Under review as a conference paper at ICLR 2026

EXTENDING pP: SPECTRAL CONDITIONS FOR
FEATURE LEARNING ACROSS OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Several variations of adaptive first-order and second-order optimization methods
have been proposed to accelerate and scale the training of large language mod-
els. The performance of these optimization routines is highly sensitive to the
choice of hyperparameters (HPs), which are computationally expensive to tune
for large-scale models. Maximal update parameterization (uP) is a set of scal-
ing rules which aims to make the optimal HPs independent of the model size,
thereby allowing the HPs tuned on a smaller (computationally cheaper) model to
be transferred to train a larger, target model. Despite promising results for SGD
and Adam, deriving pP for other optimizers is challenging because the underlying
tensor programming approach is difficult to grasp. Building on recent work that
introduced spectral conditions as an alternative to tensor programs, we propose a
novel framework to derive uP for a broader class of optimizers, including AdamW,
ADOPT, LAMB, Sophia, Shampoo and Muon. We implement our ;P derivations
on multiple benchmark models and demonstrate zero-shot learning rate transfer
across increasing model width for the above optimizers. Further, we provide em-
pirical insights into depth-scaling parameterization for these optimizers.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in generative Al, yet their per-
formance and reproducibility depend on many interacting factors. A key aspect of training LLMs is
the optimization routine, which can become unstable as models grow in size and complexity. To im-
prove stability and efficiency, several modifications to existing optimizers have been proposed. For
example, LAMB (You et al., 2019) proposes a layer-wise adaptive optimization routine to reduce
the computational time required for training deep neural networks over large mini-batches, while
Sophia (Liu et al.l |2023) is a light-weight second-order method which achieves faster convergence
than Adam and is more robust to non-convex landscapes. Muon is another recent optimizer designed
explicitly for scaling with model size (Jordan et al., [2024} |Liu et al., |2025} |Bernstein, [2025)).

Although these recent algorithms demonstrate strong performance, the computational overhead of
hyperparameter (HP) tuning poses a fundamental scalability bottleneck for training LLMs. To ad-
dress this challenge, practitioners have heuristically tuned HPs on smaller models to guide the search
for optimal configurations in larger models. Recent works (Yang et al.l|2021;|Yang & Hul [2020) have
formalized this approach by proposing a zero-shot HP transfer algorithm based on maximal update
parameterization (P), which stabilizes feature learning across different model widths. pP is im-
plemented by carefully scaling the weights and HPs proportional to the model width, with scaling
factors tailored to the specific architecture and optimization algorithm. Under uP, feature learning
is stable throughout the training process and HPs are stable across increasing model width.

For the above reasons, several recent works have derived and incorporated pP for different models
(Zheng et al., 2025} Thérien et al.) and optimization algorithms (Blake et al.l |2025bj [Ishikawa
& Karakida). Fig. |l| demonstrates the increased training stability and predictability after yP is
incorporated in Sophia. Fig. [T|(left) shows that the relative mean of different feature vectors remains
stable across increasing model width, thereby ensuring maximal (weights not decreasing to 0) and
stable (weights not diverging) feature learning under pP. Fig. (1| (middle) demonstrates zero-shot
learning rate transfer across model widths where the best validation loss is obtained at learning rate
0.1 for all widths. Finally, Fig. [T] (right) demonstrates the “wider is always better” property where
the training loss improves consistently with increasing model width under pP.

Under review as a conference paper at ICLR 2026

While pP delivers strong results, it is tedious to implement in existing large codebases and difficult
to understand in practice. To address this, authors in (Yang et al., 2023a)) proposed simpler spectral
scaling conditions on the weight matrices that lead to the same width-independent and maximal
feature learning properties of uP. This work focuses on using the more tractable spectral conditions
to derive P for a wide range of optimizers. Despite being more intuitive, using spectral conditions
to derive uP is not trivial and the analysis for each adaptive optimizer is different and requires a
careful study of the order-of-magnitude of the coefficient terms that scale the gradients.

Our contributions are as follows: (1) we propose a general framework to derive uP using a novel
spectral scaling approach; (2) we use the proposed framework to analytically derive uP for several
adaptive first and second-order optimizers (AdamW, ADOPT, LAMB, Sophia, Shampoo, Muon); (3)
we implement pP for the above optimizers and validate our implementation by demonstrating zero-
shot HP transfer (specifically of the optimal learning rate) across model width on benchmark LL.Ms
(NanoGPT (Karpathy} [2022); Llama?2 (Touvron et al.| 2023))); and (4) we provide an empirical study
of zero-shot HP transfer across model depth for these optimizers to motivate future work.

Word Embedding

—
5
i

& S Sophia
= 6
S0 71 Width
£) 7 — 128
H —u 2 @ 256
© N o 0
208 =6 S 6 512
> B o0 c =t)
Width 2 9
© = 2048
100 Output Logits g 5 5 54
= Step t 'r_—u 2
s : >
1
| 10 f—————— 4 4
=_ 8
= 9
=10*2 10 T T T T T T T T T T
z - 275 274 273 272 271 0 200 400 600 800 1000
TSy e Learning Rate Training Step

Figure 1: P for Sophia (trained on Llama2) - Coordinate check plots for the word embedding and
output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);
Decreasing training loss with increasing model width (right).

2 PRELIMINARIES

The [?—norm of a vector x € R" is defined as ||x||, = (>, |mi|p)1/p. For a matrix A €
R™", A% = 37 A8 u;u] where (A, u;) are the i—th eigen pair. The spectral norm of a matrix
[|A%]|>

A € R™*™ is defined as |[A[[. := maxycrn\ {0} “x]], > and the Frobenius norm is defined as

[|Allg == \/ZZL > i—1 [Aq 4|2 (Strang, 20125 Meyer, [2023). If r denotes the rank of matrix A,
then ||A|l« < [|Allr < /7||A]l.. If a matrix A € R™*"™ can be written as an outer product of

some vectors u € R™ and v € R", that is, A = uv" then matrix A is a rank one matrix and
[[A[[= [[A[lr = [[ul]2 - [|v]]2- (1)

For any symmetric matrix, the spectral norm is equal to the absolute value of the maximum eigen
value. Therefore, for p € R, for a symmetric rank one matrix A = uu' € R"*",

||AP[] = [[A][Z. 2)
A sequence of random vectors {x; € R™}2°; is said to have O(n®)-sized coordinates if there exists

constants A, B such that An® < 4/ % < Bn® for all 4, and for sufficiently large n.

3 BACKGROUND

In Sections [3] @] and Appendix [A] pP is derived for a linear MLP trained with a batch size of 1,
similar to the model used in (Yang et al.| 2023a)). Let us consider an MLP with L layers. Let
x € R™ denote the input vector and W; € R™*" -1 denote the weight matrix for the [—th layer of
the model. Then the feature vector h; € R™ for the input x is given as

hl(X) :Wlhl—l(x)7 Vi = 1727"'7L €)]

Under review as a conference paper at ICLR 2026

where hy(x) = x. Let L = g(hp(x),y) denote the loss, where g : R™ x R"> — R is a loss
function, y € R™~ is the target vector corresponding to the input x and hy (x) € R™~ is the output
vector returned by the MLP. After one step of training, the change in the weight matrices is typically
a function, ¥(-), of the history of the gradients. Then, the change in weights from time instant ¢ to
t + 1 can be written using the following generic update rule,

Wl(t+1) _ Wl(t) _ n(t+1)\11({ngi>£}§:1) @

where 7(**1) is the learning rate at time instant ¢ + 1. We specify the forms of W(-) for different
optimizers in Table [l To reduce cumbersome notation, we omit time indices in the remaining
sections unless their inclusion is necessary for clarity. This will not affect the derivation of uP as
it is sufficient to analyze a single step of rule (4) to determine the correct scaling laws (Yang et all
2021; Blake et al., 2025a). Using eqgs. and () the change in weights and feature vectors for any
layer [, after one training step can be written as

AW, = —U\IJ({VWLK}) and Ahl(X) = AWlhl,l(x) + AWlAhl,1<X) + WlAhlfl(X).

Optimizer ()
AdamW / ADOPT w0 w
VIO e :
Sophi ip(— ™0 1) faw®
ophia clip max{7h@, e}’ + !
W(t)
LAMB i()“ l ||(lz)) (rl(t)+)‘wl(t)>
ey + AW, [
Shampoo (L)~ Y o L (RM)71/4
L

Muon /nLOl(t)
-1

Table 1: Values of () for different optimizers. Auxiliary variables are defined in Section[4and
Appendix
3.1 MAXIMAL UPDATE PARAMETRIZATION (uP)

Authors in (Yang & Hu, [2020; [Yang et al., 2021) proposed pP to ensure that overparameterized
models do not learn trivial features, or that the feature values do not blow up with increasing model
width. In practice, uP is implemented via the abc-parameterization (Yang & Hul [2020) which en-
sures that the MLP weights, their initial variance and the learning rate are appropriately scaled with
respect to the model width. In |Yang & Hu (2020), the abc-parameterization was introduced for
MLPs where the hidden layers have the same width, that is, nj_1 = n; =nforl =2,..., L — 1.
For simplicity, it was assumed that the inputs and outputs are scalars. Then, for each layer, the set
of parameters {a;, b;}_; U {c} comprise the abc-parameterization to

(i)

(i’j)], where w,

1. Initialize and scale weight matrices at every layer as W; = n~%[w,
N(0,n=2b152)

2. Scale the learning rate such that AW; = —pn=¢ ¥ ({Vw,L})

where the scale of initial variance, o2, and the learning rate, 7, is assumed to be width-independent.
As emphasized in Section [T} the theoretical principles behind pP can be difficult to grasp. Recog-
nizing these challenges, (Yang et al.,|2023a)) provided the following equivalent conditions for /P

[|hi(x)||]2 = ©(y/n;) and ||Aby|ls =O(/ny), for 1=1,2,...,L—1. (C.1.)
The above conditions concisely represent the requirements of uP.

