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Abstract

To limit the time, cost, and environmental impact associated with the acquisition1

of seismic data, in recent decades considerable effort has been put into so-called2

simultaneous shooting acquisitions, where seismic sources are fired at short time3

intervals between each other. As a consequence, waves originating from consecu-4

tive shots are entangled within the seismic recordings, yielding so-called blended5

data. For processing and imaging purposes, the data generated by each individual6

shot must be retrieved. This process, called deblending, is achieved by solving7

an inverse problem which is heavily underdetermined. Conventional approaches8

rely on transformations that render the blending noise into burst-like noise, whilst9

preserving the signal of interest. Compressed sensing type regularization is then10

applied, where sparsity in some domain is assumed for the signal of interest. The11

domain of choice depends on the geometry of the acquisition and the properties12

of seismic data within the chosen domain. In this work, we introduce a new13

concept that consists of embedding a self-supervised denoising network into the14

Plug-and-Play (PnP) framework. A novel network is introduced whose design15

extends the blind-spot network architecture of [27] for partially coherent noise16

(i.e., correlated in time). The network is trained directly on the noisy input data at17

each step of the PnP algorithm. By leveraging both the underlying physics of the18

blending operator and the great denoising capabilities of our blind-spot network,19

the proposed algorithm is shown to outperform an industry-standard method whilst20

being comparable in terms of computational cost. Moreover, being independent on21

the acquisition geometry, our method can be easily applied to both marine and land22

data without any significant modification.23

1 Introduction24

Reflection seismology [41] is a geophysical technique that uses reflected seismic waves to characterize25

the Earth’s subsurface. It comprises of a controlled source of seismic energy and an array of receivers26

that record the pressure (or displacement) induced by the reflected waves. After the introduction of27

3D seismic [11], today’s conventional seismic acquisition campaigns may last several weeks up to28

a few months [7, 25, 10]. In an attempt to improve acquisition efficiency, and therefore limit the29

time, cost, and associated environmental impact, [6, 9, 3, 36] introduced a new paradigm in seismic30

acquisition referred to as simultaneous shooting. Simply put, consecutive sources are fired at short31

time intervals, thereby minimizing the overall acquisition time. This comes at the cost of recording32

entangled seismic data, also called blended data, where the waves originating from one source tend to33

overlap with those originating from previous and subsequent sources. To render such data suitable for34

subsequent steps of seismic processing and imaging, the interference between consecutive shots must35

be removed such that the contribution of each individual source (also referred to as a shot gather)36

is retrieved. This process is called deblending. In theory, deblending can be achieved by solving37
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an inverse problem; however, as this problem is heavily underdetermined, choosing an appropriate38

regularization is fundamental to achieve a successful inversion. Historically, the design of suitable39

regularizers is motivated by the effect of the adjoint of the blending operator on the blended data. In40

fact, the resulting data can be seen as a superposition of coherent signal (i.e, reflections from the shot41

whose firing time has been properly accounted for) and trace-wise, burst-like noise (i.e, reflections42

from all other interfering shots whose firing times have not been properly accounted for).43

The recent success of deep learning in various scientific disciplines has attracted the interest of the44

geophysical community, resulting in many opportunities and new challenges [51]. For example,45

whilst training data should consist of clean, representative ground truth examples that resemble46

the solution to the inverse problem at hand, such data is generally not available. Two approaches47

commonly adopted to circumvent this problem are to either generate synthetic data or to use state-48

of-the-art algorithms to produce input-output pairs to train a network on; in both cases, transfer49

learning [42, 34] or domain adaptation [2, 12] techniques are then required to generalize the network50

capabilities to unseen field data. A major drawback of the first approach is that synthetic data may not51

resemble field data accurately enough to be considered a representative dataset: this is well-known52

in the geophysical community and has been a major criticism for decades when new methods are53

tested only on synthetic data. It also represents a serious roadblock to the application of deep learning54

methods in geophysics. Additionally, in most geophysical applications the underlying physics is55

