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Abstract

Vision foundation models pre-trained on massive
data encode rich representations of real-world
concepts, which can be adapted to downstream
tasks by fine-tuning. However, fine-tuning foun-
dation models on one task often leads to the is-
sue of concept forgetting on other tasks. Recent
methods of robust fine-tuning aim to mitigate for-
getting of prior knowledge without affecting the
fine-tuning performance. Knowledge is often pre-
served by matching the original and fine-tuned
model weights or feature pairs. However, such
point-wise matching can be too strong, without ex-
plicit awareness of the feature neighborhood struc-
tures that encode rich knowledge as well. We pro-
pose a novel regularization method Proxy-FDA
that explicitly preserves the structural knowledge
in feature space. Proxy-FDA performs Feature
Distribution Alignment (using nearest neighbor
graphs) between the pre-trained and fine-tuned
feature spaces, and the alignment is further im-
proved by informative proxies that are generated
dynamically to increase data diversity. Experi-
ments show that Proxy-FDA significantly reduces
concept forgetting during fine-tuning, and we find
a strong correlation between forgetting and a dis-
tributional distance metric (in comparison to L2
distance). We further demonstrate Proxy-FDA’s
benefits in various fine-tuning settings (end-to-
end, few-shot and continual tuning) and across
different tasks like image classification, caption-
ing and VQA.
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1. Introduction
Vision foundation models like CLIP (Radford et al., 2021)
and DINOv2 (Oquab et al., 2024) pre-trained on large
amounts of data demonstrate remarkable performance
across various tasks and data distributions. Such foun-
dation models are known to have learned vast knowledge
on real-world concepts that can serve as a useful prior for
downstream task adaptation via fine-tuning. Existing fine-
tuning methods include end-to-end finetuning, linear prob-
ing, prompt tuning (Zhou et al., 2022a;b), and adapter learn-
ing (Gao et al., 2021). While these methods prove effective,
empirical evidence shows that they frequently suffer from an
undesirable effect called concept forgetting (Mukhoti et al.,
2024). Forgetting occurs when a fine-tuned model overfits
on the downstream task, and unlike its pre-trained counter-
part, significantly loses the ability to recognize concepts on
other tasks.

Concept forgetting has driven recent research on robust
fine-tuning. The goal is to preserve the pre-trained knowl-
edge and perform well on downstream tasks. One sim-
ple approach is to ensemble models before and after fine-
tuning (Wortsman et al., 2022b). Alternative methods use
regularization techniques to constrain the fine-tuned model
to remain close to the original foundation model in either
weight space (Li et al., 2018) or feature space (Mukhoti
et al., 2024). Feature-space regularization by matching the
pre-trained and fine-tuned features across samples shows
a more promising effect in reducing forgetting, since it di-
rectly minimizes the change in input-output behaviour of
the model. One key assumption behind such regularization
is that the L2 feature-space distance is a good indicator of
the similarity of encoded concepts in different models.

We argue that aligning individual feature points imposes too
strong of a constraint. Without an explicit insight of feature
neighborhoods, the concepts preserved point-wise are found
to be limited, resulting in sub-optimal performance of for-
getting reduction. Here we suggest that it is desirable to ex-
plicitly inform the fine-tuning process of the local structure
of feature neighborhoods. By preserving this neighborhood
structure with a structure-wise regularization term, the rich
knowledge encoded in the local structure of the original
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Figure 1: (a) Motivation: alleviating concept forgetting during model fine-tuning by a novel feature regularization method–
Proxy-FDA (Proxy-based Feature Distribution Alignment). (b) Proxy-FDA aligns the pre-trained and fine-tuned feature
distributions by their local neighborhood structures, which is further aided by proxies (i.e., synthetic features). We show
Proxy-FDA indeed preserves the rich knowledge in local feature neighborhood (example visualization in Fig. 5).

feature space will be transferred to the fine-tuned one. As
a result, the fine-tuned model can forget significantly less
while still maintaining its downstream performance (Fig. 1).

The above idea motivates us to propose a new feature reg-
ularization term called Feature Distribution Alignment
(FDA). Specifically, we first model the structural relations of
pre-trained features using a nearest neighbor graph. Then we
transfer the graph to the fine-tuned feature space, where fea-
ture neighbors are pulled together while non-neighbors are
pushed away regardless of their labels. Such FDA process
enables sharing knowledge beyond class concepts (e.g., vi-
sual attributes) in local feature neighborhoods. Fig. 5 pro-
vides an example of the white color attribute of two dog
breeds mined from a local neighborhood on ImageNet. This
example represents the common-sense prior knowledge em-
bedded in a vision foundation model that is often richer
than the class labels on downstream datasets. Preserving
such knowledge (e.g., about color) during fine-tuning is im-
portant to maintain the generalizability of the foundation
model, which can facilitate recognizing unfamiliar classes
from different tasks. What is harmful is to just specialize on
the task at hand, since all information (e.g., color sensitivity)
but its class label will be discarded.

Another key contribution of this paper is an improvement to
FDA, with the introduction of a new regularization called
Proxy-FDA, which uses proxies as synthetic features. This
full method is particularly useful on data-deficient fine-
tuning tasks (such as few-shot ones), where the limited task
data do not allow sufficient alignment of complex feature
distributions. To further increase data diversity, Proxy-FDA
learns to generate a set of instance-wise proxies both within
and outside a target feature’s local neighborhood. Fig. 5 ex-
emplifies some proxies that synthesize informative unseen
data or unseen class concepts. We empirically show that the
generated proxies improves FDA with richer data/concepts,

thereby further reducing concept forgetting.

We have extensive experiments of fine-tuning vision founda-
tion models end-to-end on ten classification tasks. Results
show that Proxy-FDA significantly outperforms other fine-
tuning baselines in preventing concept forgetting, without
hurting the downstream accuracy. We also find a strong
correlation between concept forgetting and a distance met-
ric OTDD – Optimal Transport Dataset Distance (Alvarez-
Melis & Fusi, 2020) which is ideal to measure the alignment
quality for feature distributions with local structures. Cru-
cially, the correlation between concept forgetting and the
OTDD metric indicates the need for some form of structure-
wise FDA to better mitigate forgetting. Results confirm
that our structure-wise Proxy-FDA forgets much less than
point-wise feature regularization (Mukhoti et al., 2024).

We further show Proxy-FDA can be plugged into various
prompt tuning methods for few-shot fine-tuning. In all cases,
Proxy-FDA shows superior performance and data efficiency
for lowering forgetting. Proxy-FDA also proves effective
on continual fine-tuning tasks, outperforming specialized
continual learning baselines. Lastly, we show the benefits of
Proxy-FDA when fine-tuning for tasks beyond classification,
like image captioning and VQA. Proxy-FDA also demon-
strates its utility in the domain of knowledge distillation.

In summary, our main contributions include:

• A novel regularization method, Proxy-FDA, that aligns
the local structures of feature distributions with learned
proxies, aiming to preserve concepts when fine-tuning
vision foundation models;

• Correlation analysis between concept forgetting and a
structure-aware distributional distance metric, OTDD,
which implicitly explains the success of our structure-
wise FDA method;
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• State-of-the-art performance on reducing forgetting in
various fine-tuning settings and across different tasks.

2. Related Work
Robust fine-tuning. End-to-end fine-tuning often suffers
from concept forgetting and degraded out-of-distribution
(OOD) performance. In the foundation model era, linear
probing or that followed by end-to-end tuning (Kumar et al.,
2022) are common remedies to maintain the OOD robust-
ness of a pre-trained model. Alternative methods either
ensemble the original and fine-tuned models (Wortsman
et al., 2022b;a) or use the contrastive pre-training loss di-
rectly for fine-tuning (Goyal et al., 2023). More recently,
Song et al. (2023) propose a method called FD-Align, which
trains a spurious feature classifier and maintains its output
consistency during fine-tuning. As a result, FD-Align sig-
nificantly improves the OOD accuracy. To prevent forget-
ting, regularization methods are often used to minimize the
model distance before and after fine-tuning in either weight
space (Li et al., 2018) or feature space (Mukhoti et al., 2024).
In few-shot settings, regularization is even more important.
For example, the prompt learning method CLIPood (Shu
et al., 2023) regularizes via temporal model ensembling,
while PromptSRC (Khattak et al., 2023b) directly regular-
izes the output features and logits between pre-trained and
prompt-tuned models. Nevertheless, all existing methods do
not explicitly account for feature neighborhood structures,
which we show is key for robust fine-tuning.

Feature and data distribution alignment. These tech-
niques have been explored in different contexts. At the core
of measuring distributional distances, Optimal Transport
(OT) (Villani, 2008) provides a principled approach to com-
pare data distributions in a geometrically meaningful way.
Given the similar nature of our FDA method that aligns the
“clustering” structures of distributions, we use an OT-based
distance metric OTDD (Alvarez-Melis & Fusi, 2020) to
measure FDA quality. Feature alignment is also key to Do-
main Adaptation (DA) (Wang & Deng, 2018). However,
most DA methods learn a separate domain-invariant feature
subspace to align domains implicitly, which differs from
our explicit FDA during fine-tuning. More related to our
method is the Knowledge Distillation (KD) field (Wang &
Yoon, 2021), where traditional KD methods match features
or probability distributions between teacher and student
models. Relation-based KD methods are particularly sim-
ilar to our high-level idea by distilling feature relations in
form of kNNs (Zhu et al., 2022), feature similarities (Park
et al., 2019; Passalis & Tefas, 2018; Tung & Mori, 2019;
Peng et al., 2019) and relative ranks (Chen et al., 2018).
Our Proxy-FDA can be seen as an alternative relational KD
method that distills both kNNs and similarities, and further
improves with proxy learning.