3.2 SPECTRAL CONDITIONS FOR FEATURE LEARNING

In (Yang et al., 2023a), the authors futher argued that conditions (C.1.) can be ensured by the
following spectral scaling conditions on the weight matrices and their one step update,

||Wl||*®< ’”) and ||AWI|*®< m) for 1=1,2,...,L. (C2)
ni—1 nj—1

Under review as a conference paper at ICLR 2026

The above spectral scaling conditions hold for any optimizer, and in the next section we present a
framework to derive pP for any arbitrary optimizer using conditions (C.2)).

3.3 THEORY TO PRACTICE

While the ;P scalings in Table[2] are derived for the model described in the beginning of Section [3}
empirical results in Fig. [2]and Fig. [3|show that the derivations also hold for more practical, complex
models. This section lists the assumptions required for the derived scalings to hold in practice .

We first need to justify that deriving xP based on one time step analysis recursively yields the same
scaling in the following time steps. This holds if the order of magnitude of the norms remain the
same after the updates are performed, and this is formalized in Assumption[I] Note that violating
Assumption [T| will require exact cancellation which is rare to observe in practice and can be easily
avoided by adding small randomness to the learning rate (Yang et al.,[2023a)).

Assumption 1 The weight updates do not cancel initial quantities.
W1+ AW[|. = O(|[Wi[. + [[AW][.)
[y (x) + Ay (x)]2 = O([[hy(x)[|2 + [[ARy (x)]]2).

In practice, nonlinear activation functions, ¢(-), act on incoming feature vectors from the previous
layer, thereby changing (3)) to h;(x) = W;¢(h;_1(x)). Our analysis directly translates to activation
functions that preserve the order of magnitude of the inputs, as formalized in Assumption|2} and this
phenomenon is observed for most commonly used activations which are designed to prevent the out-
puts from diverging or vanishing to 0. Additionally, Assumption [2] also holds for most transformer
layers where the activation functions are preceded by layer normalization, because the normalization
maps the vectors to nonnegative constants.

Assumption 2 If a nonlinear activation function ¢(-) is added to each layer of the MLP, then

llp(hu(x))ll2 = O(I[hy(x)|]2)-

Finally, we require mild assumptions on the batch size, as stated in Assumption [3] Mathematically,
Assumption [3]is required to ensure that the sub-multiplicative property of norms doesn’t result in a
loose bound for the derivations in Section 4] to hold in practice. Intuitively, Assumption [3| holds if
the update matrix AW, has a low rank even for large batch sizes. We refer the reader to (Yang et al.|
2023a, Figure 1) for empirical observations of low-rank behavior of update matrices.

Assumption 3 The batch size, B, is fixed and independent of the width, that is, B = ©(1). If i
denotes the index of a training sample in the batch then,
)

Remark 1 We note that Assumption |3| constitutes a limitation of uP as it implies a fixed batch size
across model width. This is often suboptimal, as the critical batch size typically increases with model
size (McCandlish et al.| 2018, |Kaplan et al.| |2020). In practice, however, this can be mitigated by
first tuning the smaller proxy model with a fixed batch size B. When transferring to larger models,
one can increase the batch size to improve parallelization efficiency, provided the learning rate is
adjusted accordingly. Standard heuristics for this adjustment include the linear scaling rule (Goyal
et al.| | 2017) or square root scaling (Krizhevsky| |2014; \Hoffer et al.|[2017).

1 i
awinxl, =6 (| 5aw! i)

4 DERIVING pP USING SPECTRAL SCALING CONDITIONS

As discussed in Section deriving P for a particular model and optimizer boils down to deter-
mining the scaling parameters in abc-parameterization, or an equivalent form. We propose a frame-
work which only utilizes the spectral scaling conditions to derive the abc-parameterization.
The typical approach to derive P is to determine the proper scaling factors for a one step gradient
update, and then argue recursively that for stable input vectors under pP, the output vectors are also
stable, independent of the time (Assumption I)).

Under review as a conference paper at ICLR 2026

4.1 GENERIC FRAMEWORK

Scaling of Model Weights and Initial Variance:

The scaling factors for the model weights and their initial variance, that is, akin to parameters
{a;, b}, in the abc-parameterization, can be computed by satisfying the condition on ||[W,]|.
in @ . More rigorously, let us define the model weights as W; = oW, € R™*™-1 where the
elements of VV; are sampled from some initial distribution with scaled variance, n=20152, For ease

of theoretical analysis, we fix b; = 0 for all layers. Then, ||W;||. = o;|[W;]|.. Since ||[W;|l.
is a random matrix with unit variance, existing results in random matrix theory can be leveraged
to deduce the scaling of the spectral norm in terms of matrix dimensions (Rudelson & Vershynin,

2010) |Vershynin| (2018). Then, o; can be computed by equating O’l||Wl||* =0 (\ /m/nl_1>.

Scaling of Learning Rate:

The scaling factor for the learning rate, akin to parameter c in abc-parameterization, is computed by
satisfying the condition on ||[AW,||. in (C.2.). This implies that the generic update rule in eq. (4)
should be equated as,

n

AW L. = n(00)~ (mi)][¥ (Yw,) |, = © () , 5)

ni—1

where the scaling constants ¢; and co are determined based on the exact nature of ().

Input Weights Output Weights Hidden Weights

Init. Var. 1 (,l,l) 1 () 1(,l)
1 ny_, nyg_1
L 1 1 1
Multiplier T (1) P (1) V1 (1)
1 1 1 1
AdamW / ADOPT 1(1)) s)
. 1 1
Sophia LR 1(=) mg () mo ()
LAMB LR 1(-) 1(-) 1(=)
Shampoo LR Vv (=) nllfl (-) n:L,ll (=)
Muon LR (designed for hidden layers only) NA NA 1(-)

Table 2: Comparison of P from spectral conditions (black) vs. tensor programs (Yang et al., 2021}
Table 3) (red).

Discussion: Observe that the scaling of model weights and initial variance is only dependent on
the model architecture, not the optimization routine. Therefore, in the rest of this work we use the
linear MLP described in Section [3] as our fixed model architecture and assume that the weights are
initialized using standard normal distribution. Since the spectral norm of a random matrix with
unit variance scales ~ (y/n; + \/7;_1), the appropriate scaling factor is computed to be o; =

O < N min {1, nlil }) (Yang et al., [2023a)). Note that the initial variance is fixed as 1 for

the ease of theoretical analysis. In practice, to increase numerical stability, the variance can be set
to o7 while the weight multiplier can be fixed to 1, for normal distribution.

Further, observe that eq. (5) computes separate scaling factors for the input and output dimensions
of the weight matrices, that is, using spectral scaling conditions to derive uP allows us to collec-
tively analyze the different types of layers (input, output and hidden layers). We recommend first
determining the scaling factors ¢ and ¢y by removing additional HPs, such as weight-decay, epsilon
for numerical stability etc., from the update rule because they typically do not have a comparable
order of magnitude to other terms. In case of low-precision training (Blake et al.,|2025a)), these HPs
can be scaled after c¢; and ¢ have been computed, as demonstrated at the end of Section

Finally, we want to highlight that while there is no difference in the correctness and rigor of using
either a tensor programming approach or the proposed spectral scaling approach, the latter is more
intuitive and therefore, makes it easier to adopt and reason about pP for a wide class of optimizers.

Under review as a conference paper at ICLR 2026

Additionally, the rich literature on spectral norms and their properties can be leveraged to analyze
different adaptive optimization routines, as will be demonstrated in the following sections.

In Section4.2] we first demonstrate how to utilize the above framework by deriving ;P for AdamW,
and corroborate our results with the yP scalings reported in literature (Yang et al.} 2021)). We then
derive pP for optimizers - ADOPT, LAMB, Sophia, Shampoo and Muon, which have shown promis-
ing results for training LLMs. Our results are summarized in Table[2]and in Result[4.1] Figs. 2]and
[3] demonstrate zero-shot learning rate transfer across model widths for different optimizers, under

the derived uP scalings.

