

# Example usage
input_str = "banana"
palindromes = find_all_palindromic_substrings(input_str)
print(palindromes) # Output: [’a’, ’b’, ’n’, ’a’, ’n’, ’a’, ’ana’, ’anana’]

Reasoning Steps:

1. We need to find all palindromic substrings, which are strings that read the same forward and
backward.

2. A palindrome can be expanded from its center, so we can check each position as a potential
center.

3. There are two types of palindromes: odd length (like ”aba”) and even length (like ”abba”).

4. For odd-length palindromes, we start with a single character as the center.

5. For even-length palindromes, we start with two adjacent characters.

6. We expand around each center as long as the characters at both ends match.

7. The time complexity is O(n2) and space complexity is O(n), where n is the length of the
string.

Figure 14: Example of a calibration sample with code and explicit reasoning for code generation
capability preservation.
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Example 6: Operation Research Problem with Converted Explicit Reasoning Chains

Task: Solve the following optimization problem and explain each step in detail.
Content: Consider a manufacturing company that produces two types of products: A and B. Each unit
of product A requires 2 hours of labor and 1 unit of raw material, while each unit of product B requires
1 hour of labor and 3 units of raw material. The company has 100 hours of labor and 120 units of raw
material available per week. The profit is $60 per unit for product A and $40 per unit for product B.
How many units of each product should be manufactured to maximize profit?
Explicit Chain of Reasoning:

1. Define variables: Let x be the number of units of product A and y be the number of units of
product B.

2. Formulate the objective function: Maximize P = 60x+ 40y (profit function)

3. Identify constraints:

• Labor constraint: 2x+ y ≤ 100 (hours)
• Material constraint: x+ 3y ≤ 120 (units)
• Non-negativity: x ≥ 0, y ≥ 0

4. Solve graphically by plotting constraints and finding corner points: (0, 0), (0, 40), (30, 40),
(50, 0)

5. Calculate profit at each point:

• P (0, 0) = 0

• P (0, 40) = 1, 600

• P (30, 40) = 3, 400

• P (50, 0) = 3, 000

6. The maximum profit is $3,400, achieved by producing 30 units of product A and 40 units of
product B.

Figure 15: Example of a calibration sample with explicit reasoning chains converted from previous
text passages for mathematical problem-solving capability preservation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Appendix R.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not provide the theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 3.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Please refer to our provided anonymous Github repository https://github.
com/BokwaiHo/COLA.git.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section 3.1 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Please see Appendix S.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please see Section 3.1, Section 3.2, Section 3.3, Appendix C, and Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Please see Appendix T.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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