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ABSTRACT

In deep reinforcement learning (RL), useful information about the state is inher-
ently tied to its possible future successors. Consequently, encoding features that
capture the hierarchical relationships between states into the model’s latent rep-
resentations is often conducive to recovering effective policies. In this work, we
study a new class of deep RL algorithms that promote encoding such relationships
by using hyperbolic space to model latent representations. However, we find that
a naive application of existing methodology from the hyperbolic deep learning
literature leads to fatal instabilities due to the non-stationarity and variance char-
acterizing common gradient estimators in RL. Hence, we design a new general
method that directly addresses such optimization challenges and enables stable
end-to-end learning with deep hyperbolic representations. We empirically validate
our framework by applying it to popular on-policy and off-policy RL algorithms
on the Procgen and Atari 100K benchmarks, attaining near universal performance
and generalization benefits. Given its natural fit, we hope this work will inspire
future RL research to consider hyperbolic representations as a standard tool.

1 INTRODUCTION

Figure 1: Hierarchical relationship between
states in breakout, visualized in hyperbolic space.

Reinforcement Learning (RL) achieved notable
milestones in several game-playing and robotics ap-
plications (Mnih et al., 2013; Vinyals et al., 2019;
Kalashnikov et al., 2018; OpenAI et al., 2019; Lee
et al., 2021). However, all these recent advances re-
lied on large amounts of data and domain-specific
practices, restricting their applicability in many im-
portant real-world contexts (Dulac-Arnold et al.,
2019). We argue that these challenges are symp-
tomatic of current deep RL models lacking a proper
prior to efficiently learn generalizable features for
control (Kirk et al., 2021). We propose to tackle this
issue by introducing hyperbolic geometry to RL, as a new inductive bias for representation learning.

The evolution of the state in a Markov decision process can be conceptualized as a tree, with the pol-
icy and dynamics determining the possible branches. Analogously, the same hierarchical evolution
often applies to the most significant features required for decision-making (e.g., presence of bricks,
location of paddle/ball in Fig. 1). These relationships tend to hold beyond individual trajectories,
making hierarchy a natural basis to encode information for RL (Flet-Berliac, 2019). Consequently,
we hypothesize that deep RL models should prioritize encoding precisely hierarchically-structured
features to facilitate learning effective and generalizable policies. In contrast, we note that non-
evolving features, such as the aesthetic properties of elements in the environment, are often linked
with spurious correlations, hindering generalization to new states (Song et al., 2019). Similarly, hu-
man cognition also appears to learn representations of actions and elements of the environment by
focusing on their underlying hierarchical relationship (Barker & Wright, 1955; Zhou et al., 2018).

Hyperbolic geometry (Beltrami, 1868; Cannon et al., 1997) provides a natural choice to efficiently
encode hierarchically-structured features. A defining property of hyperbolic space is exponential
volume growth, which enables the embedding of tree-like hierarchical data with low distortion us-
ing only a few dimensions (Sarkar, 2011). In contrast, the volume of Euclidean spaces only grows
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polynomially, requiring high dimensionality to precisely embed tree structures (Matoušek, 1990),
potentially leading to higher complexity, more parameters, and overfitting. We analyze the proper-
ties of learned RL representations using a measure based on the δ-hyperbolicity (Gromov, 1987),
quantifying how close an arbitrary metric space is to a hyperbolic one. In line with our intuition, we
show that performance improvements of RL algorithms correlate with the increasing hyperbolicity
of the discrete space spanned by their latent representations. This result validates the importance
of appropriately encoding hierarchical information, suggesting that the inductive bias provided by
employing hyperbolic representations would facilitate recovering effective solutions.

Hyperbolic geometry has recently been exploited in other areas of machine learning showing sub-
stantial performance and efficiency benefits for learning representations of hierarchical and graph
data (Nickel & Kiela, 2017; Chamberlain et al., 2017). Recent contributions further extended tools
from modern deep learning to work in hyperbolic space (Ganea et al., 2018; Shimizu et al., 2020),
validating their effectiveness in both supervised and unsupervised learning tasks (Khrulkov et al.,
2020; Nagano et al., 2019; Mathieu et al., 2019). However, most of these approaches showed clear
improvements on smaller-scale problems that failed to hold when scaling to higher-dimensional data
and representations. Many of these shortcomings are tied to the practical challenges of optimizing
hyperbolic and Euclidean parameters end-to-end (Guo et al., 2022). In RL, We show the non-
stationarity and high-variance characterizing common gradient estimators exacerbates these issues,
making a naive incorporation of existing hyperbolic layers yield underwhelming results.

In this work, we overcome the aforementioned challenges and effectively train deep RL algorithms
with latent hyperbolic representations end-to-end. In particular, we design spectrally-regularized hy-
perbolic mappings (S-RYM), a simple recipe combining scaling and spectral normalization (Miyato
et al., 2018) that stabilizes the learned hyperbolic representations and enables their seamless integra-
tion with deep RL. We use S-RYM to build hyperbolic versions of both on-policy (Schulman et al.,
2017) and off-policy algorithms (Hessel et al., 2018), and evaluate on both Procgen (Cobbe et al.,
2020) and Atari 100K benchmarks (Bellemare et al., 2013). We show that our framework attains
near universal performance and generalization improvements over established Euclidean baselines,
making even general algorithms competitive with highly-tuned SotA baselines. We hope our work
will set a new standard and be the first of many incorporating hyperbolic representations with RL.
To this end, we share our implementation at sites.google.com/view/hyperbolic-rl.

2 PRELIMINARIES

In this section, we introduce the main definitions required for the remainder of the paper. We refer
to App. A and (Cannon et al., 1997) for further details about RL and hyperbolic space, respectively.

2.1 REINFORCEMENT LEARNING

The RL problem setting is traditionally described as a Markov Decision Process (MDP), defined by
the tuple (S,A, P, p0, r, γ). At each timestep t, an agent interacts with the environment, observing
some state from the state space s ∈ S, executing some action from its action space a ∈ A, and
receiving some reward according to its reward function r : S×A 7→ R. The transition dynamics P :
S×A×S 7→ R and initial state distribution p0 : S 7→ R determine the evolution of the environment’s
state while the discount factor γ ∈ [0, 1) quantifies the agent’s preference for earlier rewards. Agent
behavior in RL can be represented by a parameterized distribution function πθ, whose sequential
interaction with the environment yields some trajectory τ = (s0, a0, s1, a1, ..., sT , aT ). The agent’s
objective is to learn a policy maximizing its expected discounted sum of rewards over trajectories:

argmax
θ

Eτ∼πθ,P

[
∞∑
t=0

γtr(st, at)

]
. (1)

We differentiate two main classes of RL algorithms with very different optimization procedures
based on their different usage of the collected data. On-policy algorithms collect a new set of tra-
jectories with the latest policy for each training iteration, discarding old data. In contrast, off-policy
algorithms maintain a large replay buffer of past experiences and use it for learning useful quantities
about the environment, such as world models and value functions. Two notable instances from each
class are Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Rainbow DQN (Hessel
et al., 2018), upon which many recent advances have been built.
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2.2 MACHINE LEARNING IN HYPERBOLIC SPACES

A hyperbolic space Hn is an n-dimensional Riemannian manifold with constant negative sectional
curvature −c. Beltrami (1868) showed the equiconsistency of hyperbolic and Euclidean geometry
using a model named after its re-discoverer, the Poincaré ball model. This model equips an n-
dimensional open ball Bn = {x ∈ Rn : c∥x∥ < 1} of radius 1/

√
c with a conformal metric of the

form Gx = λ2
xI, where λx = 2

1−c∥x∥2 is the conformal factor (we will omit the dependence on
the curvature −c in our definitions for notation brevity). The geodesic (shortest path) between two
points in this metric is a circular arc perpendicular to the boundary with the length given by:

d(x,y) =
1√
c
cosh−1

(
1 + 2c

∥x− y∥2

(1− c∥x∥2) (1− c∥y∥2)

)
. (2)

Figure 2: Geodesics on H2 and shortest
paths connecting nodes of a tree.

From these characteristics, hyperbolic spaces can be viewed
as a continuous analog of trees. In particular, the volume
of a ball on Hn grows exponentially w.r.t. its radius. This
property mirrors the exponential node growth in trees with
constant branching factors. Visually, this makes geodesics
between distinct points pass through some midpoint with
lower magnitude, analogously to how tree geodesics be-
tween nodes (defined as the shortest path in their graph)
must cross their closest shared parent (Fig. 2).

Key operations for learning. On a Riemannian manifold,
the exponential map expx(v) outputs a unit step along a
geodesic starting from point x in the direction of an input
velocity v. It thus allows locally treating Hn as Euclidean
space. We use the exponential map from the origin of the
Poincaré ball to map Euclidean input vectors v into Hn,

exp0(v) = tanh
(√

c∥v∥
) v√

c∥v∥
. (3)

Following Ganea et al. (2018), we consider the framework of gyrovector spaces (Ungar, 2008) to
extend common vector operations to non-Euclidean geometries, and in particular Hn. The most
basic such generalized operation is the Mobius addition ⊕ of two vectors,

x⊕ y =
(1 + 2x⟨x,y⟩+ c∥y∥2)x+ (1 + c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 . (4)

Next, consider a Euclidean affine transformation f(x) = ⟨x,w⟩+ b used in typical neural network
layers. We can rewrite this transformation as f(x) = ⟨x − p,w⟩ and interpret w,p ∈ Rd as the
normal and shift parameters of a hyperplane H = {y ∈ Rd : ⟨y−p,w⟩ = 0} (Lebanon & Lafferty,
2004). This allows us to further rewrite f(x) in terms of the signed distance to the hyperplane H ,
effectively acting as a weighted ‘decision boundary’:

f(x) = sign (⟨x− p,w⟩) ∥w∥d(x, H). (5)
This formulation allows to extend affine transformations to the Poincaré ball by considering the
signed distance from a gyroplane in Bd (generalized hyperplane) H = {y ∈ Bd : ⟨y⊕−p,w⟩ = 0},

f(x) = sign(⟨x⊕−pw⟩) 2∥w∥√
1− c∥p∥2

d(x, H); d(x, H) =
1√
c
sinh−1

(
2
√
c|⟨x⊕−p,w⟩|

(1− c∥x⊕−p∥2)∥w∥

)
(6)

Similarly to recent hyperbolic deep learning work (Mathieu et al., 2019; Guo et al., 2022), we use
these operations to parameterize hybrid neural nets: we first process the input data x with standard
layers to produce Euclidean vectors xE = fE(x). Then, we obtain hyperbolic representations by
applying the exponential map treating xE as a velocity, xH = exp0(xE). Finally, we use linear
operations of the form in Eq. 6 to output the set of policy and value scalars, fH(xH) = {fi(xH)}.
We extend this model with a new stabilization (Sec 3.3) with observed benefits beyond RL (App. B).