0 ADOPT 0 LAMB
wn %] “a
wn %)
3835 8351 \ .
= = Figure 2: (NanoGPT) Mean
3.0 widn 3.0 width \ validation loss for increas-
kel —-— 256 kel —.— 256 . . .
S, n2 |\ — _ S, a2 \ / ing model width and different
waa) | | ' | wea) | (| | learning rates across four op-
27 2 27 28 g 27 2 2% 2% 27 timizers: ADOPT (top left),
Learning Rate Learning Rate LAMB (tOp I'lght) Soph]a
)
0 Sophia Shampoo (bottom left), and Shampoo
" 4.5 (bottom right). The plots
9 | —e— 25
835 3 ol T B demonstrate zero-shot learn-
§30 “ s 208 ing rate transfer under uP (Ta-
2 =
§2s51.0% = 533 ble[2).
f_U 512 ~ r_u
So0 1024 g3.0
2048
2-14 o-11 -8 2-5 2-2 2-10 29 2-8 277
Learning Rate Learning Rate

Result: Under standing assumptions, for a linear MLP with L layers, if the

weight matrices W; = oyW;, | = 1,2,... L are initialized as W; ~
N(0,1), then the spectral conditions (C.2.) are satisfied for AdamW, ADOPT
and Sophia if

o 1 . ny . - 1
O’l—®< o mln{l7 —nl-l }), n—@(nl_l),

for LAMB and Muon if
=i 2)
o =0 min<1,,/—— ; =0(1),
: <\/nT1 { o =0

and for Shampoo if

O'l:@(! min{l, u }), n:@(nl),
VAL ni— ni—

where n;_1 = 1 for input weights and n; = 1 for output weights.

Remark 2 For a linear MLP trained with a batch size of 1, the gradient matrix is a rank one matrix
because it can be written as an outer product of two vectors, Vw,L = Vy, L - th71~ Therefore,

IIVw. L||« = ||[Vw,L||g from property (I). (See discussion in (Yang et al.}[2023a| p. 9))

Remark 3 For a linear MLP trained with a batch size of 1, it can be shown using first order Taylor

series expansion that ||Vw, L]« = ©(”;—’ll) (Yang et al.| |2023a, p. 9). Further, since VL is

Vw, L« = |Vn, Lll2l|hi-1]|2 = [|Vn, £]]2©(\/ni—1), using property (I) and
Vi Lll2 = 6(1/ /7).

a rank one matrix,

condition . Then,

Under review as a conference paper at ICLR 2026

AdamW ADOPT 1 LAMB
7 4
Width 451 | Width
- —o— 128 ” " 10 —e— 128
%) wn
3 6 256 3 4.0 2 256
s | 312 2 1 Wien 2 ° 512
S 1024 S 35| e 128 S g 1024
357 2048 3 256 K \ 2048
© T 512 s 7
= > 3.01 1024 > BN /
41 2048 6 >
| , ! 2.5 | | ¥
2°5 273 27t 274 273 272 2-1 2-10 28 256
Learning Rate Learning Rate Learning Rate

Figure 3: (Llama2) Validation loss for increasing model width and different learning rates across
three optimizers: AdamW (left), ADOPT (middle), and LAMB (right). The plots demonstrate
zero-shot learning rate transfer under uP (Table @)

4.2 uP FOR ADAMW

Recall the update rule for AdamW (Loshchilov & Hutter, [2017),

()
WD — WO _ e (\/‘%H . /\Wl(t)) (AdamW)

. m® 1 B

where ™® = =) = = [[ﬁm(t Dya- Bl)lemL} . m©® =
1 1
(t) 1
() — v — (t—1) _ 2 . (0) _
Ml e ek 1] o U U B

From the spectral scaling condition in eq. (5)), we need to find ¢;, c2 € R such that
m

n
=0 . 6
VYV Fe . < ”ll) ©

Similar to previous works, we first analyze AdamW for 5; = 82 = € = 0. Then, the above update
rule reduces to signSGD (Bernstein et al.,[2018)). Additionally, since the gradient term dominates the
weight decay term, we ignore the latter because we are only concerned with an order-of-magnitude
calculation. Therefore, () reduces to

1AW = n(ng) = (n—1) ™ |Isign(Vw, £)||« & 0 ()~ (1)~ lsign(Vw, L) |

where the last equation follows from Remark@ From the definition of the Frobenius norm, we have
np— n .
||1nl><nl—1‘|]2: = Z:il Zjl:il 1 = nyny—. This gives

AW ||, = n(ny) = (n—1) "0 (V1) = © (nll/zfclnllfsz) . (7)

By fixing ¢; = 0 and ¢, = 1, the spectral scaling condition in eq.(3) is satisfied. Therefore,
the learning rate for AdamW should be scaled by a factor of 1/n;_1. Observe that this scaling is
consistent with the uP derived using the tensor programming approach (Yang et al.| 2021, Table
3), and this equivalence is highlighted in Table 2] Fig. [further validates our derivation via the
coordinate check plots and the “wider is better” phenomenon observed in the plot on the right.
Since the update rule of ADOPT is similar to AdamW, we discuss pP for ADOPT in Appendix [A]

JAW [« = n(ny)~“ (ng—1)~* + AW,

Scaling of Momentum, Adaptive Noise, and Weight Decay terms:

Typically, HPs like $; and (5 are width-independent and have ©(1) order of magnitude. Thus,
these parameters are not dominant when analyzing the momentum terms and do not require separate
scaling rules. Similarly, the adaptive noise term € requires no scaling if it is fixed at a very small
value. However, empirical studies show that ¢ may affect the performance of uP under certain
training regimes (Blake et al.|, [2025a; Dey et al., [2025). In such cases the scaling law for € can
be derived as follows. From (AdamW], we observe that for the above scaling law to hold, the

spectral norm of € should have the same order of magnitude as the spectral norm of /0. Now,

Under review as a conference paper at ICLR 2026

||\/5H* = HVWI‘CH* = @(anfl/nl) and HElanm-lH* ~ 6||1nl><nl,—1HF = 6@(\/nlnlfl)'

Therefore, a factor of n% scales € to the appropriate order of magnitude.

On the other hand, for the derived P scaling to hold for (AdamW)), the spectral norm of the weight
decay term, ||\W||., must have the same order of magnitude as the spectral norm of the gradient
term, which is ©(,/nn;_1). Since, |[[AW,][|. = X|[|[W;[[. = AO(y/ni/ni—1), where the last equal-
ity follows from condition @), then A should be scaled by a factor of n;_;. The above results are
consistent with Table 1 in (Dey et al., [2025)).

4.3 upP FOR LAMB
Recall the update rule for LAMB (You et al., 2019),

w®
WD _ W (e ﬁg” I ||(P;)) (rl(t) N)\Wl(t)) (LAMB)
e+ AW |

where rl(t) = \/‘%LE In (LAMB), the gradient in each layer of the model is scaled by terms of
orders % From condition (C.2.), we know |[W||r = |[[W;]|« = © (, /nzl_’l> Observe
that the term in the denominator is the update rule for and we can use the result in (7)) to

determine its order of magnitude. Therefore,

W[1

AWillr =0 (y/ _ and =0 . 8
o+ AWille = (vmemi-s) T AWl \ms ®

Then, from the spectral scaling condition in eq. (5), we need to find ¢;, ¢o € R such that
—C —C 1
1AW = ()~ (n0-1) 20 () i+ AWl
1
np—1

= () (n-1)~6 () @ ()

= ()~ (10 (/)

ny—1

where the second equality follows using the same reasoning as for AdamW. Then condition (3 holds
if ¢; = ¢ = 0.Note that by invoking result (7) from AdamW’s analysis to determine the order of
magnitude of ||r;+AW||r in , we implicitly assume that the HPs) and € have been appropriately
scaled following the analysis in Section[4.2] Therefore, the HPs in follow the same scaling
rule as (AdamW)).

Insight 1 The above derivation suggests that the update rule for LAMB is implicitly independent of
width scaling. Intuitively, this result holds because the layerwise gradient scaling in (LAMB)) causes
the effective learning rate to be different for each layer.

Word Embedding - Output Logits

s
o

- 10 . 10 o 6.5 J =
& = D;t 104> p;‘t Width
e S U \’—\ — 128
v Wy «w 601 256
H w0 8 ‘ 512
3 ~5 —u = \
=107 28 20 on 107 2 210 212 o 5.51 1024
Width Width c
£ 2048
Word Embedding) Output Logits = 5.0
=10 101 ©
; Step: Step‘f | '_
o 10 4.5
=
f 1073
FRURE (et < 4.0 : : | 7
= 250 500 750 1000

P o e P A e
Width Width Training Step

Figure 4: (Llama2 model) AdamW optimizer - Coordinate check plots under standard parame-
terization (top left) and under uP (bottom left) for the word embedding and output logits layers;
Decreasing training loss with increasing model width under pP (right).

