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Abstract

We present Plenodium (plenoptic medium), an effective and efficient 3D represen-
tation framework capable of jointly modeling both objects and the participating
medium. In contrast to existing medium representations that rely solely on view-
dependent modeling, our novel plenoptic medium representation incorporates
both directional and positional information through spherical harmonics encoding,
enabling highly accurate underwater scene reconstruction. To address the initializa-
tion challenge in degraded underwater environments, we propose the pseudo-depth
Gaussian complementation to augment COLMAP-derived point clouds with robust
depth priors. In addition, a depth ranking regularized loss is developed to optimize
the geometry of the scene and improve the ordinal consistency of the depth maps.
Extensive experiments on real-world underwater datasets demonstrate that our
method achieves significant improvements in 3D reconstruction. Furthermore, we
construct a simulated dataset with GT and the controllable scattering medium to
demonstrate the restoration capability of our method in underwater scenarios.

1 Introduction
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Figure 1: Comparison of Plenodium, Wa-
terSplatting [1], and SeaThru-NeRF [2]
on reconstruction and restoration perfor-
mance (PSNR, SSIM), as well as effi-
ciency (FPS, training time).

Underwater imaging plays a critical role in diverse ap-
plications, including underwater construction, marine
sciences, etc. However, its efficacy is significantly hin-
dered by the complex optical properties of the aquatic
environment. These properties lead to wavelength- and
distance-dependent attenuation and scattering of light,
resulting in degraded image quality characterized by the
color cast, diminished contrast, and loss of detail. Given
the expanding scientific and industrial focus on oceanic
exploration, the reconstruction of scattering-affected un-
derwater scenes becomes increasingly important.

Pioneering works [3–7] based on Neural Radiance Fields
(NeRF) [8] and 3D Gaussian Splatting (3DGS) [9] have
significant contributions to 3D reconstruction. These
methods achieve effective surface modeling by constrain-
ing their representations to scene surfaces, assuming a
vacuum-like medium between the observer and the ob-
jects. However, such approaches neglect the influence
of light scattering in participating media, limiting their
applicability in real underwater environments.
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To achieve underwater 3D scene reconstruction, SeaThru-NeRF [2] extends the NeRF framework
by introducing an additional medium volume field, which is parameterized by an MLP and charac-
terizes the color and density attributes of the medium, enabling accurate modeling of light-medium
interactions. WaterSplatting [1] leverages 3DGS as an alternative geometric representation to replace
the computational NeRF in SeaThru-NeRF [2], while preserving the core medium representation
capability, achieving more efficient rendering. However, there are three significant limitations affect-
ing its accuracy, efficiency, and robustness: 1) Existing methods estimate medium properties based
exclusively on viewing directions, failing to account for the spatial relationship between camera
positions and scattering effects in heterogeneous media; 2) Despite its advantages, WaterSplatting
still employs an implicit MLP for medium representation, which introduces substantial computational
costs limiting its efficiency; 3) The 3DGS-based approaches rely on COLMAP [10, 11] for initial-
izing Gaussian primitives, but underwater image degradation severely impairs COLMAP’s feature
extraction and matching, compromising the reliability of the initialization process.

In this paper, we present an effective and efficient method for underwater 3D reconstruction. Different
from existing methods that rely on the medium representation with limited directional information, we
are the first to take positional information into account and develop a plenoptic medium representation.
Notably, the proposed plenoptic medium representation is modeled by explicit Spherical Harmonics
(SH), rather than implicit MLPs. Specifically, we positionally encode the SH coefficients via a trilinear
interpolation mechanism to capture accurate scattering effects in arbitrary positions, while achieving
faster rendering than MLP-based methods. Then, to address the limitations of COLMAP in degraded
underwater scenes, we propose a pseudo-depth Gaussian complementation method that enriches the
sparse point clouds with pseudo-depth estimated from the Depth Anything Model [12, 13], improving
the robustness of the initialization for 3DGS. Furthermore, we introduce a depth ranking regularized
loss to optimize the geometry of the scene, enhancing the ordinal stability of the depth maps. Taken
together, the proposed approach can effectively improve the reconstruction quality while speeding up
rendering. In addition, we created a simulated dataset for validating the restoration performance of
our approach across various types of media and different degradation intensities, as well as analyzing
degradation impacts on 3D reconstruction.

The contributions can be summarized as follows: 1) We propose Plenodium, which introduces a novel
plenoptic medium representation that characterizes both the directional and positional information
and then incorporates it with 3DGS for effective underwater 3D reconstruction. 2) To improve the
robustness of 3DGS-based reconstruction in underwater scenarios, we introduce a pseudo-depth
Gaussian complementation to enrich COLMAP-initialized Gaussian primitives and a depth ranking
regularized loss to enhance the geometric consistency. 3) We construct a simulated dataset with
ground truth (GT) and a controllable scattering medium, which enables systematic evaluation of
image restoration performance across degradation levels. 4) Extensive experiments demonstrate
the effectiveness and efficiency of our approach. As shown in Fig. 1, Plenodium outperforms prior
methods, increasing the PSNR by at least 0.872dB and speeding up the rendering efficiency by 47%
in real-world reconstruction scenarios.

2 Related Work

3D Gaussian splatting. 3DGS [9] constructs a 3D scene representation with a set of 3D Gaussians,
where the i-th Gaussian is defined by a center position µi ∈ R3, a 3D covariance matrix Σi ∈ R3×3,
an opacity σi ∈ R, and color features Ai. Specifically, the rendered color Ĉ is computed by a
blending process that combines the color contributions {Ĉi}Ni=1 from N individual Gaussians:

Ĉ =

N∑
i=1

Ĉi =

N∑
i=1

ciαiTi, where Ti =
i−1∏
j=1

(1− αj), (1)

where Gaussian color ci = SH(d,Ai) is derived from spherical harmonics [14] with ray direction d
and its color features Ai, and αi is computed by multiplying its σi and its projected 2D Gaussian.

3DGS addresses limitations of the reconstruction efficiency in 3D scene modeling by leveraging
explicit 3D Gaussian primitives for real-time rendering [5, 6] and minute-level training [15, 16] on
consumer GPUs. 3DGS has been proven to be effective in a wide range of applications, including
digital human reconstruction [17, 18], Artificial Intelligence Generated Content [19–21], and au-
tonomous driving [22, 23]. In computational imaging, 3DGS has also shown significant improvements
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in super-resolution [24], deblurring [25, 26], derain [27], and low-light enhancement [28]. These
advancements demonstrate the capacity of 3DGS to invert ill-posed imaging problems, transforming
low-quality inputs into high-quality 3D reconstructions [29–33] with photometric consistency.

Computer vision with scattering medium. Underwater computer vision faces significant challenges
due to complex optical phenomena, particularly light scattering and wavelength-dependent attenuation.
These effects degrade image quality by introducing color distortion, reduced contrast, and haze,
rendering traditional computer vision methods (designed for clear-air environments) ineffective in
underwater applications. To address the ill-posed nature of the problem, earlier work introduces
domain-specific priors to restore the scenes [34–37]. The method in [38] proposes a general image
formation model in scattering media under ambient illumination, expressing per-pixel color C as:

C = cobj · (e−σ
att·z)︸ ︷︷ ︸

direct

+ cmed · (1− e−σ
bs·z)︸ ︷︷ ︸

backscatter

, (2)

where cobj denotes the intrinsic color of the object at depth z, cmed represents the ambient medium
color at infinite distance, σatt and σbs are the attenuation coefficients for the direct and backscatter
components. Building on this framework, SeaThru [39] leverages depth maps to decouple attenuation
and backscatter estimation, achieving robust restoration by explicitly modeling depth-dependent light
propagation. Osmosis [40] adopts an unsupervised diffusion framework that iteratively refines images
using priors derived from unpaired clean and degraded datasets. Furthermore, Seathru-NeRF [2] and
WaterSplatting [1] extend NeRF and 3DGS architectures by embedding the physical model into their
rendering equations, enabling simultaneous 3D scene reconstruction and water removal.

