

EXTENDING μ P: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Several variations of adaptive first-order and second-order optimization methods
 012 have been proposed to accelerate and scale the training of large language models.
 013 The performance of these optimization routines is highly sensitive to the
 014 choice of hyperparameters (HPs), which are computationally expensive to tune
 015 for large-scale models. Maximal update parameterization (μ P) is a set of scal-
 016 ing rules which aims to make the optimal HPs independent of the model size,
 017 thereby allowing the HPs tuned on a smaller (computationally cheaper) model to
 018 be transferred to train a larger, target model. Despite promising results for SGD
 019 and Adam, deriving μ P for other optimizers is challenging because the underlying
 020 tensor programming approach is difficult to grasp. Building on recent work that
 021 introduced spectral conditions as an alternative to tensor programs, we propose a
 022 novel framework to derive μ P for a broader class of optimizers, including AdamW,
 023 ADOPT, LAMB, Sophia, Shampoo and Muon. We implement our μ P derivations
 024 on multiple benchmark models and demonstrate zero-shot learning rate transfer
 025 across increasing model width for the above optimizers. Further, we provide em-
 026 pirical insights into depth-scaling parameterization for these optimizers.

1 INTRODUCTION

029 Large language models (LLMs) have achieved remarkable progress in generative AI, yet their per-
 030 formance and reproducibility depend on many interacting factors. A key aspect of training LLMs is
 031 the optimization routine, which can become unstable as models grow in size and complexity. To im-
 032 prove stability and efficiency, several modifications to existing optimizers have been proposed. For
 033 example, LAMB (You et al., 2019) proposes a layer-wise adaptive optimization routine to reduce
 034 the computational time required for training deep neural networks over large mini-batches, while
 035 Sophia (Liu et al., 2023) is a light-weight second-order method which achieves faster convergence
 036 than Adam and is more robust to non-convex landscapes. Muon is another recent optimizer designed
 037 explicitly for scaling with model size (Jordan et al., 2024; Liu et al., 2025; Bernstein, 2025).

038 Although these recent algorithms demonstrate strong performance, the computational overhead of
 039 hyperparameter (HP) tuning poses a fundamental scalability bottleneck for training LLMs. To ad-
 040 dress this challenge, practitioners have heuristically tuned HPs on smaller models to guide the search
 041 for optimal configurations in larger models. Recent works (Yang et al., 2021; Yang & Hu, 2020) have
 042 formalized this approach by proposing a zero-shot HP transfer algorithm based on maximal update
 043 parameterization (μ P), which stabilizes feature learning across different model widths. μ P is im-
 044 plemented by carefully scaling the weights and HPs proportional to the model width, with scaling
 045 factors tailored to the specific architecture and optimization algorithm. Under μ P, feature learning
 is stable throughout the training process and HPs are stable across increasing model width.

046 For the above reasons, several recent works have derived and incorporated μ P for different models
 047 (Zheng et al., 2025; Thérien et al.) and optimization algorithms (Blake et al., 2025b; Ishikawa
 048 & Karakida). Fig. 1 demonstrates the increased training stability and predictability after μ P is
 049 incorporated in Sophia. Fig. 1 (left) shows that the relative mean of different feature vectors remains
 050 stable across increasing model width, thereby ensuring maximal (weights not decreasing to 0) and
 051 stable (weights not diverging) feature learning under μ P. Fig. 1 (middle) demonstrates zero-shot
 052 learning rate transfer across model widths where the best validation loss is obtained at learning rate
 053 0.1 for all widths. Finally, Fig. 1 (right) demonstrates the “wider is always better” property where
 the training loss improves consistently with increasing model width under μ P.

While μ P delivers strong results, it is tedious to implement in existing large codebases and difficult to understand in practice. To address this, authors in (Yang et al., 2023a) proposed simpler spectral scaling conditions on the weight matrices that lead to the same width-independent and maximal feature learning properties of μ P. This work focuses on using the more tractable spectral conditions to derive μ P for a wide range of optimizers. Despite being more intuitive, using spectral conditions to derive μ P is not trivial and the analysis for each adaptive optimizer is different and requires a careful study of the order-of-magnitude of the coefficient terms that scale the gradients.

Our contributions are as follows: (1) we propose a general framework to derive μ P using a novel spectral scaling approach; (2) we use the proposed framework to analytically derive μ P for several adaptive first and second-order optimizers (AdamW, ADOPT, LAMB, Sophia, Shampoo, Muon); (3) we implement μ P for the above optimizers and validate our implementation by demonstrating zero-shot HP transfer (specifically of the optimal learning rate) across model width on benchmark LLMs (NanoGPT (Karpathy, 2022); Llama2 (Touvron et al., 2023)); and (4) we provide an empirical study of zero-shot HP transfer across model depth for these optimizers to motivate future work.

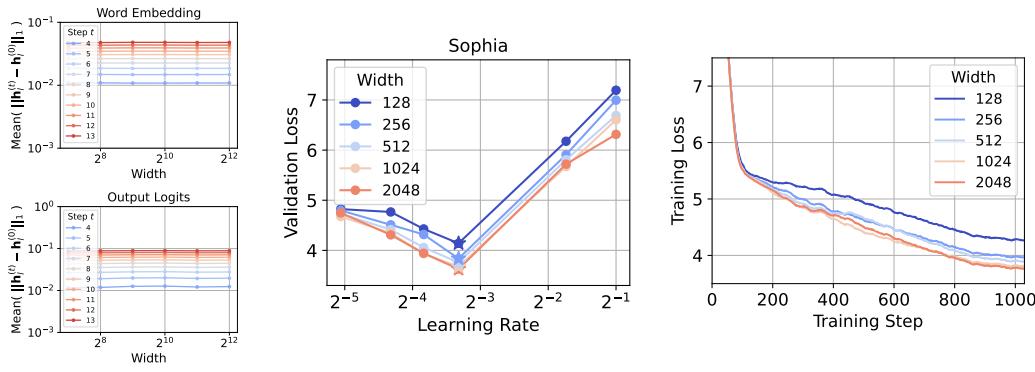


Figure 1: μ P for Sophia (trained on Llama2) - Coordinate check plots for the word embedding and output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle); Decreasing training loss with increasing model width (right).

2 PRELIMINARIES

The l^p -norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is defined as $\|\mathbf{x}\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$. For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{A}^\alpha = \sum_i \lambda_{e_i}^\alpha \mathbf{u}_i \mathbf{u}_i^T$ where $(\lambda_{e_i}, \mathbf{u}_i)$ are the i -th eigen pair. The spectral norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as $\|\mathbf{A}\|_* := \max_{\mathbf{x} \in \mathbb{R}^n \setminus \{0\}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$, and the Frobenius norm is defined as $\|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n |\mathbf{A}_{i,j}|^2}$ (Strang, 2012; Meyer, 2023). If r denotes the rank of matrix \mathbf{A} , then $\|\mathbf{A}\|_* \leq \|\mathbf{A}\|_F \leq \sqrt{r} \|\mathbf{A}\|_*$. If a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be written as an outer product of some vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$, that is, $\mathbf{A} = \mathbf{u}\mathbf{v}^T$ then matrix \mathbf{A} is a rank one matrix and

$$\|\mathbf{A}\|_* = \|\mathbf{A}\|_F = \|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2. \quad (1)$$

For any symmetric matrix, the spectral norm is equal to the absolute value of the maximum eigen value. Therefore, for $p \in \mathbb{R}$, for a symmetric rank one matrix $\mathbf{A} = \mathbf{u}\mathbf{u}^T \in \mathbb{R}^{n \times n}$,

$$\|\mathbf{A}^p\|_* = \|\mathbf{A}\|_*^p. \quad (2)$$

A sequence of random vectors $\{\mathbf{x}_i \in \mathbb{R}^n\}_{i=1}^\infty$ is said to have $\Theta(n^\alpha)$ -sized coordinates if there exists constants A, B such that $An^\alpha \leq \sqrt{\frac{\|\mathbf{x}_i\|_2^2}{n}} \leq Bn^\alpha$ for all i , and for sufficiently large n .

3 BACKGROUND

In Sections 3, 4 and Appendix A, μ P is derived for a linear MLP trained with a batch size of 1, similar to the model used in (Yang et al., 2023a). Let us consider an MLP with L layers. Let $\mathbf{x} \in \mathbb{R}^{n_0}$ denote the input vector and $\mathbf{W}_l \in \mathbb{R}^{n_l \times n_{l-1}}$ denote the weight matrix for the l -th layer of the model. Then the feature vector $\mathbf{h}_l \in \mathbb{R}^{n_l}$ for the input \mathbf{x} is given as

$$\mathbf{h}_l(\mathbf{x}) = \mathbf{W}_l \mathbf{h}_{l-1}(\mathbf{x}), \quad \forall l = 1, 2, \dots, L \quad (3)$$

108 where $\mathbf{h}_0(\mathbf{x}) = \mathbf{x}$. Let $\mathcal{L} = g(\mathbf{h}_L(\mathbf{x}), \mathbf{y})$ denote the loss, where $g : \mathbb{R}^{n_0} \times \mathbb{R}^{n_L} \rightarrow \mathbb{R}$ is a loss
 109 function, $\mathbf{y} \in \mathbb{R}^{n_L}$ is the target vector corresponding to the input \mathbf{x} and $\mathbf{h}_L(\mathbf{x}) \in \mathbb{R}^{n_L}$ is the output
 110 vector returned by the MLP. After one step of training, the change in the weight matrices is typically
 111 a function, $\Psi(\cdot)$, of the history of the gradients. Then, the change in weights from time instant t to
 112 $t + 1$ can be written using the following generic update rule,

$$\mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \Psi(\{\nabla_{\mathbf{W}_l^{(i)}} \mathcal{L}\}_{i=1}^t) \quad (4)$$

113 where $\eta^{(t+1)}$ is the learning rate at time instant $t + 1$. We specify the forms of $\Psi(\cdot)$ for different
 114 optimizers in Table 1. To reduce cumbersome notation, we omit time indices in the remaining
 115 sections unless their inclusion is necessary for clarity. This will not affect the derivation of μP as
 116 it is sufficient to analyze a single step of rule (4) to determine the correct scaling laws (Yang et al.,
 117 2021; Blake et al., 2025a). Using eqs. (3) and (4) the change in weights and feature vectors for any
 118 layer l , after one training step can be written as
 119

$$\Delta \mathbf{W}_l = -\eta \Psi(\{\nabla_{\mathbf{W}_l} \mathcal{L}\}) \quad \text{and} \quad \Delta \mathbf{h}_l(\mathbf{x}) = \Delta \mathbf{W}_l \mathbf{h}_{l-1}(\mathbf{x}) + \Delta \mathbf{W}_l \Delta \mathbf{h}_{l-1}(\mathbf{x}) + \mathbf{W}_l \Delta \mathbf{h}_{l-1}(\mathbf{x}).$$

Optimizer	$\Psi(\cdot)$
AdamW / ADOPT	$\frac{\hat{\mathbf{m}}^{(t)}}{\sqrt{\hat{\mathbf{v}}^{(t)}} + \epsilon} + \lambda \mathbf{W}_l^{(t)}$
Sophia	$\text{clip}\left(\frac{\mathbf{m}^{(t)}}{\max\{\gamma \mathbf{h}^{(t)}, \epsilon\}}, 1\right) + \lambda \mathbf{W}_l^{(t)}$
LAMB	$\frac{\phi(\ \mathbf{W}_l^{(t)}\ _{\text{F}})}{\ \mathbf{r}_l^{(t)} + \lambda \mathbf{W}_l^{(t)}\ _{\text{F}}} (\mathbf{r}_l^{(t)} + \lambda \mathbf{W}_l^{(t)})$
Shampoo	$(\mathbf{L}^{(t)})^{-1/4} \nabla_{\mathbf{W}_l^{(t)}} \mathcal{L} (\mathbf{R}^{(t)})^{-1/4}$
Muon	$\sqrt{\frac{n_l}{n_{l-1}}} \mathbf{O}_l^{(t)}$

135 Table 1: Values of $\Psi(\cdot)$ for different optimizers. Auxiliary variables are defined in Section 4 and
 136 Appendix A.