(at least partly) well understood. Pure, end-to-end machine learning methods tend to ignore these56

well-studied physical principles, thereby discarding important a priori knowledge of the problem they57

are tasked to solve.58

Our contribution We introduce a novel algorithm for seismic deblending, which combines the59

physics of the underlying physical process with a state-of-the-art self-supervised denoiser into a60

single, well-crafted inverse process. This is specifically achieved within the framework of Plug-61

and-Play (PnP) priors. Our network architecture is inspired by the blind-spot network of [27] and62

modified to handle trace-wise coherent noise. The network is trained on-the-fly at each PnP iteration63

in a self-supervised manner, completely bypassing the need for ground truth data. Our numerical64

experiments illustrate that the proposed algorithm can outperform a state-of-the-art conventional65

method. Finally, we show that our algorithm is independent on the underlying structure of the seismic66

data and can be used easily for different acquisition set-ups - a clear advantage over conventional67

methods.68

2 Background69

The seismic data layout Seismic data are commonly acquired by firing a source at a given time and70

recording the reflections arising from the interaction between the emitted seismic wave and changes71

in subsurface properties. Conceptually, seismic data can be arranged as a three dimensional tensor (or72

a cube), having the dimensions of the number of sources ns, number of receivers nr, and number of73

time samples nt: dc(xs, xr, t). Slicing this cube in different directions gives raise to so-called seismic74

gathers: more specifically, when slicing across the source axis, we obtain the data recorded by all75

receivers for a single shot, usually called Common Shot Gather (CSG); conversely, by slicing across76

the receiver axis we obtain the data generated by all shots for a single receiver. When the receivers77

move alongside the source (i.e., marine case) the resulting gather is called Common Channel Gather78

(CCG). For static receivers (i.e., ocean-bottom or land acquisition), the seismic gather is know as the79

Common Receiver Gather (CRG). Both scenarios will later be considered.80

Blended acquisition In practice, to be able to collect data where no overlap exists between81

consecutive shots, each shot has to be fired with an appropriate time delay, such that all reflections82

from one shot have been recorded by the receivers before the next shot is fired. This dictates83

the overall acquisition time and greatly limits any possible acquisition speed-up. Alternatively,84

in blended acquisition, shots are fired at shorter intervals. This means that each individual CSG85

contains recordings from both the nominal as well as the previous and subsequent shots. In this work,86

we consider the so-called continuous blending setting. This approach is state-of-the-art in marine87

seismic acquisition due to the fact it is easy to implement in the field. It is achieved by firing the88

airgun towed by the acquisition vessel at short time intervals, and continuously recording the waves89

returning to the receiver array as depicted in figure 1. The recorded data db can be simply described90

as the superposition of all of the unblended, or clean, data shifted in time by the given time delay91
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ti = i · T +�ti. Here, T is the nominal firing interval and �ti is a random dither applied to the92

nominal firing time of shot i. The blended data can thus be described as a function of the clean data93

db = Bdc := [B1, . . . , Bns ] dc = B1dc,1 + . . .+Bnsdc,ns (1)

where the blending operator is a horizontal stack of time-shift operators Bi, and the clean data is a94

vector where all vectorized shot gathers, dc,i = vec(dc(xs,i, xr, t)), are stacked together. Moreover,95

each Bi time-shift operator has the property that BT

i
Bi = I , and a composition of time-shift operators96

is again a time-shift operator [33].