Proxy learning. This approach is widely adopted in deep
metric learning (Movshovitz-Attias et al., 2017; Kim et al.,
2020; Roth et al., 2022) to reduce the sampling complexity
of pure sample-based methods. Proxies are learned as class
prototypes to optimize sample-proxy distances in place of
sample-sample distances, resulting in faster convergence.
By contrast, our proxy learning is different in both imple-
mentation and motivation: we learn instance-wise proxies
via adaptive pooling of true samples; we also do not use the
proxies as sample stand-ins, but as rich augmentations for
improving FDA. This makes our approach more related to
those feature augmentation methods, such as by random
linear interpolation (Verma et al., 2019) and outlier feature
synthesis (Du et al., 2022; Tao et al., 2023). Empirically, our
method is more effective than these feature augmentation
methods by generating diverse augmented features from the
entire feature neighborhood.

3. Method
We aim for forgetting-free fine-tuning of vision foundation
models (e.g., CLIP and DINOv2), using feature-space regu-
larization based on Feature Distribution Alignment (FDA).
Specifically, given a pre-trained model fθ̂, we use the down-
stream dataset Dft to fine-tune the model into fθ. Our goal
is to specialize the fine-tuned model on Dft with low task
loss Ltask (e.g., cross-entropy loss for classification), whilst
preventing concept forgetting on any target dataset D ̸= Dft.
To prevent forgetting, we introduce an FDA-based regular-
ization term to the downstream task loss, which gives:

L =
1

B

B∑
i=1

(
Li

task + λLi
FDA

)
, (1)

where Li
FDA is the FDA loss for each sample i in a mini-

batch {i}Bi=1 of size B, and λ is a weighting parameter.

3.1. Feature Distribution Alignment (FDA)

Having defined the learning problem and its general loss
function, we now present our FDA method in detail. During
fine-tuning on Dft, we first use the pre-trained model fθ̂
and fine-tuned fθ to extract batch features X̂ ∈ Rd×B

and X ∈ Rd×B , respectively. Note X̂ = [x̂1, . . . , x̂B ]
are the pre-trained batch features with x̂i ∈ Rd, while
X = [x1, . . . ,xB ] are the features currently being fine-
tuned with xi ∈ Rd. To transfer the structural knowledge
in X̂ into X , we align the structural relations of X̂ and X
based on their nearest neighbor graphs.

Concretely, for each pre-trained feature point x̂i, we main-
tain its k-nearest neighbor set Ri = {j|x̂j ∈ kNN(x̂i)}
within the batch. Note |Ri| = K, and we will detail later
how to construct batches to facilitate the kNN search. This
way, we obtain an instance-wise batch partition from the
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 ŵ−
i

 {P+
i , ŵp+
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Figure 2: Batch construction and nearest neighbor graph transfer for our (a) FDA and (b) Proxy-FDA methods, both
regularizing the fine-tuned features {X+

i ,X−
i } using the pre-trained model fθ̂. (Proxy-) FDA loss penalizes local

distribution overlap between the positives X+
i and negatives X−

i (weighted by the associated similarities ŵ+
i and ŵ−

i ),
(with) and without using the generated proxies {P+

i ,P−
i } and their similarity estimates {ŵp+

i , ŵp−
i }. Fig. 6 shows the

network architecture of our proxy generator (details in Appendix B).

pre-trained model’s perspective, leading to the positive set
of neighbors X̂+

i = X̂(Ri) ∈ Rd×K and negative set of
non-neighbors X̂−

i ∈ Rd×(B−K−1). To form the com-
plete nearest neighbor graph, we further compute the cosine
similarities between pre-trained features ŵij = cos(x̂i, x̂j)
for j ∈ {1, . . . , B} and j ̸= i. Accordingly, we organize
them into similarity vectors for neighbors ŵ+

i ∈ RK and
non-neighbors ŵ−

i ∈ RB−K−1.

For efficient graph matching between X̂ and X , we choose
to simply transfer the neighbor indices Ri and similarities
{ŵ+

i , ŵ
−
i } from X̂ to X . This means neighbors in the

pre-trained feature space should remain neighbors in the
fine-tuned feature space. Hence among X , we similarly
have a positive set X+

i = X(Ri) ∈ Rd×K where the
identified neighbors are pulled together in the fine-tuned fea-
ture space, and a negative set X−

i ∈ Rd×(B−K−1) where
non-neighbors are pushed away. On the other hand, we as-
sociate the pre-trained feature similarities {ŵ+

i , ŵ
−
i } with

{X+
i ,X−

i } to preserve fine-grained feature neighborhood
structures. We will show that transferring both the neighbor
indices and similarities works better than only transferring
neighbor indices. Fig. 2(a) visualizes the high-level idea.

To capture the desired structures, we use the noise-resistant
Sigmoid loss (Zhai et al., 2023) to handle a variable number
of positives and negatives per batch:

Li
FDA

(
{X+

i ,X−
i }, {ŵ+

i , ŵ
−
i }

)
= (2)

1

(|X| − 1)

∑
xj∈X,j ̸=i

log

(
1 + e

wij

(
−

cos(xi,xj)

τ +b
))

,

where wij is a weighting parameter. wij equals ŵij if j ∈
Ri (i.e., weighting by ŵ+

i for neighbors), and −ŵij if j /∈
Ri (i.e., weighting by −ŵ−

i for non-neighbors). τ and b
are learnable parameters which are initialized in a similar

way as in (Zhai et al., 2023). The above FDA loss helps
to preserve local neighborhood structures in the fine-tuned
feature space, without involving class labels.

Batch construction and neighborhood size K. To have a
meaningful characterization and alignment of local neigh-
borhood structures, we need to ensure that each mini-batch
has diverse class distributions that may overlap locally in
the feature space, and that a sufficient number of neighbors
|Ri| = K are identified for each sample in a batch.

To meet the above requirements, we sample batch data in
a class-balanced manner, with n samples for each of the
m classes. For a fixed batch size B = m · n that best fits
in the available GPU memory, we choose a high value of
m to increase the diversity of class concepts in batch, but
at the cost of reducing the number of examples per class n.
By default, m = 16 and n = 4. More critically, we perform
hard class mining to construct batches where samples from
different classes are similar (details in Appendix A). This
enables meaningful kNN search within a batch.

For the neighborhood size K, we choose K > n to guaran-
tee that there is more than one class in any identified local
feature neighborhood Ri. This way, each neighborhood in-
cludes an adaptive selection of “small clusters” from related
classes. FDA between such neighborhoods will encourage
transferring high-level knowledge beyond class concepts.
Fig. 5 exemplifies a common color attribute mined for two
similar dog classes. Preserving this knowledge that is em-
bedded in foundation models is important to prevent forget-
ting during fine-tuning. Note it is possible that the inter-class
similarity is not high enough in Ri (thus relatively low ŵij

for inter-class samples and there are no shared properties
between neighboring classes). In this case, FDA reverts
back to aligning class semantics.
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3.2. Proxy-FDA

One challenge with FDA is that the downstream dataset Dft
can be limited in both data size and diversity. In this case
Dft does not allow adequate FDA, thereby preserving only
limited concepts from those learned during pre-training. To
address the data challenge, one could retrieve external data.
However, using external data will inevitably suffer from
higher compute/memory cost as well as various levels of
distributional shift. Here we propose a compute- and data-
efficient approach to improve downstream data diversity and
eventually improve FDA quality. Our approach involves
generating synthetic features or proxies on-the-fly from ob-
served fine-tuning data. Such generated proxies have no
distributional shift since they adapt to the considered feature
distribution. We leave sampling suitable external data for
FDA to future work.

For proxy synthesis, we learn to generate two-sets of
proxies P+

i = [p+
1 , . . . ,p

+
np+ ] ∈ Rd×np+

and P−
i =

[p−
1 , . . . ,p

−
np− ] ∈ Rd×np−

out of X+
i ∈ Rd×K and

X−
i ∈ Rd×(B−K−1) respectively. np+ and np− are made

proportional to the size of X+
i and X−

i using a scalar s,
see details in Appendix D. The proxies are learned to be
as diverse as possible but still lie in the corresponding true
feature manifold. Fig. 5 shows that both P+

i and P−
i can

synthesize unseen data/concepts. Such unseen information
will provide fine-grained regularization of the neighborhood
boundary, and will improve FDA with richer concepts.

Following the above intuitions, we define our proxy learning
loss Li

proxy = LP+
i
+ LP−

i
, where:

LP+
i
=

1

np+

np+∑
j=1

1

|X|
∑
xl∈X

log

1 + e
wl

(
−

cos(p
+
j

,xl)

τ +b

)(3)

+α · Lvar(P
+
i ),

LP−
i
=

1

np−

np−∑
j=1

1

|X|
∑
xl∈X

log

1 + e
wl

(
−

cos(p
−
j

,xl)

τ +b

)(4)

+α · Lvar(P
−
i ).

The first loss term constrains proxies P+
i and P−

i towards
the feature manifolds X+

i and X−
i . This is achieved us-

ing the binary label wl which, in case of LP+
i

, equals 1 if
xl ∈ X+

i and -1 if xl ∈ X−
i ; while in case of LP−

i
, is

the opposite. The variance loss Lvar(P ) maximizes proxy
diversity in form of 1/d

∑d
j=1 max(0, 1−

√
Var(Pj,:) + ϵ)

with ϵ being a small scalar. α is a weighting parameter.

