
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXTENDING µP: SPECTRAL CONDITIONS FOR
FEATURE LEARNING ACROSS OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Several variations of adaptive first-order and second-order optimization methods
have been proposed to accelerate and scale the training of large language mod-
els. The performance of these optimization routines is highly sensitive to the
choice of hyperparameters (HPs), which are computationally expensive to tune
for large-scale models. Maximal update parameterization (µP) is a set of scal-
ing rules which aims to make the optimal HPs independent of the model size,
thereby allowing the HPs tuned on a smaller (computationally cheaper) model to
be transferred to train a larger, target model. Despite promising results for SGD
and Adam, deriving µP for other optimizers is challenging because the underlying
tensor programming approach is difficult to grasp. Building on recent work that
introduced spectral conditions as an alternative to tensor programs, we propose a
novel framework to derive µP for a broader class of optimizers, including AdamW,
ADOPT, LAMB, Sophia, Shampoo and Muon. We implement our µP derivations
on multiple benchmark models and demonstrate zero-shot learning rate transfer
across increasing model width for the above optimizers. Further, we provide em-
pirical insights into depth-scaling parameterization for these optimizers.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable progress in generative AI, yet their per-
formance and reproducibility depend on many interacting factors. A key aspect of training LLMs is
the optimization routine, which can become unstable as models grow in size and complexity. To im-
prove stability and efficiency, several modifications to existing optimizers have been proposed. For
example, LAMB (You et al., 2019) proposes a layer-wise adaptive optimization routine to reduce
the computational time required for training deep neural networks over large mini-batches, while
Sophia (Liu et al., 2023) is a light-weight second-order method which achieves faster convergence
than Adam and is more robust to non-convex landscapes. Muon is another recent optimizer designed
explicitly for scaling with model size (Jordan et al., 2024; Liu et al., 2025; Bernstein, 2025).

Although these recent algorithms demonstrate strong performance, the computational overhead of
hyperparameter (HP) tuning poses a fundamental scalability bottleneck for training LLMs. To ad-
dress this challenge, practitioners have heuristically tuned HPs on smaller models to guide the search
for optimal configurations in larger models. Recent works (Yang et al., 2021; Yang & Hu, 2020) have
formalized this approach by proposing a zero-shot HP transfer algorithm based on maximal update
parameterization (µP), which stabilizes feature learning across different model widths. µP is im-
plemented by carefully scaling the weights and HPs proportional to the model width, with scaling
factors tailored to the specific architecture and optimization algorithm. Under µP, feature learning
is stable throughout the training process and HPs are stable across increasing model width.

For the above reasons, several recent works have derived and incorporated µP for different models
(Zheng et al., 2025; Thérien et al.) and optimization algorithms (Blake et al., 2025b; Ishikawa
& Karakida). Fig. 1 demonstrates the increased training stability and predictability after µP is
incorporated in Sophia. Fig. 1 (left) shows that the relative mean of different feature vectors remains
stable across increasing model width, thereby ensuring maximal (weights not decreasing to 0) and
stable (weights not diverging) feature learning under µP. Fig. 1 (middle) demonstrates zero-shot
learning rate transfer across model widths where the best validation loss is obtained at learning rate
0.1 for all widths. Finally, Fig. 1 (right) demonstrates the “wider is always better” property where
the training loss improves consistently with increasing model width under µP.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While µP delivers strong results, it is tedious to implement in existing large codebases and difficult
to understand in practice. To address this, authors in (Yang et al., 2023a) proposed simpler spectral
scaling conditions on the weight matrices that lead to the same width-independent and maximal
feature learning properties of µP. This work focuses on using the more tractable spectral conditions
to derive µP for a wide range of optimizers. Despite being more intuitive, using spectral conditions
to derive µP is not trivial and the analysis for each adaptive optimizer is different and requires a
careful study of the order-of-magnitude of the coefficient terms that scale the gradients.

Our contributions are as follows: (1) we propose a general framework to derive µP using a novel
spectral scaling approach; (2) we use the proposed framework to analytically derive µP for several
adaptive first and second-order optimizers (AdamW, ADOPT, LAMB, Sophia, Shampoo, Muon); (3)
we implement µP for the above optimizers and validate our implementation by demonstrating zero-
shot HP transfer (specifically of the optimal learning rate) across model width on benchmark LLMs
(NanoGPT (Karpathy, 2022); Llama2 (Touvron et al., 2023)); and (4) we provide an empirical study
of zero-shot HP transfer across model depth for these optimizers to motivate future work.

Figure 1: µP for Sophia (trained on Llama2) - Coordinate check plots for the word embedding and
output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);

Decreasing training loss with increasing model width (right).

2 PRELIMINARIES

The lp−norm of a vector x ∈ Rn is defined as ||x||p := (
∑n

i=1 |xi|p)
1/p. For a matrix A ∈

Rn×n, Aα =
∑

i λ
α
eiuiu

T
i where (λei ,ui) are the i−th eigen pair. The spectral norm of a matrix

A ∈ Rm×n is defined as ||A||∗ := maxx∈Rn\{0}
||Ax||2
||x||2 , and the Frobenius norm is defined as

||A||F :=
√∑m

i=1

∑n
j=1 |Ai,j |2 (Strang, 2012; Meyer, 2023). If r denotes the rank of matrix A,

then ||A||∗ ≤ ||A||F ≤
√
r||A||∗. If a matrix A ∈ Rm×n can be written as an outer product of

some vectors u ∈ Rm and v ∈ Rn, that is, A = uvT then matrix A is a rank one matrix and

||A||∗ = ||A||F = ||u||2 · ||v||2. (1)

For any symmetric matrix, the spectral norm is equal to the absolute value of the maximum eigen
value. Therefore, for p ∈ R, for a symmetric rank one matrix A = uuT ∈ Rn×n,

||Ap||∗ = ||A||p∗. (2)

A sequence of random vectors {xi ∈ Rn}∞i=1 is said to have Θ(nα)-sized coordinates if there exists

constants A,B such that Anα ≤
√

||xi||22
n ≤ Bnα for all i, and for sufficiently large n.

3 BACKGROUND

In Sections 3, 4 and Appendix A, µP is derived for a linear MLP trained with a batch size of 1,
similar to the model used in (Yang et al., 2023a). Let us consider an MLP with L layers. Let
x ∈ Rn0 denote the input vector and Wl ∈ Rnl×nl−1 denote the weight matrix for the l−th layer of
the model. Then the feature vector hl ∈ Rnl for the input x is given as

hl(x) = Wlhl−1(x), ∀l = 1, 2, . . . , L (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where h0(x) = x. Let L = g(hL(x),y) denote the loss, where g : Rn0 × RnL → R is a loss
function, y ∈ RnL is the target vector corresponding to the input x and hL(x) ∈ RnL is the output
vector returned by the MLP. After one step of training, the change in the weight matrices is typically
a function, Ψ(·), of the history of the gradients. Then, the change in weights from time instant t to
t+ 1 can be written using the following generic update rule,

W
(t+1)
l = W

(t)
l − η(t+1)Ψ({∇

W
(i)
l

L}ti=1) (4)

where η(t+1) is the learning rate at time instant t + 1. We specify the forms of Ψ(·) for different
optimizers in Table 1. To reduce cumbersome notation, we omit time indices in the remaining
sections unless their inclusion is necessary for clarity. This will not affect the derivation of µP as
it is sufficient to analyze a single step of rule (4) to determine the correct scaling laws (Yang et al.,
2021; Blake et al., 2025a). Using eqs. (3) and (4) the change in weights and feature vectors for any
layer l, after one training step can be written as
∆Wl = −ηΨ({∇Wl

L}) and ∆hl(x) = ∆Wlhl−1(x) + ∆Wl∆hl−1(x) +Wl∆hl−1(x).