3 HYPERBOLIC REPRESENTATIONS FOR REINFORCEMENT LEARNING

In this section, we base our empirical RL analysis on Procgen (Cobbe et al., 2020). This benchmark
consists of 16 visual environments, with procedurally-generated random levels. Following common
practice, we train agents using exclusively the first 200 levels of each environment and evaluate on
the full distribution of levels to assess agent performance and generalization.
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Figure 3: A geodesic space is δ-hyperbolic if every triangle is δ-slim, i.e., each of its sides is entirely contained
within a δ-sized region from the other two. We illustrate the necessary δ to satisfy this property for △ABC in
a tree triangle (Left), a hyperbolic triangle (Center) and an Euclidean triangle (Right); sharing vertex coordi-
nates. In tree triangles, δtree = 0 since AC always intersects both AB and BC.

Figure 4: Performance and relative δ-hyperbolicity of the final latent representations of a PPO agent.

3.1 THE INHERENT HYPERBOLICITY OF DEEP RL

Key quantities for each state, such as the value and the policy, are naturally related to its possi-
ble successors. In contrast, other fixed, non-hierarchical information about the environment such
as its general appearance, can often be safely ignored. This divide becomes particularly relevant
when considering the problem of RL generalization. For instance, Raileanu & Fergus (2021) found
that agents’ can overfit to spurious correlations between the value and non-hierarchical features
(e.g., background color) in the observed states. Hence, we hypothesize that effective representations
should encode features directly related to the hierarchical state relationships of MDPs.

δ-hyperbolicity. We analyze the representation spaces learned by RL agents, testing whether they
preserve and reflect this hierarchical structure. We use the δ-hyperbolicity of a metric space (X, d)
(Gromov, 1987; Bonk & Schramm, 2011), which we formally describe in App. A.2. For our use-
case, X is δ-hyperbolic if every possible geodesic triangle △xyz ∈ X is δ-slim. This means that for
every point on any side of △xyz there exists some point on one of the other sides whose distance is
at most δ. In trees, every point belongs to at least two of its sides yielding δ = 0 (Figure 3). Thus, we
can interpret δ-hyperbolicity as measuring the deviation of a given metric from an exact tree metric.

The representations learned by an RL agent from encoding the collected states span some finite
subset of Euclidean space xE ∈ XE ⊂ Rn, yielding a discrete metric space XE . To test our
hypothesis, we compute the δ-hyperbolicity of XE and analyze how it relates to agent performance.
Similarly to (Khrulkov et al., 2020), we compute δ using the efficient algorithm proposed by Fournier
et al. (2015). To account for the scale of the representations, we normalize δ by diam(XE), yielding
a relative hyperbolicity measure δrel = 2δ/diam(XE) (Borassi et al., 2015), which can span values
between 0 (hyperbolic hierarchical tree-like structure) and 1 (perfectly non-hyperbolic spaces).

Results. We train an agent with PPO (Schulman et al., 2017) on four Procgen environments, encod-
ing states from the latest rollouts using the representations before the final linear policy and value
heads, xE = fE(s). Hence, we estimate δrel from the space spanned by these latent encodings as
training progresses. As shown in Figure 4, δrel quickly drops to low values (0.22− 0.28) in the first
training iterations, reflecting the largest relative improvements in agent performance. Subsequently,
in the fruitbot and starpilot environments, δrel further decreases throughout training as the agent
recovers high performance with a low generalization gap between the training and test distribution
of levels. Instead, in bigfish and dodgeball, δrel begins to increase again after the initial drop, sug-
gesting that the latent representation space starts losing its hierarchical structure. Correspondingly,
the agent starts overfitting as test levels performance stagnates while the generalization gap with
the training levels performance keeps increasing. We believe these results support our hypothesis,
empirically showing the importance of encoding hierarchical features for recovering effective solu-
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Figure 5: Analysis of key statistics for our naive implementations of hyperbolic PPO agents using existing
practices to stabilize optimization in hyperbolic space. On the left, we display performance (A.1) and negative
entropy (A.2). On the right, we display magnitudes (B.1) and variances (B.2) of the backpropagated gradients.

tions. Furthermore, they suggest that PPO’s poor generalization in some environments is due to the
observed tendency of Euclidean latent spaces to encode spurious features that hinder hyperbolicity.

Motivated by our findings, we propose employing hyperbolic geometry to model the latent rep-
resentations of deep RL models. Representing tree-metrics in Euclidean spaces incurs non-trivial
worse-case distortions, growing with the number of nodes at a rate dependent on the dimensionality
(Matoušek, 1990). This property suggests that it is not possible to encode complex hierarchies in Eu-
clidean space both efficiently and accurately, explaining why some solutions learned by PPO could
not maintain their hyperbolicity throughout training. In contrast, mapping the latent representations
to hyperbolic spaces of any dimensionality enables encoding features exhibiting a tree-structured
relation over the data with arbitrarily low distortion (Sarkar, 2011). Hence, hyperbolic latent repre-
sentations introduce a different inductive bias for modeling the policy and value function, stemming
from this inherent efficiency of specifically encoding hierarchical information (Tifrea et al., 2018).

3.2 OPTIMIZATION CHALLENGES

Figure 6: PPO model with an hyper-
bolic latent space, extending the archi-
tecture from Espeholt et al. (2018).

Naive integration. We test a simple extension to PPO, map-
ping the latent representations of states s ∈ S before the final
linear policy and value heads xE = fE(s) to the Poincaré ball
with unitary curvature. As described in Section 2, we perform
this with an exponential map to produce xH = exp1

0(xE), re-
placing the final ReLU. To output the value and policy logits,
we then finally perform a set of affine transformations in hy-
perbolic space, π(s), V (s) = fH(xH) = {f1

i (xH)}|A|
i=0. We

also consider a clipped version of this integration, following
the recent stabilization practice from Guo et al. (2022), which
entails clipping the magnitude of the latent representations to
not exceed unit norm. We initialize the weights of the last
two linear layers in both implementations to 100× smaller val-
ues to start training with low magnitude latent representations,
which facilitates the network first learning appropriate angular
layouts (Nickel & Kiela, 2017; Ganea et al., 2018).

Results. We analyze this naive hyperbolic PPO implementa-
tion in Figure 5. As shown in part (A.1), performance is gener-
ally underwhelming, lagging considerably behind the performance of standard PPO. While applying
the clipping strategy yields some improvements, its results are still considerably inferior on the tasks
where Euclidean embeddings appear to already recover effective representations (e.g. starpilot). In
part (A.2) we visualize the negated entropy of the different PPO agents. PPO’s policy optimization
objective includes both a reward maximization term, which requires an auxiliary estimator, and an
entropy bonus term that can instead be differentiated exactly and optimized end-to-end. Its purpose
is to push PPO agents to explore if they struggle to optimize performance with the current data.
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Figure 7: Analysis of hyperbolic PPO with the proposed S-RYM stabilization. We visualize performance (A)
and gradient magnitudes (B) as compared to the original Euclidean and the naive hyperbolic baselines.

We note that the Hyperbolic PPO agents take significantly longer to reach higher levels of entropy
in the initial training phases and are also much slower to reduce their entropy as their performance
improves. These results appear to indicate the presence of optimization challenges stemming from
end-to-end RL training with hyperbolic representations. Therefore, we turn our attention to ana-
lyzing the gradients in our hyperbolic models. In part (B.1), we visualize the magnitude of the
gradients both as backpropagated from the final representations and to the convolutional encoder.
In part (B.2), we also visualize the variance of the same gradients with respect to the different in-
put states in a minibatch. We find that hyperbolic PPO suffers from a severe exploding gradients
problem, with both magnitudes and variances being several orders of magnitude larger than the Eu-
clidean baseline. Similar instabilities have been documented by much recent literature, as described
in App. B. Yet, in the RL case, common stabilization techniques such as careful initialization and
clipping are visibly insufficient, resulting in ineffective learning and inferior agent performance.

3.3 STABILIZING HYPERBOLIC REPRESENTATIONS

We hypothesize that the high variance and non-stationarity characterizing RL are the main cause of
the observed optimization challenges of this naive hyperbolic PPO. implementation. Initialization
and clipping have been designed for stationary ML applications with fixed dataset and targets. In
these settings, regularizing the initial learning iterations enables the model to find appropriate angu-
lar layouts of the representations for the underlying fixed loss landscape. Without appropriate an-
gular layouts, useful representations become hard to recover due to the highly non-convex spectrum
of hyperbolic neural networks, resulting in failure modes with low performance (Ganea et al., 2018;
López & Strube, 2020). We can intuitively see how this reliance is likely incompatible with the RL
setting, where the trajectory data and loss landscape can change significantly throughout training,
making early angular layouts inevitably suboptimal. We believe this is further exacerbated by the
high variance gradients already characterizing policy gradient optimization (Sutton & Barto, 2018)
which facilitate entering unstable learning regimes that can lead to our observed failure modes.

Spectral norm. Another sub-field of ML dealing with non-stationarity and brittle optimization is
generative modeling with adversarial networks (GANs) (Goodfellow et al., 2014). In GAN train-
ing, the generated data and discriminator’s parameters constantly evolve, making the loss landscape
highly non-stationary as in the RL setting. Furthermore, the adversarial nature of the optimization
makes it very brittle to exploding and vanishing gradients instabilities which lead to common failure
modes (Arjovsky & Bottou, 2017; Brock et al., 2018). In this parallel literature, spectral normaliza-
tion (SN) (Miyato et al., 2018) is a popular stabilization practice whose success made it ubiquitous in
modern GAN implementations. Recent work (Lin et al., 2021) showed that a reason for its surpris-
ing effectiveness comes from regulating both the magnitude of the activations and their respective
gradients very similarly to LeCun initialization (LeCun et al., 2012). Furthermore, when applied
to the discriminator model, SN’s effects appear to persist throughout training, while initialization
strategies tend to only affect the initial iterations. In fact, they also show that ablating SN from GAN
training empirically results in exploding gradients and degraded performance, closely resembling
our same observed instabilities. We provide details about GANs and SN in App. A.3.
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Table 1: Performance comparison for the considered versions of PPO full Procgen benchmark

Task\Algorithm PPO PPO + data aug. PPO + S-RYM PPO + S-RYM, 32 dim.