3.1 MAXIMAL UPDATE PARAMETRIZATION (μP)

137 Authors in (Yang & Hu, 2020; Yang et al., 2021) proposed μP to ensure that overparameterized
 138 models do not learn trivial features, or that the feature values do not blow up with increasing model
 139 width. In practice, μP is implemented via the *abc*-parameterization (Yang & Hu, 2020) which en-
 140 sures that the MLP weights, their initial variance and the learning rate are appropriately scaled with
 141 respect to the model width. In Yang & Hu (2020), the *abc*-parameterization was introduced for
 142 MLPs where the hidden layers have the same width, that is, $n_{l-1} = n_l = n$ for $l = 2, \dots, L - 1$.
 143 For simplicity, it was assumed that the inputs and outputs are scalars. Then, for each layer, the set
 144 of parameters $\{a_l, b_l\}_{l=1}^L \cup \{c\}$ comprise the *abc*-parameterization to
 145

- 146 Initialize and scale weight matrices at every layer as $\mathbf{W}_l = n^{-a_l} [\mathbf{w}_l^{(i,j)}]$, where $\mathbf{w}_l^{(i,j)} \sim$
 $\mathcal{N}(0, n^{-2b_l} \sigma^2)$
- 147 2. Scale the learning rate such that $\Delta \mathbf{W}_l = -\eta n^{-c} \Psi(\{\nabla_{\mathbf{W}_l} \mathcal{L}\})$

148 where the scale of initial variance, σ^2 , and the learning rate, η , is assumed to be width-independent.
 149 As emphasized in Section 1, the theoretical principles behind μP can be difficult to grasp. Recog-
 150 nizing these challenges, (Yang et al., 2023a) provided the following equivalent conditions for μP

$$151 \|\mathbf{h}_l(\mathbf{x})\|_2 = \Theta(\sqrt{n_l}) \quad \text{and} \quad \|\Delta \mathbf{h}_l\|_2 = \Theta(\sqrt{n_l}), \quad \text{for } l = 1, 2, \dots, L - 1. \quad (C.1.)$$

152 The above conditions concisely represent the requirements of μP .

3.2 SPECTRAL CONDITIONS FOR FEATURE LEARNING

153 In (Yang et al., 2023a), the authors further argued that conditions (C.1.) can be ensured by the
 154 following *spectral scaling conditions* on the weight matrices and their one step update,

$$155 \|\mathbf{W}_l\|_* = \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right) \quad \text{and} \quad \|\Delta \mathbf{W}_l\|_* = \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right), \quad \text{for } l = 1, 2, \dots, L. \quad (C.2.)$$

162 The above spectral scaling conditions hold for any optimizer, and in the next section we present a
 163 framework to derive μP for any arbitrary optimizer using conditions (C.2.).
 164

165 **3.3 THEORY TO PRACTICE**
 166

167 While the μP scalings in Table 2 are derived for the model described in the beginning of Section 3,
 168 empirical results in Fig. 2 and Fig. 3 show that the derivations also hold for more practical, complex
 169 models. This section lists the assumptions required for the derived scalings to hold in practice .

170 We first need to justify that deriving μP based on one time step analysis recursively yields the same
 171 scaling in the following time steps. This holds if the order of magnitude of the norms remain the
 172 same after the updates are performed, and this is formalized in Assumption 1. Note that violating
 173 Assumption 1 will require exact cancellation which is rare to observe in practice and can be easily
 174 avoided by adding small randomness to the learning rate (Yang et al., 2023a).

175 **Assumption 1** *The weight updates do not cancel initial quantities.*

$$177 \quad \|\mathbf{W}_l + \Delta \mathbf{W}_l\|_* = \Theta(\|\mathbf{W}_l\|_* + \|\Delta \mathbf{W}_l\|_*) \\ 178 \quad \|\mathbf{h}_l(\mathbf{x}) + \Delta \mathbf{h}_l(\mathbf{x})\|_2 = \Theta(\|\mathbf{h}_l(\mathbf{x})\|_2 + \|\Delta \mathbf{h}_l(\mathbf{x})\|_2).$$

180 In practice, nonlinear activation functions, $\phi(\cdot)$, act on incoming feature vectors from the previous
 181 layer, thereby changing (3) to $\mathbf{h}_l(\mathbf{x}) = \mathbf{W}_l \phi(\mathbf{h}_{l-1}(\mathbf{x}))$. Our analysis directly translates to activation
 182 functions that preserve the order of magnitude of the inputs, as formalized in Assumption 2, and this
 183 phenomenon is observed for most commonly used activations which are designed to prevent the out-
 184 puts from diverging or vanishing to 0. Additionally, Assumption 2 also holds for most transformer
 185 layers where the activation functions are preceded by layer normalization, because the normalization
 186 maps the vectors to nonnegative constants.

187 **Assumption 2** *If a nonlinear activation function $\phi(\cdot)$ is added to each layer of the MLP, then*

$$188 \quad \|\phi(\mathbf{h}_l(\mathbf{x}))\|_2 = \Theta(\|\mathbf{h}_l(\mathbf{x})\|_2).$$

190 Finally, we require mild assumptions on the batch size, as stated in Assumption 3. Mathematically,
 191 Assumption 3 is required to ensure that the sub-multiplicative property of norms doesn't result in a
 192 loose bound for the derivations in Section 4 to hold in practice. Intuitively, Assumption 3 holds if
 193 the update matrix $\Delta \mathbf{W}_l$ has a low rank even for large batch sizes. We refer the reader to (Yang et al.,
 194 2023a, Figure 1) for empirical observations of low-rank behavior of update matrices.

195 **Assumption 3** *The batch size, B , is fixed and independent of the width, that is, $B = \Theta(1)$. If i
 196 denotes the index of a training sample in the batch then,*

$$197 \quad \|\Delta \mathbf{W}_l \mathbf{h}_l(\mathbf{x}_i)\|_2 = \Theta\left(\left\|\frac{1}{B} \Delta \mathbf{W}_l^{(i)} \mathbf{h}_l(\mathbf{x}_i)\right\|_2\right).$$

201 **Remark 1** *We note that Assumption 3 constitutes a limitation of μP as it implies a fixed batch size
 202 across model width. This is often suboptimal, as the critical batch size typically increases with model
 203 size (McCandlish et al., 2018; Kaplan et al., 2020). In practice, however, this can be mitigated by
 204 first tuning the smaller proxy model with a fixed batch size B . When transferring to larger models,
 205 one can increase the batch size to improve parallelization efficiency, provided the learning rate is
 206 adjusted accordingly. Standard heuristics for this adjustment include the linear scaling rule (Goyal
 207 et al., 2017) or square root scaling (Krizhevsky, 2014; Hoffer et al., 2017).*

208
 209 **4 DERIVING μP USING SPECTRAL SCALING CONDITIONS**
 210

211 As discussed in Section 3.1, deriving μP for a particular model and optimizer boils down to deter-
 212 mining the scaling parameters in *abc*-parameterization, or an equivalent form. We propose a frame-
 213 work which only utilizes the spectral scaling conditions (C.2.) to derive the *abc*-parameterization.
 214 The typical approach to derive μP is to determine the proper scaling factors for a one step gradient
 215 update, and then argue recursively that for stable input vectors under μP , the output vectors are also
 stable, independent of the time (Assumption 1).

216 4.1 GENERIC FRAMEWORK
217218 **Scaling of Model Weights and Initial Variance:**
219220 The scaling factors for the model weights and their initial variance, that is, akin to parameters
221 $\{a_l, b_l\}_{l=1}^L$ in the *abc*-parameterization, can be computed by satisfying the condition on $\|\mathbf{W}_l\|_*$
222 in (C.2.). More rigorously, let us define the model weights as $\mathbf{W}_l = \sigma_l \tilde{\mathbf{W}}_l \in \mathbb{R}^{n_l \times n_{l-1}}$ where the
223 elements of $\tilde{\mathbf{W}}_l$ are sampled from some initial distribution with scaled variance, $n^{-2b_l} \sigma^2$. For ease
224 of theoretical analysis, we fix $b_l = 0$ for all layers. Then, $\|\mathbf{W}_l\|_* = \sigma_l \|\tilde{\mathbf{W}}_l\|_*$. Since $\|\tilde{\mathbf{W}}_l\|_*$
225 is a random matrix with unit variance, existing results in random matrix theory can be leveraged
226 to deduce the scaling of the spectral norm in terms of matrix dimensions (Rudelson & Vershynin,
227 2010) Vershynin (2018). Then, σ_l can be computed by equating $\sigma_l \|\tilde{\mathbf{W}}_l\|_* = \Theta\left(\sqrt{n_l/n_{l-1}}\right)$.
228229 **Scaling of Learning Rate:**
230231 The scaling factor for the learning rate, akin to parameter c in *abc*-parameterization, is computed by
232 satisfying the condition on $\|\Delta \mathbf{W}_l\|_*$ in (C.2.). This implies that the generic update rule in eq. (4)
233 should be equated as,
234

235
$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \|\Psi(\nabla_{\mathbf{W}_l} \mathcal{L})\|_* = \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right), \quad (5)$$

236

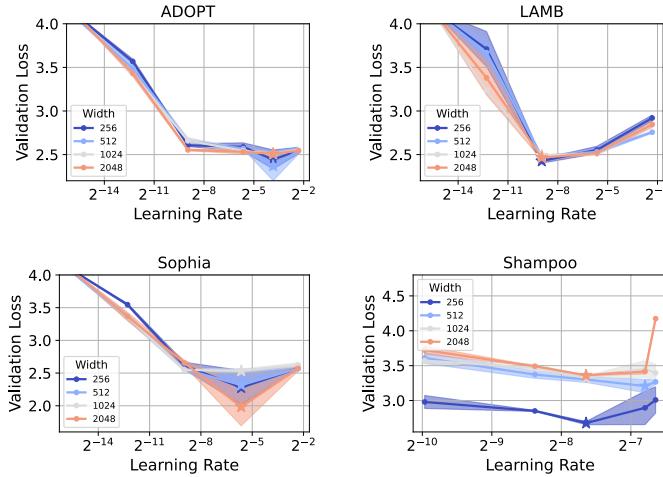
237 where the scaling constants c_1 and c_2 are determined based on the exact nature of $\Psi(\cdot)$.
238

	Input Weights	Output Weights	Hidden Weights
Init. Var.	$1\left(\frac{1}{n_{l-1}}\right)$	$1\left(\frac{1}{n_{l-1}^2}\right)$	$1\left(\frac{1}{n_{l-1}}\right)$
Multiplier	$\frac{1}{\sqrt{n_{l-1}}}\left(1\right)$	$\frac{1}{n_{l-1}}\left(1\right)$	$\frac{1}{\sqrt{n_{l-1}}}\left(1\right)$
AdamW / ADOPT	$1\left(1\right)$	$\frac{1}{n_{l-1}}\left(\frac{1}{n_{l-1}}\right)$	$\frac{1}{n_{l-1}}\left(\frac{1}{n_{l-1}}\right)$
Sophia LR	$1\left(-\right)$	$\frac{1}{n_{l-1}}\left(-\right)$	$\frac{1}{n_{l-1}}\left(-\right)$
LAMB LR	$1\left(-\right)$	$1\left(-\right)$	$1\left(-\right)$
Shampoo LR	$\sqrt{n_l}\left(-\right)$	$\frac{1}{\sqrt{n_{l-1}}}\left(-\right)$	$\sqrt{\frac{n_l}{n_{l-1}}}\left(-\right)$
Muon LR (designed for hidden layers only)	NA	NA	$1\left(-\right)$

249 Table 2: Comparison of μP from spectral conditions (black) vs. tensor programs (Yang et al., 2021,
250 Table 3) (red).
251252 **Discussion:** Observe that the scaling of model weights and initial variance is only dependent on
253 the model architecture, not the optimization routine. Therefore, in the rest of this work we use the
254 linear MLP described in Section 3 as our fixed model architecture and assume that the weights are
255 initialized using standard normal distribution. Since the spectral norm of a random matrix with
256 unit variance scales $\approx (\sqrt{n_l} + \sqrt{n_{l-1}})$, the appropriate scaling factor is computed to be $\sigma_l =$
257 $\Theta\left(\frac{1}{\sqrt{n_{l-1}}} \min\left\{1, \sqrt{\frac{n_l}{n_{l-1}}}\right\}\right)$ (Yang et al., 2023a). Note that the initial variance is fixed as 1 for
258 the ease of theoretical analysis. In practice, to increase numerical stability, the variance can be set
259 to σ_l^2 while the weight multiplier can be fixed to 1, for normal distribution.
260261 Further, observe that eq. (5) computes separate scaling factors for the input and output dimensions
262 of the weight matrices, that is, using spectral scaling conditions to derive μP allows us to collec-
263 tively analyze the different types of layers (input, output and hidden layers). We recommend first
264 determining the scaling factors c_1 and c_2 by removing additional HPs, such as weight-decay, epsilon
265 for numerical stability etc., from the update rule because they typically do not have a comparable
266 order of magnitude to other terms. In case of low-precision training (Blake et al., 2025a), these HPs
267 can be scaled after c_1 and c_2 have been computed, as demonstrated at the end of Section 4.2.
268269 Finally, we want to highlight that while there is no difference in the correctness and rigor of using
270 either a tensor programming approach or the proposed spectral scaling approach, the latter is more
271 intuitive and therefore, makes it easier to adopt and reason about μP for a wide class of optimizers.
272

270 Additionally, the rich literature on spectral norms and their properties can be leveraged to analyze
 271 different adaptive optimization routines, as will be demonstrated in the following sections.
 272

273 In Section 4.2, we first demonstrate how to utilize the above framework by deriving μP for AdamW,
 274 and corroborate our results with the μP scalings reported in literature (Yang et al., 2021). We then
 275 derive μP for optimizers - ADOPT, LAMB, Sophia, Shampoo and Muon, which have shown promising
 276 results for training LLMs. Our results are summarized in Table 2 and in Result 4.1. Figs. 2 and
 277 3 demonstrate zero-shot learning rate transfer across model widths for different optimizers, under
 278 the derived μP scalings.
 279



280 Figure 2: (NanoGPT) Mean
 281 validation loss for increasing
 282 model width and different
 283 learning rates across four op-
 284 timizers: ADOPT (top left),
 285 LAMB (top right), Sophia
 286 (bottom left), and Shampoo
 287 (bottom right). The plots
 288 demonstrate zero-shot learn-
 289 ing rate transfer under μP (Ta-
 290 ble 2).