Optimizer Ψ(·)

AdamW / ADOPT
m̂(t)

√
v̂(t) + ϵ

+ λW
(t)
l

Sophia clip
(

m(t)

max{γh(t), ϵ}
, 1

)
+ λW

(t)
l

LAMB
ϕ(||W(t)

l ||F)
||r(t)l + λW

(t)
l ||F

(
r
(t)
l + λW

(t)
l

)
Shampoo (L(t))−1/4 ∇

W
(t)
l

L (R(t))−1/4

Muon
√

nl

nl−1
O

(t)
l

Table 1: Values of Ψ(·) for different optimizers. Auxiliary variables are defined in Section 4 and
Appendix A.

3.1 MAXIMAL UPDATE PARAMETRIZATION (µP)

Authors in (Yang & Hu, 2020; Yang et al., 2021) proposed µP to ensure that overparameterized
models do not learn trivial features, or that the feature values do not blow up with increasing model
width. In practice, µP is implemented via the abc-parameterization (Yang & Hu, 2020) which en-
sures that the MLP weights, their initial variance and the learning rate are appropriately scaled with
respect to the model width. In Yang & Hu (2020), the abc-parameterization was introduced for
MLPs where the hidden layers have the same width, that is, nl−1 = nl = n for l = 2, . . . , L − 1.
For simplicity, it was assumed that the inputs and outputs are scalars. Then, for each layer, the set
of parameters {al, bl}Ll=1 ∪ {c} comprise the abc-parameterization to

1. Initialize and scale weight matrices at every layer as Wl = n−al [w
(i,j)
l], where w

(i,j)
l ∼

N (0, n−2blσ2)

2. Scale the learning rate such that ∆Wl = −η n−c Ψ({∇Wl
L})

where the scale of initial variance, σ2, and the learning rate, η, is assumed to be width-independent.
As emphasized in Section 1, the theoretical principles behind µP can be difficult to grasp. Recog-
nizing these challenges, (Yang et al., 2023a) provided the following equivalent conditions for µP

||hl(x)||2 = Θ(
√
nl) and ||∆hl||2 = Θ(

√
nl), for l = 1, 2, . . . , L− 1. (C.1.)

The above conditions concisely represent the requirements of µP.

3.2 SPECTRAL CONDITIONS FOR FEATURE LEARNING

In (Yang et al., 2023a), the authors futher argued that conditions (C.1.) can be ensured by the
following spectral scaling conditions on the weight matrices and their one step update,

||Wl||∗ = Θ

(√
nl

nl−1

)
and ||∆Wl||∗ = Θ

(√
nl

nl−1

)
, for l = 1, 2, . . . , L. (C.2.)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The above spectral scaling conditions hold for any optimizer, and in the next section we present a
framework to derive µP for any arbitrary optimizer using conditions (C.2.).

3.3 THEORY TO PRACTICE

While the µP scalings in Table 2 are derived for the model described in the beginning of Section 3,
empirical results in Fig. 2 and Fig. 3 show that the derivations also hold for more practical, complex
models. This section lists the assumptions required for the derived scalings to hold in practice .

We first need to justify that deriving µP based on one time step analysis recursively yields the same
scaling in the following time steps. This holds if the order of magnitude of the norms remain the
same after the updates are performed, and this is formalized in Assumption 1. Note that violating
Assumption 1 will require exact cancellation which is rare to observe in practice and can be easily
avoided by adding small randomness to the learning rate (Yang et al., 2023a).

Assumption 1 The weight updates do not cancel initial quantities.

||Wl +∆Wl||∗ = Θ(||Wl||∗ + ||∆Wl||∗)
||hl(x) + ∆hl(x)||2 = Θ(||hl(x)||2 + ||∆hl(x)||2).

In practice, nonlinear activation functions, ϕ(·), act on incoming feature vectors from the previous
layer, thereby changing (3) to hl(x) = Wlϕ(hl−1(x)). Our analysis directly translates to activation
functions that preserve the order of magnitude of the inputs, as formalized in Assumption 2, and this
phenomenon is observed for most commonly used activations which are designed to prevent the out-
puts from diverging or vanishing to 0. Additionally, Assumption 2 also holds for most transformer
layers where the activation functions are preceded by layer normalization, because the normalization
maps the vectors to nonnegative constants.

Assumption 2 If a nonlinear activation function ϕ(·) is added to each layer of the MLP, then

||ϕ(hl(x))||2 = Θ(||hl(x)||2).
Finally, we require mild assumptions on the batch size, as stated in Assumption 3. Mathematically,
Assumption 3 is required to ensure that the sub-multiplicative property of norms doesn’t result in a
loose bound for the derivations in Section 4 to hold in practice. Intuitively, Assumption 3 holds if
the update matrix ∆Wl has a low rank even for large batch sizes. We refer the reader to (Yang et al.,
2023a, Figure 1) for empirical observations of low-rank behavior of update matrices.

Assumption 3 The batch size, B, is fixed and independent of the width, that is, B = Θ(1). If i
denotes the index of a training sample in the batch then,

∥∆Wlhl(xi)∥2 = Θ

(∥∥∥∥ 1

B
∆W

(i)
l hl(xi)

∥∥∥∥
2

)
.

Remark 1 We note that Assumption 3 constitutes a limitation of µP as it implies a fixed batch size
across model width. This is often suboptimal, as the critical batch size typically increases with model
size (McCandlish et al., 2018; Kaplan et al., 2020). In practice, however, this can be mitigated by
first tuning the smaller proxy model with a fixed batch size B. When transferring to larger models,
one can increase the batch size to improve parallelization efficiency, provided the learning rate is
adjusted accordingly. Standard heuristics for this adjustment include the linear scaling rule (Goyal
et al., 2017) or square root scaling (Krizhevsky, 2014; Hoffer et al., 2017).

4 DERIVING µP USING SPECTRAL SCALING CONDITIONS

As discussed in Section 3.1, deriving µP for a particular model and optimizer boils down to deter-
mining the scaling parameters in abc-parameterization, or an equivalent form. We propose a frame-
work which only utilizes the spectral scaling conditions (C.2.) to derive the abc-parameterization.
The typical approach to derive µP is to determine the proper scaling factors for a one step gradient
update, and then argue recursively that for stable input vectors under µP, the output vectors are also
stable, independent of the time (Assumption 1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 GENERIC FRAMEWORK

Scaling of Model Weights and Initial Variance:

The scaling factors for the model weights and their initial variance, that is, akin to parameters
{al, bl}Ll=1 in the abc-parameterization, can be computed by satisfying the condition on ||Wl||∗
in (C.2.). More rigorously, let us define the model weights as Wl = σlW̃l ∈ Rnl×nl−1 where the
elements of W̃l are sampled from some initial distribution with scaled variance, n−2blσ2. For ease
of theoretical analysis, we fix bl = 0 for all layers. Then, ||Wl||∗ = σl||W̃l||∗. Since ||W̃l||∗
is a random matrix with unit variance, existing results in random matrix theory can be leveraged
to deduce the scaling of the spectral norm in terms of matrix dimensions (Rudelson & Vershynin,
2010) Vershynin (2018). Then, σl can be computed by equating σl||W̃l||∗ = Θ

(√
nl/nl−1

)
.