In practice, we use Eq. (3-4) to train our proxy generator
online during the model fine-tuning process. This ensures
the generated proxies always adapt to the current feature
distribution. Fig. 6 and Appendix B detail the network

architecture of the proxy generator. At high level, con-
ditioned on X+

i and X−
i , our proxy generator is trained to

predict the instance-wise proxies {P+
i ,P−

i } and their sim-
ilarity estimates {ŵp+

i , ŵp−
i } all at once. Finally, we use

all the predictions to augment the true features {X+
i ,X−

i }
and similarities {ŵ+

i , ŵ
−
i }, arriving at our Proxy-FDA loss

for feature-space regularization (see also Fig. 2(b)):

Li
Proxy-FDA = Li

FDA

({
[X+

i ,P+
i ], [X−

i ,P−
i ]

}
,{

[ŵ+
i , ŵ

p+
i ], [ŵ−

i , ŵ
p−
i ]

})
,

L =
1

B

B∑
i=1

(
Li

task + λLi
Proxy-FDA

)
. (5)

4. Experiments
In this section, we benchmark concept forgetting and differ-
ent methods in 3 settings: end-to-end, few-shot and contin-
ual fine-tuning for image classification. We then move on to
fine-tuning tasks of image captioning and VQA, and lastly
to the application to knowledge distillation. Appendix D
studies the hyper-parameters of our Proxy-FDA method,
and Appendix E ablates the key components of Proxy-FDA.

Compute cost. Our Proxy-FDA mainly involves FDA and
proxy generation. The proxy generator is lightweight with
only one attention and two convolutional layers (totalling
23.6k parameters), which is negligible in comparison to the
foundation model size. Here we show our feature regulariza-
tion process only incurs a decent compute cost (on Nvidia
A100 GPU). For end-to-end and few-shot fine-tuning tasks,
averaged across the corresponding datasets, Proxy-FDA in-
creases the fine-tuning time by 17% and 21% respectively,
while FDA increases by 7% and 9%. Note Proxy-FDA does
not impact the inference stage, hence we maintain the same
FPS at the test time.

4.1. End-to-End Fine-tuning

Datasets. We follow (Mukhoti et al., 2024) to use 10 im-
age classification datasets: Stanford Cars (Krause et al.,
2013), CIFAR-10/100 (Krizhevsky, 2009), DTD (Cimpoi
et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stal-
lkamp et al., 2012), MNIST (LeCun et al., 2010), RE-
SISC45 (Cheng et al., 2017), SVHN (Netzer et al., 2011)
and ImageNet (Deng et al., 2009). These datasets include
various semantic concepts, thus are perfect to benchmark
forgetting of the rich pre-trained concepts.

Setting and baselines. The image encoder of CLIP model
(ViT-B/32) is fine-tuned end-to-end on the 10 datasets. We
compare with popular end-to-end fine-tuning methods all
using the cross-entropy loss as Ltask. The baselines include
naive fine-tuning and LP-FT methods (Kumar et al., 2022).
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Table 1: Test accuracy ALP of end-to-end fine-tuned model on each dataset and its average ∆LP computed over other
datasets. The image encoder of CLIP ViT-B/32 is used here. ∆LP denotes the change in ALP between pre-trained and
fine-tuned models on target dataset D, quantifying the level of concept forgetting. Higher ∆LP shows lower forgetting or
positive forward transfer (∆LP > 0).

Dataset Naive End-to-End LP-FT L2SP LDIFS FDA (ours) Proxy-FDA (ours)

ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑
Cars 83.48 -1.56 84.95 -0.63 83.87 0.47 85.26 -0.18 85.36 1.02 84.69 1.26
CIFAR10 97.73 -1.60 97.71 -0.81 97.66 1.16 97.24 1.18 97.53 1.55 97.61 1.63
CIFAR100 88.60 -0.96 88.41 -0.11 86.94 1.03 88.99 0.86 88.21 1.44 88.33 1.51
DTD 77.18 -3.01 72.18 -1.76 74.63 0.01 75.27 0.53 77.22 1.04 77.28 1.19
EuroSAT 98.76 -5.72 98.87 -3.75 98.20 -0.85 98.22 1.32 98.53 1.61 98.63 1.74
GTSRB 98.52 -5.90 98.53 -0.94 95.00 1.18 97.81 1.27 98.16 1.58 97.79 1.69
MNIST 99.67 -8.76 99.68 -6.02 99.18 1.49 99.52 2.64 99.43 2.76 99.49 2.81
RESISC45 95.76 -3.79 95.56 -2.27 94.13 0.66 95.13 0.90 95.31 1.18 95.63 1.43
SVHN 97.30 -11.12 97.50 -8.73 96.54 -2.11 96.95 -0.29 96.96 0.67 96.65 0.92
ImageNet 82.02 -1.26 82.12 -0.87 80.78 -0.10 82.21 0.35 81.93 1.05 82.16 1.22

Mean across 91.90 -4.37 91.55 -2.59 90.69 0.29 91.66 0.86 91.86 1.39 91.82 1.5410 datasets

Internal use only–do not distribute.
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Figure 3: Three metrics computed over the course of model fine-tuning (CLIP ViT-B/32) on EuroSAT: ∆LP (Top row), L2
feature-space distance (Middle row) and distributional distance metric OTDD (Bottom row), all between pre-trained and
fine-tuned models. Our (Proxy-)FDA achieves the best results in preventing concept forgetting on other datasets (highest
positive ∆LP) without hurting the downstream performance on EuroSAT. We also observe that concept forgetting measured
by ∆LP is more correlated to OTDD than L2 feature distance (see text for details).

They differ in the linear head initialization, with zero-shot
weights (text encodings of class name) and Linear Probe
(LP) weights respectively. While L2SP (Li et al., 2018)
and LDIFS (Mukhoti et al., 2024) add a point-wise regu-
larization between the original and fine-tuned models in
weight- and feature-space respectively. By contrast, our
(Proxy-)FDA imposes a structure-wise regularization in fea-

ture space. Note except for the naive fine-tuning baseline,
LP initialization is used for all methods including ours for a
fair comparison of different regularization techniques.

Metrics. When fine-tuning on dataset Dft, we report two
evaluation metrics: LP accuracy ALP on the test set of Dft
(i.e., the fine-tuning performance itself), and the change
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∆LP in ALP between pre-trained and fine-tuned models on a
different dataset D ≠ Dft. Negative ∆LP indicates concept
forgetting on D, while a positive value indicates positive
forward transfer. Clearly, the higher ∆LP the better. When
D = Dft, ∆LP on D simply denotes the change of down-
stream performance, and we expect ∆LP to increase over
the course of fine-tuning.

To gain insights on what impacts the concept forgetting
performance, we further monitor two distance metrics for
distribution alignment during fine-tuning: point-wise L2
distance between pre-trained and fine-tuned feature pairs,
and Optimal Transport Dataset Distance (OTDD) (Alvarez-
Melis & Fusi, 2020) that takes feature distribution structures
into consideration (details in Appendix C). Between the two
distance metrics, OTDD is generally more suited to measure
the alignment quality for feature distributions with local
structures as in our case.

Results. Table 1 compares ALP on each fine-tuning dataset
and the ∆LP averaged over other datasets. We observe that
FDA obtains a positive average ∆LP for all fine-tuning tasks,
thereby achieving a positive forward transfer. Proxy-FDA
further improves the average ∆LP consistently. This is not
the case for naive fine-tuning and LP-FT where the average
∆LP is all negative indicating concept forgetting. Point-wise
regularization methods L2SP and LDIFS obtain mostly pos-
itive ∆LP but significantly lower than our results, highlight-
ing the benefits of our structure-wise feature regularization
and proxy feature generation.

We also observe that our good performance on forgetting pre-
vention does not compromise (much) the downstream fine-
tuning accuracy ALP. The mean ALP (across 10 datasets)
of (Proxy-)FDA is (91.82) 91.86, which is only slightly
lower than that of naive fine-tuning 91.90 but outperforms
all other results. Overall, our structure-wise regulariza-
tion method achieves the best trade-off between concept
forgetting and downstream performance. Fig. 3 (top row)
exemplifies the fine-tuning task on EuroSAT, where (Proxy-
)FDA consistently outperforms other baselines in forgetting
prevention during fine-tuning (higher ∆LP), but has similar
performance on EuroSAT in the meantime.

Fig. 3 (middle and bottom rows) shows how L2 feature dis-
tance and OTDD change during EuroSAT fine-tuning. Over-
all, both the distance metrics are correlated to concept forget-
ting — fine-tuning methods with smaller L2 distance/OTDD
forget less with higher ∆LP, while methods with a larger
distance suffer more from forgetting with lower ∆LP. The
only exception to the overall trend is when we use L2 feature
distance to compare (Proxy-)FDA with LDIFS. We see that
(Proxy-)FDA, while having larger L2 distance than LDIFS,
still forgets less. On the contrary, (Proxy-)FDA consistently
gets lower OTDD. This suggests that the structure-aware

OTDD is a better indicator of concept forgetting com-
pared to the point-wise L2 distance. More crucially, the
fact that OTDD is more correlated to forgetting than L2
distance reaffirms that having some form of structure-wise
FDA can mitigate forgetting better. Finally, we note our
(Proxy-)FDA is only applied on EuroSAT samples, but the
mitigation of forgetting extends to all other datasets. This
indicates the generalizing effect of our feature regularization
method, which can preserve pre-trained knowledge without
requiring third party datasets during fine-tuning.