291 **Result:** Under standing assumptions, for a linear MLP with L layers, if the
 292 weight matrices $\mathbf{W}_l = \sigma_l \tilde{\mathbf{W}}_l$, $l = 1, 2, \dots, L$ are initialized as $\tilde{\mathbf{W}}_{i,j} \sim \mathcal{N}(0, 1)$, then the spectral conditions (C.2.) are satisfied for AdamW, ADOPT
 293 and Sophia if

$$\sigma_l = \Theta\left(\frac{1}{\sqrt{n_{l-1}}} \min\left\{1, \sqrt{\frac{n_l}{n_{l-1}}}\right\}\right); \quad \eta = \Theta\left(\frac{1}{n_{l-1}}\right),$$

294 for LAMB and Muon if

$$\sigma_l = \Theta\left(\frac{1}{\sqrt{n_{l-1}}} \min\left\{1, \sqrt{\frac{n_l}{n_{l-1}}}\right\}\right); \quad \eta = \Theta(1),$$

300 and for Shampoo if

$$\sigma_l = \Theta\left(\frac{1}{\sqrt{n_{l-1}}} \min\left\{1, \sqrt{\frac{n_l}{n_{l-1}}}\right\}\right); \quad \eta = \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right),$$

305 where $n_{l-1} = 1$ for input weights and $n_l = 1$ for output weights.

315 **Remark 2** For a linear MLP trained with a batch size of 1, the gradient matrix is a rank one matrix
 316 because it can be written as an outer product of two vectors, $\nabla_{\mathbf{W}_l} \mathcal{L} = \nabla_{\mathbf{h}_l} \mathcal{L} \cdot \mathbf{h}_{l-1}^T$. Therefore,
 317 $\|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* = \|\nabla_{\mathbf{W}_l} \mathcal{L}\|_F$ from property (1). (See discussion in (Yang et al., 2023a, p. 9))

320 **Remark 3** For a linear MLP trained with a batch size of 1, it can be shown using first order Taylor
 321 series expansion that $\|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* = \Theta(\sqrt{\frac{n_{l-1}}{n_l}})$ (Yang et al., 2023a, p. 9). Further, since $\nabla_{\mathbf{W}_l} \mathcal{L}$ is
 322 a rank one matrix, $\|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* = \|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2 \|\mathbf{h}_{l-1}\|_2 = \|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2 \Theta(\sqrt{n_{l-1}})$, using property (1) and
 323 condition (C.1.). Then, $\|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2 = \Theta(1/\sqrt{n_l})$.

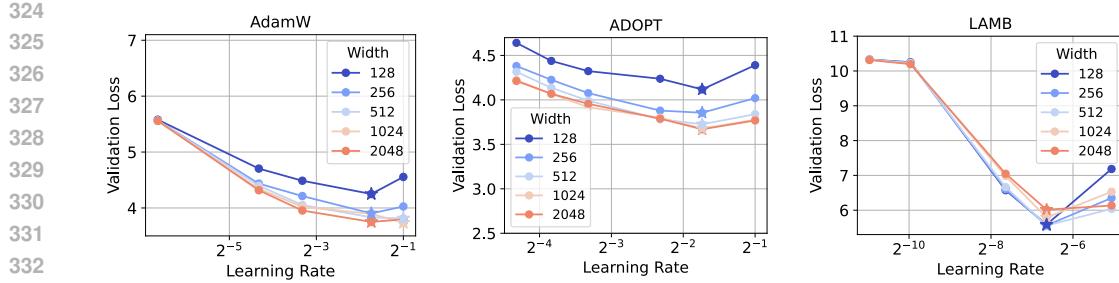


Figure 3: (Llama2) Validation loss for increasing model width and different learning rates across three optimizers: AdamW (left), ADOPT (middle), and LAMB (right). The plots demonstrate zero-shot learning rate transfer under μ P (Table 2).

4.2 μ P FOR ADAMW

Recall the update rule for AdamW (Loshchilov & Hutter, 2017),

$$\mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \left(\frac{\hat{\mathbf{m}}^{(t)}}{\sqrt{\hat{\mathbf{v}}^{(t)}} + \epsilon} + \lambda \mathbf{W}_l^{(t)} \right) \quad (\text{AdamW})$$

$$\text{where } \hat{\mathbf{m}}^{(t)} = \frac{\mathbf{m}^{(t)}}{(1 - \beta_1^t)} = \frac{1}{(1 - \beta_1^t)} \left[\beta_1 \mathbf{m}^{(t-1)} + (1 - \beta_1) \nabla_{\mathbf{W}_l^{(t)}} \mathcal{L} \right] ; \quad \mathbf{m}^{(0)} = 0$$

$$\hat{\mathbf{v}}^{(t)} = \frac{\mathbf{v}^{(t)}}{(1 - \beta_2^t)} = \frac{1}{(1 - \beta_2^t)} \left[\beta_2 \mathbf{v}^{(t-1)} + (1 - \beta_2) (\nabla_{\mathbf{W}_l^{(t)}} \mathcal{L})^2 \right] ; \quad \mathbf{v}^{(0)} = 0$$

From the spectral scaling condition in eq. (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that

$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \frac{\hat{\mathbf{m}}}{\sqrt{\hat{\mathbf{v}}} + \epsilon} + \lambda \mathbf{W}_l \right\|_* = \Theta \left(\sqrt{\frac{n_l}{n_{l-1}}} \right). \quad (6)$$

Similar to previous works, we first analyze AdamW for $\beta_1 = \beta_2 = \epsilon = 0$. Then, the above update rule reduces to signSGD (Bernstein et al., 2018). Additionally, since the gradient term dominates the weight decay term, we ignore the latter because we are only concerned with an order-of-magnitude calculation. Therefore, (6) reduces to

$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \|\text{sign}(\nabla_{\mathbf{W}_l} \mathcal{L})\|_* \approx \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \|\text{sign}(\nabla_{\mathbf{W}_l} \mathcal{L})\|_{\text{F}}$$

where the last equation follows from Remark 2. From the definition of the Frobenius norm, we have $\|\mathbf{1}_{n_l \times n_{l-1}}\|_{\text{F}}^2 = \sum_{i=1}^{n_l} \sum_{j=i}^{n_{l-1}} 1 = n_l n_{l-1}$. This gives

$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \Theta \left(\sqrt{n_l n_{l-1}} \right) = \Theta \left(n_l^{1/2 - c_1} n_{l-1}^{1/2 - c_2} \right). \quad (7)$$

By fixing $c_1 = 0$ and $c_2 = 1$, the spectral scaling condition in eq.(5) is satisfied. Therefore, the learning rate for AdamW should be scaled by a factor of $1/n_{l-1}$. Observe that this scaling is consistent with the μ P derived using the tensor programming approach (Yang et al., 2021, Table 3), and this equivalence is highlighted in Table 2. Fig. 4 further validates our derivation via the coordinate check plots and the “wider is better” phenomenon observed in the plot on the right. Since the update rule of ADOPT is similar to AdamW, we discuss μ P for ADOPT in Appendix A.

Scaling of Momentum, Adaptive Noise, and Weight Decay terms:

Typically, HPs like β_1 and β_2 are width-independent and have $\Theta(1)$ order of magnitude. Thus, these parameters are not dominant when analyzing the momentum terms and do not require separate scaling rules. Similarly, the adaptive noise term ϵ requires no scaling if it is fixed at a very small value. However, empirical studies show that ϵ may affect the performance of μ P under certain training regimes (Blake et al., 2025a; Dey et al., 2025). In such cases the scaling law for ϵ can be derived as follows. From (AdamW), we observe that for the above scaling law to hold, the spectral norm of ϵ should have the same order of magnitude as the spectral norm of $\sqrt{\hat{v}}$. Now,

378 $\|\sqrt{\hat{v}}\|_* = \|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* = \Theta(\sqrt{n_{l-1}/n_l})$ and $\|\epsilon \mathbf{1}_{n_l \times n_{l-1}}\|_* \approx \epsilon \|\mathbf{1}_{n_l \times n_{l-1}}\|_F = \epsilon \Theta(\sqrt{n_l n_{l-1}})$.
379 Therefore, a factor of $\frac{1}{n_l}$ scales ϵ to the appropriate order of magnitude.
380

381 On the other hand, for the derived μ P scaling to hold for (AdamW), the spectral norm of the weight
382 decay term, $\|\lambda \mathbf{W}_l\|_*$, must have the same order of magnitude as the spectral norm of the gradient
383 term, which is $\Theta(\sqrt{n_l n_{l-1}})$. Since, $\|\lambda \mathbf{W}_l\|_* = \lambda \|\mathbf{W}_l\|_* = \lambda \Theta(\sqrt{n_l/n_{l-1}})$, where the last equal-
384 ity follows from condition (C.2.), then λ should be scaled by a factor of n_{l-1} . The above results are
385 consistent with Table 1 in (Dey et al., 2025).

386

387 4.3 μ P FOR LAMB

388 Recall the update rule for LAMB (You et al., 2019),
389

$$390 \mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \frac{\phi(\|\mathbf{W}_l^{(t)}\|_F)}{\|\mathbf{r}_l^{(t)} + \lambda \mathbf{W}_l^{(t)}\|_F} (\mathbf{r}_l^{(t)} + \lambda \mathbf{W}_l^{(t)}) \quad (LAMB)$$

$$391$$

$$392$$

393 where $\mathbf{r}_l^{(t)} = \frac{\hat{\mathbf{m}}^{(t)}}{\sqrt{\hat{\mathbf{v}}^{(t)}} + \epsilon}$. In (LAMB), the gradient in each layer of the model is scaled by terms of
394 orders $\frac{\|\mathbf{W}_l\|_F}{\|\mathbf{r}_l + \lambda \mathbf{W}_l\|_F}$. From condition (C.2.), we know $\|\mathbf{W}_l\|_F \approx \|\mathbf{W}_l\|_* = \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right)$. Observe
395 that the term in the denominator is the update rule for (AdamW) and we can use the result in (7) to
396 determine its order of magnitude. Therefore,
397

$$398 \|\mathbf{r}_l + \lambda \mathbf{W}_l\|_F = \Theta(\sqrt{n_l n_{l-1}}) \quad \text{and} \quad \frac{\|\mathbf{W}_l\|_F}{\|\mathbf{r}_l + \lambda \mathbf{W}_l\|_F} = \Theta\left(\frac{1}{n_{l-1}}\right). \quad (8)$$

$$399$$

$$400$$

401 Then, from the spectral scaling condition in eq. (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that
402

$$403 \|\Delta \mathbf{W}\|_* \approx \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \Theta\left(\frac{1}{n_{l-1}}\right) \|\mathbf{r}_l + \lambda \mathbf{W}_l\|_F$$

$$404 = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \Theta\left(\frac{1}{n_{l-1}}\right) \Theta(\sqrt{n_l n_{l-1}})$$

$$405 = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \Theta\left(\sqrt{\frac{n_l}{n_{l-1}}}\right)$$

$$406$$

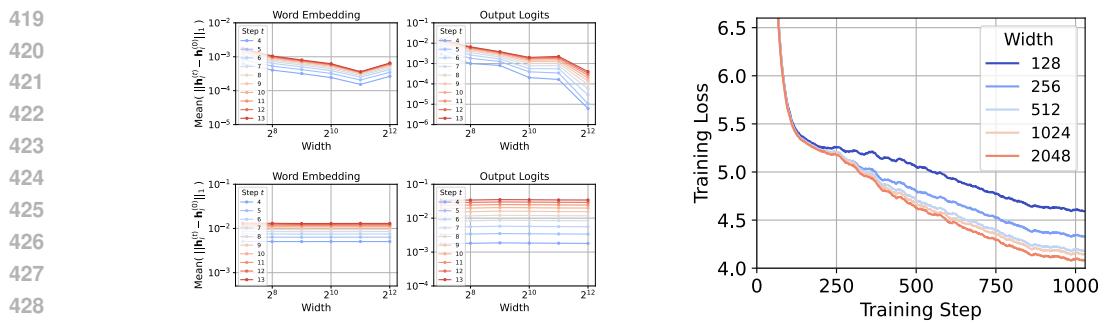
$$407$$

$$408$$

$$409$$

410 where the second equality follows using the same reasoning as for AdamW. Then condition (5) holds
411 if $c_1 = c_2 = 0$. Note that by invoking result (7) from AdamW’s analysis to determine the order of
412 magnitude of $\|\mathbf{r}_l + \lambda \mathbf{W}_l\|_F$ in (8), we implicitly assume that the HPs λ and ϵ have been appropriately
413 scaled following the analysis in Section 4.2. Therefore, the HPs in (LAMB) follow the same scaling
414 rule as (AdamW).