Scaling of Learning Rate:

The scaling factor for the learning rate, akin to parameter c in abc-parameterization, is computed by
satisfying the condition on ||∆Wl||∗ in (C.2.). This implies that the generic update rule in eq. (4)
should be equated as,

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2 ||Ψ(∇Wl
L) ||∗ = Θ

(√
nl

nl−1

)
, (5)

where the scaling constants c1 and c2 are determined based on the exact nature of Ψ(·).

Input Weights Output Weights Hidden Weights

Init. Var. 1 (1
nl−1

) 1 (1
n2
l−1

) 1 (1
nl−1

)

Multiplier 1√
nl−1

(1) 1
nl−1

(1) 1√
nl−1

(1)

AdamW / ADOPT 1 (1) 1
nl−1

(1
nl−1

) 1
nl−1

(1
nl−1

)

Sophia LR 1 (−) 1
nl−1

(−) 1
nl−1

(−)

LAMB LR 1 (−) 1 (−) 1 (−)

Shampoo LR
√
nl (−) 1√

nl−1
(−)

√
nl

nl−1
(−)

Muon LR (designed for hidden layers only) NA NA 1 (−)

Table 2: Comparison of µP from spectral conditions (black) vs. tensor programs (Yang et al., 2021,
Table 3) (red).

Discussion: Observe that the scaling of model weights and initial variance is only dependent on
the model architecture, not the optimization routine. Therefore, in the rest of this work we use the
linear MLP described in Section 3 as our fixed model architecture and assume that the weights are
initialized using standard normal distribution. Since the spectral norm of a random matrix with
unit variance scales ≈ (

√
nl +

√
nl−1), the appropriate scaling factor is computed to be σl =

Θ

(
1√
nl−1

min

{
1,
√

nl

nl−1

})
(Yang et al., 2023a). Note that the initial variance is fixed as 1 for

the ease of theoretical analysis. In practice, to increase numerical stability, the variance can be set
to σ2

l while the weight multiplier can be fixed to 1, for normal distribution.

Further, observe that eq. (5) computes separate scaling factors for the input and output dimensions
of the weight matrices, that is, using spectral scaling conditions to derive µP allows us to collec-
tively analyze the different types of layers (input, output and hidden layers). We recommend first
determining the scaling factors c1 and c2 by removing additional HPs, such as weight-decay, epsilon
for numerical stability etc., from the update rule because they typically do not have a comparable
order of magnitude to other terms. In case of low-precision training (Blake et al., 2025a), these HPs
can be scaled after c1 and c2 have been computed, as demonstrated at the end of Section 4.2.

Finally, we want to highlight that while there is no difference in the correctness and rigor of using
either a tensor programming approach or the proposed spectral scaling approach, the latter is more
intuitive and therefore, makes it easier to adopt and reason about µP for a wide class of optimizers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Additionally, the rich literature on spectral norms and their properties can be leveraged to analyze
different adaptive optimization routines, as will be demonstrated in the following sections.

In Section 4.2, we first demonstrate how to utilize the above framework by deriving µP for AdamW,
and corroborate our results with the µP scalings reported in literature (Yang et al., 2021). We then
derive µP for optimizers - ADOPT, LAMB, Sophia, Shampoo and Muon, which have shown promis-
ing results for training LLMs. Our results are summarized in Table 2 and in Result 4.1. Figs. 2 and
3 demonstrate zero-shot learning rate transfer across model widths for different optimizers, under
the derived µP scalings.

Figure 2: (NanoGPT) Mean
validation loss for increas-
ing model width and different
learning rates across four op-
timizers: ADOPT (top left),
LAMB (top right), Sophia
(bottom left), and Shampoo
(bottom right). The plots
demonstrate zero-shot learn-
ing rate transfer under µP (Ta-
ble 2).

Result: Under standing assumptions, for a linear MLP with L layers, if the
weight matrices Wl = σlW̃l, l = 1, 2, . . . L are initialized as W̃ i,j ∼
N (0, 1), then the spectral conditions (C.2.) are satisfied for AdamW, ADOPT
and Sophia if

σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ

(
1

nl−1

)
,

for LAMB and Muon if

σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ(1) ,

and for Shampoo if

σl = Θ

(
1

√
nl−1

min

{
1,

√
nl

nl−1

})
; η = Θ

(√
nl

nl−1

)
,

where nl−1 = 1 for input weights and nl = 1 for output weights.

Remark 2 For a linear MLP trained with a batch size of 1, the gradient matrix is a rank one matrix
because it can be written as an outer product of two vectors, ∇Wl

L = ∇hl
L · hT

l−1. Therefore,
||∇Wl

L||∗ = ||∇Wl
L||F from property (1). (See discussion in (Yang et al., 2023a, p. 9))

Remark 3 For a linear MLP trained with a batch size of 1, it can be shown using first order Taylor
series expansion that ||∇Wl

L||∗ = Θ(
√

nl−1

nl
) (Yang et al., 2023a, p. 9). Further, since ∇Wl

L is

a rank one matrix, ||∇Wl
L||∗ = ||∇hl

L||2||hl−1||2 = ||∇hl
L||2Θ(

√
nl−1), using property (1) and

condition (C.1.). Then, ||∇hl
L||2 = Θ(1/

√
nl).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: (Llama2) Validation loss for increasing model width and different learning rates across
three optimizers: AdamW (left), ADOPT (middle), and LAMB (right). The plots demonstrate

zero-shot learning rate transfer under µP (Table 2).

4.2 µP FOR ADAMW

Recall the update rule for AdamW (Loshchilov & Hutter, 2017),

W
(t+1)
l = W

(t)
l − η(t+1)

(
m̂(t)

√
v̂(t) + ϵ

+ λW
(t)
l

)
(AdamW)

where m̂(t) =
m(t)

(1− βt
1)

=
1

(1− βt
1)

[
β1m

(t−1) + (1− β1)∇W
(t)
l

L
]

; m(0) = 0

v̂(t) =
v(t)

(1− βt
2)

=
1

(1− βt
2)

[
β2v

(t−1) + (1− β2)(∇W
(t)
l

L)2
]

; v(0) = 0

From the spectral scaling condition in eq. (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥ m̂√
v̂ + ϵ

+ λWl

∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
. (6)

Similar to previous works, we first analyze AdamW for β1 = β2 = ϵ = 0. Then, the above update
rule reduces to signSGD (Bernstein et al., 2018). Additionally, since the gradient term dominates the
weight decay term, we ignore the latter because we are only concerned with an order-of-magnitude
calculation. Therefore, (6) reduces to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2 ||sign(∇Wl
L)||∗ ≈ η(nl)

−c1(nl−1)
−c2 ||sign(∇Wl

L)||F
where the last equation follows from Remark 2. From the definition of the Frobenius norm, we have
||1nl×nl−1

||2F =
∑nl

i=1

∑nl−1

j=i 1 = nlnl−1. This gives

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2Θ
(√

nlnl−1

)
= Θ

(
n
1/2−c1
l n

1/2−c2
l−1

)
. (7)

By fixing c1 = 0 and c2 = 1, the spectral scaling condition in eq.(5) is satisfied. Therefore,
the learning rate for AdamW should be scaled by a factor of 1/nl−1. Observe that this scaling is
consistent with the µP derived using the tensor programming approach (Yang et al., 2021, Table
3), and this equivalence is highlighted in Table 2. Fig. 4 further validates our derivation via the
coordinate check plots and the “wider is better” phenomenon observed in the plot on the right.
Since the update rule of ADOPT is similar to AdamW, we discuss µP for ADOPT in Appendix A.