3 Preliminaries

In contrast to vanilla 3DGS, our Plenodium incorporates explicit modeling of medium-induced light
attenuation through absorption and scattering effects, following [1]. The transmittance Ti(z) at a
given depth z along the ray, situated between the (i-1)-th and i-th Gaussian splat is formulated as:

Ti(z) = Tmed(z) · T obji , (3)

where Tmed(z) = e−σ
medz represents the exponential attenuation due to medium absorption, char-

acterized by the medium’s extinction coefficient σmed along the path from the camera to depth z,
and T obji =

∏i−1
j=1(1 − αj) captures the cumulative transmittance through all preceding Gaussian

primitives, quantifying their occlusion effects on downstream geometry.

Meanwhile, the medium’s contribution to color Ĉmedi between these Gaussian splats is computed as:

Ĉmedi =

∫ zi

zi−1

cmedσmedT obji Tmed(z) dz = cmedT obji (e−σ
medzi−1 − e−σ

medzi), (4)

where zi denotes the depth of the i-th Gaussian in the camera coordinate system (z0 is set to 0).

Following [1, 2], we utilize two sets of parameters: object attenuation σatt for object color Ĉobj and
medium backscatter σbs for medium color Ĉmed. The comprehensive rendering equation is:

Ĉ =Ĉobj + Ĉmed =

N∑
i=1

Ĉobji +

N∑
i=1

Ĉmedi + Ĉmed∞

=

N∑
i=1

ciαiT
obj
i e−σ

attzi +

N∑
i=1

cmedT obji (e−σ
bszi−1 − e−σ

bszi) + cmedT objN+1e
−σbszN .

(5)

where Ĉmed∞ presents the medium’s color contribution from the last Gaussian to infinitely far.

4 Plenodium

We aim to develop an efficient and robust 3D reconstruction method for underwater scenarios.
Specifically, our approach begins with an explicit plenoptic medium representation (i.e., Fig. 2(b))
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(b) Plenoptic Medium Representation(a) Pseudo-Depth Gaussian Complementation (c) Depth Ranking Regularized Loss
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Figure 2: Overview of our Plenodium. We first employ the pseudo-depth Gaussian complementation
to enrich the primitives initialized by COLMAP. Then we utilize the plenoptic medium representation
to estimate the medium parameter and render the underwater images following Eqn. 5. The primitives
are optimized with the loss function in Eqn. 12, including a new depth ranking regularized loss.

to accurately model the scattering medium in Sec. 4.1. We then present a pseudo-depth Gaussian
complementation (i.e., Fig. 2(a)) that leverages robust depth priors to enhance Gaussian primitive
initialization in Sec. 4.2. Finally, a depth ranking regularized loss (i.e., Fig. 2(c)) is introduced to
enhance the geometric consistency in Sec. 4.3. The whole framework is summarized in Fig. 2.

4.1 Plenoptic Medium Representation

Scattering effects in heterogeneous media exhibit complex dependencies on both ray direction d and
the observer’s spatial coordinates (x, y, z). While existing methods only account for directional de-
pendency while neglecting positional variations, we propose a novel plenoptic medium representation
that explicitly incorporates both directional and positional information. Specifically, we parameterize
the properties of the medium along each ray (i.e., the medium color cmed, the object attenuation
coefficient σatt, and the medium backscatter coefficient σbs in Eqn. 5) by Spherical Harmonics (SH):

cmed = SH(d,Ac
med

x,y,z), σatt = SH(d,Aσ
att

x,y,z), σbs = SH(d,Aσ
bs

x,y,z), (6)

where Ac
med

x,y,z, A
σatt

x,y,z, A
σbs

x,y,z denote the SH coefficients for medium color, object attenuation, and
medium backscatter at position (x, y, z), respectively.

To enable efficient learning of spatially varying medium parameters from sparse camera observations,
we store eight fundamental SH coefficients at each corner of the normalized 3D space [−1, 1]3.
Through trilinear interpolation [41] of these, we can reconstruct the SH coefficient set at any arbitrary
spatial position:

Atx,y,z =
1

8

∑
u,v,w∈{−1,1}

(1+u ·x)(1+v ·y)(1+w · z)Atu,v,w, where t ∈ {cmed, σatt, σbs}. (7)

The proposed plenoptic medium representation employs explicit SH encoding [14], reducing the time
required for medium parameter retrieval during inference to less than 5% of that needed by implicit
MLP-based methods [1, 2], while simultaneously improving the accuracy of scattering simulations in
heterogeneous media (as illustrated in Sec. 6).

4.2 Pseudo-Depth Gaussian Complementation

Underwater 3DGS initialization is challenged by severe light attenuation and scattering, which
degrade conventional SfM pipelines [10] like COLMAP [11]. To address this, we propose Pseudo-
Depth Gaussian Complementation (PDGC), which builds on COLMAP by inheriting its initial
Gaussians and augmenting them with additional ones guided by monocular pseudo-depth priors.

First, for a given camera view, we render the pixel-wise depth D̂ via α-blending according to:

D̂ =

N∑
i=1

(ziαi

i−1∏
j=1

(1− αj))/(1− T objN+1), (8)
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where T objN+1 represents the accumulated object transmission behind all N Gaussians.

Then, we estimate the corresponding pseudo-depth map D̃ using the RGB image C under this camera
view with the Depth Anything Model [12, 13], chosen for its superior generalization ability across
diverse scenarios. To address the scale ambiguity and offset biases in monocular depth estimation,
we formulate an affine correction to calibrate the pseudo-depth:

D̃′ = kD̃ + b, where k, b = argmin
k,b

∑
(x,y)∈Ωw

(
D̂(x, y)− kD̃(x, y)− b

)2

. (9)

The k and b are optimized via least-squares over well-initialized regions Ωw = {(x, y)|T objN+1(x, y) <

τw}, refining D̃ to reduce scale ambiguity and offset, and aligning it with the initialized scene.

Subsequently, we determine the region Ωn ∩ Ωp to insert new Gaussian primitives, specifically
targeting regions exhibiting both proximal camera distance (Ωn = {(x, y)|D̃(x, y) < τnear ·
max(D̃)}) and elevated transmittance values (Ωp = {(x, y)|T objN+1(x, y) ≥ τw}), which minimizes
background interference and oversampling, thus improving efficiency and reconstruction accuracy.

Finally, we add new Gaussian primitives at each pixel (x, y) in the defined region Ωn ∩ Ωp with
depth D̃′(x, y). More details on the Gaussian primitive insertion process and the other attributes of
the inserted Gaussian primitives can be found in the Sec. A.2.

Our pseudo-depth Gaussian complementation method enriches the initialized Gaussian primitives
across diverse scenes (Tab. 4), improving the robustness of 3DGS initialization against degradations.