415 **Insight 1** *The above derivation suggests that the update rule for LAMB is implicitly independent of
416 width scaling. Intuitively, this result holds because the layerwise gradient scaling in (LAMB) causes
417 the effective learning rate to be different for each layer.*
418



420
421
422
423
424
425
426
427
428
429
430
431 Figure 4: (Llama2 model) AdamW optimizer - Coordinate check plots under standard parameterization (top left) and under μ P (bottom left) for the word embedding and output logit layers; Decreasing training loss with increasing model width under μ P (right).

432 4.4 μ P FOR SOPHIA
433434 Recall the update rule for Sophia (Liu et al., 2023),
435

436
$$\mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \text{clip} \left(\frac{\mathbf{m}^{(t)}}{\max \{\gamma \mathbf{h}^{(t)}, \epsilon\}}, 1 \right) - \eta^{(t)} \lambda \mathbf{W}_l^{(t)} \quad (\text{Sophia})$$

437

438 where $\mathbf{h}^{(t)}$ is a momentum-based estimate of the diagonal vector of the Hessian at time t . From the
439 spectral scaling condition in (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that
440

441
$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \text{clip} \left(\frac{\mathbf{m}^{(t)}}{\max \{\gamma \mathbf{h}^{(t)}, \epsilon\}}, 1 \right) - \lambda \mathbf{W}_l^{(t)} \right\|_* = \Theta \left(\sqrt{\frac{n_l}{n_{l-1}}} \right).$$

442

443 For analysis, we consider $\beta_1 = \beta_2 = \epsilon = 0$, and since the weight decay term is usually very small,
444 the above weight update simplifies to
445

446
$$\begin{aligned} \|\Delta \mathbf{W}_l\|_* &= \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \text{clip} \left(\frac{\nabla \mathbf{W}_l \mathcal{L}}{\gamma \nabla_{\mathbf{W}_l}^2 \mathcal{L}}, 1 \right) \right\|_* \\ &\approx \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \text{clip} \left(\frac{\nabla \mathbf{W}_l \mathcal{L}}{\gamma |\nabla_{\mathbf{W}_l}^2 \mathcal{L}|}, 1 \right) \right\|_{\text{F}} \end{aligned}$$

447
448
449
450

451 where we take the modulus in the denominator because Sophia avoids negative diagonal terms in
452 the Hessian (thereby avoiding convergence to a saddle point; see discussion in (Liu et al., 2023,
453 pg. 6)). Observe that the $\text{clip}(\cdot, 1)$ bounds the coordinate-wise weight updates as, $|\Delta \mathbf{W}_l|_{i,j} \leq 1$.
454 Therefore, we can compute an upper bound for the Frobenius norm and get
455

456
$$\|\Delta \mathbf{W}_l\|_* \leq \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \frac{1}{\gamma} \Theta(\sqrt{n_l n_{l-1}}).$$

457

458 Then, eq. (5) is satisfied by fixing $c_1 = 0$ and $c_2 = 1$, resulting in the same μ P scaling as AdamW.
459 Note that the momentum terms β_1 and β_2 do not require any additional scaling because they have
460 $\Theta(1)$, width-independent order of magnitude, where as the HPs λ and ϵ follow the same scaling as
461 the HPs of AdamW because Sophia and AdamW have the same μ P scaling.
462463 **Insight 2** We provide an intuitive explanation for this result. Sophia uses signSGD as the default
464 method to handle negative Hessian terms (to avoid convergence to a saddle point), thereby mirroring
465 the analysis for AdamW for such cases. Additionally, when $\gamma = 1$, all the elements in the weight
466 update are clipped to 1, and the upper bound holds exactly. Thus, we get the same scaling as
467 AdamW.
468469 In practice, the authors suggest to choose γ such that 10% – 50% of the parameters are not clipped.
470 Therefore, for each term which is not clipped, the above bound incurs an error of less than 1.
471 However, as demonstrated in our simulations (Fig. 2), for the typical values of γ used in practice,
472 the μ P scaling derived based on the above calculation works well.
473474 Fig. 1 further validates the μ P derivation for Sophia via stable coordinate check plots (Fig. 1 (left))
475 and a consistently improving training loss across model widths (Fig. 1 (right)).
476477 4.5 μ P FOR SHAMPOO
478479 Recall the update rule for Shampoo (Gupta et al., 2018),
480

481
$$\mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \left(\mathbf{L}_l^{(t)} \right)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} \left(\mathbf{R}_l^{(t)} \right)^{-1/4} \quad (\text{Shampoo})$$

482

483 where for some $\delta > 0$, $\mathbf{L}_l^{(t)} = \mathbf{L}_l^{(t-1)} + \nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T$; $\mathbf{L}_l^{(0)} = \delta \mathbf{I} \in \mathbb{R}^{n_l \times n_l}$
484 $\mathbf{R}_l^{(t)} = \mathbf{R}_l^{(t-1)} + \nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L}$; $\mathbf{R}_l^{(0)} = \delta \mathbf{I} \in \mathbb{R}^{n_{l-1} \times n_{l-1}}$
485

486 From the spectral scaling condition in (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that
487

488
$$\|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \left(\mathbf{L}_l^{(t)} \right)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} \left(\mathbf{R}_l^{(t)} \right)^{-1/4} \right\|_* = \Theta \left(\sqrt{\frac{n_l}{n_{l-1}}} \right).$$

489

486 For one-step analysis, let $\delta = 0$. Then the above condition reduces to
 487

$$\begin{aligned}
 488 \|\Delta \mathbf{W}_l\|_* &= \eta(n_l)^{-c_1}(n_{l-1})^{-c_2} \left\| (\nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} (\nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L})^{-1/4} \right\|_* \\
 489 &\stackrel{(1)}{\leq} \eta(n_l)^{-c_1}(n_{l-1})^{-c_2} \left\| (\nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T)^{-1/4} \right\|_* \|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* \left\| (\nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L})^{-1/4} \right\|_* \\
 490 &\stackrel{(2)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right) \\
 491 &\quad \left\| (\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \mathbf{h}_{l-1}^T \mathbf{h}_{l-1} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T)^{-1/4} \right\|_* \left\| (\mathbf{h}_{l-1} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \nabla_{\mathbf{h}_l} \mathcal{L} \cdot \mathbf{h}_{l-1}^T)^{-1/4} \right\|_* \\
 492 &\stackrel{(3)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right) \\
 493 &\quad \Theta(n_{l-1}^{-1/4}) \left\| (\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T)^{-1/4} \right\|_* \Theta(n_l^{1/4}) \left\| (\mathbf{h}_{l-1} \cdot \mathbf{h}_{l-1}^T)^{-1/4} \right\|_* \\
 494 &\stackrel{(4)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{4}} (n_{l-1})^{-c_2 + \frac{1}{4}} \right) \|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2^{-1/2} \|\mathbf{h}_{l-1}\|_2^{-1/2} \\
 495 &\stackrel{(5)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{4}} (n_{l-1})^{-c_2 + \frac{1}{4}} \right) \Theta(n_l^{1/4}) \Theta(n_{l-1}^{-1/4}) = \eta \Theta \left((n_l)^{-c_1} (n_{l-1})^{-c_2} \right)
 \end{aligned}$$

504 where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 3,
 505 (3) and (5) follow from condition (C.1.) and Remark 3, (4) follows from property (1) and property
 506 (2). Therefore, condition (5) is satisfied by fixing $c_1 = -1/2$ and $c_2 = 1/2$. Note that the δ HP
 507 in (Shampoo) is akin to the momentum HPs in (AdamW) and have a $\Theta(1)$ order of magnitude.
 508 Therefore, δ doesn't contribute to the calculations of \mathbf{L}_l and \mathbf{R}_l , and it doesn't require any further
 509 scaling.

510 **Muon:** Muon was first introduced in (Jordan et al., 2024) and empirical results have demonstrated
 511 its scalability for LLMs (Liu et al., 2025). (Jordan et al., 2024) also showed the equivalence between
 512 Muon and Shampoo if the preconditioner accumulation is removed from (Shampoo). Therefore, the
 513 original version of Muon (Jordan et al., 2024) follows the same μ P scaling as Shampoo. However,
 514 a more recent version of Muon (Bernstein, 2025) incorporates width-independent scaling of the
 515 learning rate explicitly in the update rule itself (Table 1). We analyze this version of Muon in
 516 Appendix A and show that no further scaling is required for stable feature learning. This conclusion
 517 is added to Result 4.1.

5 NUMERICAL RESULTS

522 We test and validate our derivations on the NanoGPT model (Karpathy (2022)) and the Llama2
 523 model (Touvron et al. (2023)). As demonstrated in Figs. 2 and 3, our simulation results validate
 524 the μ P derivations in Table 2 across the different optimizers. Extensive numerical results, including
 525 training settings, HP values, depth scaling studies, and validation loss values for the different optimizers
 526 and model sizes can be found in Appendix B. The simulations on NanoGPT were performed
 527 using four A100 GPUs of the Argonne Leadership Computing Facility's Polaris supercomputer
 528 (Leadership Computing Facility (b)), while the simulations on Llama2 were performed using 12
 529 Intel Data Center GPU Max Series on the Aurora supercomputer (Leadership Computing Facility
 530 (a)).

6 CONCLUSION

531 We have proposed a novel framework to derive μ P using spectral scaling conditions, which are
 532 more intuitive and easier to work with than the prevalent tensor programs. Using the proposed
 533 framework, we have derived μ P for a wide range of adaptive, first and second-order optimizers
 534 including, AdamW, ADOPT, LAMB, Sophia, Shampoo and Muon. We have implemented μ P for
 535 the above optimizers on two benchmark LLMs, and validated our implementation by demonstrating
 536 zero-shot learning rate transfer. Motivated by our depth-scaling simulations (Appendix B), we aim
 537 to develop a sound theoretical framework for depth-scaling parameterization in the future.
 538

540 REFERENCES
541

542 Jeremy Bernstein. Deriving muon. <https://jeremybernste.in/writing/deriving-muon>, 2025.

544 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. 545 signsgd: Compressed optimisation for non-convex problems. In *International conference on ma- 546 chine learning*, pp. 560–569. PMLR, 2018. URL <https://doi.org/10.48550/arXiv.1802.04434>.

548 Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Björn Deis- 549 eroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u- 550 $\backslash \mu$: The unit-scaled maximal update parametrization. In *The Thirteenth International Con- 551 ference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=P7KRIiLM8T>.

554 Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Björn Deiseroth, 555 Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u- μ : The unit- 556 scaled maximal update parametrization. In *The Thirteenth International Conference on Learning 557 Representations*, 2025b.

558 Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz 559 Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient 560 deep transformers. *arXiv preprint arXiv:2505.01618*, 2025. URL <https://doi.org/10.48550/arXiv.2505.01618>.

562 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An- 563 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet 564 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

566 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti- 567 mization. In *International Conference on Machine Learning*, pp. 1842–1850. PMLR, 2018. URL 568 <https://doi.org/10.48550/arXiv.1802.09568>.

569 Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza- 570 tion gap in large batch training of neural networks. In *Advances in Neural Information Processing 571 Systems*, pp. 1731–1741, 2017.

573 Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

574 Satoshi Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective 575 towards the infinite width. In *The Twelfth International Conference on Learning Representations*.

577 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy 578 Bernstein. Muon: An optimizer for hidden layers in neural networks. *Cited on*, pp. 10, 2024. 579 URL <https://kellerjordan.github.io/posts/muon/>.

580 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, 581 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language 582 models. *arXiv preprint arXiv:2001.08361*, 2020.

584 Andrej Karpathy. NanoGPT. <https://github.com/karpathy/nanoGPT>, 2022.

585 Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. *arXiv preprint 586 arXiv:1404.5997*, 2014.

588 Argonne Leadership Computing Facility. Aurora. <https://www.alcf.anl.gov/aurora>, a.

590 Argonne Leadership Computing Facility. Polaris. <https://www.alcf.anl.gov/polaris>, b.

592 Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic 593 second-order optimizer for language model pre-training. *arXiv preprint arXiv:2305.14342*, 2023. URL <https://doi.org/10.48550/arXiv.2305.14342>.

594 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
 595 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint*
 596 *arXiv:2502.16982*, 2025. URL <https://doi.org/10.48550/arXiv.2502.16982>.

597

598 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 599 *arXiv:1711.05101*, 2017. URL <https://doi.org/10.48550/arXiv.1711.05101>.

600 Sam McCandlish, Jayesh Narang, Dario Amodei, and Jared Kaplan. An empirical model of large-
 601 batch training. *arXiv preprint arXiv:1812.06162*, 2018.

602

603 Carl D Meyer. *Matrix analysis and applied linear algebra*. SIAM, 2023.

604

605 Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular
 606 values. In *Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures*, pp. 1576–1602. World Scientific, 2010.

607

608

609 Gilbert Strang. *Linear algebra and its applications*. 2012.

610

611 Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam can converge with any β_2 with the optimal rate. *Advances in Neural Information Processing Systems*, 37:72438–72474, 2024. URL <https://doi.org/10.48550/arXiv.2411.02853>.

612

613

614

615

616 Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and Eugene Belilovsky. μ lo: Compute-efficient meta-generalization of learned optimizers. In *OPT 2024: Optimization for Machine Learning*. URL <https://doi.org/10.48550/arXiv.2406.00153>.