Scaling of Momentum, Adaptive Noise, and Weight Decay terms:

Typically, HPs like β1 and β2 are width-independent and have Θ(1) order of magnitude. Thus,
these parameters are not dominant when analyzing the momentum terms and do not require separate
scaling rules. Similarly, the adaptive noise term ϵ requires no scaling if it is fixed at a very small
value. However, empirical studies show that ϵ may affect the performance of µP under certain
training regimes (Blake et al., 2025a; Dey et al., 2025). In such cases the scaling law for ϵ can
be derived as follows. From (AdamW), we observe that for the above scaling law to hold, the
spectral norm of ϵ should have the same order of magnitude as the spectral norm of

√
v̂. Now,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

||
√
v̂||∗ = ||∇Wl

L||∗ = Θ(
√
nl−1/nl) and ||ϵ1nl×nl−1

||∗ ≈ ϵ||1nl×nl−1
||F = ϵΘ(

√
nlnl−1).

Therefore, a factor of 1
nl

scales ϵ to the appropriate order of magnitude.

On the other hand, for the derived µP scaling to hold for (AdamW), the spectral norm of the weight
decay term, ||λWl||∗, must have the same order of magnitude as the spectral norm of the gradient
term, which is Θ(

√
nlnl−1). Since, ||λWl||∗ = λ||Wl||∗ = λΘ(

√
nl/nl−1), where the last equal-

ity follows from condition (C.2.), then λ should be scaled by a factor of nl−1. The above results are
consistent with Table 1 in (Dey et al., 2025).

4.3 µP FOR LAMB

Recall the update rule for LAMB (You et al., 2019),

W
(t+1)
l = W

(t)
l − η(t+1) ϕ(||W(t)

l ||F)
||r(t)l + λW

(t)
l ||F

(
r
(t)
l + λW

(t)
l

)
(LAMB)

where r
(t)
l = m̂(t)

√
v̂(t)+ϵ

. In (LAMB), the gradient in each layer of the model is scaled by terms of

orders ||Wl||F
||rl+λWl||F . From condition (C.2.), we know ||Wl||F ≈ ||Wl||∗ = Θ

(√
nl

nl−1

)
. Observe

that the term in the denominator is the update rule for (AdamW) and we can use the result in (7) to
determine its order of magnitude. Therefore,

||rl + λWl||F = Θ
(√

nlnl−1

)
and

||Wl||F
||rl + λWl||F

= Θ

(
1

nl−1

)
. (8)

Then, from the spectral scaling condition in eq. (5), we need to find c1, c2 ∈ R such that

||∆W||∗ ≈ η(nl)
−c1(nl−1)

−c2Θ

(
1

nl−1

)
||rl + λWl||F

= η(nl)
−c1(nl−1)

−c2Θ

(
1

nl−1

)
Θ
(√

nlnl−1

)
= η(nl)

−c1(nl−1)
−c2Θ

(√
nl

nl−1

)
where the second equality follows using the same reasoning as for AdamW. Then condition (5) holds
if c1 = c2 = 0.Note that by invoking result (7) from AdamW’s analysis to determine the order of
magnitude of ||rl+λWl||F in (8), we implicitly assume that the HPs λ and ϵ have been appropriately
scaled following the analysis in Section 4.2. Therefore, the HPs in (LAMB) follow the same scaling
rule as (AdamW).

Insight 1 The above derivation suggests that the update rule for LAMB is implicitly independent of
width scaling. Intuitively, this result holds because the layerwise gradient scaling in (LAMB) causes
the effective learning rate to be different for each layer.

Figure 4: (Llama2 model) AdamW optimizer - Coordinate check plots under standard parame-
terization (top left) and under µP (bottom left) for the word embedding and output logits layers;
Decreasing training loss with increasing model width under µP (right).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 µP FOR SOPHIA

Recall the update rule for Sophia (Liu et al., 2023),

W
(t+1)
l = W

(t)
l − η(t+1) clip

(
m(t)

max {γh(t), ϵ}
, 1

)
− η(t)λW

(t)
l (Sophia)

where h(t) is a momentum-based estimate of the diagonal vector of the Hessian at time t. From the
spectral scaling condition in (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥ clip
(

m(t)

max {γh(t), ϵ}
, 1

)
− λW

(t)
l

∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
.

For analysis, we consider β1 = β2 = ϵ = 0, and since the weight decay term is usually very small,
the above weight update simplifies to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥∥ clip

(
∇Wl

L
γ∇2

Wl
L
, 1

)∥∥∥∥∥
∗

≈ η(nl)
−c1(nl−1)

−c2

∥∥∥∥∥ clip

(
∇Wl

L
γ|∇2

Wl
L|

, 1

)∥∥∥∥∥
F

where we take the modulus in the denominator because Sophia avoids negative diagonal terms in
the Hessian (thereby avoiding convergence to a saddle point; see discussion in (Liu et al., 2023,
pg. 6)). Observe that the clip(·, 1) bounds the coordinate-wise weight updates as, |[∆Wl]i, j| ≤ 1.
Therefore, we can compute an upper bound for the Frobenius norm and get

||∆Wl||∗ ≤ η(nl)
−c1(nl−1)

−c2
1

γ
Θ(

√
nlnl−1).

Then, eq. (5) is satisfied by fixing c1 = 0 and c2 = 1, resulting in the same µP scaling as AdamW.
Note that the momentum terms β1 and β2 do not require any additional scaling because they have
Θ(1), width-indepedent order of magnitude, where as the HPs λ and ϵ follow the same scaling as
the HPs of AdamW because Sophia and AdamW have the same µP scaling.

Insight 2 We provide an intuitive explanation for this result. Sophia uses signSGD as the default
method to handle negative Hessian terms (to avoid convergence to a saddle point), thereby mirroring
the analysis for AdamW for such cases. Additionally, when γ = 1, all the elements in the weight
update are clipped to 1, and the upper bound holds exactly. Thus, we get the same scaling as
AdamW.

In practice, the authors suggest to choose γ such that 10%−50% of the parameters are not clipped.
Therefore, for each term which is not clipped, the above bound incurs an error of less than 1.
However, as demonstrated in our simulations (Fig. 2), for the typical values of γ used in practice,
the µP scaling derived based on the above calculation works well.

Fig. 1 further validates the µP derivation for Sophia via stable coordinate check plots (Fig. 1 (left))
and a consistently improving training loss across model widths (Fig. 1 (right)).