Under review as a conference paper at ICLR 2026

4.4 P FOR SOPHIA

Recall the update rule for Sophia (Liu et al., 2023)),
m®

WD —w® D) 5
! ! " <ip max {vh(®) ¢}

,1) —n@xw (Sophia)

where h(®) is a momentum-based estimate of the diagonal vector of the Hessian at time ¢. From the
spectral scaling condition in (5)), we need to find ¢1, c2 € R such that
n
« ni—1

(®)
: m (t)
1 —, 1] - AW
o (max {7h®), ¢}) :
For analysis, we consider 31 = 82 = ¢ = 0, and since the weight decay term is usually very small,
the above weight update simplifies to
. Vw, L
clip =1

clip Ml
NVwAL),

where we take the modulus in the denominator because Sophia avoids negative diagonal terms in
the Hessian (thereby avoiding convergence to a saddle point; see discussion in (Liu et al., |2023|
pg. 6)). Observe that the clip(-, 1) bounds the coordinate-wise weight updates as, [[AW;]; ;| < 1.
Therefore, we can compute an upper bound for the Frobenius norm and get

1
AW ||, < n(nz)"’l(nz_l)*%;@(\/m).

AW = n(ng) = (ng—1) "

[AW, ||, = n(n) " (ng—1)"*

~n(n)” " (n-1)”

Then, eq. (3) is satisfied by fixing ¢; = 0 and ¢, = 1, resulting in the same pP scaling as AdamW.
Note that the momentum terms 57 and 32 do not require any additional scaling because they have
O(1), width-indepedent order of magnitude, where as the HPs A and e follow the same scaling as
the HPs of AdamW because Sophia and AdamW have the same uP scaling.

Insight 2 We provide an intuitive explanation for this result. Sophia uses signSGD as the default
method to handle negative Hessian terms (to avoid convergence to a saddle point), thereby mirroring
the analysis for AdamW for such cases. Additionally, when v = 1, all the elements in the weight
update are clipped to 1, and the upper bound holds exactly. Thus, we get the same scaling as
AdamW.

In practice, the authors suggest to choose v such that 10% — 50% of the parameters are not clipped.
Therefore, for each term which is not clipped, the above bound incurs an error of less than 1.
However, as demonstrated in our simulations (Fig. [2)), for the typical values of ~ used in practice,
the uP scaling derived based on the above calculation works well.

Fig. [I| further validates the uP derivation for Sophia via stable coordinate check plots (Fig. [I] (left))
and a consistently improving training loss across model widths (Fig. |1| (right)).

4.5 P FOR SHAMPOO

Recall the update rule for Shampoo (Gupta et al. 2018)),

—1/4 —-1/4
Wl(t+1) _ Wl(t) _ D) (Ll(t)) Vw, L (Rz(t)> (Shampoo)

where for some § > 0, Ll(t) = Ll(t_l) +Vw, L Vw, LT ; Ll(o) =0l e Rm>™
R =RV + Vw, LT - Vw,L ; R”=06IeRu-1*m
From the spectral scaling condition in (3)), we need to find ¢1, ¢ € R such that

. . 71/4 71/4 n
1AW = i)~ () |(L7) 7 Vw,c (R?) :@< ml1>

Under review as a conference paper at ICLR 2026

For one-step analysis, let § = 0. Then the above condition reduces to

—cC1 —cCa - —1/4
1AWl = ()~ (1)~ | (Vw. £ - Tw, £0) " Y £ (Ve £7 - Vi, £)

)
< ()~ (ng—1)”

200 ()=~ (mu-a) 72+
H (Vi L - h! h_;- thET)_1/4
S

O(n{")||(Vn £ Vi, £T)

*

(VWLET . VW1£)71/4

(VWLE ’ VWZ‘CT)il/AlH* HVWVC”*

(hy—y - Vi, L'V, L - thfl)_l/4

*

—1/4

—1/4
| o™ Jomor i)™
200 ()=~ (o)) [V L1152]2

200 (n) = i) 7) 0 O () = 1 ()7 (1) ™)

where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark [3]
(3) and (5) follow from condition (C.I)) and Remark 3] (4) follows from property (I)) and property
(2). Therefore, condition () is satisfied by fixing ¢; = —1/2 and ¢2 = 1/2. Note that the 6 HP
in is akin to the momentum HPs in and have a ©(1) order of magnitude.
Therefore, 0 doesn’t contribute to the calculations of L; and R;, and it doesn’t require any further
scaling.

Muon: Muon was first introduced in (Jordan et al.,[2024) and empirical results have demonstrated
its scalability for LLMs (Liu et al.,2025)). (Jordan et al.,[2024)) also showed the equivalence between
Muon and Shampoo if the preconditioner accumulation is removed from (Shampoo). Therefore, the
original version of Muon (Jordan et al.l 2024) follows the same uP scaling as Shampoo. However,
a more recent version of Muon (Bernstein, 2025)) incorporates width-independent scaling of the
learning rate explicitly in the update rule itself (Table [T). We analyze this version of Muon in
Appendix [A]and show that no further scaling is required for stable feature learning. This conclusion
is added to Result 4.1l

5 NUMERICAL RESULTS

We test and validate our derivations on the NanoGPT model (Karpathy| (2022)) and the Llama2
model (Touvron et al.|(2023)). As demonstrated in Figs. E] and E} our simulation results validate
the P derivations in Table [2] across the different optimizers. Extensive numerical results, including
training settings, HP values, depth scaling studies, and validation loss values for the different opti-
mizers and model sizes can be found in Appendix [B] The simulations on NanoGPT were performed
using four A100 GPUs of the Argonne Leadership Computing Facility’s Polaris supercomputer
(Leadership Computing Facility| (b)), while the simulations on Llama2 were performed using 12
Intel Data Center GPU Max Series on the Aurora supercomputer (Leadership Computing Facility
(a)).

6 CONCLUSION

We have proposed a novel framework to derive uP using spectral scaling conditions, which are
more intuitive and easier to work with than the prevalent tensor programs. Using the proposed
framework, we have derived uP for a wide range of adaptive, first and second-order optimizers
including, AdamW, ADOPT, LAMB, Sophia, Shampoo and Muon. We have implemented yP for
the above optimizers on two benchmark LLMs, and validated our implementation by demonstrating
zero-shot learning rate transfer. Motivated by our depth-scaling simulations (Appendix [B), we aim
to develop a sound theoretical framework for depth-scaling parameterization in the future.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Jeremy Bernstein. Deriving muon. https://Jjeremybernste.in/writing/
deriving-muon, 2025.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International conference on ma-
chine learning, pp. 560-569. PMLR, 2018. URL https://doi.org/10.48550/arXiv.
1802.04434.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Bjorn Deis-
eroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-
μp: The unit-scaled maximal update parametrization. In The Thirteenth International Con-
ference on Learning Representations, 2025a. URL https://openreview.net/forum?
1d=P7KRI1LMS8T.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Bjorn Deiseroth,
Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-\ p: The unit-
scaled maximal update parametrization. In The Thirteenth International Conference on Learning
Representations, 2025b.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025. URL https://doi.org/10.
48550/arXiv.2505.01618.

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842-1850. PMLR, 2018. URL
https://doi.org/10.48550/arXiv.1802.09568.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1731-1741, 2017.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective
towards the infinite width. In The Twelfth International Conference on Learning Representations.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks. Cited on, pp. 10, 2024.
URL https://kellerjordan.github.io/posts/muon/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Argonne Leadership Computing Facility. Aurora. https://www.alcf.anl.gov/aurora,a.

Argonne Leadership Computing Facility. Polaris. https://www.alcf.anl.gov/polaris,
b.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.
URL https://doi.org/10.48550/arXiv.2305.14342,

11

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://doi.org/10.48550/arXiv.1802.04434
https://doi.org/10.48550/arXiv.1802.04434
https://openreview.net/forum?id=P7KRIiLM8T
https://openreview.net/forum?id=P7KRIiLM8T
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.1802.09568
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://www.alcf.anl.gov/aurora
https://www.alcf.anl.gov/polaris
https://doi.org/10.48550/arXiv.2305.14342

Under review as a conference paper at ICLR 2026

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025. URL https://doi.org/10.48550/arXiv.2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017. URL https://doi.org/10.48550/arXiv.1711.05101.

Sam McCandlish, Jayesh Narang, Dario Amodei, and Jared Kaplan. An empirical model of large-
batch training. arXiv preprint arXiv:1812.06162, 2018.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singu-
lar values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In
4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-1V: Invited Lectures, pp. 1576—1602.
World Scientific, 2010.

Gilbert Strang. Linear algebra and its applications. 2012.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Naga-
hara, Tomoshi liyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified
adam can converge with any 3, with the optimal rate. Advances in Neural Information Process-
ing Systems, 37:72438-72474,2024. URL https://doi.org/10.48550/arXiv.2411.
02853L

Benjamin Thérien, Charles-Etienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and Eu-
gene Belilovsky. g lo: Compute-efficient meta-generalization of learned optimizers. In OPT
2024: Optimization for Machine Learning. URL https://doi.org/10.48550/arXiv.
2406.00153.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522,2020. URL https://doi.org/10.48550/arXiv.2011.14522.

Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084-17097,
2021. URL https://doi.org/10.48550/arXiv.2203.03466.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023a. URL https://doi.org/10.48550/arXiv.2310.
17813

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244,2023b. URL https://doi.
org/10.48550/arXiv.2310.02244.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019. URL https:
//doi.org/10.48550/arXiv.1904.00962.