Table 5 in Appendix shows that our benefits still hold when
end-to-end fine-tuning happens with different architectures
of CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022),
DINOv2 (Oquab et al., 2024) and MAE (He et al., 2022).
Proxy-FDA consistently provides the highest ∆LP values
across foundation models and architectures, achieving posi-
tive forward transfer in all cases. Proxy-FDA also achieves
the best ALP in many cases, which is encouraging.

4.2. Few-shot Prompt Tuning

Datasets. We follow (Zhou et al., 2022b) to use 11
datasets, consisting of a wide range of visual concepts
again: ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei
et al., 2004), OxfordPets (Parkhi et al., 2012), Stanford-
Cars (Krause et al., 2013), Flowers102 (Nilsback & Zis-
serman, 2008), Food101 (Bossard et al., 2014), FGVC-
Aircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019)
and UCF101 (Soomro et al., 2012).

Settings and metrics. Prompt tuning is adopted for
parameter-efficient fine-tuning in the few-shot scenario.
We consider the two settings introduced in (Zhou et al.,
2022b): 1) Base-to-new class generalization within each
dataset, i.e., prompt tuning on the base class split as Dft,
and evaluating on the disjoint base and new class splits to
obtain ABase and ANew. To quantify concept forgetting on
the unseen new class split, we further report ∆New as the
change in ANew between pre-trained and prompt-tuned mod-
els – the higher ∆New the lower forgetting. 2) Cross-dataset
generalization with ImageNet for prompt tuning and other
10 datasets for evaluation. Similarly, we report both the test
accuracy A and accuracy change ∆A on each dataset to
quantify forgetting. For all experiments, we report results
as an average over three random seeds.

Implementation. We apply our Proxy-FDA regularization
to different prompt tuning baselines. For fair comparisons,
we use the same implementation details of each baseline,
including the prompt length, learning rate schedule and
tuning epochs for each dataset. By default, all methods use
16 shots per class to prompt tune the CLIP model (Radford
et al., 2021) with ViT-B/16.

7



Proxy-FDA

Table 2: Few-shot prompt tuning in the base-to-new class generalization setting (16 shots per class). AH denotes the
Harmonic mean of ABase and ANew. ∆New denotes the change in ANew between pre-trained and prompt-tuned CLIP models.
Higher ∆New shows lower level of concept forgetting on the new class split. On average, our Proxy-FDA consistently
improves ∆New for all prompt tuning methods, with competitive ABase at the same time. Full results in Table 6.

Prompt tuning without regularization Regularization-based

CoOp CoCoOp VPT MaPLe CLIPood PromptSRC

+Proxy-FDA ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Avg across
11 datasets

ABase 82.69 83.16 80.47 80.36 81.61 81.55 82.28 82.74 83.91 84.33 84.26 84.47
ANew 63.22 73.67 71.69 76.44 69.61 73.89 75.14 77.13 74.50 76.54 76.10 77.45
∆New ↑ -10.99 -0.55 -2.53 2.22 -4.61 -0.33 0.92 2.91 0.28 2.33 1.88 3.23
AH 71.66 78.13 75.83 78.35 75.14 77.53 78.55 79.84 78.93 80.25 79.97 80.81
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Figure 4: (a-b) The average ∆New with varying number of shots per class for prompt tuning in the base-to-new setting.
FDA achieves higher gains over the baselines in low-data regime, and our proxy learning further improves data efficiency.
(c) PromptSRC+Proxy-FDA scales better with data than end-to-end fine-tuning and its improved variants (FD-Align and
WiSE-FT) in the few-shot setting.

Results. In Table 2, we report results in the base-to-new
setting. Proxy-FDA is applied to two categories of methods:
1) regularization-free prompt tuning baselines, which learn
text prompts (CoOp (Zhou et al., 2022a), CoCoOp (Zhou
et al., 2022b)), image prompts (VPT (Jia et al., 2022)) or
both (MaPLe (Khattak et al., 2023a)). 2) regularization-
based prompt learners. CLIPood (Shu et al., 2023) main-
tains a weighted ensemble of the pre-trained and fine-tuned
models. State-of-the-art PromptSRC (Khattak et al., 2023b)
combines the ensembling strategy with both feature- and
logit- level regularization between the original and fine-
tuned models (but in a point-wise manner).

We can see from Table 2 that, averaged across 11
datasets, Proxy-FDA consistently improves the ANew of
all regularization-free baselines, sometimes by a large mar-
gin (10.45 for CoOp), with competitive ABase at the same
time. The gains in ANew translate to gains in ∆New, indi-
cating the utility of Proxy-FDA in lowering forgetting for
few-shot settings. The per-dataset results in Table 6 (in Ap-
pendix) show that ∆New sees particularly large gains on 3
semantically distant datasets (DTD, EuroSAT and UCF101),
thanks to our strong capability of preserving pre-trained
knowledge. Overall, Proxy-FDA boosts the AH of MaPLe
to 79.84, being already better than or on par with that of
the regularization methods CLIPood (78.93) and Prompt-
SRC (79.97). Encouragingly, Proxy-FDA is complementary

to the two regularization methods and can further improve
them in all metrics.

Fig. 4 shows the superior data efficiency of Proxy-FDA
when lowering forgetting for few-shot prompt tuning. In
the base-to-new setting, we vary the amount of tuning data
and find that the ∆New gain of FDA increases with less data.
Meanwhile, our proxy learning component further improves
data efficiency, often matching the FDA performance on
half the data. Fig. 4(c) also shows the benefits of (Proxy-
)FDA over end-to-end fine-tuning and its improved variants
— FD-Align (Song et al., 2023) and WiSE-FT (Wortsman
et al., 2022b) — in data-limited regimes.

In the Appendix, Table 7 further shows results under the
cross-dataset generalization setting. Proxy-FDA is shown
to prevent concept forgetting consistently, with uniformly
increased ∆A on target datasets and a good trade-off with A
on the source dataset ImageNet. Table 8 shows our advan-
tage over more recent prompt tuning methods that benefit
from either LLM or advanced regularization techniques.

4.3. Continual Fine-tuning

Finally, we perform continual fine-tuning and see whether
we can learn a sequence of downstream tasks without for-
getting concepts. We follow (Mukhoti et al., 2024) to train
on three task sequences: SVHN→CIFAR10→RESISC45,
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Table 3: Continual fine-tuning: test accuracy ALP and ∆LP for models fine-tuned on three task sequences. The first 3
rows show performance on fine-tuned tasks and the 4th row shows performance averaged on 6 other datasets.

Fine-tune Evaluation Naive End-to-End LP-FT L2SP LDIFS FDA (ours) Proxy-FDA (ours)

dataset dataset ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑

SVHN→
CIFAR10→
RESISC45

SVHN 90.29 -7.13 90.97 -6.46 91.93 -4.53 96.68 -0.41 96.77 0.61 96.72 0.93
CIFAR10 95.25 -2.31 96.31 -1.57 97.26 -0.25 97.41 -0.21 97.13 0.57 97.29 1.02
RESISC45 95.30 4.00 94.29 2.98 93.44 2.16 95.00 3.70 95.22 4.14 95.38 4.22

Others 80.91 -5.08 82.13 -4.24 86.89 -0.01 87.08 0.10 87.21 0.76 86.95 1.08

SVHN→
CIFAR100→
RESISC45

SVHN 90.05 -7.28 94.42 -2.73 90.42 -6.12 96.32 -0.65 96.18 0.63 96.43 0.71
CIFAR100 81.08 -7.18 82.63 -3.04 85.72 -0.88 86.54 -0.30 86.33 0.72 86.14 0.85
RESISC45 95.40 4.13 93.81 2.51 93.21 1.90 95.11 3.83 95.32 3.95 95.46 4.01

Others 83.76 -4.65 85.14 -4.02 89.04 -0.37 89.12 -0.23 89.02 0.68 89.09 0.96

SVHN→
Cars→
RESISC45

SVHN 95.93 -1.45 96.58 -0.76 95.98 -0.44 96.90 -0.17 96.74 0.79 96.91 0.94
Cars 76.96 -4.18 71.60 -8.36 81.82 -0.40 84.23 0.47 84.38 1.14 84.32 1.36
RESISC45 95.17 3.89 94.35 3.00 93.43 2.13 95.27 3.73 95.12 3.92 95.23 4.07

Others 83.38 -4.93 84.39 -4.51 87.15 -1.67 89.39 0.23 89.54 0.96 89.67 1.17

SVHN→CIFAR100→RESISC45 and SVHN→Cars→ RE-
SISC45. Table 3 shows our FDA and Proxy-FDA methods
progressively improve the ∆LP for each task sequence, both
achieving positive forward transfer with all positive ∆LP
values. Proxy-FDA always attains the highest ∆LP (except
on RESISC45 in the second sequence), while still remaining
competitive in ALP. Table 9 and 10 in Appendix F show our
benefits over popular continual learning baselines for both
the 3-task setup and the class-incremental setting on Split
ImageNet-R (Wang et al., 2022a).

4.4. Applications Beyond Classification

Appendix G shows that the benefits of Proxy-FDA hold for
fine-tuning tasks beyond classification. We consider the
vision-language tasks of image captioning and VQA, where
Proxy-FDA outperforms baselines in mitigating forgetting.
We further show Proxy-FDA is applicable to knowledge
distillation and achieves quite promising performance.