4.5 µP FOR SHAMPOO

Recall the update rule for Shampoo (Gupta et al., 2018),

W
(t+1)
l = W

(t)
l − η(t+1)

(
L
(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4

(Shampoo)

where for some δ > 0, L
(t)
l = L

(t−1)
l +∇Wl

L · ∇Wl
LT ; L

(0)
l = δI ∈ Rnl×nl

R
(t)
l = R

(t−1)
l +∇Wl

LT · ∇Wl
L ; R

(0)
l = δI ∈ Rnl−1×nl−1

From the spectral scaling condition in (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥(L(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4
∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

For one-step analysis, let δ = 0. Then the above condition reduces to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2
∥∥∥(∇Wl

L · ∇Wl
LT)−1/4 ∇Wl

L
(
∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(1)
≤ η(nl)

−c1(nl−1)
−c2

∥∥∥(∇Wl
L · ∇Wl

LT)−1/4
∥∥∥
∗
∥∇Wl

L∥∗
∥∥∥(∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(2)
= ηΘ

(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
∥∥∥(∇hl

L · hT
l−1hl−1 · ∇hl

LT)−1/4
∥∥∥
∗

∥∥∥(hl−1 · ∇hl
LT∇hl

L · hT
l−1

)−1/4
∥∥∥
∗

(3)
= ηΘ

(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
Θ(n

−1/4
l−1)

∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗
Θ(n

1/4
l)

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

(4)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
||∇hl

L||−1/2
2 ||hl−1||−1/2

2

(5)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
Θ(n

1/4
l)Θ(n

−1/4
l−1) = ηΘ

(
(nl)

−c1(nl−1)
−c2
)

where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 3,
(3) and (5) follow from condition (C.1.) and Remark 3, (4) follows from property (1) and property
(2). Therefore, condition (5) is satisfied by fixing c1 = −1/2 and c2 = 1/2. Note that the δ HP
in (Shampoo) is akin to the momentum HPs in (AdamW) and have a Θ(1) order of magnitude.
Therefore, δ doesn’t contribute to the calculations of Ll and Rl, and it doesn’t require any further
scaling.

Muon: Muon was first introduced in (Jordan et al., 2024) and empirical results have demonstrated
its scalability for LLMs (Liu et al., 2025). (Jordan et al., 2024) also showed the equivalence between
Muon and Shampoo if the preconditioner accumulation is removed from (Shampoo). Therefore, the
original version of Muon (Jordan et al., 2024) follows the same µP scaling as Shampoo. However,
a more recent version of Muon (Bernstein, 2025) incorporates width-independent scaling of the
learning rate explicitly in the update rule itself (Table 1). We analyze this version of Muon in
Appendix A and show that no further scaling is required for stable feature learning. This conclusion
is added to Result 4.1.

5 NUMERICAL RESULTS

We test and validate our derivations on the NanoGPT model (Karpathy (2022)) and the Llama2
model (Touvron et al. (2023)). As demonstrated in Figs. 2 and 3, our simulation results validate
the µP derivations in Table 2 across the different optimizers. Extensive numerical results, including
training settings, HP values, depth scaling studies, and validation loss values for the different opti-
mizers and model sizes can be found in Appendix B. The simulations on NanoGPT were performed
using four A100 GPUs of the Argonne Leadership Computing Facility’s Polaris supercomputer
(Leadership Computing Facility (b)), while the simulations on Llama2 were performed using 12
Intel Data Center GPU Max Series on the Aurora supercomputer (Leadership Computing Facility
(a)).

6 CONCLUSION

We have proposed a novel framework to derive µP using spectral scaling conditions, which are
more intuitive and easier to work with than the prevalent tensor programs. Using the proposed
framework, we have derived µP for a wide range of adaptive, first and second-order optimizers
including, AdamW, ADOPT, LAMB, Sophia, Shampoo and Muon. We have implemented µP for
the above optimizers on two benchmark LLMs, and validated our implementation by demonstrating
zero-shot learning rate transfer. Motivated by our depth-scaling simulations (Appendix B), we aim
to develop a sound theoretical framework for depth-scaling parameterization in the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jeremy Bernstein. Deriving muon. https://jeremybernste.in/writing/
deriving-muon, 2025.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International conference on ma-
chine learning, pp. 560–569. PMLR, 2018. URL https://doi.org/10.48550/arXiv.
1802.04434.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Björn Deis-
eroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-
μp: The unit-scaled maximal update parametrization. In The Thirteenth International Con-
ference on Learning Representations, 2025a. URL https://openreview.net/forum?
id=P7KRIiLM8T.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Björn Deiseroth,
Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-\µ p: The unit-
scaled maximal update parametrization. In The Thirteenth International Conference on Learning
Representations, 2025b.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025. URL https://doi.org/10.
48550/arXiv.2505.01618.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018. URL
https://doi.org/10.48550/arXiv.1802.09568.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1731–1741, 2017.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective
towards the infinite width. In The Twelfth International Conference on Learning Representations.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks. Cited on, pp. 10, 2024.
URL https://kellerjordan.github.io/posts/muon/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Argonne Leadership Computing Facility. Aurora. https://www.alcf.anl.gov/aurora, a.

Argonne Leadership Computing Facility. Polaris. https://www.alcf.anl.gov/polaris,
b.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.
URL https://doi.org/10.48550/arXiv.2305.14342.

11

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://doi.org/10.48550/arXiv.1802.04434
https://doi.org/10.48550/arXiv.1802.04434
https://openreview.net/forum?id=P7KRIiLM8T
https://openreview.net/forum?id=P7KRIiLM8T
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.1802.09568
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://www.alcf.anl.gov/aurora
https://www.alcf.anl.gov/polaris
https://doi.org/10.48550/arXiv.2305.14342

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025. URL https://doi.org/10.48550/arXiv.2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. URL https://doi.org/10.48550/arXiv.1711.05101.

Sam McCandlish, Jayesh Narang, Dario Amodei, and Jared Kaplan. An empirical model of large-
batch training. arXiv preprint arXiv:1812.06162, 2018.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singu-
lar values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In
4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602.
World Scientific, 2010.

Gilbert Strang. Linear algebra and its applications. 2012.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Naga-
hara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified
adam can converge with any β2 with the optimal rate. Advances in Neural Information Process-
ing Systems, 37:72438–72474, 2024. URL https://doi.org/10.48550/arXiv.2411.
02853.

Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and Eu-
gene Belilovsky. µ lo: Compute-efficient meta-generalization of learned optimizers. In OPT
2024: Optimization for Machine Learning. URL https://doi.org/10.48550/arXiv.
2406.00153.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020. URL https://doi.org/10.48550/arXiv.2011.14522.

Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084–17097,
2021. URL https://doi.org/10.48550/arXiv.2203.03466.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023a. URL https://doi.org/10.48550/arXiv.2310.
17813.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023b. URL https://doi.
org/10.48550/arXiv.2310.02244.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019. URL https:
//doi.org/10.48550/arXiv.1904.00962.

Chenyu Zheng, Xinyu Zhang, Rongzhen Wang, Wei Huang, Zhi Tian, Weilin
Huang, Jun Zhu, and Chongxuan Li. Scaling diffusion transformers efficiently via
$mup.arXiv preprint arXiv:2505.15270, 2025.

12

https://doi.org/10.48550/arXiv.2502.16982
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2411.02853
https://doi.org/10.48550/arXiv.2411.02853
https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.1904.00962
https://doi.org/10.48550/arXiv.1904.00962

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DERIVING µP

A.1 µP FOR ADOPT

Recall that the update rule for ADOPT is the same as AdamW. The key difference lies in the se-
quence in which the terms m̂(t) and v̂(t) are updated (Taniguchi et al. (2024)). From a theoretical
perspective, this does not change the order of magnitude of the gradient function Ψ({∇Wl

L}) from
that of AdamW, and hence, the parameterization derived for AdamW also holds for ADOPT.

A.2 µP FOR SHAMPOO (DETAILED)

We present a more detailed derivation for Shampoo in this section.