Chenyu Zheng, Xinyu Zhang, Rongzhen Wang, Wei Huang, Zhi Tian, Weilin

Huang, Jun Zhu, and Chongxuan Li. Scaling diffusion transformers efficiently via
$mup. arXiv preprint arXiv:2505.15270, 2025.

12

https://doi.org/10.48550/arXiv.2502.16982
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2411.02853
https://doi.org/10.48550/arXiv.2411.02853
https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.1904.00962
https://doi.org/10.48550/arXiv.1904.00962

Under review as a conference paper at ICLR 2026

A DERIVING pP

A.1 P FOR ADOPT

Recall that the update rule for ADOPT is the same as AdamW. The key difference lies in the se-
quence in which the terms tm(®) and ¥(*) are updated (Taniguchi et al. (2024)). From a theoretical
perspective, this does not change the order of magnitude of the gradient function ¥({Vw, L}) from
that of AdamW, and hence, the parameterization derived for AdamW also holds for ADOPT.

A.2 P FOR SHAMPOO (DETAILED)

We present a more detailed derivation for Shampoo in this section.

Recall the update rule for Shampoo (Gupta et al., [2018)),
—1/4 —1/4
WD = Wi =g (L) Iw, £ (R]Y) (Shampoo)

where for some § > 0, Ll(t) = Ll(tfl) +Vw,L - Vw, L' Ll(o) =0l e Rm*™

R =R+ Vw, LT - Vw,L : R =0leRmu-xn

From the spectral scaling condition in (3)), we need to find ¢1, ¢ € R such that

() o (w0)] = (/).

For one-step analysis, let § = 0. Then the above condition reduces to
—c —c —1/4 —1/4
1AW = n(m) = (1)~ || (Vwi £ - Ve, £7) T Ve £ (T, £7 - Vi, £)

(N . .
< ()~ (ng—1)”

AW |2 = n(n) = (ne—1) ™"

*

—1/4

(VWL‘C ’ VWL‘CT)_l/4H* HVWI‘C”*

(Vw,L" - Vw,L)

*

ni—1 —1/4

& (n) = (m-1) =0 (.
=10 ((m) =4 (o))
(V£ -hT by V£~
=10 ((m) =~ ())
(I3 Vi, £ - VhlﬁT)_1/4H* H(th,ﬁﬂg by -hf)"
=70 ()~ Huon)) Iyl 2

— —1/4
1V, £115 2| (e - BE) ™Y

) [i)

(Vw, LY Vw,L)

* *

(=1 - Vi, £'Vp,L-h]) o

* *

*

(Vh,ﬁ A thL:T)—l/él

3) —Cl—l —C2 i -
200 ()=o)) 0 Y |

(Vh,L . VhlET)71/4*@(nll/4) H(h1—1 . th_l)f1/4H*
(ng) =74 (ng_y) "2t a H(thﬁ) thﬁT)_IMH* H(hzf1 ~th,1)_1/4

*

()= 7% () "+) O () O (0,)
=10 ((n) " (n-1)~)

where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 3] (3)
and (5) follow from condition (C.T)) and Remark 3] (4) follows from property (I)) and property (2).
Therefore, condition (5)) is satisfied by fixing ¢; = —1/2 and ¢ = 1/2.

()
()=)74) 1O L 2 a2
()

13

Under review as a conference paper at ICLR 2026

A.3 P FOR MUON

Muon is one of the first optimizers to implicitly adopt a width-independent update rule by scaling

the learning rate with a factor of n?i - Therefore, intuitively, we do not expect any further

scaling of the learning rate under uP. This conjecture is validated through the following analysis on
the most recent version of Muon.

Recall the update rule for Muon (Bernstein, [2025; Jordan et al., [2024),

W _w® e \/K o (Muon)

where Ol(t) = NewtonSchulz(Bl(t))
B =BV + Vol i B” =0

From the spectral scaling condition in eq. (3)), we need to find ¢;, c2 € R such that

(T e
" ni—1

In this analysis we are working directly with an orthogonal matrix Ol(t) € R™>™-1 and the spectral
norm of an orthogonal matrix is 1 because the modulus of all its eigen values is 1 |Horn & Johnson

(2012).
—c1 —c2 n (t)
AWl = 5(m)~ (1)~ [| Of
np—1
—C1 —C2 nl
= n n— .
n(n) = (ni-1) Vs

Then condition (§) holds if ¢; = ¢ = 0. Fig. [5|demonstrates the zero-shot learning rate transfer as
well as the ”wider is better” phenomenon for Muon.

n

[[AW, ||« = n(n)~ (ng—1)"* (0]

ni—1

*

Note that the initial implementation of Muon did not incorporate the scaling factor (n?il) in

the update rule, but the proven equivalence between Muon and Shampoo leads to Muon having the
same P scaling as Shampoo (Jordan et al., [2024).

Word Embedding

-
o
d

; Step t
9_5 s
i e 7.0 \ ;
s 102 . 91 width
o Width 5.91 % g
= : 6.5 —
5 |=x 2 128 2 5.8 256
2 g 256 S
WU SR R 2 6.0 = 512
Width o 512 57 1024
. = £
- 100 — Output Logits _fgb 5.5 —e— 1024 .é
5 : § F 5.6
10 e 5.0
s | 55
SRl 45 par: Py >0 400 600 800 1000
Y Learning Rate Training Step

28 210 212
Width

Figure 5: pP for Muon (trained on Llama2) - Coordinate check plots for the word embedding and

output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);
Decreasing training loss with increasing model width (right).

14

Under review as a conference paper at ICLR 2026

B SIMULATIONS

Consistent with existing literature, we first verify uP for ADOPT, Sophia, LAMB and Shampoo
optimizers by implementing the derived parameterization scheme (Table 2)) in the NanoGPT code-
base [Karpathy|(2022)). Although prior works have already implemented pP for AdamW, we present
the results again for completeness. Table [3|lists some of the settings for our experimental setup to
test uP on NanoGPT. Further, we demonstrate the effectiveness for AdamW, ADOPT, LAMB and
Sophia on the Llama2 model, the experimental setup for which is listed in Table[T5]

We also present simulation results for depth-scaling parameterization for the above optimizers on
NanoGPT, using the implementation suggested in [Yang et al.| (2023b) and dey2025don. Note that
deriving proper depth-scaling parameterization for different optimizers is an ongoing work, and
we only present preliminary results on the NanoGPT codebase in Section to motivate further
theoretical analysis. Table [4]lists some of the settings for our experimental setup to test the depth-
scaling parameterization.

The remainder of this section documents the simulation results for AdamW (Subsection [B.2.1] and
Subsection [B.3.T), ADOPT (Subsection and Subsection [B.3.2), Sophia (Subsection [B.2.3
and Subsection [B.3.4), LAMB (Subsection [B.2.4] and Subsection and Shampoo (Subsectio
optimizers. For each optimizer we first present the coordinate check plots under standard pa-
rameterization, ;P and depth-scaling parameterization. These plots serve as a quick implementation
check to monitor whether the weights blow-up, diminish to zero or remain stable with increasing
model size (see discussion in (Yang et al., 2021, Section D.1, pg. 27)). We then provide tables and
plots listing the validation loss for different learning rates, and increasing model width and model
depth. The values in the tables for NanoGPT are the average loss values observed over multiple runs.
While we do not document the standard deviations in the tables, they are highlighted in the plots.
Note that since we are using an early stopping criterion for simulations performed on NanoGPT,
we rely more on the observations gained from the validation loss data than the training loss data.
Similar validation loss tables are documented for simulations performed on Llama2.

B.1 DISCUSSIONS

Overall, it is observed that the implementation of 1P following Table[2]is quite stable with increasing
model width. This is illustrated in the coordinate check plots for all the optimizers (Figs. [6] - [I0]
and Figs. -[17]). Under standard parameterization, the top row of the coordinate check plots
shows that the relative mean of the feature vectors blow-up with increasing model width. With the
incorporation of yP in the codebase, the relative mean values of the feature vectors stabilize with
increasing model width (middle row of coordinate check plots).

It is interesting to note that since the theoretical underpinnings for P hold in infinite width (Yang
& Hu! (2020)), the model width has to be “large enough” for the coordinate check plots to stabilize.
This is especially observed in the coordinate check plots for LAMB (Fig. [0|and Fig. [I6) where the
mean values of the feature vectors initially increase, but gradually stabilize with increasing model
width. This phenomenon is also observed in Fig. |2 which demonstrate the zero-shot learning rate
transfer across model width on the NanoGPT model. In the minimum validation loss tables for
ADOPT (Table[7) and LAMB (Table [TT) the optimal value of the learning rate gradually stabilizes
after a width of 256, whereas for AdamW (Table [5)) and Sophia (Table[9) the optimal learning rate
stabilizes after a width of 128. These inconsistencies across optimizers also suggest that introducing
a “base model width” for P scalings will introduce another HP. Therefore, we fix the value of the
base model width to 1 in our implementation. In comparison to NanoGPT, the width scaling plots
(Fig. 3) for Llama2 show that the model is “large enough” for the optimal learning rate to stabilize
from the smallest model width of 128. This is perhaps because for width of 128, the total number of
parameters in Llama?2 is significantly higher than the total number of parameters in NanoGPT.