Levels distribution train/test train/test train/test train/test

bigfish 3.71±1 1.46±1 12.43±4 (+235%) 13.07±2 (+797%) 13.27±2 (+258%) 12.20±2 (+737%) 20.58±5 (+455%) 16.57±2 (+1037%)
bossfight 8.18±1 7.04±2 3.38±1 (-59%) 2.96±1 (-58%) 8.61±1 (+5%) 8.14±1 (+16%) 9.26±1 (+13%) 9.02±1 (+28%)
caveflyer 7.01±1 5.86±1 6.08±1 (-13%) 4.89±1 (-16%) 6.15±1 (-12%) 5.15±1 (-12%) 6.38±1 (-9%) 5.20±1 (-11%)
chaser 6.58±2 5.89±1 2.14±0 (-67%) 2.18±0 (-63%) 6.60±2 (+0%) 7.82±1 (+33%) 9.04±1 (+37%) 7.32±1 (+24%)
climber 8.66±2 5.11±1 7.61±1 (-12%) 5.74±2 (+12%) 8.91±1 (+3%) 6.64±1 (+30%) 8.32±1 (-4%) 7.28±1 (+43%)
coinrun 9.50±0 8.25±0 8.40±1 (-12%) 9.00±1 (+9%) 9.30±1 (-2%) 8.40±0 (+2%) 9.70±0 (+2%) 9.20±0 (+12%)
dodgeball 5.07±1 1.87±1 3.94±1 (-22%) 3.20±1 (+71%) 7.10±1 (+40%) 6.52±1 (+248%) 7.74±2 (+53%) 7.14±1 (+281%)
fruitbot 30.10±2 26.33±2 27.56±3 (-8%) 27.98±1 (+6%) 30.43±1 (+1%) 27.97±3 (+6%) 29.15±1 (-3%) 29.51±1 (+12%)
heist 7.42±1 2.92±1 4.20±1 (-43%) 3.60±0 (+23%) 5.40±1 (-27%) 2.70±1 (-7%) 6.40±1 (-14%) 3.60±1 (+23%)
jumper 8.86±1 6.14±1 7.70±1 (-13%) 5.70±0 (-7%) 9.00±1 (+2%) 6.70±1 (+9%) 8.50±0 (-4%) 6.10±1 (-1%)
leaper 4.86±2 4.36±2 6.80±1 (+40%) 7.00±1 (+61%) 8.00±1 (+65%) 7.30±1 (+68%) 7.70±1 (+59%) 7.00±1 (+61%)
maze 9.25±0 6.50±0 8.50±1 (-8%) 7.10±1 (+9%) 9.50±0 (+3%) 6.10±1 (-6%) 9.20±0 (-1%) 7.10±1 (+9%)
miner 12.95±0 9.28±1 9.81±0 (-24%) 9.36±2 (+1%) 12.09±1 (-7%) 10.08±1 (+9%) 12.94±0 (+0%) 9.86±1 (+6%)
ninja 7.62±1 6.50±1 6.90±1 (-10%) 4.50±1 (-31%) 6.50±1 (-15%) 6.10±1 (-6%) 7.50±1 (-2%) 5.60±1 (-14%)
plunder 6.92±2 6.06±3 5.13±0 (-26%) 4.96±1 (-18%) 7.26±1 (+5%) 6.87±1 (+13%) 7.35±1 (+6%) 6.68±0 (+10%)
starpilot 30.50±5 26.57±5 43.43±7 (+42%) 32.41±3 (+22%) 37.08±3 (+22%) 41.22±3 (+55%) 41.48±4 (+36%) 38.27±5 (+44%)
Average norm. score 0.5614 0.3476 0.4451 (-21%) 0.3536 (+2%) 0.5846 (+4%) 0.4490 (+29%) 0.6326 (+13%) 0.4730 (+36%)
Median norm. score 0.6085 0.3457 0.5262 (-14%) 0.3312 (-4%) 0.6055 (+0%) 0.4832 (+40%) 0.6527 (+7%) 0.4705 (+36%)
# Env. improvements 0/16 0/16 3/16 10/16 11/16 12/16 8/16 13/16

Figure 8: Performance comparison for the considered versions of PPO agents with Euclidean and hyperbolic
latent representations, increasingly lowering the number of training levels.
S-RYM. Inspired by these connections, we propose to counteract the optimization challenges in RL
and hyperbolic representations with SN. Our implementation differs from its usual application for
GANs in two main ways. First, we apply SN to all layers in the Euclidean sub-network (fE), as the
observed instabilities already occur in the gradients from the hyperbolic representations, but leave
the final linear hyperbolic layer (fH ) unregularized to avoid further limiting expressivity. Second, we
propose to scale the latent representations to account for their dimensionality. In particular, modeling
xE ∈ Rn by an independent Gaussian, the magnitude of the representations follows some scaled
Chi distribution ∥xE∥ ∼ χn, which we can reasonably approximate with E[∥xE∥] = E[χn] ≈

√
n.

Therefore, we propose to rescale the output of fE by 1/
√
n, such that modifying the dimensionality

of the representations should not significantly affect their magnitude before mapping them Hn. We
call this general stabilization recipe spectrally-regularized hyperbolic mappings (S-RYM).

Results. As shown in Figure 7, integrating S-RYM with our hyperbolic RL agents appears to resolve
their optimization challenges and considerably improve the Euclidean baseline’s performance (A).
To validate that the performance benefits are due to the hyperbolic geometry of the latent space, we
also evaluate a baseline using SN and rescaling in Euclidean space, which fails to attain consistent
improvements. Furthermore, S-RYM maintains low gradient magnitudes (B), confirming its effec-
tiveness to stabilize training. In App. E.1, we also show that SN and rescaling are both crucial for
S-RYM. Thus, in the next section, we evaluate hyperbolic deep RL on a large-scale, analyzing its
efficacy and behavior across different benchmarks, RL algorithms, and training conditions.

4 EXTENSIONS AND EVALUATION

To test the generality of our hyperbolic deep RL framework, in addition to the on-policy PPO we also
integrate it with the off-policy Rainbow DQN algorithm (Hessel et al., 2018). Our implementations
use the same parameters and models specified in prior traditional RL literature, without any addi-
tional tuning. Furthermore, in addition to the full Procgen benchmark (16 envs.) we also evaluate on
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Figure 9: Absolute difference in normalized performance (Y-axis) and relative improvements (Above bars)
from integrating hyperbolic representations with S-RYM onto our Rainbow implementation.

the popular Atari 100K benchmark (Bellemare et al., 2013; Kaiser et al., 2020) (26 envs.), repeating
for 5 random seeds. We provide all details about benchmarks and implementations in App. C.

Generalization on Procgen. Given the documented representation efficiency of hyperbolic space,
we evaluate our hyperbolic PPO implementation also reducing the dimensionality of the final repre-
sentation to 32 (see App. E.2), with relative compute and parameter efficiency benefits. We compare
our regularized hyperbolic PPO with using data augmentations, a more traditional way of encoding
inductive biases from inducing invariances. We consider random crop augmentations from their
popularity and success in modern RL. As shown in Table 1, our hyperbolic PPO implementation
with S-RYM appears to yield conspicuous performance gains on most of the environments. At the
same time, reducing the size of the representations provides even further benefits with significant
improvements in 13/16 tasks. In contrast, applying data augmentations yields much lower and incon-
sistent gains, even hurting on some tasks where hyperbolic RL provides considerable improvements
(e.g. bossfight). We also find that test performance gains do not always correlate with gains on the
specific 200 training levels, yielding a significantly reduced generalization gap for the hyperbolic
agents. We perform the same experiment but apply our hyperbolic deep RL framework to Rainbow
DQN with similar results, also obtaining significant gains in 13/16 tasks, as reported in App. D.1.

We also evaluate the robustness of our PPO agents to encoding spurious features, only relevant for
the training levels. In particular, we examine tasks where PPO tends to perform well and consider
lowering the training levels from 200 to 100, 50, and 25. As shown in Figure 8, the performance of
PPO visibly drops at each step halving the number of training levels, suggesting that the Euclidean
representations overfit and lose their original efficacy. In contrast, hyperbolic PPO appears much
more robust, still surpassing the original PPO results with only 100 training levels in fruitbot and
50 in starpilot. While also applying data augmentation attenuates the performance drops, its effects
appear more limited and inconsistent, providing almost null improvements for starpilot.

Table 2: Aggregate results on Atari 100K

Metric\Algorithm Rainbow Rainbow + S-RYM

Human norm. mean 0.353 0.686 (+93%)
Human norm. median 0.259 0.366 (+41%)
Super human scores 2 5

Sample-efficiency on Atari 100K. We focus on the
performance of our hyperbolic Rainbow DQN im-
plementation, as the severe data limitations of this
benchmark make PPO and other on-policy algo-
rithms impractical. We show the absolute and rela-
tive per-environment performance changes from our
hyperbolic RL framework in Figure 9, and provide
aggregate statistics in Table 2. Also on this benchmark, the exact same hyperbolic deep RL frame-
work provides consistent and significant benefits. In particular, we record improvements on 22/26
Atari environments over the Euclidean baseline, almost doubling the final human normalized score.

Considerations and comparisons. Our results empirically validate that introducing hyperbolic
representations to shape the prior of deep RL models is both remarkably general and effective. We
record almost universal improvements on two fundamentally different RL algorithms, considering
both generalizations to new levels from millions of frames (Procgen) and to new experiences from
only 2hrs of total play time (Atari 100K). Furthermore, our hyperbolic RL agents outperform the
scores reported in most other recent advances, coming very close to the current SotA algorithms
which incorporate different expensive and domain-specialized auxiliary practices (see App. D.2-
D.3). Our approach is also orthogonal to many of these advances and appears to provide compatible
and complementary benefits (see App. E.3). Taken together, we believe these factors show the great
potential of our hyperbolic framework to become a standard way of parameterizing deep RL models.
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Figure 10: Visualization of 2-dimensional hyperbolic embeddings in the bigfish environment as we progress
through a trajectory, encoding states from either policy transitions or random transitions (details in App. D.4).

Representations interpretation. We train our hyperbolic PPO agent with only 2-dimensional rep-
resentations, which still remarkably provide concrete generalization benefits over Euclidean PPO
(App. D.4). Then, we analyze how these representations evolve within trajectories, mapping them
on the Poincaré disk and visualizing the corresponding states. We observe a recurring cyclical be-
havior, where the magnitude of the representations monotonically increases within subsets of the
trajectory as more obstacles/enemies appear. We show this in Fig. 10 and Fig. 12, comparing the
representations of on-policy states sampled at constant intervals with trajectory deviations from
executing random behavior. We observe the representations form tree-like structures, with the mag-
nitudes in the on-policy states growing in the direction of the Value function’s gyroplane’s normal.
This intuitively reflects that as new elements appear the agent recognizes a larger opportunity for
rewards, yet, requiring a finer level of control as distances to the policy gyroplanes will also grow
exponentially, reducing entropy. Instead, following random deviations, magnitudes grow in direc-
tions orthogonal to the Value gyroplane’s normal. This still reflects the higher precision required for
optimal decision-making, but also the higher uncertainty to obtain future rewards from worse states.

5 RELATED WORK

Generalization is a key open problem in RL (Kirk et al., 2021). End-to-end training of deep models
with RL objectives has been shown prone to overfitting from spurious features only relevant in the
observed transitions (Song et al., 2019; Bertran et al., 2020). To address this, prior work consid-
ered different data augmentation strategies (Laskin et al., 2020b; Yarats et al., 2021a; Cobbe et al.,
2019), and online adaption methods on top to alleviate engineering burdens (Zhang & Guo, 2021;
Raileanu et al., 2020). Alternative approaches have been considering problem-specific properties
of the environment (Zhang et al., 2020; Raileanu & Fergus, 2021), auxiliary losses (Laskin et al.,
2020a; Schwarzer et al., 2020), and frozen pre-trained layers (Yarats et al., 2021b; Stooke et al.,
2021). Instead, we propose to encode a new inductive bias making use of the geometric properties
of hyperbolic space, something orthogonal and likely compatible with most such prior methods.