Recall the update rule for Shampoo (Gupta et al., 2018),

W
(t+1)
l = W

(t)
l − η(t+1)

(
L
(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4

(Shampoo)

where for some δ > 0, L
(t)
l = L

(t−1)
l +∇Wl

L · ∇Wl
LT ; L

(0)
l = δI ∈ Rnl×nl

R
(t)
l = R

(t−1)
l +∇Wl

LT · ∇Wl
L ; R

(0)
l = δI ∈ Rnl−1×nl−1

From the spectral scaling condition in (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥(L(t)
l

)−1/4

∇Wl
L
(
R

(t)
l

)−1/4
∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
.

For one-step analysis, let δ = 0. Then the above condition reduces to

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2
∥∥∥(∇Wl

L · ∇Wl
LT)−1/4 ∇Wl

L
(
∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(1)
≤ η(nl)

−c1(nl−1)
−c2

∥∥∥(∇Wl
L · ∇Wl

LT)−1/4
∥∥∥
∗
∥∇Wl

L∥∗
∥∥∥(∇Wl

LT · ∇Wl
L
)−1/4

∥∥∥
∗

(2)
= η(nl)

−c1(nl−1)
−c2Θ

(√
nl−1

nl

)∥∥∥(∇Wl
L · ∇Wl

LT)−1/4
∥∥∥
∗

∥∥∥(∇Wl
LT · ∇Wl

L
)−1/4

∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
∥∥∥(∇hl

L · hT
l−1hl−1 · ∇hl

LT)−1/4
∥∥∥
∗

∥∥∥(hl−1 · ∇hl
LT∇hl

L · hT
l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
∥∥∥(||hl−1||22 ∇hl

L · ∇hl
LT)−1/4

∥∥∥
∗

∥∥∥(||∇hl
L||22 hl−1 · hT

l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
||hl−1||−1/2

2∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗
||∇hl

L||−1/2
2

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

(3)
= ηΘ

(
(nl)

−c1− 1
2 (nl−1)

−c2+
1
2

)
Θ(n

−1/4
l−1) ∥(

∇hl
L · ∇hl

LT)−1/4

∗Θ(n
1/4
l)

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

= ηΘ
(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)∥∥∥(∇hl
L · ∇hl

LT)−1/4
∥∥∥
∗

∥∥∥(hl−1 · hT
l−1

)−1/4
∥∥∥
∗

(4)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
||∇hl

L||−1/2
2 ||hl−1||−1/2

2

(5)
= ηΘ

(
(nl)

−c1− 1
4 (nl−1)

−c2+
1
4

)
Θ(n

1/4
l)Θ(n

−1/4
l−1)

= ηΘ
(
(nl)

−c1(nl−1)
−c2
)

where (1) follows from sub-multiplicative property of matrix norms, (2) follows from Remark 3, (3)
and (5) follow from condition (C.1.) and Remark 3, (4) follows from property (1) and property (2).
Therefore, condition (5) is satisfied by fixing c1 = −1/2 and c2 = 1/2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 µP FOR MUON

Muon is one of the first optimizers to implicitly adopt a width-independent update rule by scaling

the learning rate with a factor of
(√

nl

nl−1

)
. Therefore, intuitively, we do not expect any further

scaling of the learning rate under µP. This conjecture is validated through the following analysis on
the most recent version of Muon.

Recall the update rule for Muon (Bernstein, 2025; Jordan et al., 2024),

W
(t+1)
l = W

(t)
l − η(t+1)

√
nl

nl−1
O

(t)
l (Muon)

where O
(t)
l = NewtonSchulz(B(t)

l)

B
(t)
l = µB

(t−1)
l +∇

W
(t)
l

L ; B
(0)
l = 0

From the spectral scaling condition in eq. (5), we need to find c1, c2 ∈ R such that

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

∥∥∥∥√ nl

nl−1
Ol

∥∥∥∥
∗
= Θ

(√
nl

nl−1

)
(9)

In this analysis we are working directly with an orthogonal matrix O
(t)
l ∈ Rnl×nl−1 and the spectral

norm of an orthogonal matrix is 1 because the modulus of all its eigen values is 1 Horn & Johnson
(2012).

||∆Wl||∗ = η(nl)
−c1(nl−1)

−c2

√
nl

nl−1

∥∥∥O(t)
l

∥∥∥
∗

= η(nl)
−c1(nl−1)

−c2

√
nl

nl−1
.

Then condition (5) holds if c1 = c2 = 0. Fig. 5 demonstrates the zero-shot learning rate transfer as
well as the ”wider is better” phenomenon for Muon.

Note that the initial implementation of Muon did not incorporate the scaling factor
(√

nl

nl−1

)
in

the update rule, but the proven equivalence between Muon and Shampoo leads to Muon having the
same µP scaling as Shampoo (Jordan et al., 2024).

Figure 5: µP for Muon (trained on Llama2) - Coordinate check plots for the word embedding and
output logits layers (left); Zero-shot learning rate transfer across increasing model width (middle);

Decreasing training loss with increasing model width (right).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B SIMULATIONS

Consistent with existing literature, we first verify µP for ADOPT, Sophia, LAMB and Shampoo
optimizers by implementing the derived parameterization scheme (Table 2) in the NanoGPT code-
base Karpathy (2022). Although prior works have already implemented µP for AdamW, we present
the results again for completeness. Table 3 lists some of the settings for our experimental setup to
test µP on NanoGPT. Further, we demonstrate the effectiveness for AdamW, ADOPT, LAMB and
Sophia on the Llama2 model, the experimental setup for which is listed in Table 15.

We also present simulation results for depth-scaling parameterization for the above optimizers on
NanoGPT, using the implementation suggested in Yang et al. (2023b) and dey2025don. Note that
deriving proper depth-scaling parameterization for different optimizers is an ongoing work, and
we only present preliminary results on the NanoGPT codebase in Section B.2 to motivate further
theoretical analysis. Table 4 lists some of the settings for our experimental setup to test the depth-
scaling parameterization.

The remainder of this section documents the simulation results for AdamW (Subsection B.2.1 and
Subsection B.3.1), ADOPT (Subsection B.2.2 and Subsection B.3.2), Sophia (Subsection B.2.3
and Subsection B.3.4), LAMB (Subsection B.2.4 and Subsection B.3.3) and Shampoo (Subsection
B.2.5) optimizers. For each optimizer we first present the coordinate check plots under standard pa-
rameterization, µP and depth-scaling parameterization. These plots serve as a quick implementation
check to monitor whether the weights blow-up, diminish to zero or remain stable with increasing
model size (see discussion in (Yang et al., 2021, Section D.1, pg. 27)). We then provide tables and
plots listing the validation loss for different learning rates, and increasing model width and model
depth. The values in the tables for NanoGPT are the average loss values observed over multiple runs.
While we do not document the standard deviations in the tables, they are highlighted in the plots.
Note that since we are using an early stopping criterion for simulations performed on NanoGPT,
we rely more on the observations gained from the validation loss data than the training loss data.
Similar validation loss tables are documented for simulations performed on Llama2.

B.1 DISCUSSIONS

Overall, it is observed that the implementation of µP following Table 2 is quite stable with increasing
model width. This is illustrated in the coordinate check plots for all the optimizers (Figs. 6 - 10
and Figs. 14 - 17). Under standard parameterization, the top row of the coordinate check plots
shows that the relative mean of the feature vectors blow-up with increasing model width. With the
incorporation of µP in the codebase, the relative mean values of the feature vectors stabilize with
increasing model width (middle row of coordinate check plots).