Figure 1: Schematic illustration of a seismic simultaneous shooting acquisition. a) Cartoon of a
seismic acquisition campaign in continuous blending mode. A single vessel towing a source (red star)
and an array of receivers (blue triangles) moves from right to left and fires energy into the ground at
dithered periodic time samples. For each shot, reflections originated from shallow subsurface layers
are immediately recorded by the receivers, whilst those produced by deeper reflectors are recorded
later in time alongside the shallow reflections from the next firing shot. This phenomenon leads to the
blending of independent shot gathers. b) A short time window of the continuously blended seismic
data. Dashed vertical color lines represent the nominal firing times (i.e., i · T ), whilst the solid color
lines represent the actual firing times with dithering. Color rectangles refer to every individual shot
gather that we wish to separate from the other overlapping gathers. c) Pseudo-deblended data for a
single receiver (white dashed line in panel b).

97

Pseudo-deblending To better understand how to design effective regularization strategies for the98

deblending problem, we first have to consider the action of BH on the blended data. For the ith shot99

gather, the result of BH

i
Bdc can be written as100

BH

i
(B1dc,1 + . . .+Bnsdc,ns) = dc,i +

�
BH

i
B1dc,1 + . . .+BH

i
Bnsdc,ns

�
(2)

Therefore the action of BH

i
on the blended data produces the original ith shot gather alongside101

randomly shifted versions of all the other shot gathers. Whilst these randomly shifted shot gathers102

are coherent and look like standard seismic signal in the CSG domain, they appear as trace-wise103

coherent noise in the CRG (or CCG) domain as shown in figure 1(c). Because the application of the104

adjoint of the blending operator retrieves the true signal, albeit with some additional noise, its action105

is usually called pseudo-deblending. As a consequence of this, it is now clear that to retrieve the106

various dc,i, an effective regularization must filter the trace-wise noise in CRGs (or CCGs) whilst107

preserving the coherent signal. Conventional approaches identify a domain in which the signal can be108

easily discriminated from the noise, and more specifically the signal in such domain is sparse whilst109

the noise is not. Examples of such a kind include the hyperbolic Radon transform for CRGs [24], the110

patched Fourier transform for CCGs [1], or the Curvelet transform [30].111
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Deblending by inversion Deblending by denoising is achieved by minimizing112

min
dc

kdc �BHdbk1 +R(dc), (3)

whereas deblending by inversion amounts to retrieving the clean data by solving the (heavily)113

underdetermined inverse problem,114

min
dc

1

2
kBdc � dbk22 +R(dc). (4)

where R(·) is any chosen regularization. The literature has shown that deblending by inversion is115

superior to deblending by denoising in terms of the overall quality of reconstruction and will be the116

focus of this work. More details on both approaches are provided in the supplementary material.117

Self-supervised denoising: Incoherent noise Self-supervised denoisers are designed in such a way118

that noisy images can be used as both the input and label to train a neural network to act as a denoiser,119

thereby bypassing the need for clean data as labels. Noise2Noise represents the first such method120

not relying on ground truth labels [28]. The network is forced to infer the signal from pairs of noisy121

data. For applications where such pairs are unavailable, an alternative was proposed in the concurrent122

works of [26] and [5], who introduced Noise2Void and Noise2Self, respectively. In both cases, the123

same image is used as input and label: under the assumption that the noise is incoherent whilst the124

signal is coherent, the network can naturally learn to infer only the signal from its neighbouring125

pixels. More specifically, to denoise a particular pixel, [26] replace the pixel of the input image with126

a randomly selected neighbouring pixel. As this pre-processing step introduces randomness in the127

central pixel of the receptive field of the network, the network should not learn anything from it and128

naturally learns to infer the signal from its neighbours (since the noise is assumed to be incoherent).129