4.3 Loss Function

Building upon differentiable 3DGS frameworks, we develop a multi-objective optimization pipeline
for primitive refinement, jointly enforcing photometric accuracy, structural coherence, and depth
consistency. Following [1, 42], we incorporate a weighting matrix W = 1

sg(Ĉ)+ϵ
(with ϵ = 10−6,

sg(·) means stop gradient) to emphasize dark regions during optimization, aligning with human
perceptual sensitivity to dynamic range. Then, based on the L1 loss and the multi-scale differentiable
SSIM loss [43], we employ two regularized losses:

Lreg-L1
= L1(W ⊙ Ĉ,W ⊙ C), Lreg-ms-ssim = Lms-ssim(W ⊙ Ĉ,W ⊙ C), (10)

for photometric accuracy and structural coherence, respectively. Notably, we utilize the regularized
multi-scale differentiable SSIM loss Lreg-ms-ssim rather than the single-scale version Lreg-ssim [44] used
in previous works [1] for a larger perceptual field.

In addition, to enforce the ordinal stability on depth maps [45, 46] for 3DGS, we first downsample
the pseudo-depth map D̃ and the rendered depth map D̂ to low-resolution variants D̃∗ and D̂∗ of size
N×N pixels using bilinear pooling, which suppresses high-frequency noise while preserving relative
depth ordering. We then introduce a new depth ranking regularized loss that penalizes violations of
ordinal relationships between every pair of pixels in the downsampled depth estimates:

Ldepth =
1

N4

N∑
xi,yi=1

N∑
xj ,yj=1

max(−(D̃∗(xi, yi)− D̃∗(xi, yj))(D̂
∗(xi, yi)− D̂∗(xi, yj)), 0). (11)

This loss function maintains scale invariance and reduces dependence on fine-grained structural
details by operating on the downsampled representations. Benefiting from this loss function, our
approach achieves robust depth optimization even when initialized with imprecise pseudo-depth
estimates, as demonstrated in Tab. 6.

The final loss function is given as:
L = λL1Lreg-L1 + λssimLreg-ms-ssim + λdepthLdepth, (12)

where the parameters λL1 , λssim, and λdepth are utilized to balance the different loss components.

5 Experimental Results

In this section, we first describe the implementation details of our approach and the datasets we used.
Then we evaluate the proposed method on both real-world and simulated underwater scenarios.
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Table 1: Reconstruction performance on the SeaThru-NeRF [2] dataset. We report PSNR↑, SSIM↑,
and LPIPS↓ scores for the four underwater scenes. The average FPS↑ and Training Time↓ on an
RTX4090 are also provided. The best and second-best results are bolded and underlined, respectively.

IUI3 Red Sea Curaçao J.G. Red Sea PanamaMethods PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Avg.
FPS

Avg.
Time

ZipNeRF [4] 16.937 0.474 0.412 19.956 0.442 0.421 19.022 0.349 0.483 19.012 0.349 0.482 0.17 5h
SeaThru-NeRF [2] 26.755 0.826 0.168 30.959 0.915 0.133 23.282 0.876 0.111 31.276 0.937 0.071 0.68 2h
3D-Gauss. [9] 22.980 0.843 0.246 28.313 0.873 0.221 21.493 0.854 0.216 29.200 0.893 0.152 318 13min
WaterSplatting [1] 29.840 0.889 0.203 32.203 0.948 0.116 24.741 0.892 0.116 31.616 0.942 0.080 169 6.9min
Plenodium 30.275 0.895 0.205 34.120 0.953 0.110 25.058 0.896 0.121 32.435 0.946 0.074 249 7.0min

Table 2: Restoration performance on our simulated dataset. We report PSNR↑, and SSIM↑ for each
subset scenes. The best and second-best results are bolded and underlined, respectively.

Methods
Beach Street

PSNR SSIM PSNR SSIM
easy medium hard easy medium hard easy medium hard easy medium hard

FOG

SeaThru-NeRF [2] 28.416 24.799 16.439 0.9228 0.8888 0.7856 27.677 23.562 17.730 0.8697 0.8286 0.7244
WaterSplatting [1] 17.725 16.724 15.492 0.8549 0.7728 0.7475 26.595 24.816 22.510 0.8924 0.8551 0.8003
Plenodium 26.372 26.248 25.275 0.9435 0.9259 0.9051 27.978 26.071 23.060 0.9107 0.8791 0.7982

WATER

SeaThru-NeRF [2] 25.938 19.500 16.495 0.9094 0.8590 0.8085 25.268 21.414 19.420 0.8533 0.7919 0.7467
WaterSplatting [1] 17.592 15.892 15.021 0.8198 0.7725 0.7450 24.936 22.120 20.205 0.8793 0.8240 0.7546
Plenodium 26.360 24.723 23.636 0.9406 0.9119 0.8867 25.731 22.392 20.285 0.8594 0.7983 0.7556

5.1 Implementation and Datasets

Implementation details. Our implementation is based on the Nerfstudio [16, 47]. After COLMAP
initialization, we use the pseudo-depth Gaussian complementation with τw = 0.99 and τnear = 0.5 to
enrich the initial set of 3D Gaussians. During training, we empirically set λL1 = 0.8, λssim = 0.2,
and λdepth = 5 in Eqn. 12. The patch number N is set to 16. The maximum degree of the SH
coefficients for the medium and Gaussian primitives is set as 3. We accumulate the absolute gradient
norms of µ for finer densification following [48]. For the reconstruction task, we train the model and
render novel views using Eqn. 5, whereas for the restoration task, we reuse the learned parameters to
generate de-scattered images via Eqn. 1, focusing exclusively on the objects. All the experiments are
conducted on an RTX 4090 GPU.

Seathru-NeRF dataset. The SeaThru-Nerf dataset [2] includes four real underwater scenes: IUI3
Red Sea, Curaçao, Japanese Gardens Red Sea, and Panama. There are 29, 20, 20, and 18 images in
each scene, respectively, where 25, 17, 17, and 15 images are used for training and the rest of the
images are for testing. These images are captured in RAW format by a Nikon D850 SLR camera in
underwater conditions. Following [1, 2], these images are downsampled to an averaged resolution of
900× 1400 pixels and COLMAP [10, 11] is employed to determine the camera poses and produce
sparse point clouds for the initialization of 3DGS-based methods.

Our simulated dataset. We utilize Blender to simulate a dataset with precise GT for restoration
evaluation. The dataset includes two scenes (beach and street), each degraded by two types of media
(fog [49] and water) at three incremental intensity levels (easy, medium, and hard), yielding 12
systematically structured subsets. Each subset contains 100 images at a resolution of 512×512
pixels. We split them evenly into 50 training and 50 testing samples to ensure a balanced evalua-
tion. Compared to existing simulated datasets [1, 2], our dataset provides enhanced accuracy, scale,
and diversity, enabling robust evaluation across different media types and degradation intensities.
Notably, we achieve heterogeneous media modeling by controlling the Density parameter within
the Principled Volume, making our dataset more representative of real-world underwater environ-
ments. To isolate restoration quality from exposure, we preprocess restored images by linearly scaling
their intensity to align with the GT’s mean luminance before computing evaluation metrics. Since
Blender provides accurate camera poses, we use COLMAP solely to generate sparse point clouds
for initializing the set of 3D Gaussians. More details regarding dataset construction procedures and
comprehensive dataset analysis are provided in Sec. B.
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Zip-NeRF SeaThru-NeRF 3DGS WaterSplatting Plenodium GT

Figure 3: Rendering performance comparison of our Plenodium against existing methods on the
“Curaçao” and “IUI3 Red Sea” scenes. Rendered images and depths are presented for comparison.
The pseudo-depth for ground truth is estimated using the Depth Anything Model [12, 13] for reference
purposes. Compared to competing methods, Plenodium enhances clarity for medium and distant
objects, as highlighted in the red boxes, while simultaneously yielding more reasonable depth maps.