617

618

619

620 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

621

622

623

624 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.

625

626

627 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint*
 628 *arXiv:2011.14522*, 2020. URL <https://doi.org/10.48550/arXiv.2011.14522>.

629

630 Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
 631 Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
 632 hyperparameter transfer. *Advances in Neural Information Processing Systems*, 34:17084–17097,
 633 2021. URL <https://doi.org/10.48550/arXiv.2203.03466>.

634

635 Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. *arXiv preprint*
 636 *arXiv:2310.17813*, 2023a. URL <https://doi.org/10.48550/arXiv.2310.17813>.

637

638 Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
 639 infinite-depth neural networks. *arXiv preprint arXiv:2310.02244*, 2023b. URL <https://doi.org/10.48550/arXiv.2310.02244>.

640

641 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 642 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 643 learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019. URL <https://doi.org/10.48550/arXiv.1904.00962>.

644

645 Chenyu Zheng, Xinyu Zhang, Rongzhen Wang, Wei Huang, Zhi Tian, Weilin
 646 Huang, Jun Zhu, and Chongxuan Li. Scaling diffusion transformers efficiently via
 647 \$mup\$. *arXiv preprint arXiv:2505.15270*, 2025.

648 A DERIVING μ P
649650 A.1 μ P FOR ADOPT
651

652 Recall that the update rule for ADOPT is the same as AdamW. The key difference lies in the se-
653 quence in which the terms $\hat{\mathbf{m}}^{(t)}$ and $\hat{\mathbf{v}}^{(t)}$ are updated (Taniguchi et al. (2024)). From a theoretical
654 perspective, this does not change the order of magnitude of the gradient function $\Psi(\{\nabla_{\mathbf{W}_l} \mathcal{L}\})$ from
655 that of AdamW, and hence, the parameterization derived for AdamW also holds for ADOPT.

656 A.2 μ P FOR SHAMPOO (DETAILED)
657

658 We present a more detailed derivation for Shampoo in this section.
659

660 Recall the update rule for Shampoo (Gupta et al., 2018),

$$661 \mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \left(\mathbf{L}_l^{(t)} \right)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} \left(\mathbf{R}_l^{(t)} \right)^{-1/4} \quad (\text{Shampoo})$$

$$662 \text{where for some } \delta > 0, \quad \mathbf{L}_l^{(t)} = \mathbf{L}_l^{(t-1)} + \nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T \quad ; \quad \mathbf{L}_l^{(0)} = \delta \mathbf{I} \in \mathbb{R}^{n_l \times n_l}$$

$$663 \quad \mathbf{R}_l^{(t)} = \mathbf{R}_l^{(t-1)} + \nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L} \quad ; \quad \mathbf{R}_l^{(0)} = \delta \mathbf{I} \in \mathbb{R}^{n_{l-1} \times n_{l-1}}$$

664 From the spectral scaling condition in (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that

$$665 \|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \left(\mathbf{L}_l^{(t)} \right)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} \left(\mathbf{R}_l^{(t)} \right)^{-1/4} \right\|_* = \Theta \left(\sqrt{\frac{n_l}{n_{l-1}}} \right).$$

666 For one-step analysis, let $\delta = 0$. Then the above condition reduces to

$$667 \|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \left(\nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T \right)^{-1/4} \nabla_{\mathbf{W}_l} \mathcal{L} \left(\nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L} \right)^{-1/4} \right\|_*$$

$$668 \stackrel{(1)}{\leq} \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \left(\nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \|\nabla_{\mathbf{W}_l} \mathcal{L}\|_* \left\| \left(\nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L} \right)^{-1/4} \right\|_*$$

$$669 \stackrel{(2)}{=} \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \Theta \left(\sqrt{\frac{n_{l-1}}{n_l}} \right) \left\| \left(\nabla_{\mathbf{W}_l} \mathcal{L} \cdot \nabla_{\mathbf{W}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \left\| \left(\nabla_{\mathbf{W}_l} \mathcal{L}^T \cdot \nabla_{\mathbf{W}_l} \mathcal{L} \right)^{-1/4} \right\|_*$$

$$670 = \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right)$$

$$671 \quad \left\| \left(\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \mathbf{h}_{l-1}^T \mathbf{h}_{l-1} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \left\| \left(\mathbf{h}_{l-1} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \nabla_{\mathbf{h}_l} \mathcal{L} \cdot \mathbf{h}_{l-1}^T \right)^{-1/4} \right\|_*$$

$$672 = \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right)$$

$$673 \quad \left\| \left(\|\mathbf{h}_{l-1}\|_2^2 \nabla_{\mathbf{h}_l} \mathcal{L} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \left\| \left(\|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2^2 \mathbf{h}_{l-1} \cdot \mathbf{h}_{l-1}^T \right)^{-1/4} \right\|_*$$

$$674 = \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right) \|\mathbf{h}_{l-1}\|_2^{-1/2}$$

$$675 \quad \left\| \left(\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2^{-1/2} \left\| \left(\mathbf{h}_{l-1} \cdot \mathbf{h}_{l-1}^T \right)^{-1/4} \right\|_*$$

$$676 \stackrel{(3)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{2}} (n_{l-1})^{-c_2 + \frac{1}{2}} \right) \Theta(n_{l-1}^{-1/4}) \|\mathbf{h}_{l-1}\|_2^{-1/2}$$

$$677 \quad \left\| \left(\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \Theta(n_l^{1/4}) \left\| \left(\mathbf{h}_{l-1} \cdot \mathbf{h}_{l-1}^T \right)^{-1/4} \right\|_*$$

$$678 = \eta \Theta \left((n_l)^{-c_1 - \frac{1}{4}} (n_{l-1})^{-c_2 + \frac{1}{4}} \right) \left\| \left(\nabla_{\mathbf{h}_l} \mathcal{L} \cdot \nabla_{\mathbf{h}_l} \mathcal{L}^T \right)^{-1/4} \right\|_* \left\| \left(\mathbf{h}_{l-1} \cdot \mathbf{h}_{l-1}^T \right)^{-1/4} \right\|_*$$

$$679 \stackrel{(4)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{4}} (n_{l-1})^{-c_2 + \frac{1}{4}} \right) \|\nabla_{\mathbf{h}_l} \mathcal{L}\|_2^{-1/2} \|\mathbf{h}_{l-1}\|_2^{-1/2}$$

$$680 \stackrel{(5)}{=} \eta \Theta \left((n_l)^{-c_1 - \frac{1}{4}} (n_{l-1})^{-c_2 + \frac{1}{4}} \right) \Theta(n_l^{1/4}) \Theta(n_{l-1}^{-1/4})$$

$$681 = \eta \Theta \left((n_l)^{-c_1} (n_{l-1})^{-c_2} \right)$$

682 where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 3, (3)
683 and (5) follow from condition (C.1.) and Remark 3, (4) follows from property (1) and property (2).
684 Therefore, condition (5) is satisfied by fixing $c_1 = -1/2$ and $c_2 = 1/2$.

702 A.3 μ P FOR MUON
703

704 Muon is one of the first optimizers to implicitly adopt a width-independent update rule by scaling
705 the learning rate with a factor of $\left(\sqrt{\frac{n_l}{n_{l-1}}}\right)$. Therefore, intuitively, we do not expect any further
706 scaling of the learning rate under μ P. This conjecture is validated through the following analysis on
707 the most recent version of Muon.

709 Recall the update rule for Muon (Bernstein, 2025; Jordan et al., 2024),
710

$$711 \quad \mathbf{W}_l^{(t+1)} = \mathbf{W}_l^{(t)} - \eta^{(t+1)} \sqrt{\frac{n_l}{n_{l-1}}} \mathbf{O}_l^{(t)} \quad (\text{Muon})$$

$$715 \quad \text{where } \mathbf{O}_l^{(t)} = \text{NewtonSchulz}(\mathbf{B}_l^{(t)}) \\ 716 \quad \mathbf{B}_l^{(t)} = \mu \mathbf{B}_l^{(t-1)} + \nabla_{\mathbf{W}_l^{(t)}} \mathcal{L} \quad ; \quad \mathbf{B}_l^{(0)} = \mathbf{0}$$

718 From the spectral scaling condition in eq. (5), we need to find $c_1, c_2 \in \mathbb{R}$ such that
719

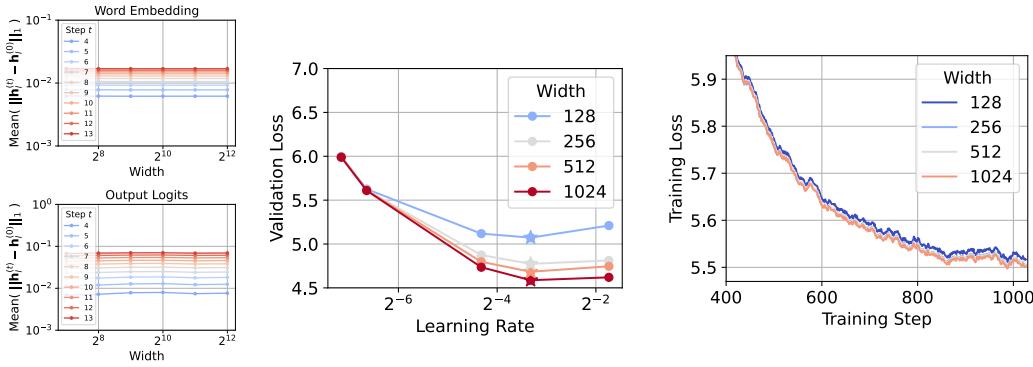
$$720 \quad \|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \left\| \sqrt{\frac{n_l}{n_{l-1}}} \mathbf{O}_l^{(t)} \right\|_* = \Theta \left(\sqrt{\frac{n_l}{n_{l-1}}} \right) \quad (9)$$

724 In this analysis we are working directly with an orthogonal matrix $\mathbf{O}_l^{(t)} \in \mathbb{R}^{n_l \times n_{l-1}}$ and the spectral
725 norm of an orthogonal matrix is 1 because the modulus of all its eigen values is 1 Horn & Johnson
726 (2012).

$$727 \quad \|\Delta \mathbf{W}_l\|_* = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \sqrt{\frac{n_l}{n_{l-1}}} \left\| \mathbf{O}_l^{(t)} \right\|_* \\ 728 \quad = \eta(n_l)^{-c_1} (n_{l-1})^{-c_2} \sqrt{\frac{n_l}{n_{l-1}}}.$$

733 Then condition (5) holds if $c_1 = c_2 = 0$. Fig. 5 demonstrates the zero-shot learning rate transfer as
734 well as the "wider is better" phenomenon for Muon.

735 Note that the initial implementation of Muon did not incorporate the scaling factor $\left(\sqrt{\frac{n_l}{n_{l-1}}}\right)$ in
736 the update rule, but the proven equivalence between Muon and Shampoo leads to Muon having the
737 same μ P scaling as Shampoo (Jordan et al., 2024).



753 Figure 5: μ P for Muon (trained on Llama2) - Coordinate check plots for the word embedding and
754 output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);
755 Decreasing training loss with increasing model width (right).

756 **B SIMULATIONS**

758 Consistent with existing literature, we first verify μ P for ADOPT, Sophia, LAMB and Shampoo
 759 optimizers by implementing the derived parameterization scheme (Table 2) in the NanoGPT code-
 760 base Karpathy (2022). Although prior works have already implemented μ P for AdamW, we present
 761 the results again for completeness. Table 3 lists some of the settings for our experimental setup to
 762 test μ P on NanoGPT. Further, we demonstrate the effectiveness for AdamW, ADOPT, LAMB and
 763 Sophia on the Llama2 model, the experimental setup for which is listed in Table 15.

764 We also present simulation results for depth-scaling parameterization for the above optimizers on
 765 NanoGPT, using the implementation suggested in Yang et al. (2023b) and dey2025don. Note that
 766 deriving proper depth-scaling parameterization for different optimizers is an ongoing work, and
 767 we only present preliminary results on the NanoGPT codebase in Section B.2 to motivate further
 768 theoretical analysis. Table 4 lists some of the settings for our experimental setup to test the depth-
 769 scaling parameterization.

770 The remainder of this section documents the simulation results for AdamW (Subsection B.2.1 and
 771 Subsection B.3.1), ADOPT (Subsection B.2.2 and Subsection B.3.2), Sophia (Subsection B.2.3
 772 and Subsection B.3.4), LAMB (Subsection B.2.4 and Subsection B.3.3) and Shampoo (Subsection
 773 B.2.5) optimizers. For each optimizer we first present the coordinate check plots under standard
 774 parameterization, μ P and depth-scaling parameterization. These plots serve as a quick implementation
 775 check to monitor whether the weights blow-up, diminish to zero or remain stable with increasing
 776 model size (see discussion in (Yang et al., 2021, Section D.1, pg. 27)). We then provide tables and
 777 plots listing the validation loss for different learning rates, and increasing model width and model
 778 depth. The values in the tables for NanoGPT are the average loss values observed over multiple runs.
 779 While we do not document the standard deviations in the tables, they are highlighted in the plots.
 780 Note that since we are using an early stopping criterion for simulations performed on NanoGPT,
 781 we rely more on the observations gained from the validation loss data than the training loss data.
 782 Similar validation loss tables are documented for simulations performed on Llama2.