Rather than directly replacing the pixel of interest, [5] pre-process the input image with a blind-spot130

convolutional filter, so that the network cannot rely on the central pixel to predict itself. A key131

limitation of both approaches lies in the fact that the self-supervised loss can be evaluated only at the132

pixels that have been corrupted, making the training of these denoisers relatively slow. An alternative133

approach to blind-spot networks was introduced by [27]. Instead of corrupting the middle pixel, their134

network is explicitly designed to have a receptive field with a hole in the middle. This is achieved by135

combining padding and cropping with a standard convolution layer (i.e., to create a causal filter) and136

by rotating the input image four times prior to feeding it through the network. After the rotated inputs137

have been fed through the network, they are rotated back, concatenated, and combined by a series138

of 1 ⇥ 1 convolutions prior to evaluating the loss at every pixel of the output image. A schematic139

description of this network is depicted in figure 2a.140

Self-supervised denoising: Coherent noise Both Noise2Void and Noise2Self operate under the141

assumption that the noise is independent and identically distributed. [15] shows that the denoising142

quality of Noise2Void is degraded when the noise is structured. This shortcoming of Noise2Void is143

solved by masking pixels along the direction of the noise: the authors dub their method Structured144

Noise2Void. For the seismic deblending problem, the noise that we are interested to suppress is also145

structured: more specifically, the blending noise shows correlation along the time axis. We, therefore,146

extend here the efficient implementation of [27] to suppress structured noise in seismic data, by using147

the original and flipped (over the source axis) version of the image as input. This produces a network148

whose receptive field is masked over an entire time trace, see figure 2b. In the following, we will call149

this network Structured Blind Spot, or StructBS for short.150

3 Related work151

Simultaneous shooting Simultaneous shooting was first pioneered by [6] and has gained popularity152

in recent years [9]. Although the first attempts at deblending were mostly by means of denoising [33],153

recent research has reveled the superiority of deblending by inversion [1]. Since then, research has154

been devoted to finding appropriate regularization terms. Some approaches involve median-filtering155

[22, 21, 23], rank-reduction methods [17, 55], sparse regularization [29, 30, 56, 57, 59], and deep156

learning [43, 58, 49]. All the deep learning approaches to date use CNNs and require pre-training. [4]157

uses the RED framework introduced in [38], which is similar to the PnP framework. The difference158

is that RED explicitly incorporates the denoiser into the objective function. The authors propose the159

use of two conventional regularization techniques as a denoiser, the patched Fourier transform [1]160

and the singular-spectral-analysis filter [17], instead of applying them as a sparse penalty.161
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Figure 2: (a) The blind-spot network of [27], whose receptive field excludes the center pixel. (b)
Our newly proposed blind-spot network, whose receptive field excludes an entire direction instead of
just the middle pixel. Impulse responses are created by feeding the respective networks with unitary
weights and zero biases with an image containing a unitary spike in the middle.

Self-supervised seismic denoising Seismic data are a prime example of a noisy data type where162

no clean, ground truth labels are available. As such, the application of self-supervised denoisers has163

recently been proposed for the suppression of different types of noise present in seismic data. Follow-164

ing the Noise2Void methodology, [13] use blind-spot networks for the suppression of random noise165

in post-stack seismic data. Expanding on this, [32] adapted the methodology of StucturedNoise2Void166

[15] for the suppression of trace-wise noise in seismic shot gathers, originating from poorly coupled167

receivers and/or dead sensors. The method that is most closely related to ours is the one presented in168

[49] - both with respect to application and methodology. The authors propose to use a self-supervised169

denoising network to deblend the data by denoising. To produce satisfactory results they require a170

number of additional pre- and post-processing steps. In our work, we incorporate a deep learning171

based denoiser in deblending by inversion, thereby leveraging both the underlying physics and the172

power of neural networks. Moreover, no pre- and post-processing is required.173

The Plug-and-Play framework The Plug-and-Play framework was pioneered by [48]. The authors174

considered a number of popular denoisers, including BM3D [18], K-SVD [19], PLOW [16] and q-175