While hyperbolic representations found recent popularity in machine learning, there have not been
notable extensions for deep RL (Peng et al., 2021). Most relatedly, Tiwari & Prannoy (2018) pro-
posed to produce hyperbolic embeddings of the state space of tabular MDPs to recover options
(Sutton et al., 1999). Yet, they did not use RL for learning, but fixed data and a supervised loss
based on the co-occurrence of states, similarly to the original method by Nickel & Kiela (2017).

6 DISCUSSION AND FUTURE WORK

In this work, we introduce hyperbolic geometry to deep RL. We analyze training agents using latent
hyperbolic representations and propose spectrally-regularized hyperbolic mappings, a new stabiliza-
tion strategy that overcomes the observed optimization instabilities. Hence, we apply our framework
to obtain hyperbolic versions of established on-policy and off-policy RL algorithms, which we show
substantially outperform their Euclidean counterparts in two popular benchmarks. We provide nu-
merous results validating that hyperbolic representations provide deep models with a more suitable
prior for control, with considerable benefits for generalization and sample-efficiency. We share our
implementation to facilitate future RL advances considering hyperbolic space as a new, general tool.
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ETHICS STATEMENT

We proposed to provide deep RL models with a more suitable prior for learning policies, using
hyperbolic geometry. In terms of carbon footprint, our implementation does not introduce additional
compute costs for training, and even appears to perform best with more compact representation
sizes. Consequently, given the nature of our contribution, its ethical implications are bound to
the implications of advancing the RL field. In this regard, as autonomous agents become more
applicable, poor regulation and misuse may cause harm. Yet, we believe these concerns are currently
out-weighted by the field’s significant positive potential to advance human flourishing.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our integration of hyperbolic space, experimental setups, and
network architectures in Section 3 and also Appendix B. We provide all details, including a full list
of hyper-parameters, in Appendix C. We currently shared an anonymized version of our code to
reproduce the main experiments in the supplementary material. We shared our open-source imple-
mentation to facilitate future extensions.
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Federico López and Michael Strube. A fully hyperbolic neural model for hierarchical multi-class
classification. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
460–475, 2020.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation
in value function estimates. Management Science, 53(2):308–322, 2007.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Contin-
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APPENDIX

A EXTENDED BACKGROUND

A.1 RL ALGORITHMS DESCRIPTIONS

Continuing from section 2.1, we provide an overview of standard RL definitions and the deep RL
algorithms we use in this work.

Two important functions in RL are the value function and the action-value function (also called the
Q function). These quantify, for policy π, the expected sum of discounted future rewards given any
initial fixed state or state-action pair, respectively:

V π(st) = Eat,st+1,at+1,···∼πθ,P

[ ∞∑
t′=0

γt′r(st+t′ , at+t′)

]
,

Qπ(st, at) = r(st, at) + γEst+1∼P [V π(st+1)] .

(7)

Relatedly, the advantage function Aπ(st, at) = Qπ(st, at) − V π(st) quantifies the expected im-
provement from executing any given action at from st rather than following the policy. These func-
tions summarize the future evolution of an MDP and are often parameterized and learned auxiliary
to or even in-place of the policy model.

On-policy methods. Modern on-policy RL algorithms collect a new set of trajectories at each it-
eration with the current policy, discarding old data. They use these trajectories to learn the current
policy’s value function and recover a corresponding advantage function from the observed Monte-
Carlo returns, using techniques such as the popular Generalized Advantage Estimator (GAE) (Schul-
man et al., 2015). The estimated advantages AGAE are then used to compute the policy gradient
and update the policy, maximizing the probability of performing the best-observed actions (Sutton
& Barto, 2018). Since the values of AGAE are based on a limited set of trajectories, on-policy
methods generally suffer from high-variance targets and gradients (Pendrith et al., 1997; Mannor
et al., 2007; Wu et al., 2018). Proximal Policy Optimization (PPO) (Schulman et al., 2017) is one
of the most established on-policy algorithms that attenuates these issues by taking conservative up-
dates, restricting the policy update from making larger than ϵ changes to the probability of executing
any individual action. PPO considers the ratio between the updated and old policy probabilities
Rπ(at|st) = πθ(at|st)

πold(at|st) to optimize a pessimistic clipped objective of the form:

min{Rπ(at|st)AGAE(st, at), clip(Rπ(at|st), 1− ϵ, 1 + ϵ)AGAE(st, at)}. (8)

As mentioned in the main text, PPO also includes a small entropy bonus to incentivize exploration
and improve data diversity. This term can be differentiated and optimized without any estimator
since we have full access to the policy model and its output logits, independently of the collected
data.

Off-policy methods. In contrast, off-policy algorithms generally follow a significantly different op-
timization approach. They store many different trajectories collected with a mixture of old policies
in a large replay buffer, B. They use this data to directly learn the Q function for the optimal greedy
policy with a squared loss based on the Bellman backup (Bellman, 1957):

E(st,at,st+1,rt)∈B

[
Q(st, at)−

(
rt +max

a′
Q(st+1, a

′)
)]2

(9)

(Bellman, 1957). Agent behavior is then implicitly defined by the epsilon-greedy policy based on
the actions with the highest estimated Q values. We refer to the deep Q-networks paper (Mnih et al.,
2013) for a detailed description of the seminal DQN algorithm. Rainbow DQN (Hessel et al., 2018)
is a modern popular extension that introduces several auxiliary practices from proposed orthogonal
improvements, which they show provide compatible benefits. In particular, they use n-step returns
(Sutton & Barto, 2018), prioritized experience replay (Schaul et al., 2016), double Q-learning (Has-
selt, 2010), distributional RL (Bellemare et al., 2017), noisy layers (Fortunato et al., 2018), and a
dueling network architecture (Wang et al., 2016).
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A.2 δ-HYPERBOLICITY

δ-hyperbolicity was introduced by Gromov (1987) as a criterion to quantify how hyperbolic a metric
space (X, d) is. We can express δ-hyperbolicity in terms of the Gromov product, defined for x, y ∈
X at some base point r ∈ X as measuring the defect from the triangle inequality:

(x|y)r =
1

2
(d(x, r) + d(r, y)− d(x, y)). (10)

Then, X is δ-hyperbolic if for all base points r ∈ X and for any three points x, y, z ∈ X the Gromov
product between x and y is lower than the minimum Gromov product of the other pairs by at most
some slack variable δ:

(x|y)r ≥ min((x|y)r, (x|y)r)− δ. (11)
In our case (a complete finite-dimensional path-connected Riemannian manifold, which is a
geodesic metric space), δ-hyperbolicity means that for every point on one of the sides of a geodesic
triangle △xyz, there exists some other point on one of the other sides whose distance is at most δ, or
in other words, geodesic triangles are δ-slim. In trees, the three sides of a triangle must all intersect
at some midpoint (Figure 3). Thus, every point belongs to at least two of its sides yielding δ = 0.
Thus the δ-hyperbolicity can be interpreted as measuring the deviation of a given metric from an
exact tree metric.

A.3 GENERATIVE ADVERSARIAL NETWORKS AND SPECTRAL NORMALIZATION

GANs. In GAN training, the goal is to obtain a generator network to output samples resembling
some ‘true’ target distribution. To achieve this, Goodfellow et al. (2014) proposed to alternate train-
ing of the generator with training an additional discriminator network, tasked to distinguish between
the generated and true samples. The generator’s objective is then to maximize the probability of its
own samples according to the current discriminator, backpropagating directly through the discrim-
inator’s network. Since both the generated data and discriminator’s network parameters constantly
change from this alternating optimization, the loss landscape of GANs is also highly non-stationary,
resembling, to some degree, the RL setting. As analyzed by several works, the adversarial nature
of the optimization makes it very brittle to exploding and vanishing gradients instabilities (Arjovsky
& Bottou, 2017; Brock et al., 2018) which often result in common failure modes from severe diver-
gence or stalled learning (Lin et al., 2021). Consequently, numerous practices in the GAN literature
have been proposed to stabilize training (Radford et al., 2015; Arjovsky et al., 2017; Gulrajani et al.,
2017b). Inspired by recent work, in this work, we focus specifically on spectral normalization
(Miyato et al., 2018), one such practice whose recent success made in ubiquitous in modern GAN
implementations.

Spectral normalization. In the adversarial interplay characterizing GAN training, instabilities com-
monly derive from the gradients of the discriminator network, fD (Salimans et al., 2016). Hence,
Miyato et al. (2018) proposed to regularize the spectral norm of discriminator’s layers, lj ∈ fD, i.e.,
the largest singular values of the weight matrices ∥WWN

j ∥sn = σ(WSN
j ), to be approximately one.

Consequently, spectral normalization effectively bounds the Lipschitz constant of the whole discrim-
inator network since, ∥fD∥Lip ≤

∏L
j=1∥lj∥Lip ≤

∏L
j=1∥WSN

j ∥sn = 1. In practice, the proposed
implementation approximates the largest singular value of some original unconstrained weight ma-
trices by running power iteration (Golub & Van der Vorst, 2000). Thus, it recovers the spectrally-
normalized weights with a simple re-parameterization, dividing the unconstrained weights by their
relative singular values WSN

j =
Wj

σ(Wj)
. As mentioned in the main text, recent work (Lin et al.,

2021) showed that one of the main reasons for the surprising effectiveness of spectral normalization
in GAN training comes from effectively regulating both the magnitude of the activations and their
respective gradients, very similarly to LeCun initialization (LeCun et al., 2012). Furthermore, when
applied to the discriminator, spectral normalization’s effects appear to persist throughout training,
while initialization strategies tend to only affect the initial iterations. In fact, in Figure 2 of their
paper, they also show that ablating spectral normalization empirically results in exploding gradients
and degraded performance, closely resembling our same observed instabilities in Figure 5 (B).

S-RYM entails applying spectral normalization to all the layers in the Euclidean encoder sub-
network, as already after backpropagation through the final latent hyperbolic representation we ob-
serve exploding high-variance gradients. We leave the final linear transformation in hyperbolic space
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unregularized as we do not want unnecessarily restrict the expressivity of the model. Furthermore,
there is also no direct way of performing power iteration with our final layer parameterization (see
Section 2.2). We note that by applying spectral normalization to all layers, we would enforce our
models of the value and policy to be 1-Lipschitz, a property that is likely not reflective of the true op-
timal policy and value functions. We validate this hypothesis in Appendix E.4 by enforcing Lipschitz
continuity with gradient penalties (Gulrajani et al., 2017b) on top of our regularized Hyperbolic PPO
implementation. For Euclidean PPO, preliminary experiments confirmed that enforcing the model
to be 1-Lipschitz by applying either spectral normalization to all layers or gradient penalties leads
to worse results than applying S-RYM. This intuition is also consistent with other recent works that
studied the application of spectral normalization for reinforcement learning (Bjorck et al., 2021;
Gogianu et al., 2021). Yet, these works also observed performance benefits when applying spectral
normalization exclusively to particular layers of the model. These empirical insights could inform
future improvements for S-RYM to retain the stability benefits of spectral normalization with even
less restrictive regularization.