Reconstruction Restoration Reconstruction Restoration Reconstruction Restoration

SeaThru-NeRF WaterSplatting Plenodium GT

Figure 4: Restoration performance comparison of our Plenodium against existing methods on the
“JapaneseGarden Red Sea” and “Panama” scenes. As shown in the red boxes, the proposed Plenodium
generates results with more reasonable exposure and accurate colors.

5.2 Quantitative Results

We compare our approach against several state-of-the-art methods, including two NeRF-based
ones (Zip-NeRF [4] and SeaThru-NeRF [2]) and two Gaussian splatting-based ones (3DGS [9]
and WaterSplatting [1]). Note that SeaThru-NeRF and WaterSplatting are specifically tailored for
underwater scene reconstruction. We use PSNR, SSIM, and LPIPS as metrics to evaluate the rendering
quality. In addition, we benchmark the total training time and FPS (frames per second) on a machine
with an RTX 4090 GPU to provide a comprehensive comparison of computational efficiency.

We first examine the 3D reconstruction performance of Plenodium on the SeaThru-NeRF dataset.
As shown in Tab. 1, Plenodium performs favorably against state-of-the-art methods, increasing
the PSNR and SSIM values by 0.872dB and 0.047 on average and improving the rendering speed
by 47% (from 169FPS to 249FPS) over the best-competing method. Our approach substitutes the
computationally expensive MLPs used in conventional methods with a lightweight SH-based spectral
decomposition, significantly accelerating inference while preserving representational accuracy. We
then evaluate the restoration performance of Plenodium on our simulated dataset with controllable
scattering media in Tab. 2. Compared to state-of-the-art methods [2, 1], our Plenodium achieves
better results, especially in challenging cases. This improvement stems from two key factors. First,
benefitting from the proposed plenoptic medium representation, our approach is able to reconstruct
3D scenes more accurately. Second, the enhanced robustness of our approach originates from the
integration of learned depth priors extracted from the Depth Anything Model, which supports: (i)
pseudo-depth complementation to densify sparse points for initialization, and (ii) a ranking-based
depth loss that enforces ordinal consistency during optimization. Taken together, these components
allow Plenodium to achieve high-fidelity reconstructions under heterogeneous medium conditions
and maintain reliable performance across varying levels of visual degradation.
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Seathru-NeRF WaterSplatting Plenodium GTeasy −−−−−−−−−−−−→ hard easy −−−−−−−−−−−−→ hard easy −−−−−−−−−−−−→ hard

26.41/0.908 19.58/0.860 16.10/0.797 14.14/0.788 14.45/0.788 14.13/0.773 27.46/0.937 25.38/0.905 23.67/0.878 PSNR/SSIM

27.18/0.881 22.63/0.827 16.88/0.716 26.39/0.887 24.63/0.841 23.05/0.782 28.29/0.917 26.34/0.879 23.38/0.784 PSNR/SSIM

Figure 5: Restoration performance comparison of our Plenodium against existing methods on “Beach-
Water” and “Street-Fog” scenes from our simulated dataset. Quantitative evaluations, including PSNR
and SSIM metrics for each image, are beneath the corresponding figures. Among these methods,
Proposed Plenodium produces results with more coherent textural details and superior color accuracy.

5.3 Qualitative Results

We provide a visual assessment of the 3D reconstruction capabilities of our proposed Plenodium
against other state-of-the-art methods on the SeaThru-NeRF dataset in Fig. 3. Conventional methods,
3DGS and ZipNeRF, exhibit significant limitations when operating in scattering media, resulting
in visually incoherent outputs marked by dense floaters and depth inconsistencies in underwater
environments. SeaThru-NeRF and WaterSplatting show improvements by MLP-based medium
modeling, thereby improving the rendering quality with enhanced photometric consistency. However,
they still fail to accurately reconstruct fine details in water volumes and distant objects, as shown in
the red boxes of Fig. 3. In contrast, our Plenodium yields visually superior results with clear water
volumes and well-defined distant objects. As discussed in Sec. 6, our improved results stem from
the proposed plenoptic medium representation, pseudo-depth Gaussian complementation, and depth
ranking regularized loss. In addition, Plenodium produces the most accurate depth maps among the
compared methods, validating its effectiveness in addressing the complexity of scattering media.

Due to the lack of de-watered GT in the SeaThru-NeRF dataset, we conduct a visual horizontal com-
parison of the de-water results across different methods. Fig. 4 presents qualitative comparisons on
the “Japanese Garden Red Sea” and “Panama” scenes, where Plenodium achieves superior underwater
restoration quality compared to other methods. Specifically, SeaThru-NeRF often produces underex-
posed images, leading to visually unappealing outputs with poor detail preservation. WaterSplatting
introduces color distortions, such as greenish or yellowish tints on object surfaces, compromising the
realism of restoration scenes. In contrast, Plenodium generates well-exposed outputs with effective
medium separation, ensuring that submerged objects are rendered with natural color fidelity.

We further validate the restoration performance of Plenodium on our simulated dataset, which provides
ground-truth, clear images for evaluation. Qualitative comparisons of the restoration performance on
our simulated dataset are visualized in Fig. 5. SeaThru-NeRF suffers from severe color distortions,
most prominently manifested as unnatural yellow discoloration of sand in “Beach-Water”. It also
frequently generates underexposed images, especially in the “Street-Fog” scene. WaterSplatting
exhibits hollow reconstruction artifacts in the “Beach-Water” scene, due to COLMAP’s failure
under degraded visibility. Additionally, it retains residual fog on windows in the “Street-Fog” scene.
Plenodium, by comparison, achieves more accurate color restoration and preserves fine textures,
demonstrating greater robustness across diverse underwater scenes.

6 Analysis and Discussion

In this section, we present ablation studies to evaluate the contributions of key components in our
framework, including the plenoptic medium representation, pseudo-depth Gaussian complementation,
and the loss function design. Additional discussion is provided in Sec. C.

Effect of the plenoptic medium representation. To assess the effect of position information, as
well as spherical harmonics (SH) encoding, in our plenoptic medium representation, we conduct an
ablation study on the WaterSplatting framework, as shown in Tab. 3. We first compare the state-of-
the-art WaterSplatting [1], which parameterizes the medium by an MLP with only the direction input
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Table 3: Effect of the plenoptic medium presenta-
tion. All methods are evaluated on the SeaThru-
NeRF [2] dataset.

Method PSNR SSIM LPIPS FPS Time

MLP w/ dir [1] 29.600 0.918 0.129 179 6.9min
SH w/ dir 30.124 0.920 0.129 265 6.0min
SH w/o dir&pos 29.503 0.917 0.133 287 5.6min
SH w/ pos 29.796 0.919 0.129 284 5.6min
SH w/ dir&pos 30.254 0.921 0.127 257 6.0min

Table 4: Results of our method w/o PDGC. Su-
perscript values mark the differences in metrics
when PDGC is disabled.

Scene init. #G PSNR

IUI3 Red Sea 21,907 762↓ 30.176 0.099↓

Curaçao 25,837 453↓ 33.996 0.124↓

JapaneseGraden Red Sea 21,140 2,190↓ 24.947 0.111↓

Panama 22,501 90↓ 32.434 0.001↓

Table 5: Effect of the PDGC.

Initialization PSNR SSIM LPIPS FPS Time

COLMAP 30.388 0.9207 0.1274 238 7.0min
COLMAP + Rand. 30.236 0.9218 0.1268 209 7.2min
COLMAP + PDGC 30.472 0.9225 0.1276 249 7.0min

Table 6: Effect of the loss functions.