5. Conclusion
This paper introduces Proxy-FDA, a novel feature-space
regularization method that preserves concepts during fine-
tuning. The core idea is to align the local structures of
pre-trained and fine-tuned feature distributions with learned
proxies. A structure-aware distributional distance metric is
used to assess the feature alignment quality, demonstrating
a strong correlation with concept forgetting. Our approach
achieves state-of-the-art results in mitigating forgetting in
various fine-tuning settings and across different tasks.

Impact Statement
The main contribution of this work is a new feature-space
regularization method for robust fine-tuning. Our method

is shown to effectively preserve the concepts in pre-trained
vision foundation models. One potential societal impact is
that, when the pre-trained concepts reflect (unintentional)
biases, our regularization method could inherit or amplify
those biases in fine-tuned features. As a result, one may ob-
serve perpetual unfair or discriminative outcomes in down-
stream tasks and more critical applications such as AI-driven
planning and decision-making.
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Figure 5: t-SNE visualization of the local feature neighborhood (circled) on ImageNet for the pre-trained CLIP ViT-B/16
model. In this neighborhood, we observe the same white color from two dog breeds “French bulldog” and “Miniature
poodle”. Preserving CLIP’s common-sense knowledge (in this case the color attribute shared across different classes)
using FDA maintains the generalizability of foundation models. On the other hand, the generated proxies include diverse
information from both seen and unseen (e.g., “Malamute”) classes that can regularize the neighborhood boundary and further
improve FDA. The synthesized seen/unseen class data are illustrated by kNN retrieval from the base/new class splits of
ImageNet when fine-tuning on the base only.
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Figure 6: Efficient architecture of our proxy generator that generates dynamic proxies or synthetic features.

A. Hard Class Mining
As mentioned in the main text (Section 3.1), we perform hard class mining in the mini-batch to facilitate the modeling and
alignment of local neighborhood structures. The high-level idea of hard class mining is to greedily select class distributions
that are close to one another. More specifically, we construct our mini-batch in the following way:

1. Randomly choose a large number of classes C ≫ m; for each class, randomly sample n examples to extract their
feature embeddings using both fθ̂ and fθ.

2. Sample a seed class randomly from the C classes. Then greedily add a new class that has the largest class-wise
loss

∑n
i=1 Li

FDA (Eq. (2)) w.r.t. the selected classes till we reach m classes. Note in this greedy process, we set the
neighborhood size K = n when computing Li

FDA.

3. Construct batch with the selected m classes, each with n examples.
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B. Efficient Architecture of Instance-wise Proxy Generator
Fig. 6 shows the network architecture of our proxy generator that is trained online using Eq. (3-4). The input X+

i and X−
i

first go through an attention layer to model the global context within each set and fuse features thoroughly. Attention mask
is used to ensure the independence between the two sets. Next, we dynamically pool the intermediate features Ẋ+

i ∈ Rd×K

and Ẋ−
i ∈ Rd×(B−K−1) via learned pooling functions, as summarized below. Through such pooling, we can predict

proxies {P+
i ,P−

i } and their similarity estimates {ŵp+
i , ŵp−

i } all at once.

Predict pooling weights: S+
i = h+(Ẋ+

i ) ∈ RK×np+

, S−
i = h−(Ẋ−

i ) ∈ R(B−K−1)×np−
, (6)

Pooling in matrix form: P+
i = Ẋ+

i · S+
i ∈ Rd×np+

, P−
i = Ẋ−

i · S−
i ∈ Rd×np−

, (7)

ŵp+
i = S+

i

T · ŵ+
i ∈ Rnp+

, ŵp−
i = S−

i

T · ŵ−
i ∈ Rnp−

, (8)
where ŵ+

i ∈ RK , ŵ−
i ∈ RB−K−1.

Note both h+(·) and h−(·) are implemented by two convolutional layers, but with different output channel sizes (np+ and
np− respectively). The output pooling weights S+

i and S−
i are softmax-normalized, leading to convex combinations of

features and feature similarities during the pooling stage. This eases training of pooling functions and makes sure the pooled
results are valid (especially the pooled similarity estimates).

C. Distributional Distance Metric: OTDD
To measure FDA quality, there are many distance metrics for distribution alignment. Here we choose the distributional
distance metric based on Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020). OTDD is especially
suited to measure the alignment quality of feature distributions with local structures, because this distance metric takes both
the label distribution and clustering structure of the feature distributions into consideration.

Specifically, OTDD uses the feature and label distributions (x, y)|x∈X ,y∈Y to compute the distance between two datasets.
Given that the source and target datasets may have different label sets, the high-level idea of OTDD is to represent each
class label as a distribution over the in-class features. This transforms the source and target label sets into the shared space
of feature distributions over X . In our context of model fine-tuning, we have pre-trained features x̂ and fine-tuned features
x that are likely shifted from x̂. They form the source and target feature distributions respectively, and have different labels
ŷ and y (details later). Then we can define the label distance DY(ŷ, y) using the p-Wasserstein distance associated with the
L2 distance ∥x̂− x∥22 in X . This enables one to measure the distributional difference in X × Y:

DX×Y ((x̂, ŷ), (x, y)) = (DX (x̂− x)p +DY(ŷ, y)
p)

1/p
. (9)

Please refer to (Alvarez-Melis & Fusi, 2020) for the exact formulation. To capture the clustering structure of both the
pre-trained and fine-tuned feature distributions, we perform K-Means clustering per class on each feature distribution. This
results in pseudolabels ŷ and y that are more fine-grained than class labels for OTDD computation.

D. Analysis of Hyper-parameters
Hyper-parameters. Fig. 7(a) shows our Proxy-FDA approach benefits from a relatively large batch size B to preserve
meaningful structures of feature neighborhoods. Performance decreases when B < 64; when B grows larger than 64,
performance seems quite robust to varying batch size. By default, we set B = 64 that best fits in our GPU memory.

Based on the hard class mining strategy (Section A), we construct a mini-batch with m = 16 hard-mined classes, each with
n = 4 class samples. Note in few-shot settings, each class may not have enough data (< 4) for sampling, e.g., only 1 or 2
shots are available per class. In this case, we perform random data augmentation to guarantee n = 4 samples per class. On
the other hand, a relatively large m ensures diverse class distributions in a batch, which allows better characterization of
local feature neighborhoods. Diverse classes also allow pooling rich proxies from them, resulting in unseen data variations
or new class concepts to further improve FDA.

Our Proxy-FDA method has two key hyper-parameters: the neighborhood size K > n and a scalar s. The latter makes the
number of positive proxies np+ = s ·K and negative proxies np− = s · (B −K − 1) proportional to the set size of the true
positives X+

i ∈ Rd×K and true negatives X−
i ∈ Rd×(B−K−1).
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Figure 7: Sensitivity analysis for hyper-parameters: (a) batch size B, (b) neighborhood size K that is fixed across
datasets, (c) optimal K per dataset, and (d) scalar s that decides the percent number of generated proxies compared to that
of real samples. Analysis is performed for few-shot prompt tuning in the base-to-new setting (16 shots per class). We report
the AH averaged across 11 datasets, when applying Proxy-FDA to two representative baselines CoOp and PromptSRC.
Note AH is the Harmonic mean of ABase (representing prompt-tuning accuracy itself) and ANew (representing generalization
and can derive ∆New). Hence AH is ideal for hyper-parameter sweeping since AH denotes a trade-off between downstream
accuracy and concept forgetting (∆New).

The intuition of setting K > n is to identify sufficient neighbors from more than one class, for meaningful FDA between
similar clusters of related classes. Nevertheless, the exact value of K is varied as a function of dataset distribution, as each
dataset has different levels of intra- and inter-class variation. In practice, we pick the best K per dataset from {n, 2n, 3n, 4n}.
Fig. 7(b) shows how performance generally varies with K when K is fixed across 11 datasets. We see that K = 2n works
best, while it noticeably hurts performance when K < n, confirming our intuition above. Hence we stick to the constraint of
K > n for per-dataset K selection (Fig. 7(c)).

On the other hand, the scalar s is set to 0.4 by default. This leads to a virtual batch size of around 90 (increased from 64).
The virtual batch now consists of true and synthetic features for FDA. Fig. 7(d) shows the sensitivity analysis for s.

Lastly, the weighting parameter for Lvar (Eq. (3-4)) is fixed at α = 5 for all experiments. We observe no meaningful
improvements via more careful tuning of α. The weighting parameter λ is used to balance the task loss against our
regularization loss (Eq. (1) and (5)). We tune λ on a held-out validation set of each dataset.
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Figure 8: Ablating the Proxy-FDA components based on few-shot prompt tuning in the base-to-new setting (16 shots per
class). We report AH averaged across 11 datasets, when applying Proxy-FDA to two representative baselines CoOp and
PromptSRC. Note AH is the Harmonic mean of ABase (representing prompt-tuning accuracy itself) and ANew (representing
generalization and can derive ∆New). Hence AH is ideal for ablation studies since AH denotes a trade-off between
downstream accuracy and concept forgetting (∆New). For the proxy generation strategy, we compare with random linear
interpolation (Verma et al., 2019) and outlier feature synthesis methods VOS (Du et al., 2022) and NPOS (Tao et al., 2023).