GGMRF [45]. In subsequent works, the denoisers have been replaced by pre-trained neural networks,176

most notably CNN and DnCNN. Lately, [31] proposed regularization by artifact-removal (RARE),177

a method leveraging a Noise2Noise type approach that requires pre-training. An extensive list of178

references is provided in [52], and include [38, 54, 35, 47, 20, 46, 29, 44, 53]. This research focuses179

on progressively training a neural network such that it can adapt to changing noise levels. The novelty180

of our method is that pre-training is not required.181

4 Method182

Equipped with a self-supervised denoiser, a straightforward approach to deblending is to directly183

denoise the pseudo-deblended data. However, deblending by denoising is known to be sub-optimal in184

comparison to deblending by inversion. On the other hand, because a denoiser cannot be naturally185

added as a constraint to the objective function in equation 4, it is not immediately clear how to186

incorporate the denoiser into the inversion process. [48] proposed the PnP framework, which is187

directly derived from the Alternating Direction Method of Multipliers (ADMM). Whilst resembling188

the alternating minimization process of the classical ADMM algorithm, PnP is more flexible in189

the sense that it can use any denoiser of choice, without the need for it to be linked to an explicit190

regularization term for the so-called y-update. To understand our method clearly, we give a short191

derivation of the ADMM following [14], we then link it to the PnP algorithm and finally to our192

proposed algorithm. The ADMM algorithm is generally used to solve inverse problems of the form193

min
x

D(M(x), d) +R(x),

where M is the forward model, d is the measured data, D is a data fidelity term that is generally194

smooth, and R is a convex, possibly non-smooth regularization term. Due to the non-smoothness195

of the objective, this problem cannot be solved with standard gradient-based methods. To account196
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for the non-smoothness of R, an auxiliary variable y = x is introduced, yielding the equivalent197

optimization problem198

min
x,y

D(M(x), d) +R(y) subject to x = y.

ADMM solves this problem by forming the so-called augmented Lagrangian,199

max
u

min
x,y

D(M(x), d) +R(y) +
⇢

2
kx� yk22 + uT (x� y),

where u is the Lagrange multiplier and ⇢ is a scalar. This problem is solved by alternatively200

minimizing over x and y, and maximizing over u. This yields the following scheme:201

xk+1 = argmin
x

n
D(M(x), d) +

⇢

2
kx� yk + ukk22

o

yk+1 = argmin
y

n
R(y) +

⇢

2
kxk+1 � y + ukk22

o

uk+1 = uk + xk+1 � yk+1.

The introduction of y = x and the addition of the quadratic penalty ⇢

2kx� yk yields the y-update,202

which for most popular regularization terms has a simple closed-form solution that can be cheaply203

evaluated [37]. The key observation of [48] is that the y-update can be interpreted as a denoising204

inverse problem. As such, the authors propose to drop the user-defined regularization R(·) and205

instead plug in a denoiser of choice in the y-update of the ADMM iterations. Although this may not206

seem a straightforward choice, PnP has been shown to be competitive (or sometimes even better) than207

standard regularization methods in a variety of settings. Given the trace-wise structure of the noise208

and equipped with the self-supervised denoiser, the PnP framework becomes a natural and attractive209

choice for the deblending task at hand. Our proposed algorithm reads as follows:210

xk+1 = argmin
x

⇢
1

2
kBx� dbk22 +

⇢

2
kx� yk + ukk22

�

yk+1 = StructBS✓(xk+1 + uk)

uk+1 = uk + xk+1 � yk+1.

where x is used here for simplicity in place of dc, and the x-update is performed using an iterative211

solver of choice, e.g. LSQR. The y-update is now the denoiser StructBS✓, where ✓ denote the network212

parameters. The variable u couples both x and y and forces them to be close together. The x-update213

requires the solution to satisfy the physics dictated by the equation Bx = db, and the y-update214

denoises the noisy receiver gathers.215

5 Experiments216

In the following, our algorithm is tested on the openly available Mobil AVO viking graben line217

12 marine dataset 1. As the data has been originally acquired in a conventional fashion, we create218

the blending operator and blend the data ourselves. In addition to containing all the challenging219

features of a field dataset, this also provides us with a ground truth, dc, onto which to assess the220

quality of our reconstruction. In this example, the original dataset is composed of ns = 64 sources,221

nr = 120 receivers, and nt = 1024 samples (i.e., the total recording time per shot equals 4 seconds).222