The second set of simulations empirically evaluate the performance of the depth-scaling parameteri-
zation in existing works (Yang et al.|(2023b); Dey et al.|(2025))). The coordinate check plots (bottom
row) for depth-scaling demonstrate that the feature vectors are stable with increasing model depth.
In the coordinate check plots for ADOPT and LAMB (Figs. [7] and [0) the feature vectors stabilize
after a depth of 16, while for AdamW, Sophia and Shampoo (Figs. [0} [§]and [T0) the feature vectors
are stable for shallow depths too. This phenomenon is similar to our observations for yP, because

15

Under review as a conference paper at ICLR 2026

the depth-scaling parameterization is also derived for an infinite depth limit (Yang et al| (2023b)).
Therefore, to prevent tuning an additional “base model depth” HP, we fix its value to 1 in our simula-
tion setup. However, the loss plots in Figs. [[1] [T2]and [I3]do not consistently demonstrate zero-shot
learning rate transfer across increasing model depths. While the validation loss tables for AdamW
(Table [6) and Sophia (Table demonstrate that the optimal value of the learning rate stabilizes
for deep models, the same is not observed for ADOPT (Table [§), LAMB (Table and Shampoo
(Table [T4), where the value of the optimal learning rate oscillates as the depth is increased. These
results suggest that deriving depth-scaling parameterization for different optimizers needs a more
thorough theoretical analysis. Additionally, performing simulations on a finer grid of learning rates
can also give further insights into the depth-scaling behavior.

B.2 uP oN NANOGPT

Table 3: Hyperparameter values and training settings to test 4P on NanoGPT model.

Architecture NanoGPT [Karpathy/ (2022)
Width 128 (scaled to 2048)
Depth 8
Number of heads 2
Total parameters 1.59 M (scaled to 403 M)
Dataset Tiny Shakespeare
Vocab size 65
Tokens per iteration 8192
Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo
Hyperparameter search range neE2x10712x 1079

Table 4: Hyperparameter values and training settings to test depth-scaling parameterization on

Hyperparameter search range

NanoGPT model.
Architecture NanoGPT Karpathy|(2022)
Width 256
Depth 2 (scaled to 64)
Total parameters 1.6 M (scaled to 50.56 M)
Dataset Tiny Shakespeare
Vocab size 65
Tokens per iteration 8192
Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo

ne2x10712x 1077]

B.2.1 ADAMW OPTIMIZER

16

Under review as a conference paper at ICLR 2026

-
=)
|

Word Embedding

Attention Output

FFN Output
utpu! 107

Output Logits

5 S(ep: 104
e 5 10°
.I= ; /——/ o’ /

7
= 2
s o - 10 102
= 10
z n 10t 10!
© -1
@ 10721
g0 2 10° 10°

27 2E 29 2]0 21 27 28 29 2]0 21 27 23 29 2]0 21 27 25 29 2]0 211
Width Width Width Width
~ 100 Word Embedding Attention Output FFN Output 100 Output Logits
:" Step t
3 a
S s
5 [S G —
E 1 -1
£_1071 ; 10 10 107!
< 9
= 10
£ 1
5 —1
= 1022 10-2 10-2 1072
27 28 29 Jlo on 27 28 29 210 211 27 28 29 210 o1 27 28 29 Jlo ou
Width Width Width Width
~ 100 Word Embedding Attention Output FFN Output 100 Output Logits
= Step t
5 4
- s
< [G S—— N
B _1 | — .

s 10 . 10 g | 10 107
£ 9
= 10
= n
s -1
= 102172 102 102 1072

24
Depth

26

22 24

Depth

26

22 24

Depth

26 22

24
Depth

26

Figure 6: Coordinate check plots for AdamW under standard parameterization (top row), 4P (middle
row); depth scaling (bottom row) for NanoGPT model.

Table 5: Mean validation loss for increasing model width and different learning rates for AdamW
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2x 101 254111195 | 2.54770319 | 2.50132585 | 2.53559383 | 2.45719266
2x 1072 2.57009896 | 2.56583707 | 2.57900651 2.53385917 | 2.51431378
2x 1077 2.63474766 2.6022807 2.64679337 | 2.63449661 | 2.55710355
2x 1077 3.38827054 3.5544157 3.38896998 | 3.44941664 | 3.44561863
2x10°° 4.09221347 | 4.08871428 | 4.05257797 | 4.08837303 | 4.08405908

Table 6: Mean validation loss for increasing model depth and different learning rates for AdamW
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 10T 2.53525917 | 2.55192765 | 2.53510944 | 2.50357556 | 2.51294963 | 2.53008548
5x 107 2.52700798 | 2.49422677 | 2.50334986 | 2.29428236 | 2.45176029 | 2.36860998
2x 102 2.55682977 | 2.52176666 | 2.56583563 | 2.30422862 | 2.45500112 2.5650301
2x 1077 2.59745781 | 2.63078475 | 2.60228316 | 2.61588136 | 2.64065663 | 2.65051214
2x 1077 3.41396125 | 3.41677833 | 3.55441554 | 3.45801504 | 3.43285489 | 3.47577778
2x10°° 4.09297959 | 4.05970796 | 4.08871428 | 4.08113146 | 4.06712834 | 4.10902596

17

Under review as a conference paper at ICLR 2026

B.2.2 ADOPT OPTIMIZER

Word Embedding

Attention Output

103

FFN Output

Output Logits

; Step t
& : —— 10? 10? -
= -2 1
T 7 10! 10! 10
o 8
= 0 o —
Z107%] 10 10 100
= 1 - -
5 =il 1071 107
Y ikl -2 -2 -1
= 10 27 25 29 2]0 211 10 27 23 29 2]0 21 10 27 ZB 29 2]0 21 10 27 28 29 210 21
Width Width Width Width
- Word Embedding 107 Attention Output 101 FFN Output 100 Output Logits
:" Step t
s_1071 4
< s 101 -
=, s 1072 1072
=10 o 1072
4 1
© — 1
2102 lm2 10-3 10-3 10-3
27 28 29 210 211 27 2)3 29 210 z]l 27 28 29 Z]U 211 27 28 29 210 211
Width Width Width Width
_ Word Embedding 10-1 Attention Output 10-1 FFN Output 100 Output Logits
- Step t
5_107 s
< . \= — 1071 = —
SRR [t 1072 102
10~ 9
= 1072
z ht
© -1
9 -1
=103 1073 103 1073

24
Depth

26

22

24
Depth

26

2?2 24

26

Depth

22 24

Depth

26

Figure 7: Coordinate check plots for ADOPT optimizer under SP (top row); pP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 7: Mean validation loss for increasing model width and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2x 107" 2.55120134 | 2.54616404 | 2.54178079 2.5524296 2.54457998
7x 1077 248560476 | 2.44316975 | 2.37087123 | 2.50733534 | 2.50883015
2x 1072 243175697 | 2.58847451 | 2.57006375 | 2.54323697 | 2.53191725
2x10°° 2.63016931 2.6073552 2.65681744 | 2.66118956 | 2.55337548
2x 1077 3.528404 3.49065232 | 3.49065232 | 3.42789133 | 3.43255997
2x10°° 4.09183598 | 4.08832375 4.0521698 4.08806594 | 4.08391444

Table 8: Mean validation loss for increasing model depth and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 107" 2.56129368 | 2.51452438 | 2.54788987 | 2.51456078 | 2.52271922 | 2.55469418
9x 102 248695572 | 2.47477563 | 2.53124801 | 2.48145302 | 2.50687472 | 2.54724765
2% 1072 2.56718413 | 2.50419029 | 2.58847276 | 2.44447954 | 2.54996069 | 2.52524622
2x107° 2.67992798 | 2.62949713 2.6073552 2.60433618 | 2.61753988 2.6286815
2x 1077 3.41052596 | 3.46538957 | 3.56757394 | 3.47856442 | 3.43608022 | 3.56190586
2x107° 4.09267759 | 4.05929391 | 4.08832375 | 4.08074443 | 4.06675259 | 4.10877307

B.2.3 SoPHIA OPTIMIZER

18

Under review as a conference paper at ICLR 2026

—~ 10 Word Embedding 108 Attention Output 108 FFN Output 100 Output Logits
il Step t
5. g) 102 102
<1073 5 = . N
! 7 SN 10 10
= : o o 100
9
S04 1 10 10
S 107 10
(73 ——
= 10512 1072 1072 1071
27 28 29 210 Ju 27 28 29 210 o1 27 28 29 210 Q1 27 28 29 210 Ju
Width Width Width Width
~ 1071 Word Embedding 107 Attention Output 10 FFN Output 107 Output Logits
) Step t
= 4
= s
| 1072 6 — — —t ——
?E ; 1072 1072 1072
9
= 1073
z n
5 12
= 100 L2 10-3 10-3 10-3
27 25 29 2]0 2]1 27 23 29 210 211 27 29 29 210 211 27 28 29 210 21]
Width Width Width Width
~ 10 Word Embedding 101 Attention Output 10-1 FFN Output 101 Output Logits
.| Step t
= 4
& s
] 1072 6
s . 1072 1072 1072
= 103 .
= 10
k=1 1
s -1
= 10412 10-3 1073 1073
22 24 26 22 24 26 22 24 26 2?2 24 26
Depth Depth Depth Depth