783 **B.1 DISCUSSIONS**

784 Overall, it is observed that the implementation of μ P following Table 2 is quite stable with increasing
 785 model width. This is illustrated in the coordinate check plots for all the optimizers (Figs. 6 - 10
 786 and Figs. 14 - 17). Under standard parameterization, the top row of the coordinate check plots
 787 shows that the relative mean of the feature vectors blow-up with increasing model width. With the
 788 incorporation of μ P in the codebase, the relative mean values of the feature vectors stabilize with
 789 increasing model width (middle row of coordinate check plots).

790 It is interesting to note that since the theoretical underpinnings for μ P hold in infinite width (Yang
 791 & Hu (2020)), the model width has to be “large enough” for the coordinate check plots to stabilize.
 792 This is especially observed in the coordinate check plots for LAMB (Fig. 9 and Fig. 16) where the
 793 mean values of the feature vectors initially increase, but gradually stabilize with increasing model
 794 width. This phenomenon is also observed in Fig. 2 which demonstrate the zero-shot learning rate
 795 transfer across model width on the NanoGPT model. In the minimum validation loss tables for
 796 ADOPT (Table 7) and LAMB (Table 11) the optimal value of the learning rate gradually stabilizes
 797 after a width of 256, whereas for AdamW (Table 5) and Sophia (Table 9) the optimal learning rate
 798 stabilizes after a width of 128. These inconsistencies across optimizers also suggest that introducing
 799 a “base model width” for μ P scalings will introduce another HP. Therefore, we fix the value of the
 800 base model width to 1 in our implementation. In comparison to NanoGPT, the width scaling plots
 801 (Fig. 3) for Llama2 show that the model is “large enough” for the optimal learning rate to stabilize
 802 from the smallest model width of 128. This is perhaps because for width of 128, the total number of
 803 parameters in Llama2 is significantly higher than the total number of parameters in NanoGPT.

804 The second set of simulations empirically evaluate the performance of the depth-scaling parameteri-
 805 zation in existing works (Yang et al. (2023b); Dey et al. (2025)). The coordinate check plots (bottom
 806 row) for depth-scaling demonstrate that the feature vectors are stable with increasing model depth.
 807 In the coordinate check plots for ADOPT and LAMB (Figs. 7 and 9) the feature vectors stabilize
 808 after a depth of 16, while for AdamW, Sophia and Shampoo (Figs. 6, 8 and 10) the feature vectors
 809 are stable for shallow depths too. This phenomenon is similar to our observations for μ P, because

the depth-scaling parameterization is also derived for an infinite depth limit (Yang et al. (2023b)). Therefore, to prevent tuning an additional “base model depth” HP, we fix its value to 1 in our simulation setup. However, the loss plots in Figs. 11, 12 and 13 do not consistently demonstrate zero-shot learning rate transfer across increasing model depths. While the validation loss tables for AdamW (Table 6) and Sophia (Table 10) demonstrate that the optimal value of the learning rate stabilizes for deep models, the same is not observed for ADOPT (Table 8), LAMB (Table 12) and Shampoo (Table 14), where the value of the optimal learning rate oscillates as the depth is increased. These results suggest that deriving depth-scaling parameterization for different optimizers needs a more thorough theoretical analysis. Additionally, performing simulations on a finer grid of learning rates can also give further insights into the depth-scaling behavior.

B.2 μ P ON NANO GPT

Table 3: Hyperparameter values and training settings to test μ P on NanoGPT model.

Architecture	NanoGPT Karpathy (2022)
Width	128 (scaled to 2048)
Depth	8
Number of heads	2
Total parameters	1.59 M (scaled to 403 M)
Dataset	Tiny Shakespeare
Vocab size	65
Tokens per iteration	8192
Batch size	2
Stopping criteria	Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers	AdamW / ADOPT / LAMB / Sophia / Shampoo
Hyperparameter search range	$\eta \in [2 \times 10^{-1}, 2 \times 10^{-5}]$

Table 4: Hyperparameter values and training settings to test depth-scaling parameterization on NanoGPT model.

Architecture	NanoGPT Karpathy (2022)
Width	256
Depth	2 (scaled to 64)
Total parameters	1.6 M (scaled to 50.56 M)
Dataset	Tiny Shakespeare
Vocab size	65
Tokens per iteration	8192
Batch size	2
Stopping criteria	Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers	AdamW / ADOPT / LAMB / Sophia / Shampoo
Hyperparameter search range	$\eta \in [2 \times 10^{-1}, 2 \times 10^{-5}]$

B.2.1 ADAMW OPTIMIZER

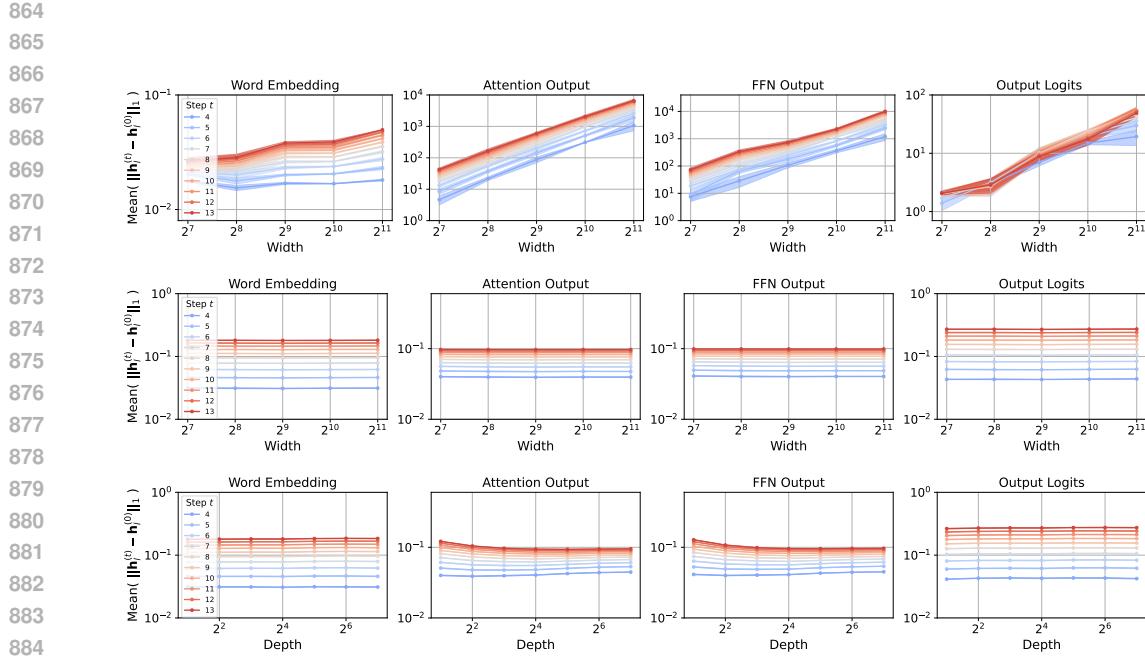


Figure 6: Coordinate check plots for AdamW under standard parameterization (top row), μ P (middle row); depth scaling (bottom row) for NanoGPT model.

Table 5: Mean validation loss for increasing model width and different learning rates for AdamW on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width	128	256	512	1024	2048
2×10^{-1}	2.54111195	2.54770319	2.50132585	2.53559383	2.45719266
2×10^{-2}	2.57009896	2.56583707	2.57900651	2.53385917	2.51431378
2×10^{-3}	2.63474766	2.6022807	2.64679337	2.63449661	2.55710355
2×10^{-4}	3.38827054	3.5544157	3.38896998	3.44941664	3.44561863
2×10^{-5}	4.09221347	4.08871428	4.05257797	4.08837303	4.08405908

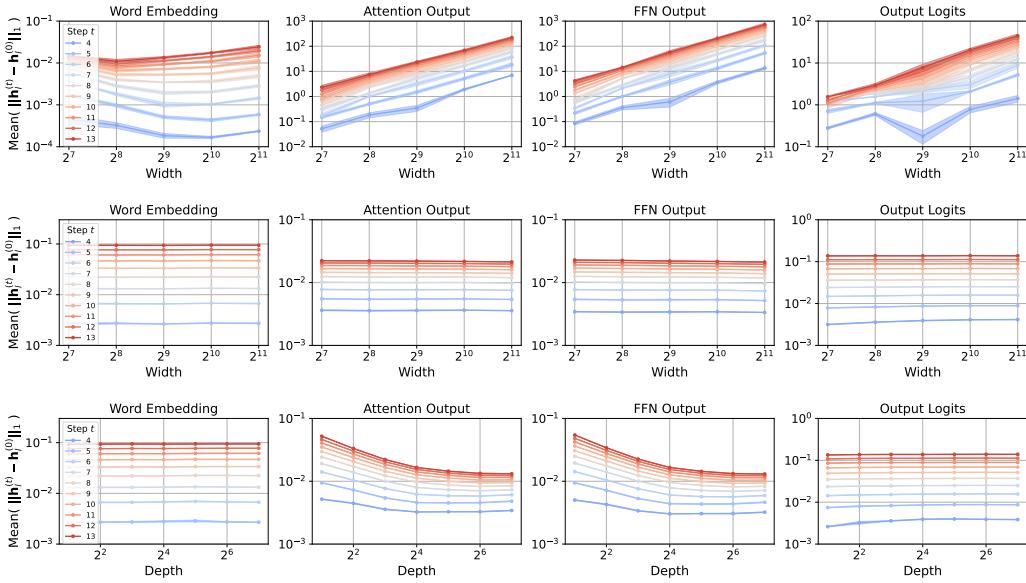
Table 6: Mean validation loss for increasing model depth and different learning rates for AdamW on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth	2	4	8	16	32	64
2×10^{-1}	2.53525917	2.55192765	2.53510944	2.50357556	2.51294963	2.53008548
5×10^{-2}	2.52700798	2.49422677	2.50334986	2.29428236	2.45176029	2.36860998
2×10^{-2}	2.55682977	2.52176666	2.56583563	2.30422862	2.45500112	2.5650301
2×10^{-3}	2.59745781	2.63078475	2.60228316	2.61588136	2.64065663	2.65051214
2×10^{-4}	3.41396125	3.41677833	3.55441554	3.45801504	3.43285489	3.47577778
2×10^{-5}	4.09297959	4.05970796	4.08871428	4.08113146	4.06712834	4.10902596

918
919

B.2.2 ADOPT OPTIMIZER

920



921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

Figure 7: Coordinate check plots for ADOPT optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for NanoGPT model.

942

943

944

Table 7: Mean validation loss for increasing model width and different learning rates for ADOPT on NanoGPT model. The minimum loss for each width is highlighted in green.

945

946

LR / Width	128	256	512	1024	2048
2×10^{-1}	2.55120134	2.54616404	2.54178079	2.5524296	2.54457998
7×10^{-2}	2.48560476	2.44316975	2.37087123	2.50733534	2.50883015
2×10^{-2}	2.43175697	2.58847451	2.57006375	2.54323697	2.53191725
2×10^{-3}	2.63016931	2.6073552	2.65681744	2.66118956	2.55337548
2×10^{-4}	3.528404	3.49065232	3.49065232	3.42789133	3.43255997
2×10^{-5}	4.09183598	4.08832375	4.0521698	4.08806594	4.08391444

947

948

949

950

951

952

953

954

955

Table 8: Mean validation loss for increasing model depth and different learning rates for ADOPT on NanoGPT model. The minimum loss for each depth is highlighted in green.