Loss Configuration PSNR SSIM FPS Time

Lreg-L1
&Lreg-ssim 30.307 0.9216 238 6.0min

Lreg-L1
&Lreg-ssim&Ldepth 30.389 0.9204 253 6.1min

Lreg-L1
&Lreg-ms-ssim&Ldepth 30.472 0.9225 249 7.0min
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Figure 6: Efficiency comparison of our plenoptic
medium representation against MLP-based rep-
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Figure 7: Rendering image comparison between
w/ PDGC and w/o PDGC when different steps
(1000, 2000, 15000).

(i.e., MLP w/ dir), with a modified version that replaces the MLP with SH (i.e., SH w/ dir). This
substitution yields a 0.524 dB improvement in PSNR and an 86 FPS speedup, demonstrating SH’s
superior representational power and computational efficiency. To further investigate the contribution
of position information, we begin with a shared SH parameterization across the entire volume
using only degree-zero coefficients (i.e., SH w/o dir&pos), which lacks both directional and spatial
awareness. Building upon this, we introduce trilinear interpolation over the eight voxel corners to
encode position (i.e., SH w/ pos), leading to noticeable performance improvements. Finally, we
combine the strengths of both directional and positional information, as well as SH encoding, in our
plenoptic medium representation (i.e., SH w/ dir&pos), which yields the highest rendering accuracy.

Furthermore, to validate the heterogeneous modeling capability of our plenoptic medium repre-
sentation, we conducted a systematic investigation into the relationship between our learned SH
coefficients and the physical properties of heterogeneous media using the “Beach-Fog-Hard” scene of
our simulation dataset. Specifically, we examined the relationship between the learned SH coefficients
for medium backscatter Aσ

bs

and the Density parameter set for the medium. As depicted in Fig. 8,
our analysis reveals a statistically significant and strong correlation (P < 0.0001) between the learned
SH coefficients and the ground-truth density values. This result provides compelling evidence that
our representation is capable of modeling the complex, heterogeneous properties of scattering media.

Efficiency of the plenoptic medium representation. To assess the computational efficiency of our
plenoptic medium representation compared to MLP-based representations, we quantified the forward
and backward propagation latencies across varying pixel counts. The results, illustrated in Fig. 6,
reveal that our plenoptic medium representation achieves significant speed improvements. During
forward propagation, it requires only 5% of the time needed by the MLP baseline, while during
backward propagation, it is less than half as time-consuming, which highlights the computational
benefits of our plenoptic medium representation.

Effect of the pseudo-depth Gaussian complementation. To demonstrate the effectiveness of our
pseudo-depth Gaussian complementation (PDGC) method, we remove PDGC and train this baseline
using the same settings as ours. The quantitative results in Tab. 4 show that our PDGC supplements
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Figure 9: Influence of degradation on COLMAP
and depth estimation.

762, 453, 2190, and 90 Gaussian primitives for each test scene, improving the PSNR value by
0.099dB, 0.124dB, 0.111dB, and 0.001dB, respectively. To further analyze the effect of the proposed
PDGC, we compare it with a baseline method that supplements Gaussians by randomly selecting
positions rather than by our PDGC. The comparison results in Tab. 5 demonstrate the effectiveness of
the proposed PDGC. Furthermore, Fig. 7 visually validates that the PDGC effectively improves the
reliability of the initialization for 3DGS in degraded scenarios, producing high-quality reconstructions
with significantly enhanced clarity compared to the baseline without using PDGC.

Effect of the loss function. To show the effect of our improved components in the loss function
Eqn. 12, we compare with two baseline methods that respectively replace our loss with λL1

Lreg-L1
+

λssimLreg-ssim (which contains a single-scale structural similarity loss and is used in prior work [1]) or
λL1Lreg-L1 + λssimLreg-ssim + λdepthLdepth. Table 6 reveals that both the improved multi-scale SSIM
loss and the proposed depth ranking regularized loss yield significant improvements in terms of
PSNR and SSIM while imposing minimal additional computational overhead during training.

Robustness of the pseudo-depth against degradation. To quantitatively evaluate the robustness
of the pseudo-depth estimation against various degradation levels, we plot the Pearson correlation
coefficient in Fig. 9, which measures the agreement between pseudo-depth maps from degraded
images and those from clean reference images on the “Street” scene of our simulated dataset.
Simultaneously, we chart the number of 3D points estimated by COLMAP under different degradation
conditions for comparison. As degradation intensity increases, COLMAP’s point cloud density drops
sharply, whereas the pseudo-depth consistently maintains high correlation values (e.g., r > 0.99),
demonstrating its strong robustness and medium-agnostic properties. These results indicate that the
depth prior is well-suited for initialization and supervision in challenging, degraded scenes.

7 Conclusion and Limitations

Conclusion. In this paper, we propose Plenodium, an efficient and robust framework for underwater
3D reconstruction. Our innovative plenoptic medium representation effectively integrates positional
information to enhance medium modeling accuracy. Utilizing spherical harmonics-based encoding,
we achieve a 47% speedup relative to WaterSplatting. Using pseudo-depth Gaussian complementation,
we significantly improve the robustness of the initialization process. The proposed depth ranking
regularized loss further improves the geometry by using depth order. Extensive evaluations in both
real-world and simulated datasets with state-of-the-art methods demonstrate the effectiveness of our
approach in reconstructing 3D underwater scenes and restoring underwater images.

Limitation. Despite the state-of-the-art performance achieved in underwater 3D reconstruction,
the proposed Plenodium framework still faces several limitations. First, its perceptual consistency
remains suboptimal. As shown in Tab. 1, Plenodium underperforms SeaThru-NeRF on the LPIPS
metric in certain scenes, indicating that the reconstructed results may not always align well with
human visual perception. Second, the water model in Eqn. 2 is inherently approximate and cannot
fully capture the complex physical properties of heterogeneous media. This restricts our method to
empirical fitting and limits its robustness and generalization in challenging environments.
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Summary of the Supplementary Materials

This appendix presents supplementary materials and analyses. We first present the implementation
details of our method in Sec. A. We then detail the construction of our simulated dataset and analyze
the effect of degradation on COLMAP initialization in Sec. B. In Sec. C, we conduct further ablation
studies and provide an in-depth analysis of our findings. Section D provides additional qualitative
visualizations to better illustrate the performance of our method. Finally, we consider our work’s
broader implications and potential societal impact in Sec. E.

A Implementation Detail

This section outlines our implementation details, including the training settings (i.e., Sec. A.1),
supplementary information for pseudo-depth Gaussian complementation (i.e., Sec. A.2), and the
depth gradient computation under scattering media (i.e., Sec. A.3).

A.1 Training Settings

We train our model using a volumetric extension of 3D Gaussian Splatting. For reconstruction tasks,
we train for 15,000 steps, while for restoration tasks, which require higher accuracy, we extend
training to 30,000 steps. Following the progressive training strategy introduced in 3DGS [9], training
begins at 1/4 resolution and gradually doubles every 3,000 steps to increase spatial detail. To prevent
unstable updates in the early training phase, we apply a 500-step warm-up before the Gaussian
refinement. After warm-up, Gaussian refinement (including densification and culling) is performed
every 100 steps. Densification is triggered for a Gaussian primitive when its gradient norm exceeds
0.0008. In this case, if the Gaussian scale is below 0.001, it is copied to expand coverage; otherwise,
it is split into two samples to preserve fine-grained structure. In parallel, culling is applied at each
refinement step to remove Gaussians with opacity below 0.5. To prevent opacity saturation and
encourage stable convergence, all opacities are reset to 0.5 every five refinement steps. Together,
these refinement steps first densify to improve coverage, then cull to remove floaters, ensuring a
compact and effective representation.