Table 4: Quantifying proxy diversity using the variance loss in Eq. (3-4). Particularly, we report the diversity metric as the
average standard deviation term 1/d

∑d
j=1

√
Var(Pj,:) in the variance loss: higher value indicates larger proxy diversity. To

further aggregate the metrics of the positive and negative proxies {P+
i ,P−

i }, we take their mean and compute its moving
average till fine-tuning is completed. We compare the aggregated diversity metric of all the proxy generation methods as
ablated in Fig. 8.

Proxy generation (ours) Random interpolation VOS NPOS

Diversity metric ×10−2 3.14 2.89 1.53 1.72

E. Ablating Proxy-FDA Components
Fig. 8 includes ablation studies on the key components of Proxy-FDA, in the few-shot prompt tuning setting.

Batch sampling strategy. We start with comparing the default hard class mining method with random class sampling.
Their considerable performance difference shows that hard class mining is crucial. Indeed, one can better model the nearest
neighbor graphs from close class samples, which facilitates the following graph matching for FDA purpose. We further
compare with an entropy-based batch sampling strategy that prioritizes similar class samples simply by low entropy. This
sampling strategy is found less performant, likely because entropy cannot characterize sample similarity adaptively as a
function of current feature distribution structure. As a result, such batch sampling criterion is decoupled with the structural
FDA within sampled batch. While our default strategy samples similar classes directly using FDA loss, which could adapt
to the feature distribution structure, and is coupled with FDA in batch.

FDA strategy. One may wonder what if we only align the neighbor indices during FDA, without considering the neighbor
similarities (i.e., keeping ŵij = 1)? We see that this baseline leads to large performance drop, demonstrating that both
neighbor indices and similarities are indispensable for effective FDA.

Proxy generator architecture. We first note that our proxy generator is learned to produce unseen data out of diverse
feature combinations within the positive set X+

i or negative set X−
i . The attention layer helps to achieve this goal by

modeling the global context among all input features with pairwise attention. Convolutional layers, however, only have
local receptive fields and have to rely on pooling operations to capture long-range dependencies. Here we compare with an
attention-free architecture that has the attention layer replaced with convolutional plus pooling layers – the resulting proxy
generator maintains a similar parameter count. The attention-free architecture is observed to achieve consistently lower
performance, likely due to the lower quality of generated proxies.
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Table 5: Test accuracy ALP of end-to-end fine-tuned model on ImageNet and its average ∆LP computed over 5 datasets
(DTD, EuroSAT, GTSRB, RESISC45 and SVHN). We study different architectures of CLIP (Radford et al., 2021),
FLAVA (Singh et al., 2022), DINOv2 (Oquab et al., 2024) and MAE (He et al., 2022). ∆LP denotes the change in ALP
between pre-trained and fine-tuned models on target dataset, quantifying the level of concept forgetting. Higher ∆LP shows
lower forgetting or even positive forward transfer (∆LP > 0). Note we initialize the model’s linear head with zero-shot
weights for naive fine-tuning, and with Linear Probe (LP) weights for all other methods including ours. The initialized
zero-shot weights are the text encodings of class name for CLIP and FLAVA, and random weights for DINOv2 and MAE.

Model Architecture Naive End-to-End LP-FT L2SP LDIFS FDA (ours) Proxy-FDA (ours)

ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑

CLIP

ResNet-50 78.39 -4.01 78.45 -3.40 76.13 -1.54 78.16 -0.11 78.43 0.62 78.58 0.89
ViT-B/32 82.02 -3.02 82.12 -2.17 80.78 -0.88 82.21 0.10 81.93 0.81 82.16 1.15
ViT-B/16 85.21 -2.92 85.36 -1.73 82.19 -0.74 85.31 0.16 85.41 0.92 85.40 1.03
ViT-L/14 87.88 -2.33 87.91 -1.52 86.87 -0.43 87.85 0.22 87.99 1.02 87.96 1.28

FLAVA ViT-B/16 81.18 -3.94 81.36 -3.04 80.11 -1.10 81.61 0.04 81.47 0.61 81.59 0.96

DINOv2 ViT-B/14 85.32 -2.71 85.48 -1.86 84.50 -0.66 86.02 0.06 86.23 0.68 86.34 0.85
ViT-L/14 87.60 -1.92 87.90 -1.40 87.02 -0.19 87.91 0.13 87.87 0.77 87.71 0.94

MAE ViT-B/16 83.57 -5.10 83.81 -4.36 82.84 -3.03 83.76 -0.94 83.73 -0.08 83.94 0.39
ViT-L/16 85.86 -4.26 86.04 -3.59 85.10 -1.82 85.90 -0.12 85.86 0.79 85.67 0.94

Proxy generation algorithm. We compare with three baselines. One simple method is based on linear interpolation
between random feature pairs from both X+

i and X−
i . Feature similarity estimates are interpolated in the same way. We see

random interpolation obtains inferior performance than our learning-based approach. This is because our approach can learn
to synthesize informative proxies that best help FDA: the diverse proxies can not only enrich data but also refine the decision
boundary between positive and negative feature manifolds. This is not possible with random interpolation. On the other
hand, the parametric VOS and non-parametric NPOS methods learn to synthesize outlier features only in low-likelihood
regions (often around decision boundaries between classes). The two methods are observed to achieve even worse results
than random interpolation. We conjecture that this is because outliers are not able to encode diverse unseen data/concepts
that are crucial for improving FDA.

Lastly, we quantify the proxy feature diversity in Table 4 using our variance loss. Interestingly, it is observed that the diversity
metric of a proxy generation method highly correlates with its performance: our proxy generation method outperforms
random interpolation in both proxy diversity and final accuracy. This trend also holds when comparing our method with
VOS/NPOS.

Using more batch data or proxies. To further quantify the effect of proxy learning that virtually increases the batch
size B from 64 to around 90, we compare with FDA simply on a larger batch with a similar number of true feature points.
Specifically, we construct the batch with m = 22 hard-mined classes, each with n = 4 examples. Hence the batch size is
comparable to that of Proxy-FDA, but without proxies. We observe from Fig. 8 that simply using a larger batch size does
not perform as well. Instead, it is worth using our proxy generator to increase data diversity with only a small overhead.

F. More Results
End-to-end fine-tuning. Table 5 shows ImageNet fine-tuning results with different foundation models and architectures.
We see that both FDA and Proxy-FDA consistently improve the ∆LP over other baselines, with Proxy-FDA offering the
highest ∆LP values. This comes with competitive downstream accuracy ALP on ImageNet. Notably, our obtained ∆LP
values are mostly positive, with a sole exception of MAE model (ViT-B/16 architecture) when fine-tuned using FDA. This
indicates that we can achieve positive forward transfer in most cases and otherwise minimized concept forgetting.

Few-shot prompt-tuning. Table 6 lists the full results of prompt tuning on each of the 11 datasets under the base-to-
new class generalization setting. Table 7 shows results under the cross-dataset generalization setting, i.e., quantifying
generalization from ImageNet to 10 target datasets. In both settings, Proxy-FDA is plugged into different prompt tuning
baselines. Proxy-FDA is observed to reduce concept forgetting consistently on unseen data with comparable performance
on seen data.
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We further compare with more recent prompt tuning methods in Table 8. Comparisons are conducted under the base-to-
new class generalization setting, and an additional domain generalization setting. In the latter setting, we prompt tune on
ImageNet (16 shots per class) and evaluate OOD generalization on ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a) with different types of
domain shift. The compared methods include ProText (khattak et al., 2024) and ArGue-N (Tian et al., 2024) that use LLMs
to distill language priors into the learned prompts, as well as more related regularization methods OGEN (Zang et al., 2024)
and CLAP (Lavoie et al., 2024). OGEN regularizes the prediction probabilities with an improved Mean Teacher, while
CLAP regularizes the class prototypes (i.e., class-wise feature means) for linear probing.

Table 8 shows that our structure-wise feature regularization method Proxy-FDA outperforms OGEN and CLAP in all metrics
under the considered settings. Proxy-FDA achieves particularly large gains in generalization performance on the new classes
or new domains, maximizing the positive forward transfer with higher ∆New. When compared to ProText and ArGue-N
using external LLMs, our approach is LLM-free but achieves on-par or even better performance for both prompt-tuning and
OOD generalization.

Continual fine-tuning. Table 3 in the main paper compares our method with robust fine-tuning methods in the 3-task
setting. In the same setting, Table 9 compares our method with 5 classic continual learning methods: LwF (Li & Hoiem,
2017), LFL (Jung et al., 2016), iCaRL (Rebuffi et al., 2017), Distillation + Retrospection (D+R) (Hou et al., 2018) and
ZSCL (Zheng et al., 2023).

Table 10 compares our method with recent continual learning methods on the class-incremental learning benchmark Split
ImageNet-R. This benchmark divides the 200 classes from ImageNet-R into 10 tasks with 20 classes per task. The compared
methods include LDIFS as well as L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a), CODA-Prompt (Smith et al.,
2023), Continual-CLIP (Thengane et al., 2022) and SLCA (Zhang et al., 2023). All methods use the same training (24,000)
and testing (6,000) images. To further ensure fair comparisons, we follow the widely-adopted implementation: fine-tuning
for 50 epochs using the Adam optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is 1e−4, and we use a
cosine learning rate scheduler as in (Mukhoti et al., 2024).

In both Table 9 and 10, our (Proxy-)FDA method outperforms all other methods in preventing forgetting. At the same time,
(Proxy-)FDA is able to achieve the best fine-tuning performance.