B STABILIZATION OF HYPERBOLIC REPRESENTATIONS

One of the main challenges of incorporating hyperbolic geometry with neural networks comes from
end-to-end optimization of latent representations and parameters located in hyperbolic space. For
instance, numerical issues and vanishing gradients occur as representations get too close to either the
origin or the boundary of the Poincaré ball (Ganea et al., 2018). Moreover, training dynamics can
tend to push representations towards the boundary, slowing down learning and make optimization
problems of earlier layers ineffective (Guo et al., 2022). A number of methods have been used to
help stabilize learning of hyperbolic representations including constraining the representations to
have a low magnitude early in training, applying clipping and perturbations (Ganea et al., 2018;
Khrulkov et al., 2020), actively masking invalid gradients (Mathieu et al., 2019), and designing
initial ‘burn-in’ periods of training with lower learning rates (Nickel & Kiela, 2017; Bécigneul &
Ganea, 2019). More recently Guo et al. (2022) also showed that very significant magnitude clipping
of the latent representations can effectively attenuate these numerical and learning instabilities when
training hyperbolic classifiers for popular image classification benchmarks.

B.1 MAGNITUDE CLIPPING

Guo et al. (2022) recently proposed to apply significant clipping of the magnitude of the latent
representations when using hyperbolic representations within deep neural networks. As in our work,
they also consider a hybrid architecture where they apply an exponential map before the final layer to
obtain latent representations in hyperbolic space. They apply the proposed clipping to constrain the
input vector of the exponential map to not exceed unit norm, producing hyperbolic representations
via:

xH = exp10

(
min

{
1,

1

||xE ||

}
× xE

)
. (12)

The main motivation for this practice is to constrain representation magnitudes, which the authors
linked to a vanishing gradient phenomenon when training on standard image classification datasets
(Krizhevsky et al., 2009; Deng et al., 2009). However, a side effect of this formulation is that the
learning signal from the representations exceeding a magnitude of 1 will solely convey information
about the representation’s direction and not its magnitude. Since the authors do not share their im-
plementation, we tested applying their technique as described in the paper. We found some benefits
in additionally initializing the parameters of the last two linear layers (in Euclidean and hyperbolic
space) to 100× smaller values to facilitate learning initial angular layouts.

B.2 IMAGE CLASSIFICATION EXPERIMENTS

To empirically validate and analyze our clipping implementation we consider evaluating deep hy-
perbolic representations on image classification tasks, following the same training practices and
datasets from Guo et al. (2022). In particular, we utilize a standard ResNet18 architecture (He et al.,
2016) and test our network on CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). We optimize the
Euclidean parameters of the classifier using stochastic gradient descent with momentum and the hy-
perbolic parameters using its Riemmanian analogue (Bonnabel, 2013). We train for 100 epochs with
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Figure 11: Visualization of test images from CIFAR10, with the corresponding final latent represen-
tations magnitudes from our hyperbolic ResNet18 classifier implemented with S-RYM. We sample
datapoints with the 5% highest magnitudes (Top) and the 5% lowest magnitudes (Bottom).

an initial learning rate of 0.1 and a cosine schedule (Loshchilov & Hutter, 2017), using a standard
batch size of 128. We repeat each experiment 3 times, recording the final top-1 classification accu-
racy together with the latent representations in Euclidean space right before applying the exponential
map at the final layer.

Table 3: Performance results on standard image classification benchmarks

CIFAR10 with ResNet18
Metric\Architecture Euclidean Hyperbolic + Clipping Hyperbolic + S-RYM

Top-1 accuracy 94.92 ± 0.19 94.81 ± 0.17 95.12 ± 0.09
L2 representations magnitudes 5.846 1.00 0.481
Magnitudes standard deviation 0.747 0.00 0.039

CIFAR100 with ResNet18
Metric\Architecture Euclidean ResNet18 Hyperbolic + Clipping Hyperbolic + S-RYM

Top-1 accuracy 76.86 ± 0.23 76.75 ± 0.23 77.49 ± 0.35
L2 representations magnitudes 11.30 1.00 0.852
Magnitudes standard deviation 1.571 0.00 0.076

In Table 3, we report the different classifiers’ performance together with the mean and standard de-
viation of the representations’ magnitudes from the images in the test set. The performance of the
clipped hyperbolic classifier is very close to the performance of the Euclidean classifier, matching
Guo et al. (2022)’s results and validating our implementation. However, the learned representations’
magnitudes soon overshoot the clipping threshold and get mapped to constant-magnitude vectors
throughout training. Therefore, the model will effectively stop optimizing for the representations’
magnitudes and only focus on their unit direction. As volume and distances on the Poincaré ball
grow expoentially with radius, the magnitude component of the hyperbolic representations is pre-
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cisely what facilitates encoding hierarchical information, providing its intuitive connection with tree
structures. Hence, the resulting clipped ‘hyperbolic’ space spanned by the clipped latent represen-
tations will lose its defining degree of freedom and approximately resemble an n − 1-dimensional
Euclidean space with a rescaled metric, potentially explaining its performance similarity with stan-
dard Euclidean classifiers. Even though the focus of our work is not image classification, we find
S-RYM’s performance remarkably recovers and even marginally exceeds the performance of both
the Euclidean and the clipped hyperbolic classifiers on these saturated benchmarks. Furthermore,
its representations do not explode and maintain magnitude diversity, enabling to more efficiently
capture the relative hierarchical nature of image-classification benchmarks (Khrulkov et al., 2020).
Overall, these results suggest that clipping simply treats the symptoms of the instabilities caused by
end-to-end large scale training by essentially resorting back to Euclidean representations for image
classification.

Analyzing the magnitude component of the latent representations for our hyperbolic classifier with
S-RYM, we find it correlates with classification performance. For instance, on CIFAR10 the test
performance on the images with representations’s with the top 5% magnitudes is 97.17%, while for
the bottom 5% is 79.64%. Furthermore, we display some samples from these two distinct groups in
Figure 11. From these results and visualizations, it appears that the hyperbolic hierarchical structure
serves to encode the degree of uncertainty to disambiguate between multiple image labels due to
the blurriness and varying difficulty of the CIFAR10 datapoints. Hence, we believe the observed
accuracy improvements of our hyperbolic classifier might be specifically due to more efficiently
capturing this specific hierarchical property of the considered datasets.

C IMPLEMENTATION AND EXPERIMENT DETAILS

We provide details of the experimental settings and implementations with the corresponding hyper-
parameters for both our Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Rainbow
DQN experiments (Hessel et al., 2018). We consider these two main baselines since they are two
of the most studied algorithms in the recent RL literature onto which many other recent advances
also build upon (e.g., (Cobbe et al., 2021; Laskin et al., 2020b; Mohanty et al., 2021; Raileanu
et al., 2020; Raileanu & Fergus, 2021; Yarats et al., 2021a; Van Hasselt et al., 2019; Laskin et al.,
2020a; Schwarzer et al., 2020)). Furthermore, PPO and Rainbow DQN are based on the main
families of model-free RL algorithms, with very distinct properties as described in Appendix A.1.
Hence, unlike most prior advances, we do not constrain our analysis to a single class of methods,
empirically showing the generality of hyperbolic deep RL. Our implementations closely follow the
reported details from recent research, and were not tuned to facilitate our integration of hyperbolic
representations. The main reason for this choice is that we wanted to avoid introducing additional
confounding factors from our evaluation of hyperbolic representations, as ad-hoc tuning frequently
plays a significant role in RL performance (Islam et al., 2017).

We implemented the proposed dimensionality-based rescaling, followed by the exponential map and
the linear layer in hyperbolic space as a single Pytorch module (the PoincarePlaneDistance class in
the shared code). Our implementation allows us to easily integrate our framework with existing
neural network models by simply swapping the final layer with our new module. We would like to
acknowledge the Geoopt optimization library (Kochurov et al., 2020), which we used to efficiently
train and store the network parameters located in hyperbolic space. We also make use of the Hydra
library (Yadan, 2019) to facilitate storing hyper-parameters and quickly specifying the different
algorithm variations for the experiments in our work.

C.1 BENCHMARKS

Procgen. The Procgen generalization benchmark (Cobbe et al., 2020) consists of 16 game environ-
ments with procedurally-generated random levels. The state spaces of these environments consist
of the RGB values from the 64x64 rescaled visual renderings. Following common practice and the
recommended settings, we consider training agents using exclusively the first 200 levels of each
environment and evaluate on the full distribution of levels to assess agent performance and gen-
eralization. Furthermore, we train for 25M total environment steps and record final training/test
performance collected across the last 100K steps averaged over 100 evaluation rollouts.
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Atari 100K. The Atari 100K benchmark (Kaiser et al., 2020) is based on the seminal problems from
the Atari Learning Environment (Bellemare et al., 2013). In particular, this benchmark consists of
26 different environments and only 100K total environment steps for learning each, corresponding
roughly to 2hrs of play time. The environments are modified with the specifications from (Machado
et al., 2018), making the state spaces of these environments 84x84 rescaled visual renderings and
introducing randomness through sticky actions. We note that this is a significantly different setting
than Procgen, testing the bounds for the sample efficiency of RL agents.

C.2 PPO IMPLEMENTATION

Our PPO implementation follows the original Procgen paper (Cobbe et al., 2020), which entails a
residual convolutional network (Espeholt et al., 2018) and produces a final 256-dimensional latent
representation with a shared backbone for both the policy and value function. Many prior im-
provements over PPO for on-policy learning have been characterized by either introducing auxiliary
domain-specific practices, increasing the total number of parameters, or performing additional op-
timization phases - leading to significant computational overheads (Cobbe et al., 2021; Raileanu &
Fergus, 2021; Mohanty et al., 2021). Instead, our approach strives for an orthogonal direction by
simply utilizing hyperbolic geometry to facilitate encoding hierarchically-structured features into
the final latent representations. Thus, it can be interpreted as a new way to modify the inductive bias
of deep learning models for reinforcement learning.

Table 4: PPO hyper-parameters used for the Procgen generalization benchmark

PPO hyperparameters
Parallel environments 64
Stacked input frames 1
Steps per rollout 16384
Training epochs per rollout 3
Batch size 2048
Normalize rewards True
Discount γ 0.999
GAE λ (Schulman et al., 2015) 0.95
PPO clipping 0.2
Entropy coefficient 0.01
Value coefficient 0.5
Shared network True
Impala stack filter sizes 16, 32, 32
Default latent representation size 256
Optimizer Adam (Kingma & Ba, 2015)
Optimizer learning rate 5×10−4
Optimizer stabilization constant (ϵ) 1×10−5
Maximum gradient norm. 0.5

In Table 4 we provide further details of our PPO hyper-parameters, as also described by the origi-
nal Procgen paper (Cobbe et al., 2020). When using hyperbolic latent representations, we optimize
the hyperbolic weights of the final Gyroplane linear layer with the Riemannian Adam optimizer
(Bécigneul & Ganea, 2019), keeping the same learning rate and other default parameters. As per
common practice in on-policy methods, we initialize the parameters of the final layer with 100×
times lower magnitude. We implemented the naive hyperbolic reinforcement learning implementa-
tions introduced in Subsection 3.2 by initializing also the weights of the preceding layer with 100×
lower magnitudes to facilitate learning appropriate angular layouts in the early training iterations.
We found our S-RYM stabilization procedure also enable to safely remove this practice with no
effects on performance.
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C.3 RAINBOW IMPLEMENTATIONS

Our implementation of Rainbow DQN uses the same residual network architecture as our PPO
implementation (Espeholt et al., 2018) but employs a final latent dimensionality of 512, as again
specified by Cobbe et al. (2020). Since Cobbe et al. (2020) do not open-source their Rainbow im-
plementation and do not provide many of the relative details, we strive for a simple implementation
removing unnecessary complexity and boosting overall efficiency. Following Castro et al. (2018),
we only consider Rainbow DQN’s three most significant advances over vanilla DQN (Mnih et al.,
2013): distributional critics (Bellemare et al., 2017), prioritized experience replay (Schaul et al.,
2016), and n-step returns (Sutton & Barto, 2018). While the methodology underlying off-policy
algorithms is fundamentally different from their on-policy counterparts, we apply the same exact
recipe of integrating hyperbolic representations in the final layer, and compare against the same
variations and baselines.