It is interesting to note that since the theoretical underpinnings for µP hold in infinite width (Yang
& Hu (2020)), the model width has to be “large enough” for the coordinate check plots to stabilize.
This is especially observed in the coordinate check plots for LAMB (Fig. 9 and Fig. 16) where the
mean values of the feature vectors initially increase, but gradually stabilize with increasing model
width. This phenomenon is also observed in Fig. 2 which demonstrate the zero-shot learning rate
transfer across model width on the NanoGPT model. In the minimum validation loss tables for
ADOPT (Table 7) and LAMB (Table 11) the optimal value of the learning rate gradually stabilizes
after a width of 256, whereas for AdamW (Table 5) and Sophia (Table 9) the optimal learning rate
stabilizes after a width of 128. These inconsistencies across optimizers also suggest that introducing
a “base model width” for µP scalings will introduce another HP. Therefore, we fix the value of the
base model width to 1 in our implementation. In comparison to NanoGPT, the width scaling plots
(Fig. 3) for Llama2 show that the model is “large enough” for the optimal learning rate to stabilize
from the smallest model width of 128. This is perhaps because for width of 128, the total number of
parameters in Llama2 is significantly higher than the total number of parameters in NanoGPT.

The second set of simulations empirically evaluate the performance of the depth-scaling parameteri-
zation in existing works (Yang et al. (2023b); Dey et al. (2025)). The coordinate check plots (bottom
row) for depth-scaling demonstrate that the feature vectors are stable with increasing model depth.
In the coordinate check plots for ADOPT and LAMB (Figs. 7 and 9) the feature vectors stabilize
after a depth of 16, while for AdamW, Sophia and Shampoo (Figs. 6, 8 and 10) the feature vectors
are stable for shallow depths too. This phenomenon is similar to our observations for µP, because

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the depth-scaling parameterization is also derived for an infinite depth limit (Yang et al. (2023b)).
Therefore, to prevent tuning an additional “base model depth” HP, we fix its value to 1 in our simula-
tion setup. However, the loss plots in Figs. 11, 12 and 13 do not consistently demonstrate zero-shot
learning rate transfer across increasing model depths. While the validation loss tables for AdamW
(Table 6) and Sophia (Table 10) demonstrate that the optimal value of the learning rate stabilizes
for deep models, the same is not observed for ADOPT (Table 8), LAMB (Table 12) and Shampoo
(Table 14), where the value of the optimal learning rate oscillates as the depth is increased. These
results suggest that deriving depth-scaling parameterization for different optimizers needs a more
thorough theoretical analysis. Additionally, performing simulations on a finer grid of learning rates
can also give further insights into the depth-scaling behavior.

B.2 µP ON NANOGPT

Table 3: Hyperparameter values and training settings to test µP on NanoGPT model.

Architecture NanoGPT Karpathy (2022)
Width 128 (scaled to 2048)
Depth 8

Number of heads 2
Total parameters 1.59 M (scaled to 403 M)

Dataset Tiny Shakespeare
Vocab size 65

Tokens per iteration 8192
Batch size 2

Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo

Hyperparameter search range η ∈ [2× 10−1, 2× 10−5]

Table 4: Hyperparameter values and training settings to test depth-scaling parameterization on
NanoGPT model.

Architecture NanoGPT Karpathy (2022)
Width 256
Depth 2 (scaled to 64)

Total parameters 1.6 M (scaled to 50.56 M)
Dataset Tiny Shakespeare

Vocab size 65
Tokens per iteration 8192

Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations

Optimizers AdamW / ADOPT / LAMB / Sophia / Shampoo
Hyperparameter search range η ∈ [2× 10−1, 2× 10−5]

B.2.1 ADAMW OPTIMIZER

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: Coordinate check plots for AdamW under standard parameterization (top row), µP (middle
row); depth scaling (bottom row) for NanoGPT model.

Table 5: Mean validation loss for increasing model width and different learning rates for AdamW
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 2.54111195 2.54770319 2.50132585 2.53559383 2.45719266
2× 10−2 2.57009896 2.56583707 2.57900651 2.53385917 2.51431378
2× 10−3 2.63474766 2.6022807 2.64679337 2.63449661 2.55710355
2× 10−4 3.38827054 3.5544157 3.38896998 3.44941664 3.44561863
2× 10−5 4.09221347 4.08871428 4.05257797 4.08837303 4.08405908

Table 6: Mean validation loss for increasing model depth and different learning rates for AdamW
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.53525917 2.55192765 2.53510944 2.50357556 2.51294963 2.53008548
5× 10−2 2.52700798 2.49422677 2.50334986 2.29428236 2.45176029 2.36860998
2× 10−2 2.55682977 2.52176666 2.56583563 2.30422862 2.45500112 2.5650301
2× 10−3 2.59745781 2.63078475 2.60228316 2.61588136 2.64065663 2.65051214
2× 10−4 3.41396125 3.41677833 3.55441554 3.45801504 3.43285489 3.47577778
2× 10−5 4.09297959 4.05970796 4.08871428 4.08113146 4.06712834 4.10902596

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2.2 ADOPT OPTIMIZER

Figure 7: Coordinate check plots for ADOPT optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 7: Mean validation loss for increasing model width and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 2.55120134 2.54616404 2.54178079 2.5524296 2.54457998
7× 10−2 2.48560476 2.44316975 2.37087123 2.50733534 2.50883015
2× 10−2 2.43175697 2.58847451 2.57006375 2.54323697 2.53191725
2× 10−3 2.63016931 2.6073552 2.65681744 2.66118956 2.55337548
2× 10−4 3.528404 3.49065232 3.49065232 3.42789133 3.43255997
2× 10−5 4.09183598 4.08832375 4.0521698 4.08806594 4.08391444

Table 8: Mean validation loss for increasing model depth and different learning rates for ADOPT
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.56129368 2.51452438 2.54788987 2.51456078 2.52271922 2.55469418
9× 10−2 2.48695572 2.47477563 2.53124801 2.48145302 2.50687472 2.54724765
2× 10−2 2.56718413 2.50419029 2.58847276 2.44447954 2.54996069 2.52524622
2× 10−3 2.67992798 2.62949713 2.6073552 2.60433618 2.61753988 2.6286815
2× 10−4 3.41052596 3.46538957 3.56757394 3.47856442 3.43608022 3.56190586
2× 10−5 4.09267759 4.05929391 4.08832375 4.08074443 4.06675259 4.10877307

B.2.3 SOPHIA OPTIMIZER

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: Coordinate check plots for Sophia optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 9: Mean validation loss for increasing model width and different learning rates for Sophia on
NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 3.0969398 2.57144117 2.56875261 2.62573036 2.57240287
2× 10−2 2.27450609 2.27830847 2.31632638 2.53347905 1.98427689
2× 10−3 2.5456597 2.61430057 2.5594302 2.54869485 2.65462987
2× 10−4 3.35409013 3.54614369 3.36089802 3.35862382 3.36431138
2× 10−5 4.08766381 4.08859126 4.06069756 4.08811712 4.08371623

Table 10: Mean validation loss for increasing model depth and different learning rates for Sophia
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.5213503 3.01081316 3.22649105 3.34855215 3.24310446 3.12229093
2× 10−2 2.4717048 2.27232289 2.24736114 2.47475751 2.46061246 1.93401444
2× 10−3 2.54103192 2.58136233 2.61035593 2.610612 2.45068415 2.55488427
2× 10−4 3.40887721 3.52765425 3.54587563 3.40669481 3.33997742 3.47574107
2× 10−5 4.09267314 4.06576761 4.08859126 4.08140405 4.066552 4.10874732

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2.4 LAMB OPTIMIZER

Figure 9: Coordinate check plots for LAMB optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for NanoGPT model.