956

957

LR / Depth	2	4	8	16	32	64
2×10^{-1}	2.56129368	2.51452438	2.54788987	2.51456078	2.52271922	2.55469418
9×10^{-2}	2.48695572	2.47477563	2.53124801	2.48145302	2.50687472	2.54724765
2×10^{-2}	2.56718413	2.50419029	2.58847276	2.44447954	2.54996069	2.52524622
2×10^{-3}	2.67992798	2.62949713	2.6073552	2.60433618	2.61753988	2.6286815
2×10^{-4}	3.41052596	3.46538957	3.56757394	3.47856442	3.43608022	3.56190586
2×10^{-5}	4.09267759	4.05929391	4.08832375	4.08074443	4.06675259	4.10877307

944

945

946

947

948

949

950

951

B.2.3 SOPHIA OPTIMIZER

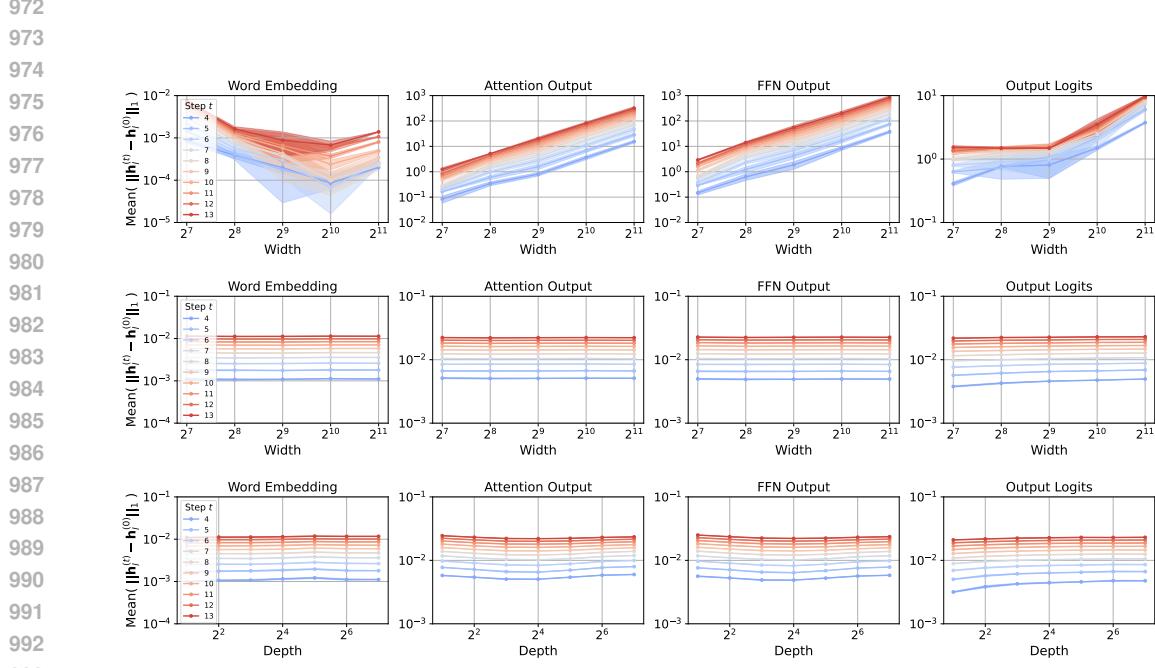


Figure 8: Coordinate check plots for Sophia optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for NanoGPT model.

Table 9: Mean validation loss for increasing model width and different learning rates for Sophia on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width	128	256	512	1024	2048
2×10^{-1}	3.0969398	2.57144117	2.56875261	2.62573036	2.57240287
2×10^{-2}	2.27450609	2.27830847	2.31632638	2.53347905	1.98427689
2×10^{-3}	2.5456597	2.61430057	2.5594302	2.54869485	2.65462987
2×10^{-4}	3.35409013	3.54614369	3.36089802	3.35862382	3.36431138
2×10^{-5}	4.08766381	4.08859126	4.06069756	4.08811712	4.08371623

Table 10: Mean validation loss for increasing model depth and different learning rates for Sophia on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth	2	4	8	16	32	64
2×10^{-1}	2.5213503	3.01081316	3.22649105	3.34855215	3.24310446	3.12229093
2×10^{-2}	2.4717048	2.27232289	2.24736114	2.47475751	2.46061246	1.93401444
2×10^{-3}	2.54103192	2.58136233	2.61035593	2.610612	2.45068415	2.55488427
2×10^{-4}	3.40887721	3.52765425	3.54587563	3.40669481	3.33997742	3.47574107
2×10^{-5}	4.09267314	4.06576761	4.08859126	4.08140405	4.066552	4.10874732

1026

B.2.4 LAMB OPTIMIZER

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

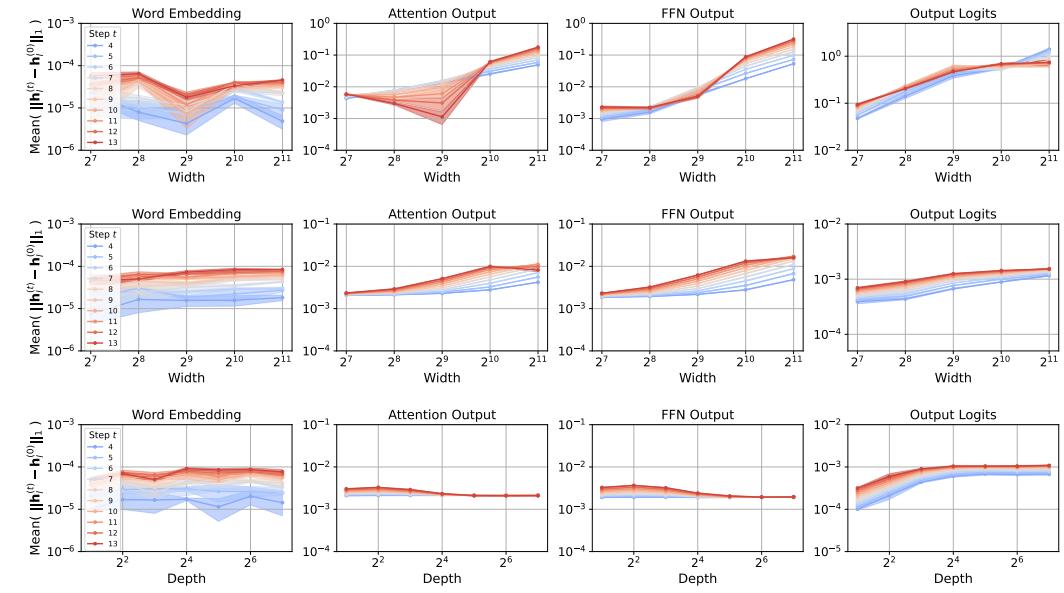
Figure 9: Coordinate check plots for LAMB optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for NanoGPT model.

Table 11: Mean validation loss for increasing model width and different learning rates for LAMB on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width	128	256	512	1024	2048
2×10^{-1}	3.3306915	2.91992474	2.75658234	2.84724092	2.84511503
2×10^{-2}	2.27427769	2.55330944	2.53250345	2.50694895	2.51612274
2×10^{-3}	2.46762419	2.42723028	2.47571055	2.49152549	2.46575729
2×10^{-4}	3.69672974	3.70961714	3.66877778	3.2370429	3.37923479
2×10^{-5}	4.16929531	4.1694754	4.1684103	4.1674579	4.16771809

Table 12: Mean validation loss for increasing model depth and different learning rates for LAMB on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth	2	4	8	16	32	64
2×10^{-1}	2.76534136	2.85949779	2.88115621	3.26932732	3.24093787	3.097018
2×10^{-2}	2.50858307	2.51164389	2.55355501	2.33967662	2.48308444	2.11406271
7×10^{-3}	2.45117172	2.46691815	2.50231234	2.45691435	2.48629936	2.45780365
2×10^{-3}	2.50483624	2.54284684	2.42723123	2.43291903	2.43262172	2.42000318
2×10^{-4}	3.6441706	3.79367606	3.70963343	3.57373738	3.61402575	3.42223287
2×10^{-5}	4.16981506	4.1691486	4.1694754	4.16932933	4.16817395	4.16773876

B.2.5 SHAMPOO OPTIMIZER

1074

1075

1076

1077

1078

1079

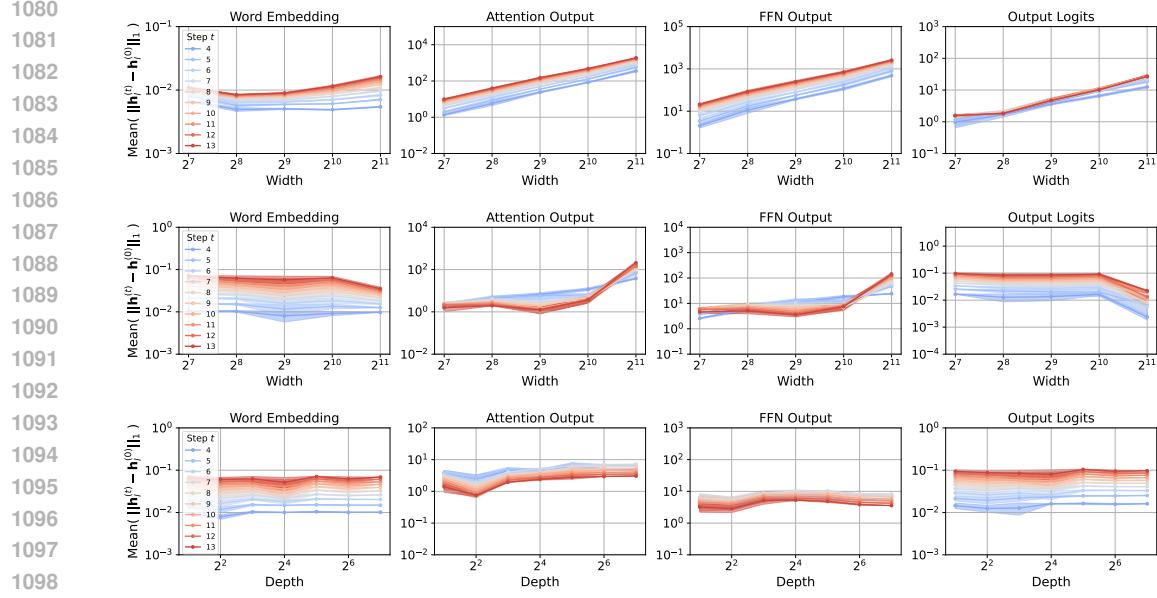


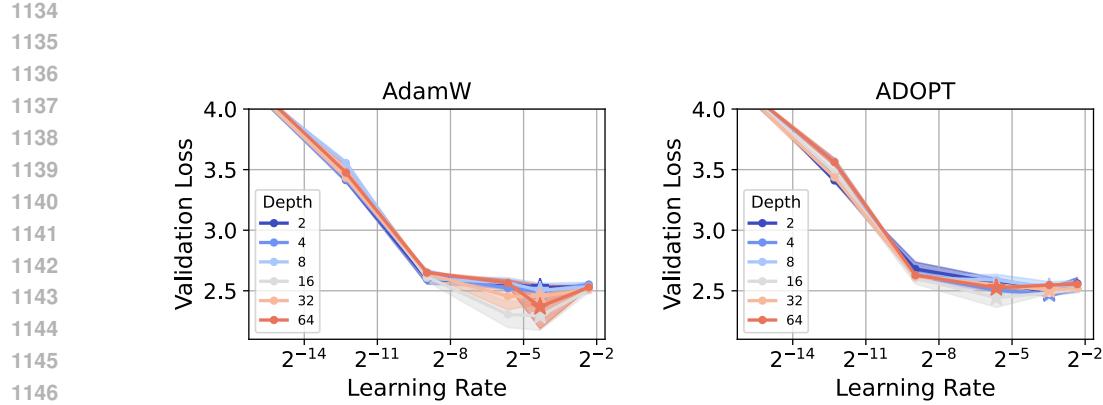
Figure 10: Coordinate check plots for Shampoo optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for NanoGPT model.

Table 13: Mean validation loss for increasing model width and different learning rates for Shampoo on NanoGPT model. The minimum loss for each width is highlighted in green.

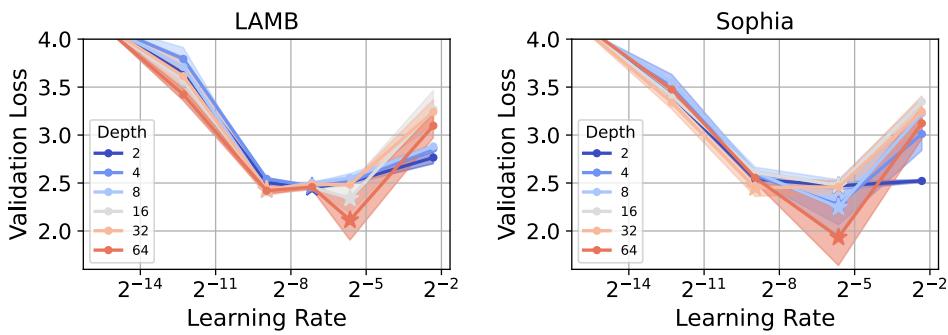
LR / Width	128	256	512	1024	2048
1×10^{-2}	2.64432065	3.00841006	3.26729711	3.39512682	4.17380921
9×10^{-3}	2.6650331	2.89549454	3.20741065	3.45321918	3.41602135
5×10^{-3}	2.63122805	2.67693043	3.30215279	3.32265353	3.36052688
3×10^{-3}	2.67303157	2.85103401	3.37194387	3.46975843	3.49201838
1×10^{-3}	2.90583165	2.97975628	3.61035117	3.57224735	3.72281067

Table 14: Mean validation loss for increasing model depth and different learning rates for Shampoo on NanoGPT model. The minimum loss for each depth is highlighted in green.

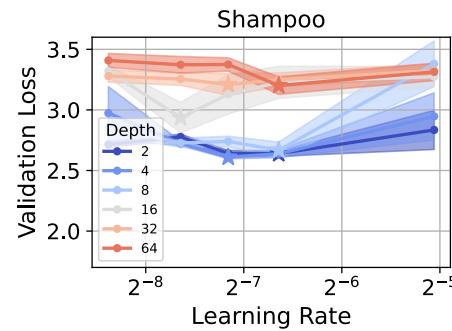
LR / Depth	2	4	8	16	32	64
3×10^{-2}	2.83468819	2.94637481	3.3811605	3.27378623	3.32534583	3.31375853
1×10^{-2}	2.63917089	2.6383814	2.66823014	3.2278808	3.24864435	3.20088768
7×10^{-3}	2.64190022	2.61007253	2.73991227	3.12863938	3.20985778	3.37485345
5×10^{-3}	2.77703945	2.72295157	2.72794461	2.93629122	3.25431808	3.37258538
3×10^{-3}	2.7143542	2.97368789	2.85365486	3.32030662	3.27988537	3.40830247



1148 Figure 11: Mean validation loss for increasing model depth and different learning rates for AdamW
1149 (left) and ADOPT (right) on NanoGPT model.