G. Applications Beyond Classification
Fine-tuning for image captioning & VQA. Here we test if our (Proxy-)FDA method can address the forgetting issue
for fine-tuning tasks beyond classification. Specifically, we consider the foundation model CLIP and fine-tune for two
vision-language tasks: image captioning (COCO (Lin et al., 2014) and NoCaps (Agrawal et al., 2019) datasets) and Visual
Question-Answering (VQA2 dataset (Goyal et al., 2017)). The baseline approach that enables CLIP to perform such
vision-language understanding and generation tasks is LiMBeR (Merullo et al., 2023). LiMBeR maps the CLIP image
features to the text space of a generative language model, using only a linear projection that aligns the image and text spaces.
As a result, although the image encoder and language model are both frozen, LiMBeR allows CLIP to flexibly caption an
image or perform some task relating to it.

For the ease of comparisons, we follow LiMBeR to use the same language model and image encoder (RN50x16) of CLIP.
Starting with LiMBeR, we perform fine-tuning on COCO captions, and then benchmark the fine-tuning performance of
COCO captioning as well as concept forgetting. We choose to measure forgetting in terms of the performance change
between fine-tuned model and LiMBeR on two types of tasks: image captioning on a different dataset NoCaps, and VQA
on VQA2. For efficient fine-tuning with only 5 captions per COCO image, we use the method of Visual Prompt Tuning
(VPT) (Jia et al., 2022) with CLIP and the language model kept frozen.

To evaluate image captioning performance, we report results of CIDEr-D (Vedantam et al., 2015), CLIPScore, and Ref-
CLIPScore (Hessel et al., 2021). While for VQA, the model is prompted using the “[image] Q: [q] A:” format. The generated
answer is truncated to the length of the longest ground truth answer. As the evaluation metric of VQA under the few-shot
setting, accuracy is reported for every K-shot.

Table 11 shows that VPT-based prompt tuning on COCO leads to forgetting on other tasks, e.g., ∆Ref-S is negative on
NoCaps captioning. On the other hand, LDIFS and our (Proxy-)FDA methods prove effective in regularizing the tuning
process, all achieving positive forward transfer in all metrics. Encouragingly, our (Proxy-)FDA is better than LDIFS at
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promoting positive forward transfer, while maintaining competitive prompt tuning performance on COCO at the same time.

Knowledge distillation. As metioned in the Related Work section, the high-level idea of our method resembles Knowledge
Distillation (KD), epseically those relational KD methods that distill feature relations between models.

Table 12 shows our method is directly applicable to KD and quite performant. We follow the standard KD settings in (Zheng
& Yang, 2024), and test teacher-student pairs using the same or different architectures of ResNet (He et al., 2016) and
MobileNet (Howard et al., 2017) on ImageNet. We compare with state-of-the-art logits matching methods KD++ (Wang
et al., 2023), DIST (Huang et al., 2022) and WTTM (Zheng & Yang, 2024). Note DIST can be viewed as a relational KD
method at the logit level. We further compare with KD methods that match feature relations in form of kNNs (CNA (Zhu
et al., 2022)) and feature similarities (ITRD (Miles et al., 2022)). CNA and ITRD are more related to our FDA method, but
FDA differs in that both neighbor indices and similarities are distilled in the feature space. We see from the table that FDA
consistently outperforms CNA and ITRD, and is competitive or better than logits-based DIST. Our proxy learning further
improves performance, and Proxy-FDA is on par with the best prior work WTTM.
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Table 6: Few-shot prompt tuning in the base-to-new class generalization setting (16 shots per class). AH denotes the
Harmonic mean of ABase and ANew. ∆New denotes the change in ANew between pre-trained and prompt-tuned CLIP models.
Higher ∆New shows lower level of concept forgetting on the new class split of the considered dataset.

Prompt tuning without regularization Regularization-based

CoOp CoCoOp VPT MaPLe CLIPood PromptSRC

+Proxy-FDA ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Avg across
11 datasets

ABase 82.69 83.16 80.47 80.36 81.61 81.55 82.28 82.74 83.91 84.33 84.26 84.47
ANew 63.22 73.67 71.69 76.44 69.61 73.89 75.14 77.13 74.50 76.54 76.10 77.45
∆New ↑ -10.99 -0.55 -2.53 2.22 -4.61 -0.33 0.92 2.91 0.28 2.33 1.88 3.23
AH 71.66 78.13 75.83 78.35 75.14 77.53 78.55 79.84 78.93 80.25 79.97 80.81

ImageNet

ABase 76.47 76.22 75.98 76.95 75.96 75.26 76.66 77.35 77.50 78.47 77.60 77.81
ANew 67.88 72.97 70.43 73.48 67.32 71.25 70.54 71.51 70.30 72.07 70.73 71.55
∆New ↑ -0.26 4.83 2.29 5.34 -0.82 3.11 2.40 3.37 2.16 3.93 2.59 3.41
AH 71.92 74.56 73.10 75.17 71.38 73.20 73.47 74.32 73.72 75.13 74.01 74.55

Caltech101

ABase 98.00 96.84 97.96 97.21 97.50 96.14 97.74 98.71 98.70 99.08 98.10 98.49
ANew 89.81 97.45 93.81 97.15 94.10 95.93 94.36 95.42 94.60 95.01 94.03 95.34
∆New ↑ -4.19 3.45 -0.19 3.15 0.10 1.93 0.36 1.42 0.60 1.01 0.03 1.34
AH 93.73 97.14 95.84 97.18 95.77 96.03 96.02 97.04 96.61 97.00 96.02 96.89

OxfordPets

ABase 93.67 95.01 95.20 96.96 96.05 95.32 95.43 95.42 95.70 97.63 95.33 96.31
ANew 95.29 98.97 97.69 98.64 95.84 98.42 97.76 98.09 96.40 98.21 97.30 98.09
∆New ↑ -1.97 1.71 0.43 1.38 -1.42 1.16 0.50 0.83 -0.86 0.95 0.04 0.83
AH 94.47 96.95 96.43 97.79 95.94 96.85 96.58 96.74 96.05 97.92 96.30 97.19

Stanford
Cars

ABase 78.12 78.33 70.49 69.53 75.00 74.16 72.94 74.01 78.60 78.07 78.27 77.95
ANew 60.40 69.87 73.59 78.95 63.45 72.17 74.00 75.15 73.50 76.12 74.97 75.75
∆New ↑ -14.49 -5.02 -1.30 4.06 -11.44 -2.72 -0.89 0.26 -1.39 1.23 0.08 0.86
AH 68.13 73.86 72.01 73.94 68.74 73.15 73.47 74.58 75.96 77.08 76.58 76.83

Flowers102

ABase 97.60 97.21 94.87 94.52 96.89 97.11 95.92 96.85 93.50 97.91 98.07 97.69
ANew 59.67 72.36 71.75 77.54 70.02 73.49 72.46 75.59 74.50 76.59 76.50 78.49
∆New ↑ -18.13 -5.44 -6.05 -0.26 -7.78 -4.31 -5.34 -2.21 -3.30 -1.21 -1.30 0.69
AH 74.06 82.96 81.71 85.19 81.29 83.66 82.56 84.91 82.93 85.95 85.95 87.04

Food101

ABase 88.33 88.59 90.70 91.33 88.88 90.35 90.71 91.40 90.70 92.94 90.67 91.07
ANew 82.26 90.12 91.29 94.79 88.95 92.27 92.05 93.12 91.70 92.76 91.53 92.25
∆New ↑ -8.96 -1.10 0.07 3.57 -2.27 1.05 0.83 1.90 0.48 1.54 0.31 1.03
AH 85.19 89.35 90.99 93.03 88.91 91.30 91.38 92.25 91.20 92.85 91.10 91.66

FGVC
Aircraft

ABase 40.44 41.24 33.41 35.12 38.33 38.75 37.44 37.41 43.30 42.26 42.73 41.63
ANew 22.30 33.83 23.71 36.36 25.27 31.36 35.61 37.79 37.20 37.54 37.87 40.61
∆New ↑ -13.99 -2.46 -12.58 0.07 -11.02 -4.93 -0.68 1.50 0.91 1.25 1.58 4.32
AH 28.75 37.17 27.74 35.73 30.46 34.67 36.50 37.60 40.02 39.76 40.15 41.11

SUN397

ABase 80.60 80.63 79.74 80.36 80.27 79.54 80.82 81.24 81.00 83.04 82.67 82.71
ANew 65.89 72.11 76.86 78.97 74.36 76.11 78.70 82.15 79.30 79.92 78.47 79.73
∆New ↑ -9.46 -3.24 1.51 3.62 -0.99 0.76 3.35 6.80 3.95 4.57 3.12 4.38
AH 72.51 76.13 78.27 79.66 77.20 77.79 79.75 81.69 80.14 81.45 80.52 81.19

DTD

ABase 79.44 79.51 77.01 75.92 77.08 76.68 80.36 80.05 80.80 80.14 83.37 84.04
ANew 41.18 54.24 56.00 59.84 53.62 59.97 59.18 63.13 58.60 63.32 62.97 63.06
∆New ↑ -18.72 -5.66 -3.90 -0.06 -6.28 0.07 -0.72 3.23 -1.3 3.42 3.07 3.16
AH 54.24 64.49 64.85 66.93 63.24 67.30 68.16 70.59 67.93 70.74 71.75 72.05

EuroSAT

ABase 92.19 91.98 87.49 81.24 91.67 90.42 94.07 94.27 97.50 92.18 92.90 93.66
ANew 54.74 78.29 60.04 66.87 58.31 67.02 73.23 75.11 64.10 71.01 73.90 77.12
∆New ↑ -9.31 14.24 -4.01 2.82 -5.74 2.97 9.18 11.06 0.05 6.96 9.85 13.07
AH 68.69 84.58 71.21 73.36 71.28 76.98 82.35 83.61 77.35 80.22 82.32 84.59

UCF101

ABase 84.69 89.15 82.33 84.86 80.07 83.37 83.00 83.43 85.70 85.95 87.10 87.79
ANew 56.05 70.16 73.45 78.23 74.50 74.77 78.66 81.40 79.30 79.44 78.80 79.95
∆New ↑ -21.45 -7.34 -4.05 0.73 -3.00 -2.73 1.16 3.90 1.80 1.94 1.30 2.45
AH 67.46 78.52 77.64 81.41 77.18 78.84 80.77 82.40 82.38 82.57 82.74 83.69
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Table 7: Few-shot cross-dataset generalization where CLIP is prompt-tuned on the source dataset ImageNet (16 shots per
class) and tested on both ImageNet and 10 target datasets. We compare the test set accuracy A and the accuracy change ∆A
(higher is better) between pre-trained and prompt-tuned models to quantify generalization and concept forgetting on each
target dataset.