Table 5: Rainbow DQN hyper-parameters used for the Procgen generalization benchmark

Rainbow DQN Procgen hyperparameters
Parallel environments 64
Stacked input frames 1
Replay buffer size 1.28M
Batch size 512
Minimum data before training 32K steps
Update network every 256 env. steps
Update target network every 12800 env. steps
ϵ-greedy exploration schedule 1→0.01 in 512K steps
Discount γ 0.99
N-step 3
Use dueling (Wang et al., 2016) False
Use noisy layers (Fortunato et al., 2018) False
Use prioritized replay (Schaul et al., 2016) True
Use distributional value (Bellemare et al., 2017) True
Distributional bins 51
Maximum distributional value 10
Minimum distributional value -10
Impala stack filter sizes 16, 32, 32
Default latent representation size 512
Optimizer Adam (Kingma & Ba, 2015)
Optimizer learning rate 5×10−4
Optimizer stabilization constant (ϵ) 1×10−5
Maximum gradient norm. 0.5

In Table 5 we provide details of our Rainbow DQN hyper-parameters. We note that sampling of
off-policy transitions with n-step returns requires retrieving the future n rewards and observations.
To perform this efficiently while gathering multiple transitions from the parallelized environment,
we implemented a parellalized version of a segment tree. In particular, this extends the original im-
plementation proposed by Schaul et al. (2016), through updating a set of segment trees implemented
as a unique data-structure with a single parallelized operation, allowing for computational efficiency
without requiring any storage redundancy. We refer to the shared code for further details. As with
our hyperbolic PPO extensions, we also optimize the final layer’s hyperbolic weights with Rieman-
nian Adam, keeping the same parameters as for the Adam optimizer used in the other Euclidean
layers.
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Table 6: Rainbow DQN hyper-parameters changes for the Atari 100K benchmark

Rainbow DQN Atari 100K training hyper-parameters
Stacked input frames 4
Batch size 32
Minimum data before training 1600 steps
Network updates per step 2
Update target network every 1 env. steps
ϵ-greedy exploration schedule 1→0.01 in 20K steps

The characteristics of the Atari 100K benchmark are severely different from Procgen, given by the
lack of parallelized environments and the 250× reduction in total training data. Hence, we make a
minimal set of changes to the training loop hyper-parameters of our Rainbow DQN implementation
to ensure effective learning, as detailed in Table 6. These are based on standard practices employed
by off-policy algorithm evaluating on the Atari 100K benchmark (Van Hasselt et al., 2019; Laskin
et al., 2020a; Yarats et al., 2021a) and were not tuned for our specific implementation.

C.4 EXPERIMENTAL RECORDINGS

By default, we repeat each experiment with five random seeds. To visualize the evolution of relevant
values using performance curves, we collect measurements from each algorithm in five evaluation
rollouts every 64×1024 frames (64 is the number of parallel environments used in Procgen). Hence,
the reported values correspond to the mean results over all the collected seeds and runs, while the
shaded regions correspond to the standard deviation between the mean results from different random
seeds. For the tabular data illustrating final performance, we perform ten additional evaluation
rollouts at the end of the specified training allowance. The reported uncertainty again represents the
standard deviation between the mean results from different seeds.

C.5 CURRENT LIMITATIONS

We identify three main current limitations of the proposed implementation. First, stabilizing hy-
perbolic representations with S-RYM inherently constrains the expressivity of the Euclidean sub-
network encoder model (fE) to be 1-Lipschitz. This loss of expressivity might hinder the network’s
ability to learn complex representations, preventing our hyperbolic framework to achieve its full
potential. Second, the training and evaluation time of our hyperbolic agents are consistently higher
than their Euclidean counterparts. Our hyperbolic PPO implementation takes on average 4.27 sec-
onds to collect rollouts and train for three epochs, and takes 0.961 seconds to collect a full episode of
experience at the end of training. In contrast, our Euclidean baseline takes 3.69 seconds for training
(16% speedup) and 0.854 seconds for evaluation (13% speedup). We find this slowdown is mainly
due to the power iteration procedure performed to apply spectral normalization in S-RYM and, to
a lesser extent, an overhead when computing and backpropagating through hyperbolic operations.
Third, our algorithm utilizes a model of hyperbolic space with fixed negative curvature to build rep-
resentations of the whole state space. However, as different RL problems might have considerably
different structures, we believe that any fixed curvature might not always yield the most appropriate
inductive bias. To this end, recent work showed potential benefits in using mixed curvature latent
spaces and even learning the curvature parameter for unsupervised tasks (Skopek et al., 2019). We
hope these limitations will be addressed in future work, further studying how differential geometry
can be used to empower RL.

D EXTENDED RESULTS AND COMPARISONS

In this Section, we provide detailed per-environment Rainbow DQN Procgen results that were omit-
ted from the main text due to space constraints. For both Rainbow DQN and PPO. We also compare
the performance improvements from the integration of our deep hyperbolic representations with the
reported improvements from recent state-of-the-art (SotA) algorithms, employing one or several or-
thogonal domain-specific practices. In Appendix E.3, we provide examples empirically validating
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Table 7: Detailed performance comparison for the Rainbow DQN algorithm on the full Procgen
benchmark. We train for a total of 25M steps on 200 training levels and test on the full distribution
of levels. We report the mean returns, the standard deviation, and relative improvements from the
original Rainbow DQN baseline over 5 random seeds.

Task\Algorithm Rainbow DQN Rainbow DQN + data aug. Rainbow DQN + S-RYM Rainbow DQN + S-RYM, 32 dim.

Levels distribution train/test train/test train/test train/test

bigfish 23.17±4 15.47±2 19.61±4 (-15%) 17.39±4 (+12%) 27.61±0 (+19%) 23.03±2 (+49%) 30.85±2 (+33%) 22.37±2 (+45%)
bossfight 7.17±1 7.29±1 6.22±1 (-13%) 6.97±1 (-4%) 9.41±1 (+31%) 7.75±1 (+6%) 8.21±1 (+15%) 8.71±1 (+20%)
caveflyer 7.00±1 3.92±1 7.59±0 (+8%) 5.36±1 (+37%) 6.39±1 (-9%) 3.11±1 (-21%) 6.45±1 (-8%) 5.46±1 (+39%)
chaser 3.09±1 2.31±0 2.89±0 (-6%) 2.61±0 (+13%) 4.03±1 (+30%) 3.65±1 (+58%) 3.78±0 (+23%) 3.29±0 (+43%)
climber 3.68±1 1.73±1 2.57±1 (-30%) 2.36±1 (+36%) 3.91±0 (+6%) 2.39±0 (+38%) 4.80±2 (+31%) 3.00±0 (+73%)
coinrun 5.56±1 4.33±1 3.22±1 (-42%) 3.00±1 (-31%) 5.20±0 (-6%) 5.07±1 (+17%) 6.00±1 (+8%) 6.33±1 (+46%)
dodgeball 7.42±1 4.67±1 8.91±1 (+20%) 6.96±1 (+49%) 6.07±1 (-18%) 3.60±1 (-23%) 6.89±1 (-7%) 5.31±1 (+14%)
fruitbot 21.51±3 16.94±2 22.29±2 (+4%) 20.53±3 (+21%) 20.31±1 (-6%) 20.30±1 (+20%) 22.81±1 (+6%) 21.87±2 (+29%)
heist 0.67±0 0.11±0 1.67±0 (+150%) 0.67±0 (+500%) 1.27±0 (+90%) 0.40±0 (+260%) 0.93±1 (+40%) 0.47±0 (+320%)
jumper 5.33±1 3.11±0 4.22±0 (-21%) 2.78±1 (-11%) 4.78±1 (-10%) 2.44±1 (-21%) 5.53±1 (+4%) 3.47±1 (+11%)
leaper 1.78±1 2.56±1 6.11±1 (+244%) 5.11±1 (+100%) 2.00±1 (+13%) 1.00±0 (-61%) 0.80±0 (-55%) 0.53±0 (-79%)
miner 2.22±1 2.33±0 1.89±0 (-15%) 1.33±1 (-43%) 2.40±0 (+8%) 1.40±0 (-40%) 2.73±1 (+23%) 2.00±0 (-14%)
maze 2.01±0 0.67±0 2.07±0 (+3%) 1.58±1 (+137%) 1.91±0 (-5%) 0.93±0 (+40%) 1.97±0 (-2%) 0.92±0 (+38%)
ninja 3.33±0 2.33±1 3.44±1 (+3%) 2.56±1 (+10%) 3.33±1 (+0%) 2.11±0 (-10%) 3.73±1 (+12%) 3.33±1 (+43%)
plunder 8.69±0 6.28±1 6.06±1 (-30%) 5.30±1 (-16%) 7.33±1 (-16%) 5.93±1 (-5%) 7.11±1 (-18%) 5.71±1 (-9%)
starpilot 47.83±6 42.42±1 51.79±3 (+8%) 46.23±5 (+9%) 57.64±2 (+21%) 55.86±3 (+32%) 59.94±1 (+25%) 54.77±3 (+29%)

Average norm. score 0.2679 0.1605 0.2698 (+1%) 0.2106 (+31%) 0.2774 (+4%) 0.1959 (+22%) 0.3097 (+16%) 0.2432 (+51%)
Median norm. score 0.1856 0.0328 0.1830 (-1%) 0.1010 (+208%) 0.2171 (+17%) 0.0250 (-24%) 0.2634 (+42%) 0.1559 (+376%)
# Env. improvements 0/16 0/16 8/16 11/16 8/16 9/16 11/16 13/16

that hyperbolic representations provide mostly complementary benefits and are compatible with dif-
ferent domain-specific practices, potentially yielding even further performance gains. Finally, we
provide additional qualitative 2-dimensional visualizations of learned trajectory representation and
δ-hyperbolicity recordings also for our regularized hyperbolic PPO algorithm.