Table 7: Optimizer and scheduler configurations for each parameter group.

Parameter Group Initial LR Final LR Notes

Means 1.6e-4 5e-5 Position updates
DC Features 2.5e-3 2.5e-4 Direct color channels
Rest Features 1.25e-4 1.25e-5 Non-DC channels
Opacities 5.0e-2 5.0e-2 No decay
Scales 5.0e-3 5.0e-3 No decay
Quaternions 1.0e-3 1.0e-3 Rotation parameters
Medium DC Features 2.5e-3 2.5e-4 For volumetric medium
Medium Rest Features 1.25e-4 1.25e-5 For anisotropic scattering

We employ the Depth Anything Model [12, 13] as an external image depth estimator to generate the
pseudo-depth maps. We use the latest version, V2, and the largest model variant, ViT-L, which is
pretrained on diverse datasets and applied in inference mode without further fine-tuning. Following
the official implementation, each image is first resized to a fixed resolution (518 × 518) before
passing through the model. This resizing ensures compatibility with the model’s ViT backbone,
which performs best under fixed input sizes due to its patch-based architecture. The predicted depth
map is then upsampled via bilinear interpolation to match the original image resolution and stored as
a dense pseudo-depth prior for further use in our pipeline.

Each parameter group is optimized using the Adam optimizer with ϵ = 10−15 and exponential decay
scheduling. For instance, the 3D means are trained with an initial learning rate of 1.6× 10−4, which
decays to 5 × 10−5 over time, while opacities are optimized using a fixed learning rate of 0.05.
Additional learning rates and scheduler configurations details are provided in Tab. 7.

A.2 More Details of the Pseudo-Depth Gaussian Complementation
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Algorithm 1 Pseudo-Depth Gaussian Complementation
Input:

The set of the input cameras V , and corresponded images C;
The COLMAP initialized Gaussian primitives, G;

Output:
The final Gaussian primitives, G′;

1: G′ = ∅
2: for V ∈ V , C ∈ C do
3: D̂, T obj

N+1← render from G for V using Eqn. 8.
4: Ωp ← {(x, y)|T obj

N+1(x, y) ≥ τw}
5: get D̃ by Depth Anything Model with image input C
6: Ωn ← {(x, y)|D̃(x, y) < τnearmax(D̃)}
7: get D̃′ from D̃ using Eqn. 9
8: for (x, y) ∈ Ωn ∪ Ωp do
9: get µ,A using Eqn. 13

10: get Σ using Eqn. 14
11: σ ← 0.1
12: G ← {µ,Σ, A, σ}
13: G′ ← G′ ∪ {G}
14: end for
15: end for
16: G′ ← G ∪G′

17: return G′

In this section, we detail the procedure of our Pseudo-Depth Gaussian Complementation (PDGC), as
summarized in Alg. 1.

Based on the pixel regions selected by Ωn and Ωp (as defined in Sec. 4.2), we determine where
new Gaussians should be inserted. For each selected pixel (x, y), we project it into 3D space as
a Gaussian using its calibrated pseudo-depth D̃′(x, y). The 3D mean position µ and the spherical
harmonics-encoded color feature A are computed as:

µ =WT ·

D̃′(x, y) · x
D̃′(x, y) · y
D̃′(x, y)

+

[
xc
yc
zc

]
, A = RGB2SH(C(x, y)), where (x, y) ∈ Ωn ∩ Ωp, (13)

here, W is the intrinsic matrix, and [xc, yc, zc]
T is the camera position. The function RGB2SH maps

RGB values to 0th-order spherical harmonics coefficients for a compact color representation.

To represent the shape and orientation of each Gaussian, we define its covariance matrix Σ via
isotropic scaling S and a random rotation R:

Σ = RSSTRT , S = diag(s, s, s), s =
D̃′(x, y) · (fx + fy)

h+ w
, (14)

where diag(s, s, s) constructs a diagonal matrix S that uniformly scales the Gaussian along all three
spatial axes, resulting in an isotropic shape. The scalar s adapts the Gaussian size to the scene depth,
while considering focal lengths (fx, fy) and image dimensions (h,w). The rotation matrix R is
randomly initialized to promote diversity in orientation and mitigate optimization bias.

A.3 Backward Pass

Unlike standard 3DGS, where the depth zi mainly affects the rendered depth D̂, in our medium-aware
formulation, zi also influences the final rendered color Ĉ through scattering and attenuation. The loss
L gradient concerning zi becomes:

∂L
∂zi

=
∂L
∂D̂

· ∂D̂
∂zi

+
∂L
∂Ĉ

· ∂Ĉ
∂zi

. (15)
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The first term corresponds to the direct contribution of zi to the depth rendering, which follows the
standard 3DGS formulation:

∂D̂

∂zi
= αiT

obj
i . (16)

The second term accounts for the influence of zi on color rendering, which stems from the medium-
aware compositing process:

Ĉ =

N∑
i

ciαiT
obj
i e−σ

attzi +

N∑
i

cmedT obj
i

(
e−σ

bszi−1 − e−σ
bszi

)
+ cmedT obj

N+1e
−σbszN . (17)

Thus, zi appears in the following terms of the color computation:

• Ĉobj
i = ciαiT

obj
i e−σ

attzi , where zi affects attenuation of the object.

• Ĉmed
i = cmedT obj

i (e−σ
bszi−1 − e−σ

bszi), where zi appears in the second exponential term.

• Ĉmed
i+1 = cmedT obj

i+1(e
−σbszi − e−σ

bszi+1), where zi appears in the first exponential term.

Combining these, we get:

∂Ĉ

∂zi
= −σattciαiT

obj
i e−σ

attzi + σbscmede−σ
bszi

(
T obj
i − T obj

i+1

)
, (18)

where, the difference in transmittance simplifies as: T obj
i − T obj

i+1 = T obj
i − (1− αi)T

obj
i = αiT

obj
i .

Then, we substitute it back into the gradient of the loss:

∂L
∂zi

=
∂L
∂D̂

· αiT obji +
∂L
∂Ĉ

(σbse−σ
bszicmed − σatte−σ

attzicobj) · αiT obji , (19)

This formulation captures depth’s dual role in geometry and appearance, enabling more informative
gradient flow in scattering environments.

B More Details of Our Simulated Dataset

In this section, we present additional details about our simulated dataset. We first describe the dataset
construction process (i.e., Sec. B.1), including medium configurations and rendering settings. We then
analyze the impact of different degradation levels on COLMAP-based initialization (i.e., Sec. B.2).

Figure 10: Blender interface used for dataset rendering.

B.1 Dataset Construction

As shown in Fig. 10, we simulate a scattering medium using Blender’s Principled Volume shader,
rendered with the Cycles engine to achieve high-fidelity light transport. A vertical density gradient
is introduced along the Z-axis by combining the Texture Coordinate, Mapping, and Separate
XYZ nodes, followed by a ColorRamp node to control the falloff. For fog, we adopt a white absorption
color and low anisotropy (0.001) to simulate uniform scattering. For water, we use a bluish absorption
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Figure 11: Sampled images from our simulated dataset.