CoOp CoCoOp PromptSRC

+Proxy-FDA ✗ ✓ ✗ ✓ ✗ ✓

Source ImageNet A 71.51 71.36 71.02 71.24 71.27 71.32
∆A ↑ 4.78 4.63 4.29 4.51 4.54 4.59

Target

Avg across
10 datasets

A 63.88 66.09 65.74 66.48 65.81 66.86
∆A ↑ -1.20 1.01 0.66 1.40 0.72 1.78

Caltech101 A 93.70 94.35 94.43 94.51 93.60 94.42
∆A ↑ 0.76 1.41 1.49 1.57 0.66 1.48

OxfordPets A 89.14 90.53 90.14 90.62 90.25 90.78
∆A ↑ -0.07 1.32 0.93 1.41 1.04 1.57

Stanford
Cars

A 64.51 66.18 65.32 66.22 65.70 66.55
∆A ↑ -0.81 0.86 0.00 0.90 0.38 1.23

Flowers102 A 68.71 71.54 71.88 72.32 70.25 72.04
∆A ↑ -2.63 0.20 0.54 0.98 -1.09 0.70

Food101 A 85.30 86.86 86.06 86.91 86.15 87.38
∆A ↑ -0.76 0.80 0.00 0.85 0.09 1.32

FGVC
Aircraft

A 18.47 22.09 22.94 23.49 23.90 24.79
∆A ↑ -6.25 -2.63 -1.78 -1.23 -0.82 0.07

SUN397 A 64.15 66.12 67.36 67.62 67.10 67.53
∆A ↑ 1.65 3.62 4.86 5.12 4.60 5.03

DTD A 41.92 45.13 45.73 46.15 46.87 47.31
∆A ↑ -2.47 0.74 1.34 1.76 2.48 2.92

EuroSAT A 46.39 49.08 45.37 47.89 45.50 48.37
∆A ↑ -1.21 1.48 -2.23 0.29 -2.10 0.77

UCF101 A 66.55 69.01 68.21 69.10 68.75 69.42
∆A ↑ -0.20 2.26 1.46 2.35 2.00 2.67

Table 8: Few-shot prompt tuning in both base-to-new class generalization and domain generalization settings. Here we
compare with more recent prompt tuning methods. Note both OGEN and our Proxy-FDA are plugged into the PromptSRC
baseline. For fair comparison with CLAP, we obtain its base-to-new generalization results by re-running its official codes
with the ViT-B/16 backbone used by all other methods. The domain generalization results of CLAP are directly extracted
from the CLAP paper. AH denotes the Harmonic mean of ABase and ANew.

Base-to-New Class Generalization Domain Generalization

Avg across 11 datasets ASource ATarget

ABase ANew ∆New ↑ AH ImageNet -V2 -Sketch -A -R

Text Knowledge ProText 72.95 76.98 2.76 74.91 70.22 63.54 49.45 51.47 77.35
from LLM ArGue-N 83.77 78.74 4.52 81.18 71.84 65.02 49.25 51.47 76.96

Regularization
method

OGEN 84.17 76.86 2.64 80.34 73.13 65.37 48.96 50.75 77.12
CLAP 84.34 76.62 2.40 80.29 73.38 65.00 48.35 49.53 77.26
Proxy-FDA 84.47 77.45 3.23 80.81 73.44 65.79 49.83 51.54 77.45
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Table 9: Continual fine-tuning: test accuracy ALP and ∆LP for models fine-tuned on three task sequences. The first 3
rows show performance on fine-tuned tasks and the 4th row shows performance averaged on 6 other datasets, comparing our
method with 5 classic continual learning methods.

Fine-tune Evaluation LwF LFL iCaRL D+R ZSCL FDA (ours) Proxy-FDA (ours)

dataset dataset ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑ ALP ∆LP ↑

SVHN→
CIFAR10→
RESISC45

SVHN 90.48 -3.81 91.90 -3.21 91.62 -3.67 93.30 -2.78 92.70 -3.23 96.77 0.61 96.72 0.93
CIFAR10 93.90 -2.90 94.88 -2.32 95.17 -2.10 95.41 -1.90 95.82 -1.60 97.13 0.57 97.29 1.02
RESISC45 94.22 3.10 93.90 2.98 93.72 2.83 94.94 3.68 94.89 3.62 95.22 4.14 95.38 4.22

Others 80.73 -4.20 81.31 -3.76 80.78 -4.11 81.86 -3.20 83.10 -2.80 87.21 0.76 86.95 1.08

SVHN→
CIFAR100→
RESISC45

SVHN 89.48 -4.34 90.29 -4.08 90.97 -4.31 92.30 -3.23 91.81 -3.92 96.18 0.63 96.43 0.71
CIFAR100 83.24 -3.25 83.95 -3.01 84.06 -3.13 84.82 -2.60 85.07 -2.13 86.33 0.72 86.14 0.85
RESISC45 93.80 3.21 94.91 3.62 94.87 3.54 95.08 3.71 94.96 3.65 95.32 3.95 95.46 4.01

Others 81.73 -4.11 82.04 -3.80 81.62 -4.02 82.17 -3.43 82.86 -3.11 89.02 0.68 89.09 0.96

SVHN→
Cars→
RESISC45

SVHN 91.43 -3.64 92.74 -2.92 91.75 -3.13 92.86 -2.84 92.98 -2.72 96.74 0.79 96.91 0.94
Cars 81.69 -2.79 81.82 -2.64 81.70 -2.80 82.11 -2.12 82.68 -1.84 84.38 1.14 84.32 1.36
RESISC45 93.92 3.34 94.96 3.55 94.97 3.58 95.19 3.72 95.04 3.63 95.12 3.92 95.23 4.07

Others 81.63 -4.07 82.24 -3.60 81.88 -3.89 82.73 -3.12 83.10 -2.80 89.54 0.96 89.67 1.17

Table 10: Continual fine-tuning: comparing the average accuracy on Split ImageNet-R.

L2P DualPrompt CODA-Prompt Continual-CLIP SLCA LDIFS FDA (ours) Proxy-FDA (ours)

74.60±1.21 77.24±1.27 78.13±1.18 76.23±1.18 81.22±1.23 83.62±1.16 85.97±1.05 86.71±1.24

Table 11: Prompt tuning for image captioning and VQA. The CLIP model with LiMBeR projection is prompt-tuned on
COCO dataset, and the fine-tuning performance for COCO captioning is reported in three metrics: CIDEr-D, CLIPScore,
and Ref-CLIPScore. While forgetting is benchmarked in terms of the performance change between prompt-tuned and
original models on two different tasks: captioning on NoCaps (in ∆CIDEr-D, ∆CLIP-S, ∆Ref-S), and VQA on VQA2 (in
accuracy change ∆A). Higher performance change indicates lower forgetting or even positive forward transfer (∆ > 0).

Image Captioning VQA2 K-shots

COCO NoCaps 0 1 2 4

CIDEr-D CLIP-S Ref-S ∆CIDEr-D ↑ ∆CLIP-S ↑ ∆Ref-S ↑ ∆A ↑ ∆A ↑ ∆A ↑ ∆A ↑
VPT (Jia et al., 2022) 57.1 79.6 82.8 0.6 1.2 -0.3 1.1 0.7 0.8 1.9
VPT+LDIFS 56.8 80.3 82.4 1.5 1.8 0.6 2.1 1.3 1.6 3.2
VPT+FDA (ours) 56.2 80.7 83.4 2.2 2.3 1.4 2.6 1.5 2.1 3.9
VPT+Proxy-FDA (ours) 56.6 81.1 83.2 2.6 2.5 1.7 2.7 1.9 2.4 4.4

Table 12: Knowledge distillation: comparing the top-1 accuracy on ImageNet.

Logits-based Feature-based

Teacher Student KD++ DIST WTTM CNA ITRD FDA (ours) Proxy-FDA (ours)

ResNet-34 (73.31) ResNet-18 (69.76) 71.98 72.07 72.19 71.38 71.68 72.02 72.17
ResNet-50 (76.16) MobileNet (68.87) 72.77 73.24 73.09 72.39 - 73.31 73.45
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