D.1 RAINBOW DQN PROCGEN RESULTS

As shown in Table 7, our hyperbolic Rainbow DQN with S-RYM appears to yield conspicuous
performance gains on the majority of the environments. Once again, we find that reducing the di-
mensionality of the representations to 32 provides even further benefits, outperforming the Euclidean
baseline in 13 out of 16 environments. This result not only highlights the efficiency of hyperbolic
geometry to encode hierarchical features, but also appears to validate our intuition about the useful-
ness of regularizing the encoding of non-hierarchical and potentially spurious information. While
still inferior to our best hyperbolic implementation, data augmentations seem to have a greater over-
all beneficial effect when applied to Rainbow DQN rather than PPO. We believe this result is linked
with recent literature (Cetin et al., 2022) showing that data-augmentation also provides off-policy
RL with an auxiliary regularization effect that stabilizes temporal-difference learning.

D.2 SOTA COMPARISON ON PROCGEN

In Table 8 we compare our best hyperbolic PPO agent with the reported results for the current SotA
Procgen algorithms from Raileanu & Fergus (2021). All these works propose domain-specific prac-
tices on top of PPO (Schulman et al., 2017), designed and tuned for the Procgen benchmark: Mixture
Regularization (MixReg) (Wang et al., 2020), Prioritized Level Replay (PLR) (Jiang et al., 2021),
Data-regularized Actor-Critic (DraC) (Raileanu et al., 2020), Phasic Policy Gradient (PPG) (Cobbe
et al., 2021), and Invariant Decoupled Advantage Actor Critic (Raileanu & Fergus, 2021).Validating
our implementation, we see that our Euclidean PPO results closely match the previously reported
ones, lagging severely behind all other methods. In contrast, we see that introducing our deep hy-
perbolic representations framework makes PPO outperform all considered baselines but IDAAC,
attaining overall similar scores to this algorithm employing several domain-specific practices. In
particular, IDAAC not only makes use of a very specialized architecture, but also introduces an aux-
iliary objective to minimize the correlation between the policy representations and the number of
steps until task-completion. Raileanu & Fergus (2021) found this measure to be an effective heuris-
tic correlating with the occurrence of overfitting in many Procgen environments. Moreover, we see
that our hyperbolic PPO attains the best performance on 7 different environments, more than any
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Table 8: Performance comparison on the test distribution of levels for our Euclidean and Hyperbolic
PPO agents with the reported results of recent RL algorithms designed specifically for the Procgen
benchmark.

Task\Algorithm PPO (Reported) Mixreg PLR UCB-DrAC PPG IDAAC PPO (Ours) Hyperbolic PPO + S-RYM (Ours)

bigfish 3.7 7.1 10.9 9.2 11.2 18.5 1.46±1 16.57±2 (+1037%)
bossfight 7.4 8.2 8.9 7.8 10.3 9.8 7.04±2 9.02±1 (+28%)
caveflyer 5.1 6.1 6.3 5 7 5 5.86±1 5.20±1 (-11%)
chaser 3.5 5.8 6.9 6.3 9.8 6.8 5.89±1 7.32±1 (+24%)
climber 5.6 6.9 6.3 6.3 2.8 8.3 5.11±1 7.28±1 (+43%)
coinrun 8.6 8.6 8.8 8.6 8.9 9.4 8.25±0 9.20±0 (+12%)
dodgeball 1.6 1.7 1.8 4.2 2.3 3.2 1.87±1 7.14±1 (+281%)
fruitbot 26.2 27.3 28 27.6 27.8 27.9 26.33±2 29.51±1 (+12%)
heist 2.5 2.6 2.9 3.5 2.8 3.5 2.92±1 3.60±1 (+23%)
jumper 5.9 6 5.8 6.2 5.9 6.3 6.14±1 6.10±1 (-1%)
leaper 4.9 5.3 6.8 4.8 8.5 7.7 4.36±2 7.00±1 (+61%)
maze 5.5 5.2 5.5 6.3 5.1 5.6 6.50±0 7.10±1 (+9%)
miner 8.4 9.4 9.6 9.2 7.4 9.5 9.28±1 9.86±1 (+6%)
ninja 5.9 6.8 7.2 6.6 6.6 6.8 6.50±1 5.60±1 (-14%)
plunder 5.2 5.9 8.7 8.3 14.3 23.3 6.06±3 6.68±0 (+10%)
starpilot 24.9 32.4 27.9 30 47.2 37 26.57±5 38.27±5 (+44%)

Average norm. score 0.3078 0.3712 0.4139 0.3931 0.4488 0.5048 0.3476 0.4730 (+36%)
Median norm. score 0.3055 0.4263 0.4093 0.4264 0.4456 0.5343 0.3457 0.4705 (+36%)

Table 9: Performance comparison for our Euclidean and Hyperbolic Rainbow DQN agents with the
reported results of recent RL algorithms designed specifically for the Atari 100K benchmark.

Task\Algorithm Random Human DER OTRainbow CURL DrQ SPR Rainbow DQN (Ours) Rainbow DQN + S-RYM (Ours)

Alien 227.80 7127.70 739.9 824.7 558.2 771.2 801.5 548.33 679.20 (+41%)
Amidar 5.80 1719.50 188.6 82.8 142.1 102.8 176.3 132.55 118.62 (-11%)
Assault 222.40 742.00 431.2 351.9 600.6 452.4 571 539.87 706.26 (+52%)
Asterix 210.00 8503.30 470.8 628.5 734.5 603.5 977.8 448.33 535.00 (+36%)
Bank Heist 14.20 753.10 51 182.1 131.6 168.9 380.9 187.5 255.00 (+39%)
Battle Zone 2360.00 37187.50 10124.6 4060.6 14870 12954 16651 12466.7 25800.00 (+132%)
Boxing 0.10 12.10 0.2 2.5 1.2 6 35.8 2.92 9.28 (+226%)
Breakout 1.70 30.50 1.9 9.8 4.9 16.1 17.1 13.72 58.18 (+370%)
Chopper Command 811.00 7387.80 861.8 1033.3 1058.5 780.3 974.8 791.67 888.00 (+498%)
Crazy Climber 10780.50 35829.40 16185.3 21327.8 12146.5 20516.5 42923.6 20496.7 22226.00 (+18%)
Demon Attack 152.10 1971.00 508 711.8 817.6 1113.4 545.2 1204.75 4031.60 (+269%)
Freeway 0.00 29.60 27.9 25 26.7 9.8 24.4 30.5 29.50 (-3%)
Frostbite 65.20 4334.70 866.8 231.6 1181.3 331.1 1821.5 318.17 1112.20 (+314%)
Gopher 257.60 2412.50 349.5 778 669.3 636.3 715.2 343.67 1132.80 (+917%)
Hero 1027.00 30826.40 6857 6458.8 6279.3 3736.3 7019.2 9453.25 7654.40 (-21%)
Jamesbond 29.00 302.80 301.6 112.3 471 236 365.4 190.83 380.00 (+117%)
Kangaroo 52.00 3035.00 779.3 605.4 872.5 940.6 3276.4 1200 1020.00 (-16%)
Krull 1598.00 2665.50 2851.5 3277.9 4229.6 4018.1 3688.9 3445.02 3885.02 (+24%)
Kung Fu Master 258.50 22736.30 14346.1 5722.2 14307.8 9111 13192.7 7145 10604.00 (+50%)
Ms Pacman 307.30 6951.60 1204.1 941.9 1465.5 960.5 1313.2 1044.17 1135.60 (+12%)
Pong -20.70 14.60 -19.3 1.3 -16.5 -8.5 -5.9 3.85 11.98 (+33%)
Private Eye 24.90 69571.30 97.8 100 218.4 -13.6 124 72.28 106.06 (+71%)
Qbert 163.90 13455.00 1152.9 509.3 1042.4 854.4 669.1 860.83 2702.00 (+264%)
Road Runner 11.50 7845.00 9600 2696.7 5661 8895.1 14220.5 6090 22256.00 (+266%)
Seaquest 68.40 42054.70 354.1 286.9 384.5 301.2 583.1 259.33 476.80 (+114%)
Up N Down 533.40 11693.20 2877.4 2847.6 2955.2 3180.8 28138.5 2935.67 3255.00 (+13%)

Human Norm. Mean 0.000 1.000 0.285 0.264 0.381 0.357 0.704 0.353 0.686 (+94%)
Human Norm. Median 0.000 1.000 0.161 0.204 0.175 0.268 0.415 0.259 0.366 (+41%)
# Super N/A N/A 2 1 2 2 7 2 5

other method. Furthermore, in these environment the other Euclidean algorithms specifically strug-
gle, again indicating the orthogonal effects of our approach as compared to traditional RL advances.

D.3 SOTA COMPARISON ON ATARI 100K

In Table 9 we provide detailed raw results for our hyperbolic Rainbow DQN agent, comparing
with the results for recent off-policy algorithms for the Atari 100K benchmark, as reported by
Schwarzer et al. (2020). All the considered algorithms build on top of the original Rainbow al-
gorithm (Hessel et al., 2018). We consider Data Efficient Rainbow (DER) (Van Hasselt et al., 2019)
and Overtrained Rainbow (OTRainbow) (Kielak, 2019) which simply improve the model architec-
tures and other training-loop hyper-parameters, for instance, increasing the number of update steps
per collected environment step. We also compare with other more recent baselines that incorpo-
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rate several additional auxiliary practices and data-augmentation such as Data-regularized Q (DrQ)
(Yarats et al., 2021a), Contrastive Unsupervised Representations (CURL) (Laskin et al., 2020a), and
Self-Predictive Representations (SPR) (Schwarzer et al., 2020). While our Euclidean Rainbow im-
plementation attains only mediocre scores, once again we see that introducing our deep hyperbolic
representations makes our approach competitive with the state-of-the-art and highly-tuned SPR al-
gorithm. In particular, SPR makes use of several architectural advancements, data-augmentation
strategies from prior work, and a model-based contrastive auxiliary learning phase. Also on this
benchmark, our hyperbolic agent attains the best performance on 8 different environments, more
than any other considered algorithm.

D.4 2-DIMENSIONAL REPRESENTATIONS PERFORMANCE AND INTERPRETATION

Table 10: Performance of 2-dimensional hyper-
bolic PPO as compared to the original PPO algo-
rithm.

Task\Algorithm PPO + S-RYM, 2 dim.