Water GT Fog
hard←−−−−−−−−−−−−−−−−−−− easy easy −−−−−−−−−−−−−−−−−−−→ hard

2988 5569 6043 8371 6454 5569 3707

2805 4326 7239 9931 7819 6072 3406

Figure 12: Sparse point clouds obtained by COLMAP under varying degradation conditions. The
numbers below each image indicate the number of 3D points. For both the Beach (top) and Street
(bottom) scenes, we show the impact of different levels of fog and water degradation (from easy to
hard) compared to the clean ground truth. Severe degradation results in significantly sparser points,
illustrating the challenge of reliable initialization of 3DGS.

tint and increased anisotropy to better approximate underwater light propagation with enhanced
forward scattering. Three degradation levels (easy, medium, and hard) are realized by scaling the base
density using adjustable Multipliers (e.g., 0.005, 0.01, 0.02). All images in our dataset are rendered
with linear color management to allow for accurate exposure adjustments during post-processing.
Specifically, we set the view transform to Standard and turn off gamma correction (gamma = 1.0). We
do not use user-defined curve adjustments, ensuring no tone mapping or nonlinear operations alter the
image. This enables consistent and physically meaningful exposure control during post-processing.
The dataset comprises two distinct scenes (Beach and Street), as illustrated in the ground truth (GT)
visualizations shown in Fig. 11, supporting robust and comprehensive benchmarking. Additional
details, including exact shader setups and scene configurations, are provided in the supplementary
Blender source files.

B.2 Dataset Analysis

To evaluate the impact of image degradation caused by scattering media on the structure-from-motion
(SfM) [10] initialization process in COLMAP [10, 11], we analyze the density and completeness
of the generated sparse point clouds under degraded imaging conditions. When image quality is
compromised due to fog or water, COLMAP struggles with reliable feature extraction and matching,
resulting in significantly sparser and less accurate point clouds. As visualized in Fig. 12, specific
regions, particularly those with strong scattering effects, exhibit apparent gaps or absences in the
geometry. This degradation-induced sparsity directly hinders the quality of subsequent reconstruction
stages, especially for methods relying on accurate geometry priors, such as 3DGS. These findings
highlight the sensitivity of COLMAP-based initialization pipelines to visibility degradation, under-
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Water GT Fog
hard←−−−−−−−−−−−−−−−−−−− easy easy −−−−−−−−−−−−−−−−−−−→ hard

0.999 0.999 1.000 1.000 1.000 1.000 0.999

0.994 0.996 0.997 1.000 0.998 0.996 0.995

Figure 13: Pseudo-Depth estimated from various degraded images by [13]. Numbers below each map
denote the Pearson correlation coefficient concerning the GT-based pseudo-depth. The consistently
high values (close to 1.0) validate its effectiveness as a reliable depth in different environments.

scoring the need for complementary initialization strategies to recover missing geometry in severely
degraded scenes.

C More Analysis and Discussion

In this section, we provide a comprehensive analysis of our method under various settings. We
supplement a ColorChecker-based evaluation to verify the color fidelity of our approach for restoration
(i.e., Sec. C.1) and assess the robustness of the pseudo-depth estimation under diverse degradation
types (i.e., Sec. C.2). We then compare our Pseudo-Depth Gaussian Complementation (PDGC) with a
graph-based densification strategy (i.e., Sec. C.3) and further analyze the effects of the regularization
weight (i.e., Sec. C.4), COLMAP initialization (i.e., Sec. C.5), and depth ranking regularized loss
(i.e., Sec. C.6). Furthermore, we examine how critical hyperparameters affect performance(i.e.,
Sec. C.7) and analyze statistical variance across different runs and degradation levels to establish
result consistency (i.e., Sec. C.8). Finally, we analyze the limitations of our method with respect to
the LPIPS metric (i.e., Sec. C.9).

C.1 Colorchecker-based Evaluation

To validate the color fidelity of the proposed Plenodium, we supplement a ColorChecker-based
evaluation. Following SeaThru [39], restored images are converted to a standard color space via the
camera-pipeline manipulation platform [50], and white balance is set to an identity matrix derived
from the Gray-World Hypothesis [51]. Color accuracy is quantified as the mean RGB angular error:

ψ̄ =
1

6

6∑
i=1

cos−1(
∥Ĉi∥1√
3∥Ĉi∥2

), (20)

between the six grayscale patches for each chart, following [34]. Table 8 demonstrates that our
Plenodium attains the lowest angular error, further confirming the superior color fidelity. However,
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Table 8: Comparison of RGB angular error across methods.

SeaThru-NeRF WaterSplatting Plenodium

RGB angular error ψ̄ 13.039 11.527 8.288

Table 9: Effectiveness of the PDGC.

Method PSNR SSIM # G (init./final)

Plenodium w/o PDGC 30.176 0.890 21,907 / 857,571
Plenodium w/o PDGC & w/ GU 30.210 0.890 77,830 / 861,567
Plenodium (ours) 30.275 0.891 22,669 / 860,219

Table 10: Effectiveness of the regularized losses.

Losses PSNR SSIM

LL1
+ Lms-ssim 29.35 0.892

LL1
+ Lreg-ms-ssim 29.60 0.910

Lreg-L1
+ Lreg-ms-ssim 30.41 0.923

Lreg-L1
+ Lreg-ms-ssim 30.47 0.923

we note that the SeaThru-NeRF dataset is not fully designed for color checker evaluation: only the
"Curaçao" scene contains an unobstructed color chart, while the others suffer from occlusions or lack
such references entirely, limiting the application of the color-checker-based metric.

C.2 Robustness of Pseudo-Depth

Our pipeline leverages the Depth Anything Model [12, 13], a state-of-the-art monocular depth
estimator, to compute robust pseudo-depth maps from media-degraded images. These maps serve as
essential guidance for both our Pseudo-Depth Gaussian Complementation (PDCG) and the depth
ranking regularized loss. As shown in Fig. 13, a key advantage of this approach is its robustness to
medium-induced degradations. Despite varying levels of scattering and absorption in both water and
fog, the pseudo-depth maps remain visually consistent across different input conditions and align well
with those derived from clean ground-truth images. To quantitatively support this observation, we
report the Pearson [52] correlation coefficient below each depth map, comparing each pseudo-depth
to the one predicted from the clean (GT) image. The consistently high correlation values (e.g., >0.99)
validate the robustness and medium-agnostic nature of the predictions by [13], making it well-suited
for initialization and supervision in degraded scenes.

C.3 Comparison Between PDGC and Graph-based Densification

We provide a comparison between our Pseudo-Depth Gaussian Complementation (PDGC) with a
graph-based densification strategy (i.e., Gaussian Unpooling, GU used in FSGS [52]). To quantita-
tively compare PDGC against GU, we conduct controlled experiments on the "IUI3-RedSea" scene
and compare our Plenodium with two baselines that respectively remove our PDGC (i.e., Plenodium
w/o PDGC) and replace our PDGC with GU (i.e., Plenodium w/o PDGC & w/ GU) for providing
additional Gaussian during initialization while keeping all subsequent training settings identical.
Compared to GU only using the information estimated by COLMAP, our PDGC further leverages
an additional depth prior, thereby delivering superior quantitative results as illustrated in the Tab. 9.
Moreover, GU introduces a large number of Gaussians at initialization, yet yields negligible gains in
final reconstruction quality and leaves the final Gaussian count almost unchanged.