Figure 8: Coordinate check plots for Sophia optimizer under SP (top row); 4P (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 9: Mean validation loss for increasing model width and different learning rates for Sophia on

NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2x 107" 3.0969398 2.57144117 | 2.56875261 | 2.62573036 | 2.57240287
2% 1072 2.27450609 | 2.27830847 | 2.31632638 | 2.53347905 | 1.98427689
2x 1077 2.5456597 2.61430057 2.5594302 2.54869485 | 2.65462987
2x 107 % 3.35409013 | 3.54614369 | 3.36089802 | 3.35862382 | 3.36431138
2x10°° 4.08766381 | 4.08859126 | 4.06069756 | 4.08811712 | 4.08371623

Table 10: Mean validation loss for increasing model depth and different learning rates for Sophia
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 107" 2.5213503 | 3.01081316 | 3.22649105 | 3.34855215 | 3.24310446 | 3.12229093
2x 1072 24717048 | 2.27232289 | 224736114 | 2.47475751 | 2.46061246 1.93401444
2x 10°° | 254103192 | 2.58136233 | 2.61035593 2.610612 245068415 | 2.55488427
2 x 10°7 | 3.40887721 | 3.52765425 | 3.54587563 | 3.40669481 | 3.33997742 | 3.47574107
2x 1077 | 4.09267314 | 4.06576761 | 4.08859126 | 4.08140405 4.066552 4.10874732

19

Under review as a conference paper at ICLR 2026

B.2.4 LAMB OPTIMIZER

Word Embedding

Attention Output

FFN Output

Output Logits

5 . _
S 107 1071 10° =
1
s 1072 1072
= S —— 107!
z 1073 1073
27 2& 29 2!0 21] 10 27 25 29 2]0 2]! 10 27 28 29 210 211 10 27 2& 29 2!0 21]
Width Width Width Width
—10-3 Word Embedding 10-1 Attention Output 10-1 FFN Output 102 Output Logits
= Step t
s 4
B
f 104 H e 102
7
E:\ ’ f
=105 10-3
b= n
© -1
= 10-s =2 104
57 28 29 210 P 27 28 29 510 o1 57 28 29 P30 P30 57 28 29 10 o1
Width Width Width Width
~10-3 Word Embedding 10-1 Attention Output 10-1 FFN Output 10~ Output Logits
= Step t
= 4
B
= s
T4 . ——tr——, | 107 1072 1073 /—a—o—o—-
7
s ———, | '__\.__._.
= :
=10 10 1073 1073 1074
= 1
© — 12
2 el 1074 1074 10-°
2?2 24 26 24 26 2?2 24 26 2?2 24 26
Depth Depth Depth Depth

Figure 9: Coordinate check plots for LAMB optimizer under SP (top row); P (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 11: Mean validation loss for increasing model width and different learning rates for LAMB
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2x 107" 3.3306915 2.91992474 | 2.75658234 | 2.84724092 | 2.84511503
2x 1072 227427769 | 2.55330944 | 2.53250345 | 2.50694895 | 2.51612274
2x107° 246762419 | 2.42723028 | 2.47571055 | 2.49152549 | 2.46575729
2x 1077 3.69672974 | 3.70961714 | 3.66877778 3.2370429 3.37923479
2x107° 4.16929531 4.1694754 4.1684103 4.1674579 4.16771809

Table 12: Mean validation loss for increasing model depth and different learning rates for LAMB
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 10T 2.76534136 | 2.85949779 | 2.88115621 | 3.26932732 | 3.24093787 3.097018
2x 107 2.50858307 | 2.51164389 | 2.55355501 2.33967662 | 2.48308444 | 2.11406271
7x 1073 245117172 | 2.46691815 | 2.50231234 | 2.45691435 | 2.48629936 | 2.45780365
2x 1077 2.50483624 | 2.54284684 | 2.42723123 | 2.43291903 243262172 | 2.42000318
2x 107 3.6441706 3.79367606 | 3.70963343 | 3.57373738 | 3.61402575 | 3.42223287
2x10°° 4.16981506 4.1691486 4.1694754 4.16932933 | 4.16817395 | 4.16773876

B.2.5 SHAMPOO OPTIMIZER

20

Under review as a conference paper at ICLR 2026

~ 101 Word Embedding Attention Output 105 FFN Output 108 Output Logits
= Step t
s s 10° 10?
S 5
.|= B) 10°
= ?0 o 10
z n 10 10°
© -1
2 o2 l=2 10-2 1071 1071
27 28 29 210 Ju 27 28 29 210 27 28 29 210 Ju 27 28 29 210 Ju
Width Width Width Width
~ 100 Word Embedding 10¢ Attention Output 10¢ FFN Output Output Logits
= Step t o
5 ‘ 103 10
=
T N 102 —\/ 102 1071 —
E 8 —
= - 1 1072 =
=102{ - 1 100 - B e
= 1 100 10-3
© - 12
% 3] 5 -2 -1 -a
10 27 26 29 210 211 10 27 23 29 2]0 10 27 23 29 2)0 211 10 27 23 29 210 21]
Width Width Width Width
~ 100 Word Embedding 102 Attention Output 108 FFN Output 100 Output Logits
= Step t
& 5 10! 102
< 107 s 1071
— \/P#_"—{ﬁ
BN . - 10° 10!
£ 9 [e
=102 10 1072
z 1 10-! 10°
© -1
2 o2 l=2 10-2 1071 10-3
2?2 24 26 24 26 22 24 26 2?2 24 26
Depth Depth Depth Depth

Figure 10: Coordinate check plots for Shampoo optimizer under SP (top row); pP (middle row);

depth scaling (bottom row) for NanoGPT model.

Table 13: Mean validation loss for increasing model width and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

1x1072 2.64432065 | 3.00841006 | 3.26729711 | 3.39512682 | 4.17380921
9x 107 2.6650331 2.89549454 | 3.20741065 | 3.45321918 | 3.41602135
5x 1077 2.63122805 | 2.67693043 | 3.30215279 | 3.32265353 | 3.36052688
3x 1077 2.67303157 | 2.85103401 | 3.37194387 | 3.46975843 | 3.49201838
1x103 2.90583165 | 2.97975628 | 3.61035117 | 3.57224735 | 3.72281067

Table 14: Mean validation loss for increasing model depth and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

3x 102 2.83468819 | 2.94637481 3.3811605 3.27378623 | 3.32534583 | 3.31375853
1x10° 7 2.63917089 | 2.6383814 2.66823014 | 3.2278808 3.24864435 | 3.20088768
Tx107° 2.64190022 | 2.61007253 | 2.73991227 | 3.12863938 | 3.20985778 | 3.37485345
5x 1073 277703945 | 2.72295157 | 2.72794461 | 2.93629122 | 3.25431808 | 3.37258538
3x 1077 2.7143542 2.97368789 | 2.85365486 | 3.32030662 | 3.27988537 | 3.40830247

21

Under review as a conference paper at ICLR 2026

AdamWw ADOPT
4.0 4.0
%)) \ 7))
0w n
9351 9 3.5
g Depth g
= 2 =
Jr_BJ 30' __._.- 4 4(_01 30'
S 8 o
8251 5 — T 251
== 64
2-14 5-11 28 -5 -2 >-14 5-11 278 -5 -2
Learning Rate Learning Rate

Figure 11: Mean validation loss for increasing model depth and different learning rates for AdamW
(left) and ADOPT (right) on NanoGPT model.

LAMB Sophia
4.0 4.0

wn 0

2 3.5 © 3.5
- -

_S 3.0 _5 3.0 1
© o

o 2.5 S 2.5
220/ 220

>-14 5-11 3-8 -5 -2 >-14 5-11 5-8 -5 -2
Learning Rate Learning Rate

Figure 12: Mean validation loss for increasing model depth and different learning rates for LAMB
(left) and Sophia (right) on NanoGPT model.

Shampoo

{ {

Validation Loss
N
(6]

N
o
L
w
N

28 277 276 7S
Learning Rate

Figure 13: Mean validation loss for increasing model depth and different learning rates for
Shampoo on NanoGPT model.

22

Under review as a conference paper at ICLR 2026

B.3 uP ONLLAMA2

Table 15: Hyperparameter values and training settings to test 4P on Llama2 model.