1166 Figure 12: Mean validation loss for increasing model depth and different learning rates for LAMB
1167 (left) and Sophia (right) on NanoGPT model.



1184 Figure 13: Mean validation loss for increasing model depth and different learning rates for
1185 Shampoo on NanoGPT model.

1188
1189B.3 μ P ON LLAMA21190
1191Table 15: Hyperparameter values and training settings to test μ P on Llama2 model.

1192

Architecture	Llama 2
Width	256 (scaled to 2048)
Depth	16
Number of attention heads	32
Total parameters	154M (scaled to 1.38 B)
Dataset	Wikitext-103
Sequence length	4096
Vocab size	32000
Training set tokens	100M
Batch size	192
Training steps	1026
LR decay style	cosine rule, 51 steps warm-up
Optimizer	AdamW / ADOPT / LAMB / Sophia
Weight decay	0.1
Dropout	0.0
μ P HP search range	$\eta \in [5 \times 10^{-1}, 5 \times 10^{-4}]$

1201

1202

B.3.1 ADAMW

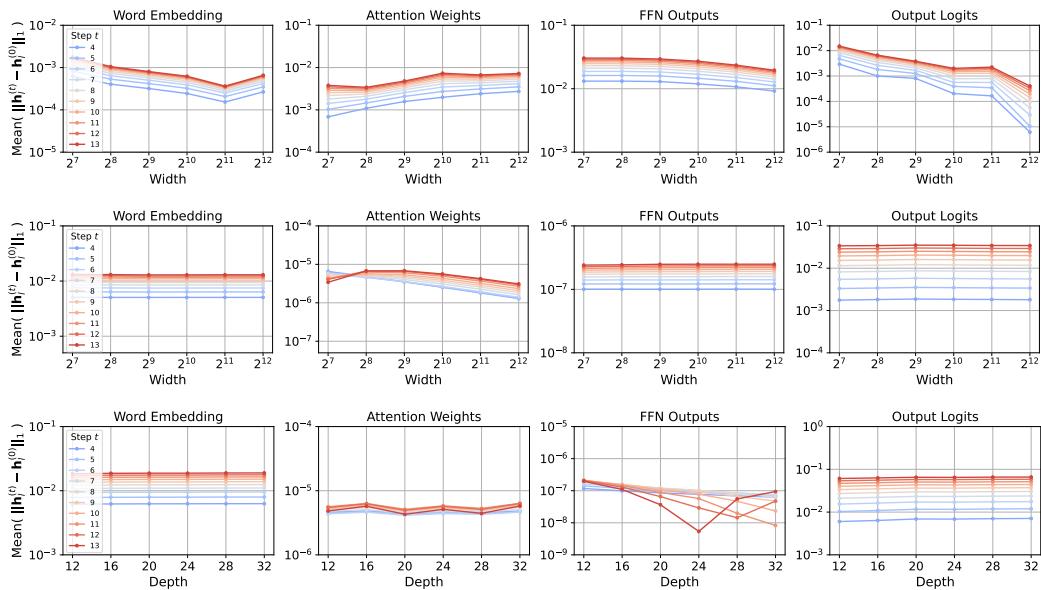
1203

1204

1205

1206

1207



1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

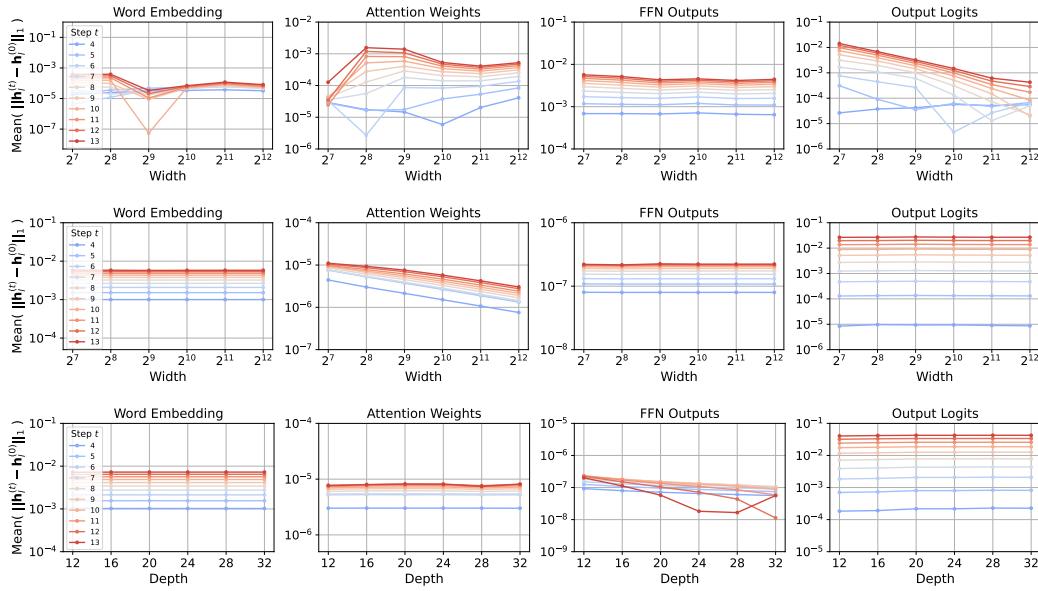
1241

Figure 14: Coordinate check plots for AdamW optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for Llama2 model.

1242 Table 16: Validation loss for increasing model width and different learning rates for AdamW on
 1243 Llama2 model. The minimum loss for each width is highlighted in green.
 1244

LR / Width	128	256	512	1024	2048
5×10^{-1}	4.55491	4.02676	3.81251	3.73573	3.79477
3×10^{-1}	4.24978	3.90242	3.83252	3.89484	3.75046
1×10^{-1}	4.48696	4.21314	4.05265	4.02101	3.95419
5×10^{-2}	4.70421	4.4353	4.39753	4.34169	4.31635
1×10^{-1}	5.57795	5.56284	5.56173	5.55771	5.55774

B.3.2 ADOPT



1274 Figure 15: Coordinate check plots for ADOPT optimizer under SP (top row); μ P (middle row);
 1275 depth scaling (bottom row) for Llama2 model.
 1276

1277 Table 17: Validation loss for increasing model width and different learning rates for ADOPT on
 1278 Llama2 model. The minimum loss for each width is highlighted in green.
 1279

LR / Width	128	256	512	1024	2048
5×10^{-1}	4.39033	4.02007	3.83932	3.77732	3.76814
3×10^{-1}	4.11789	3.85536	3.72552	3.67802	3.66973
2×10^{-1}	4.23765	3.87949	3.78242	3.80016	3.78846
1×10^{-1}	4.32335	4.07597	3.9912	3.91654	3.95519
7×10^{-2}	4.43819	4.22574	4.13565	4.06852	4.0683
5×10^{-2}	4.64121	4.38096	4.31582	4.22186	4.21248

B.3.3 LAMB

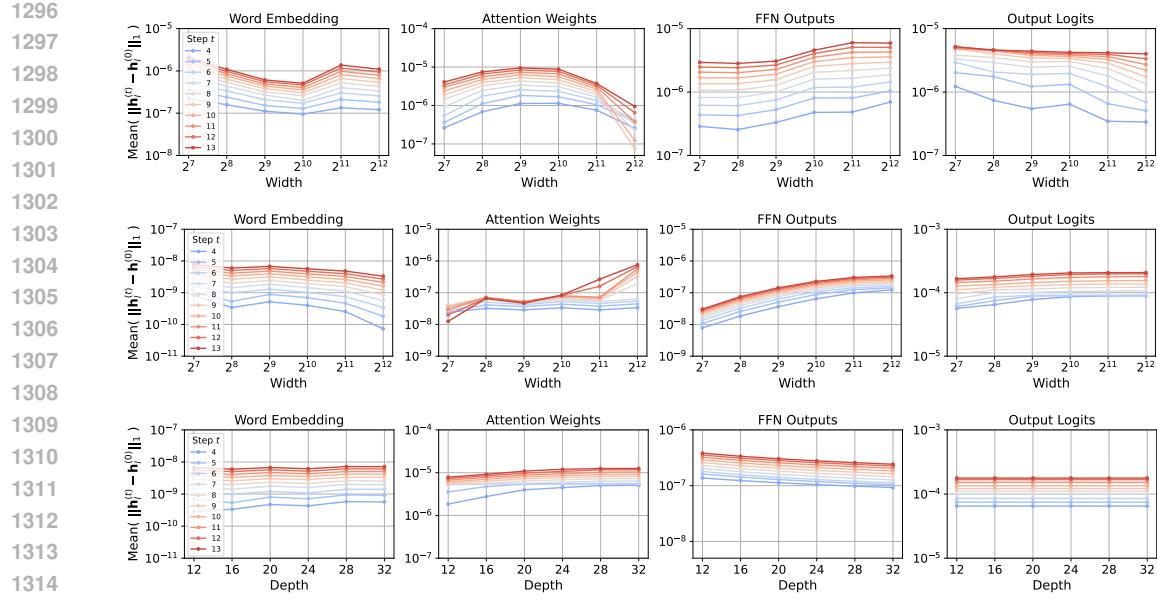


Figure 16: Coordinate check plots for LAMB optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for Llama2 model.

Table 18: Validation loss for increasing model width and different learning rates for LAMB on Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width	128	256	512	1024	2048
3×10^{-2}	7.18452	6.35059	6.0384	6.52966	6.13429
1×10^{-2}	5.58878	5.5638	5.56049	5.79174	6.01439
5×10^{-3}	6.57476	6.60454	6.66398	6.98093	7.0471
1×10^{-3}	10.25112	10.23998	10.22575	10.21199	10.19599
5×10^{-4}	10.32997	10.32776	10.32398	10.32062	10.31677

B.3.4 SOPHIA

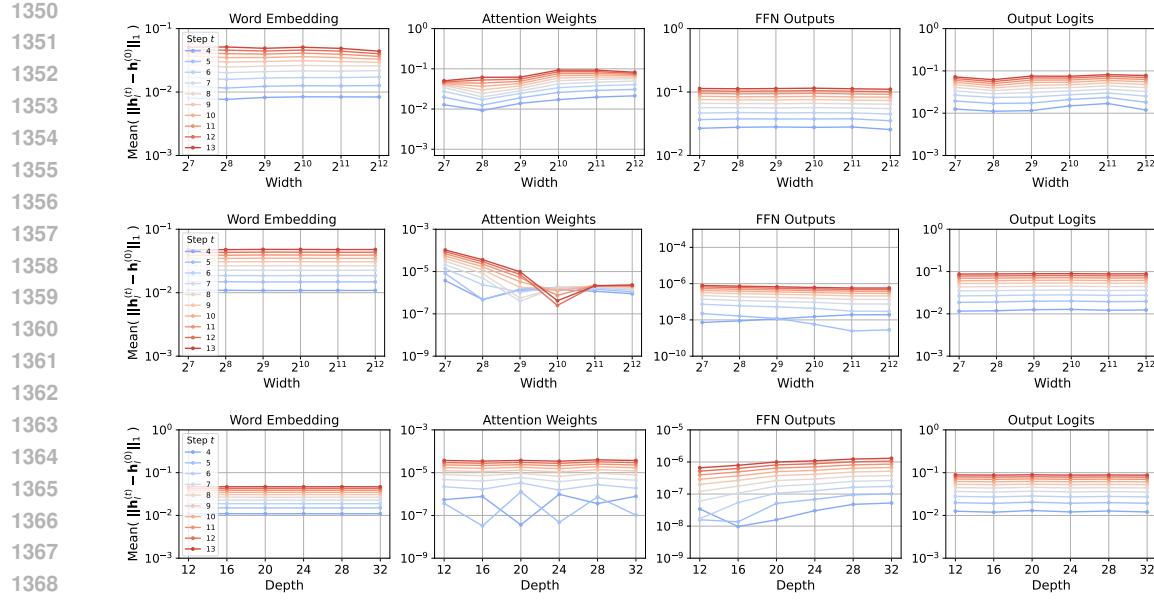


Figure 17: Coordinate check plots for Sophia optimizer under SP (top row); μ P (middle row); depth scaling (bottom row) for Llama2 model.

Table 19: Validation loss for increasing model width and different learning rates for Sophia on Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width	128	256	512	1024	2048
5×10^{-1}	7.19403	6.99576	6.68992	6.60376	6.31375
3×10^{-1}	6.17604	5.90826	5.80694	5.6738	5.71962
1×10^{-1}	4.14122	3.83654	3.75926	3.67419	3.62891
7×10^{-2}	4.42758	4.31702	4.05756	3.93561	3.94189
5×10^{-2}	4.76632	4.51022	4.41358	4.34452	4.30914
3×10^{-2}	4.82305	4.79592	4.73067	4.67473	4.74689