C.4 Effect of the Regularized Losses

We further provide ablation evaluations on the effectiveness of the regularized in Eqn. 10 (i.e., the
effectiveness of the weighting matrix W = 1

sg(Ĉ)+ϵ
on two losses in Eqn. 10). We compare our

approach with the losses in Eqn. 10 (i.e., Lreg-L1 + Lreg-ms-ssim) with three baseline methods that
respectively remove the weighting matrix W from the L1 loss (i.e., LL1 + Lreg-ms-ssim), remove the
weighting matrix W from the multi-scale differentiable SSIM loss (i.e., Lreg-L1 + Lms-ssim), remove
the weighting matrix W from both the L1 loss and the multi-scale differentiable SSIM loss (i.e.,
LL1

+ Lms-ssim). The comparison results in Tab. 10 show that our approach outperforms all the
baselines, which demonstrates the effectiveness of emphasizing dark regions during optimization.
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Table 11: Effect of the COLMAP initialization.
We compare it with a random initialization with
50,000 points.

Initialzation PSNR SSIM LPIPS FPS Time

Random 25.198 0.7983 0.2235 116 6.4min
COLMAP 30.388 0.9207 0.1274 237 7.0min
COLMAP & PDGC 30.472 0.9225 0.1276 249 7.0min

Table 12: Effect of the depth ranking regularized
loss. We compare it with the Pearson correlation
loss from [52].

Loss PSNR SSIM LPIPS FPS Time

w/o Ldepth 30.305 0.9212 0.1272 252 7.0min
w/ L′

depth [52] 30.384 0.9209 0.1292 246 7.7min
w/ Ldepth 30.472 0.9225 0.1276 249 7.0min
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Figure 14: Effect of varying the maximum SH
degree used for the plenoptic medium represen-
tation.
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Figure 15: Effect of varying the number N of
patches used in the depth ranking regularized
loss.

C.5 Effect of the COLMAP Initialization

To evaluate the role of COLMAP-based initialization within our framework, we compare three
variants: (1) our method with COLMAP initialization but without PDGC, (2) our method with
random initialization using 50,000 uniformly sampled 3D points, and (3) our full pipeline combining
COLMAP with PDGC. COLMAP provides a strong geometric prior that aids reconstruction; however,
under severe degradation (e.g., fog or water), its output often becomes sparse and contains missing
regions. In contrast, random initialization does not rely on scene-specific priors but ensures uniform
spatial coverage, even in areas where COLMAP fails to generate points. As shown in Tab. 11,
despite the degraded visibility, COLMAP initialization still leads to better performance than random
initialization, validating the utility of its geometric prior. Moreover, our full method (augmenting
COLMAP with PDGC, COLMAP & PDGC) further improves results, indicating that while COLMAP
provides a solid foundation, complementary strategies can effectively enhance geometric priors under
a degraded environment.

C.6 Effect of the Depth Ranking Regularized Loss

To further evaluate the effectiveness of our proposed depth ranking regularized loss Ldepth, we compare
our method (i.e., w/ Ldetph) against two baselines: one trained without any depth supervision (i.e.,
w/o Ldepth), and another using the Pearson correlation-based depth loss L′

depth adopted in FSGS [52]
(i.e., w/ L′

depth). As shown in Tab. 12, while L′
depth provides marginal improvements over the no-depth

baseline, our method that leverages Ldepth achieves superior performance, which shows that our depth
ranking regularized loss offers more effective geometric supervision with imprecise pseudo-depth
supervision.

C.7 Effect of Hyperparameters

In our experiments, we investigate two critical hyperparameters that affect the performance of our
plenoptic medium representation and the efficacy of the depth ranking regularized loss.

First, in Fig. 14, we control the maximum spherical harmonics (SH) degree for our plenoptic
representation in our method. Adjusting this parameter determines the level of angular complexity
captured in the medium field, thereby influencing the fidelity of volumetric effects such as scattering
and color absorption. A higher maximum SH degree can model more detailed angular variations.
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Figure 16: Mean and variance of reconstruction
quality over four runs on real-world scenes.
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Figure 17: Performance variation on simulated
data across different degradation levels.

SeaThru-NeRF’s LPIPS Our LPIPS GT Noise in Background

Figure 18: Visual comparison of LPIPS maps between SeaThru-NeRF and our Plenodium. The
primary difference appears in the background regions corrupted by GT noise.

Still, it may also increase computational cost and risk of overfitting, whereas a lower degree results in
a smoother but potentially oversimplified medium representation. To achieve an optimal trade-off
between computational efficiency and representational fidelity, we fix the SH degree to 3.

Second, we vary the number N of downsampled patches used in the depth ranking regularized loss
for our method in Fig. 15. This loss plays a crucial role in enforcing depth consistency during training.
A larger N provides finer granularity for capturing local depth variations, but it also introduces more
noise and increases computational overhead, even out-of-memory issues during training. In contrast,
a smaller N simplifies the loss calculation but may not capture sufficient spatial detail. Empirically,
setting N = 16 yields the best performance while maintaining a reasonable computational load.

C.8 Statistical Analysis

To ensure the robustness and stability of our quantitative results, we conduct four independent training
runs on real-world scenes and report the average performance in Tab. 1 of the main manuscript. As
shown in Fig. 16, we visualize the mean performance across runs and the corresponding variance to
reflect consistency.

For our simulated dataset, we compare the average PSNR across scenes under water and fog degra-
dation. As shown in Fig. 17, our method (Plenodium) consistently outperforms WaterSplatting
across all conditions. The error bars represent the standard deviation across different degradation
levels, reflecting both the effectiveness and robustness of each method under challenging visual
environments.

C.9 Limitation

While our method underperforms SeaThru-NeRF in terms of LPIPS in some scenes (as reported in
Tab. 1 of the main manuscript), we conduct a visual analysis to better understand this discrepancy. As
shown in Fig. 18, the LPIPS maps indicate that the main difference arises in the medium regions,
where our method yields higher LPIPS values. We further observe that background areas in the
GT contain visible noise, which may act as a confounding factor in LPIPS evaluation, limiting its
reliability in degraded scenes.
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Figure 19: Visual comparison on our simulated dataset.

D More Visualizations

In this section, we present additional visualizations on our simulated dataset, comparing SeaThru-
NeRF [2], WaterSplatting [1], and our proposed Plenodium, as shown in Fig. 19. We also include
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video results in the supplementary material, rendered at 24 FPS using camera trajectories interpolated
from the evaluation poses with a step size of 10.

E Broader Impact

Our method offers a more accurate and efficient solution for underwater 3D reconstruction, which can
positively impact fields such as marine ecology, environmental monitoring, underwater archaeology,
and infrastructure inspection. By improving scene recovery in visually degraded environments, our
approach may assist in documenting underwater habitats, tracking pollution effects, and preserving
submerged cultural heritage. Furthermore, the proposed simulated dataset provides a benchmark for
evaluating underwater image restoration methods, promoting reproducibility and transparency. How-
ever, as with any enhanced visual sensing technology, there exists potential for misuse in surveillance
or unauthorized mapping. We encourage responsible use and recommend that applications of this
technology follow appropriate ethical and legal guidelines.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and Introduction (Sec. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation (Sec. 7)and Supplementary Material (Sec. C)
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The main results of this paper are experimental results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment (Sec. 5)

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Experiment (Sec. 5), Supplementary Material (Sec. B), and our project website:
https://plenodium.github.io/

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments (Sec. 5) and Supplementary Material (Sec. A)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments (Sec. 5) and Supplementary Material (Sec. C)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments (Sec. 5)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: conform
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Introduction (Sec. 1) and Supplementary Material (Sec. E)
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

28

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Reference
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Experiment (Sec. 5), Supplementary Material (Sec. C)
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work is entirely completed by the authors and does not involve research
with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: this research does not involve LLMs as any important.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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