Architecture
Width
Depth
Number of attention heads
Total parameters

Llama 2

256 (scaled to 2048)

16
32

154M (scaled to 1.38 B)

LR decay style

Dataset Wikitext-103
Sequence length 4096
Vocab size 32000
Training set tokens 100M
Batch size 192
Training steps 1026

cosine rule, 51 steps warm-up

Optimizer AdamW / ADOPT / LAMB / Sophia
Weight decay 0.1
Dropout 0.0
P HP search range neBx10715x 1077

B.3.1 ADAMW
Word Embeddin Attention Weights FFN Outputs Output Logits
—~ 1072 — 9 10t 9 10t P 10! P 9
= ep
5 N 1072
E . s > p———
= 10 3\\‘\/ 10 f o _\
BN s 1072 "
Z10f 1073 10
S 105
o -1
=107 1074 10-3 10°°
27 28 29 g0 o1 Qn2 27 28 29 Q0 L1 Lu 27 28 29 g0 pu on2 27 28 29 g0 o1 Qn2
Width Width Width Width
Word Embeddin Attention Weights FFN Outputs Output Logits
~ 107! — 9 104 9 1076 P 10! P 9
= ep
= 4 = —— 23
B
S 5 .
I 107° 1072
10- i e |
s 8 1077
= B 106 103
- 0
z B
é 107 3 1077 » N
27 28 29 210 211 212 27 28 29 210 2)1 212 10 27 25 29 210 211 212 10 27 28 29 210 211 212
Width Width Width Width
Word Embeddin Attention Weights FFN Outputs Output Logits
~ 101t — 9 104 9 105 P 10° P 9
= ep
= 4
e -6
< P4 S NS S | 10 1071
7
s 1072 8 107° 1077
9
= 10 = - ——— 10-2
= 1 1078
-1
3 5
=10 10°° 107° 1072
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
Depth Depth Depth Depth

Figure 14: Coordinate check plots for AdamW optimizer under SP (top row); uP (middle row);
depth scaling (bottom row) for Llama2 model.

23

Under review as a conference paper at ICLR 2026

Table 16: Validation loss for increasing model width and different learning rates for AdamW on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

5x 10" 4.55491 | 4.02676 | 3.81251 | 3.73573 | 3.79477
3x 107" 4.24978 | 3.90242 | 3.83252 | 3.89484 | 3.75046
1x107 7 448696 | 4.21314 | 4.05265 | 4.02101 | 3.95419
5x 102 4.70421 4.4353 439753 | 434169 | 4.31635
1x107T 5.57795 | 5.56284 | 5.56173 | 5.55771 | 5.55774

_ Word Embedding 102 Attention Weights 10-1 FFN Outputs 10-1 Output Logits
—=10-1 Slepﬂt
5 -2
= H 10 = 10-2 -
= 1073 s = — - 10°2
= = ™| 10~ Se—
5 10 ?ﬂ 1o 10-3 10
c _ 1 10-5
® 10771 = 12
@ - 13
-6 -4 -6
= 27 25 29 210 2]1 212 10 27 28 29 2]0 21 2]2 10 27 ZE 29 2]0 21] 212 10 27 23 29 210 21 212
Width Width Width Width
~ 101 Word Embedding 104 Attention Weights 10-6 FFN Outputs 10-1 Output Logits
= Step t
= a -2
1072 2 10
! ; 10-3
= s 1077
<102 9 107*
= 10
4 1 10-5
S04
= 1077 1078 1076
27 28 39 g0 o1 Qn2 27 28 29 g0 o1 Lu2 27 28 39 g0 ou o2 27 28 39 g0 i1 on2
Width Width Width Width
~ 10 Word Embedding 10-¢ Attention Weights 10-5 FFN Outputs 10-1 Output Logits
= -
s_ -2
= 10
1
E.E 1073
€ 1074
3
= 10-°
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
Depth Depth Depth Depth

Figure 15: Coordinate check plots for ADOPT optimizer under SP (top row); pP (middle row);
depth scaling (bottom row) for Llama2 model.

Table 17: Validation loss for increasing model width and different learning rates for ADOPT on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

5x 107 4.39033 | 4.02007 | 3.83932 | 3.77732 | 3.76814
3x 1077 4.11789 | 3.85536 | 3.72552 | 3.67802 | 3.66973
2x 1077 423765 | 3.87949 | 3.78242 | 3.80016 | 3.78846
1x10° T 4.32335 | 4.07597 3.9912 3.91654 | 3.95519
7x 1077 4.43819 | 4.22574 | 4.13565 | 4.06852 4.0683
5x 1072 4.64121 | 4.38096 | 4.31582 | 4.22186 | 4.21248

B.3.3 LAMB

24

Under review as a conference paper at ICLR 2026

Word Embedding

Attention Weights

FFN Outputs

Output Logits

—~10°° — 1074 107° 107
el ep
R : :/_4/:: ———
E_E ; . ///’N 10-6 1076
M -
=107 10 10
k= n
i e 1077
=10°® 1077 1077
27 28 39 g0 o1 Qn2 27 28 29 g0 o1 Lu 27 28 39 g0 ou on2 27 28 39 g0 o1 Qn2
Width Width Width Width
Attention Weights FFN Outputs Output Logits
- 10-% 9 10°° P 103 P 9
& . .
= 10°° 10°°
1 I
‘:.‘:\ 10-7 — 10-7 / Lot e ——]
= =
z 1078 1078
g -9 -9 -5
= 27 23 29 210 2]] 212 10 27 23 29 2]0 2]1 212 10 27 25 29 210 2)1 212 10 27 ZE 29 210 21] 2]2
Width Width Width Width
Word Embeddin Attention Weights FFN Outputs Output Logits
~ 107 ng 104 lon el 1078 utpy 1073 utput Log!
= Step t
= 4
S 107t s == G G
.I: e I=—t—t—1r—1| 105 I —— ,
=_10°f 10 10~
£ 9 6
= 10 10~
£ 1071 n
g |== 10
= 1078 1077 10-°
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
Depth Depth Depth Depth

Figure 16: Coordinate check plots for LAMB optimizer under SP (top row); ;P (middle row); depth
scaling (bottom row) for Llama2 model.

Table 18: Validation loss for increasing model width and different learning rates for LAMB on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

3 x 1072 7.18452 6.35059 6.0384 6.52966 6.13429

1x 1072 5.58878 5.5638 5.56049 5.79174 6.01439

5x107° 6.57476 6.60454 6.66398 6.98093 7.0471

1x1073 10.25112 | 10.23998 | 10.22575 | 10.21199 | 10.19599

5x 1077 10.32997 | 10.32776 | 10.32398 | 10.32062 | 10.31677
B.3.4 SOPHIA

25

Under review as a conference paper at ICLR 2026

Word Embedding Attention Weights FFN Outputs Output Logits

—~ 1071 10° 10° 10°
= Step t
= T,
C':E ; -1
1 3 o —— B B i e e
=_1072 . 107t
= s 10-2 1072
z n
s -
= 1032 1072 102 1073
27 28 29 gl o1 i 27 28 29 gi0 i1 oi2 27 28 29 glo Qi1 oh 27 28 29 gio o1 i
Width Width Width Width
Word Embeddin Attention Weights FFN Outputs Output Logits
~ 107! — 9 1073 9 P 10° P 9
= il GRS N S 104
= H 10-5 S | e e e
n 10-2 7 1076 | et
= 8
< 9
= o 1077 10-8 1072
c
s -1
R R ek 10-° 10-1° 1073
27 zE 29 210 211 212 27 23 29 210 21] 212 27 za 29 210 2]1 212 z7 23 29 2]0 21] 212
Width Width Width Width
Word Embeddin: Attention Weights FFN Outputs Output Logits
~ 10° — 9 103 9 107° “ 10° P 9
—_— ep
= s
& s 1076 e
-'|= 107! s 10-5 107t
T e«
= 8 1077
= 9
=102 10 1077 1072
= 1 10°°
5 g
= 1073 10-° 10-° 1073
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
Depth Depth Depth Depth

Figure 17: Coordinate check plots for Sophia optimizer under SP (top row); uP (middle row); depth
scaling (bottom row) for Llama2 model.

Table 19: Validation loss for increasing model width and different learning rates for Sophia on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

5x 1077 7.19403 | 6.99576 | 6.68992 | 6.60376 | 6.31375
3x10° 1 6.17604 | 5.90826 | 5.80694 5.6738 5.71962
1x1071 4.14122 | 3.83654 | 3.75926 | 3.67419 | 3.62891
7Tx 10?2 442758 | 431702 | 4.05756 | 3.93561 | 3.94189
5x 107 4.76632 | 451022 | 4.41358 | 4.34452 | 4.30914
3x10°7 4.82305 | 4.79592 | 4.73067 | 4.67473 | 4.74689

26

	Introduction
	Preliminaries
	Background
	Maximal Update Parametrization (P)
	Spectral Conditions for Feature Learning
	Theory to practice

	Deriving P using Spectral Scaling Conditions
	Generic Framework
	P for AdamW
	P for LAMB
	P for Sophia
	P for Shampoo

	Numerical Results
	Conclusion
	Deriving P
	P for ADOPT
	P for Shampoo (Detailed)
	P for Muon

	Simulations
	Discussions
	P on NanoGPT
	AdamW Optimizer
	ADOPT Optimizer
	Sophia Optimizer
	LAMB Optimizer
	Shampoo Optimizer

	P on Llama2
	AdamW
	ADOPT
	LAMB
	Sophia