Levels distribution train/test

bigfish 5.65±4 (+52%) 2.34±3 (+60%)
dodgeball 2.62±0 (-48%) 2.36±1 (+26%)
fruitbot 27.18±4 (-10%) 25.75±1 (-2%)
starpilot 30.27±3 (-1%) 29.72±6 (+12%)

To visualize and allow us to interpret the struc-
ture of the learned representations, we analyze
our hyperbolic PPO agents using only two di-
mensions to model the final latent representa-
tions. As mentioned in Section 4 and shown
in Table 10, we find even this extreme imple-
mentation to provide performance benefits on
the test levels over Euclidean PPO. Further-
more, the generalization gap with the train-
ing performance is almost null in three out
of the four considered environments. As the
2-dimensional representation size greatly con-
strains the amount of encoded information, these results provide further validation for the affin-
ity of hyperbolic geometry to effectively prioritize features useful for RL. We then observe how
these 2-dimensional hyperbolic latent representations evolve within trajectories, mapping them on
the Poincaré disk and visualizing the corresponding input states. As summarized in Section 4, we
observe a recurring cyclical behavior, where the magnitude of the representations monotonically
increases within subsets of the trajectory as more obstacles and/or enemies appear. Together with
Figure 10 (on the bigfish environment), we provide additional qualitative visualizations of this phe-
nomenon in Figure 12 (on the starpilot (A), dodgeball (B), and fruitbot (C) environments). These
plots compare the representations of on-policy states sampled at constant intervals within a tra-
jectory, every 15 timesteps, and deviations from executing 15 timesteps of random behavior after
resetting the environment to the previous on-policy state. We observe the state representations form
tree-like branching structures, somewhat reflecting the tree-like nature of MDPs. Within the sub-
trajectories in starpilot and fruitbot, we find that the magnitudes in the on-policy trajectory tend to
grow in the direction of the Value function’s gyroplane’s normal. Intuitively, this indicates that as
new elements appear (e.g., new enemies in starpilot), the agent recognizes a larger opportunity for
rewards (e.g., from defeating them) and also that it now requires a much finer level of control for
optimality. This is because as magnitudes increase, the signed distances with the policy gyroplanes
will also grow exponentially, and so will the value of the different action logits, decreasing the
policy’s entropy. In contrast, the magnitudes of the state representations following the random devi-
ations grow in directions with considerably larger orthogonal components to the Value gyroplane’s
normal. This still reflects the higher precision required for optimal decision-making, as magnitudes
still increase, but also the higher uncertainty to obtain future rewards from these less optimal states.
As opposed to the rest of the environments, in dodgeball all enemies and other elements are al-
ready present from the first time-step of a trajectory. Furthermore, our 2-dimensional hyperbolic
agent appears to lack the representation power to recover good performance. These two properties
make the observed branching phenomenon less accentuated, with the magnitude of both random and
on-policy transitions changing in mostly orthogonal directions to the gyroplane’s normal.
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Figure 12: Visualization of 2-dimensional hyperbolic embeddings in the starpilot (A), dodgeball
(B), and fruitbot (C) Procgen environment. We sub-sample states from recorded agent trajectories
every 15 timesteps. We show the evolution of the hyperbolic latent representations following the
recorded policy transitions as compared to random transitions collected by resetting the environ-
ments from each state and executing a random policy for the same 15 timesteps.

D.5 δ HYPERBOLICITY

We repeat the experiment in Figure 4, collecting the relative δ-hyperbolicity of the latent represen-
tations space produced by our regularized Hyperbolic PPO agent throughout training. Our analy-
sis assumes that as different RL tasks likely require encoding different amounts of hierarchically-
structured information, relative changes in δ-hyperbolicity should be more informative than its over-
all scale. Furthermore, we would like to emphasize that we tractably estimate δrel using the efficient
but approximate algorithm from Fournier et al. (2015) and that, in practice, there are many sources
of noise that affect RL optimization. Both these factors inevitably add uninformative noise to the
latent representations and our hyperbolicity recordings, which likely affects many of the small local
observed changes in δrel.

We visualize the evolution of the δ-hyperbolicity of our hyperbolic PPO agent regularized with S-
RYM in Figure 13. As we would expect, using a hyperbolic latent space yields latent representations
with significantly lower values of δrel, as compared to standard PPO, implying they possess an in-
creased hierarchical tree-like structure. We observe this consistently for all considered tasks and
during all stages of the RL training process. This difference is particularly evident at initialization
where δrel ≈ 0.2 for our hyperbolic PPO while δrel ≈ 0.4 for a standard PPO agent, reflecting
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Figure 13: Performance and relative δ-hyperbolicity of the final latent representations of our hyper-
bolic PPO agent regularized with S-RYM.

how the properties of hyperbolic space facilitate capturing hierarchical relationships even with no
training. Interestingly, in the dodgeball environment, the recorded value of δrel for our Hyperbolic
PPO experiences some considerable fluctuations in some of the very initial and later training stages.
Analogously to our results in Figure 4, it appears that during the iterations where δrel increases or
attains its higher values, test performance grows significantly slower. Overall, dodgeball is also the
environment with the largest generalization gap relative to the hyperbolic agent’s training perfor-
mance.

E FURTHER EXPERIMENTS AND ABLATION STUDIES

In this section, we further analyze the properties of our hyperbolic RL framework and its implemen-
tation, through additional experiments and ablations. We focus on our hyperbolic PPO algorithm
and four representative tasks from the Procgen benchmark.

E.1 S-RYM’S COMPONENTS CONTRIBUTION

Figure 14: Performance ablating either spectral normalization or rescaling from our Hyperbolic PPO
agent stabilized with S-RYM.

Our proposed spectrally-regularized hyperbolic mappings (S-RYM) relies on two main distinct com-
ponents: spectral normalization and rescaling. As described in Section 3, we design our deep RL
models to produce a representation by applying traditional neural network layers in Euclidean space
xE = fE(s). Before the final linear layer fH , we then use an exponential map from the origin
of the Poincaré to yield a final representation in hyperbolic space xH = exp1

0(xE). As shown by
Lin et al. (2021), applying spectral normalization to the layers of fE regulates both the values and
gradients similarly to LeCun initialization (LeCun et al., 2012). Hence, we make the regularization
approximately dimensionality-invariant by rescaling xE ∈ Rn, simply dividing its value by

√
n.

In Figure 14, we show the results from ablating either component from S-RYM. From our results,
both components seem crucial for performance. As removing spectral normalization simply recov-
ers the unregularized hyperbolic PPO implementation with some extra rescaling in the activations,
its performance is expectedly close to the underwhelming performance of our naive implementa-
tions in Figure 5. Removing our dimensionality-based rescaling appears to have an even larger
effect, with almost no agent improvements in 3 out of 4 environments. The necessity of appropriate
scaling comes from the influence the representations magnitudes have on optimization. When ap-
plying spectral normalization, the dimensionality of the representations directly affects its expected
magnitude. Thus, high-dimensional latents will result in high-magnitude representations, making it
challenging to optimize for appropriate angular layouts in hyperbolic space (Nickel & Kiela, 2017;
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Ganea et al., 2018) and making the gradients of the Euclidean network parameters stagnate (Guo
et al., 2022). These issues cannot even be alleviate with appropriate network initialization, since the
magnitudes of all weights will be rescaled by the intruduced spectral normalization.

E.2 REPRESENTATION SIZE

Figure 15: Final performance comparison between PPO agents with Euclidean and hyperbolic rep-
resentations with different dimensionalities.

In Figure 15, we show the final train and test performance attained by our Euclidean and hyperbolic
PPO agents with different dimensionalities for their final latent representations. We collect results
on a log scale 2n with n ∈ {3, 4, 5, 6, 7, 8}, i.e., ranging from 23 = 8 to 28 = 256 latent dimen-
sions. Integrating our hyperbolic representations framework with PPO boosts performance across
all dimensionalities. Moreover, in 3/4 environments we see both train and test performance of the
Euclidean PPO agent considerably dropping as we decrease the latent dimensions. In contrast, the
performance of hyperbolic PPO is much more robust, even attaining some test performance gains
from more compact representations. As described in Section 2, Euclidean representations require
high dimensionalities to encode hierarchical features with low distortion (Matoušek, 1990; Gupta,
1999), which might explain their diminishing performance. Instead, as hyperbolic representations
do not have such limitation, lowering the dimensionality should mostly affect their ability of encod-
ing non-hierarchical information, which we believe to counteract the agent’s tendency of overfitting
to the limited distribution of training levels and observed states.

E.3 COMPATIBILITY WITH ORTHOGONAL PRACTICES

Introducing hyperbolic geometry to model the representations of RL agents is fundamentally or-
thogonal to most recent prior advances. Thus, we validate the compatibility of our approach with
different methods also aimed at improving the performance and generalization of PPO.

Figure 16: Performance comparison from integrating the advances from the PPG algorithm our
hyperbolic reinforcement learning framework.

Phasic Policy Gradient (PPG). We re-implement this recent PPO extension designed by Cobbe
et al. (2021) specifically for the Procgen benchmark. PPG adds non-trivial algorithmic and compu-
tational complexity, by performing two separate optimization phases. In the first phase, it optimizes
the same policy and value optimization objective as in PPO, utilizing the latest on-policy data. In
the second phase, it utilizes a much larger buffer of past experience to learn better representations
in its policy model via an auxiliary objective, while avoiding forgetting with an additional behavior
cloning weighted term. The two phases are alternated infrequently after several training epochs.
Once again, we incorporate our hyperbolic representation framework on top of PPG without any
additional tuning. In Figure 16, we show the results from adding our deep hyperbolic representation
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framework to PPG. Even though PPG’s performance already far exceeds PPO, hyperbolic represen-
tations appear to have similar effects on the two algorithms, with performance on the 200 training
levels largely invaried, and especially notable test performance gains on the bigfish and dodgeball
environments. Hence, in both PPO and PPG, the new prior induced by the hyperbolic representa-
tions appears to largely reduce overfitting to the observed data and achieve better generalization to
unseen conditions. Our approach affects RL in an orthogonal direction to most other algorithmic
advances, and our results appear to confirm the general compatibility of its benefits.

Figure 17: Performance comparison from integrating data augmentation with the Euclidean and
hyperbolic PPO agents.

Data augmentation. Finally, we also test introducing data augmentation to our Hyperbolic PPO
implementation. We consider the same popular random shifts from Yarats et al. (2021a), evaluated
in Section 4. We note that the problem diversity characterizing procgen makes it challenging for
individual hand-designed augmentations to have a generally beneficial effect, with different strate-
gies working best in different environments (Raileanu et al., 2020). In fact, applying random shifts
to PPO appears to even hurt performance on a considerable subset of environments (see Table 1),
likely due to the agents losing information about the exact position and presence of key objects at the
borders of the environment scene. This inconsistency is reflected onto the hyperbolic PPO agent. In
particular, while the addition of random shifts further provides benefits on the bigfish environment,
it appears to hurt performance on dodgeball. Overall, integrating our hyperbolic framework still
appears considerably beneficial even for the test performance of the data-augmented agent, further
showing the generality of our method.

E.4 ENFORCING LIPSCHITZ CONTINUITY

Figure 18: Performance of a standard PPO agent and the hyperbolic PPO agent stabilized with S-
RYM after integrating gradient penalties (GP) (Gulrajani et al., 2017a).

S-RYM leaves the final layer of the network unregularized since there is no direct way of perform-
ing power iteration with its parameterization and we also do not want to constrain our models of
the value and policy to be 1-Lipschitz. We validate that this property is not reflective of the true
optimal policy and value functions, by enforcing Lipschitz continuity with gradient penalties (GP)
(Gulrajani et al., 2017a). We apply GP on top of both our Hyperbolic PPO with S-RYM and standard
PPO. Our results in Figure E.4 appear to validate our hypothesis by showing that enforcing either
the hyperbolic or Euclidean PPO models to be 1-Lipschitz makes performance collapse across all
environments.
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