Table 11: Mean validation loss for increasing model width and different learning rates for LAMB
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2× 10−1 3.3306915 2.91992474 2.75658234 2.84724092 2.84511503
2× 10−2 2.27427769 2.55330944 2.53250345 2.50694895 2.51612274
2× 10−3 2.46762419 2.42723028 2.47571055 2.49152549 2.46575729
2× 10−4 3.69672974 3.70961714 3.66877778 3.2370429 3.37923479
2× 10−5 4.16929531 4.1694754 4.1684103 4.1674579 4.16771809

Table 12: Mean validation loss for increasing model depth and different learning rates for LAMB
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2× 10−1 2.76534136 2.85949779 2.88115621 3.26932732 3.24093787 3.097018
2× 10−2 2.50858307 2.51164389 2.55355501 2.33967662 2.48308444 2.11406271
7× 10−3 2.45117172 2.46691815 2.50231234 2.45691435 2.48629936 2.45780365
2× 10−3 2.50483624 2.54284684 2.42723123 2.43291903 2.43262172 2.42000318
2× 10−4 3.6441706 3.79367606 3.70963343 3.57373738 3.61402575 3.42223287
2× 10−5 4.16981506 4.1691486 4.1694754 4.16932933 4.16817395 4.16773876

B.2.5 SHAMPOO OPTIMIZER

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: Coordinate check plots for Shampoo optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for NanoGPT model.

Table 13: Mean validation loss for increasing model width and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
1× 10−2 2.64432065 3.00841006 3.26729711 3.39512682 4.17380921
9× 10−3 2.6650331 2.89549454 3.20741065 3.45321918 3.41602135
5× 10−3 2.63122805 2.67693043 3.30215279 3.32265353 3.36052688
3× 10−3 2.67303157 2.85103401 3.37194387 3.46975843 3.49201838
1× 10−3 2.90583165 2.97975628 3.61035117 3.57224735 3.72281067

Table 14: Mean validation loss for increasing model depth and different learning rates for Shampoo
on NanoGPT model. The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
3× 10−2 2.83468819 2.94637481 3.3811605 3.27378623 3.32534583 3.31375853
1× 10−2 2.63917089 2.6383814 2.66823014 3.2278808 3.24864435 3.20088768
7× 10−3 2.64190022 2.61007253 2.73991227 3.12863938 3.20985778 3.37485345
5× 10−3 2.77703945 2.72295157 2.72794461 2.93629122 3.25431808 3.37258538
3× 10−3 2.7143542 2.97368789 2.85365486 3.32030662 3.27988537 3.40830247

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Mean validation loss for increasing model depth and different learning rates for AdamW
(left) and ADOPT (right) on NanoGPT model.

Figure 12: Mean validation loss for increasing model depth and different learning rates for LAMB
(left) and Sophia (right) on NanoGPT model.

Figure 13: Mean validation loss for increasing model depth and different learning rates for
Shampoo on NanoGPT model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.3 µP ON LLAMA2

Table 15: Hyperparameter values and training settings to test µP on Llama2 model.

Architecture Llama 2
Width 256 (scaled to 2048)
Depth 16

Number of attention heads 32
Total parameters 154M (scaled to 1.38 B)

Dataset Wikitext-103
Sequence length 4096

Vocab size 32000
Training set tokens 100M

Batch size 192
Training steps 1026
LR decay style cosine rule, 51 steps warm-up

Optimizer AdamW / ADOPT / LAMB / Sophia
Weight decay 0.1

Dropout 0.0
µP HP search range η ∈ [5× 10−1, 5× 10−4]

B.3.1 ADAMW

Figure 14: Coordinate check plots for AdamW optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for Llama2 model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 16: Validation loss for increasing model width and different learning rates for AdamW on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 4.55491 4.02676 3.81251 3.73573 3.79477
3× 10−1 4.24978 3.90242 3.83252 3.89484 3.75046
1× 10−1 4.48696 4.21314 4.05265 4.02101 3.95419
5× 10−2 4.70421 4.4353 4.39753 4.34169 4.31635
1× 10−1 5.57795 5.56284 5.56173 5.55771 5.55774

B.3.2 ADOPT

Figure 15: Coordinate check plots for ADOPT optimizer under SP (top row); µP (middle row);
depth scaling (bottom row) for Llama2 model.

Table 17: Validation loss for increasing model width and different learning rates for ADOPT on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 4.39033 4.02007 3.83932 3.77732 3.76814
3× 10−1 4.11789 3.85536 3.72552 3.67802 3.66973
2× 10−1 4.23765 3.87949 3.78242 3.80016 3.78846
1× 10−1 4.32335 4.07597 3.9912 3.91654 3.95519
7× 10−2 4.43819 4.22574 4.13565 4.06852 4.0683
5× 10−2 4.64121 4.38096 4.31582 4.22186 4.21248

B.3.3 LAMB

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 16: Coordinate check plots for LAMB optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for Llama2 model.

Table 18: Validation loss for increasing model width and different learning rates for LAMB on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
3× 10−2 7.18452 6.35059 6.0384 6.52966 6.13429
1× 10−2 5.58878 5.5638 5.56049 5.79174 6.01439
5× 10−3 6.57476 6.60454 6.66398 6.98093 7.0471
1× 10−3 10.25112 10.23998 10.22575 10.21199 10.19599
5× 10−4 10.32997 10.32776 10.32398 10.32062 10.31677

B.3.4 SOPHIA

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 17: Coordinate check plots for Sophia optimizer under SP (top row); µP (middle row); depth
scaling (bottom row) for Llama2 model.

Table 19: Validation loss for increasing model width and different learning rates for Sophia on
Llama2 model. The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
5× 10−1 7.19403 6.99576 6.68992 6.60376 6.31375
3× 10−1 6.17604 5.90826 5.80694 5.6738 5.71962
1× 10−1 4.14122 3.83654 3.75926 3.67419 3.62891
7× 10−2 4.42758 4.31702 4.05756 3.93561 3.94189
5× 10−2 4.76632 4.51022 4.41358 4.34452 4.30914
3× 10−2 4.82305 4.79592 4.73067 4.67473 4.74689

26

	Introduction
	Preliminaries
	Background
	Maximal Update Parametrization (P)
	Spectral Conditions for Feature Learning
	Theory to practice

	Deriving P using Spectral Scaling Conditions
	Generic Framework
	P for AdamW
	P for LAMB
	P for Sophia
	P for Shampoo

	Numerical Results
	Conclusion
	Deriving P
	P for ADOPT
	P for Shampoo (Detailed)
	P for Muon

	Simulations
	Discussions
	P on NanoGPT
	AdamW Optimizer
	ADOPT Optimizer
	Sophia Optimizer
	LAMB Optimizer
	Shampoo Optimizer

	P on Llama2
	AdamW
	ADOPT
	LAMB
	Sophia