For the continuous blending operator, we choose a fixed firing interval of T = 2 seconds, with223

added random delays selected uniformly in the interval �ti ⇠ [�1, 1] seconds. This overlap is quite224

challenging as generally half of the signal overlaps with either that of the previous or that of the next225

shot. Moreover, some pseudo-deblended shot gathers exhibit contributions from three consecutive226

shots. Finally, the relative mean-square error, RMSE = kdc � dc,truek2/kdc,truek2, is chosen227

as a metric of comparison in all of our numerical examples. All experiments are performed on a228

Intel(R) Xeon(R) CPU @ 2.10GHz equipped with a single NVIDIA GEForce RTX 3090 GPU.229

5.1 Comparison with state-of-the-art deblending230

To begin with, our newly proposed methodology is compared with the state-of-the-art deblending231

algorithm of [1] that solves the deblending problem as a sparsity promoting inversion232

z? = argmin
z

kBFz � dbk22 + �kzk1, db = Fz?, (5)

1
https://wiki.seg.org/wiki/Mobil_AVO_viking_graben_line_12
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where F is a linear operator that performs a patched two-dimensional Fourier transform, and z? is the233

solution in the Fourier domain that is ultimately transformed back to the original time-space domain234

of the seismic data. In our experiment, the size and number of patches as well as the regularization235

parameter � are selected by hand to yield optimal results. Moreover, the FISTA [8] solver is used with236

an adaptive decreasing sequence, �k (as this has been shown in the literature to outperform a fixed �237

for this specific problem). We choose the sequence �k =
�
6
5e

�0.05k + 6
�
�0, which was once again238

fine-tuned to give the best performance. The final error is roughly 9.8% (see supplementary material239

for details); hereon in this represents the benchmark against which we will assess the effectiveness240

of our self-supervised PnP algorithm. Next, our PnP algorithm is applied to the same dataset. We241

choose 30 outer iterations, 3 inner iterations, ⇢ = 1 and 30 denoiser epochs. The choice of these242

hyperparemeters will be justified in the ablation study. We also use the U-Net architecture in [27],243

the L1 norm for the self-supervised training loss because it is more appropriate for burst-like noise,244

and the Adam optimizer with default parameters. Since the denoiser is trained on all the CCGs,245

the size of our training data is 120 and we use a batch size of 8. This leads to a solution that has246

an overall error of roughly 6.7%, which is approximately 3% lower than the conventional method.247

As a visual comparison, figure 3 displays the results for a given CCG (top) and CSG (bottom) for248

both the conventional and proposed approaches. It is noteworthy that our algorithm shows a clear249

improvement in terms of denoising capabilities, as visible in the displayed CCG. Especially after250

t = 2s, where the signal is weak and blending noise dominates, the conventional approach tends to be251

more prone to signal leakage compared to our PnP algorithm. Finally, the computational cost of the252

conventional algorithm can be quantified in terms of the number of forward and adjoint operations253

for both the blending (B) and patched Fourier (F ) operators: in our example, this amounts to 200254

forward and adjoint passes. On the other hand, our method requires 90 forward and adjoint passes255

for the blending operator and a total of 900 training epochs for the network. Considering that all256

computations (apart from the network related ones) are performed on the CPU, the two algorithms257

are comparable in terms of overall computational time (2h and 34mins for the conventional algorithm258

and 1h and 51mins for the PnP algorithm).

Figure 3: Deblending results for one CCG (top) and CSG (bottom). Although both algorithms can
successfully remove most of the blending noise, our algorithm is less prone to signal leakage and
provides better amplitude fidelity - a key factor in seismic data processing.

259

5.2 Ablation study260

This section provides an extensive analysis of some of the key components of the proposed PnP261

methodology and their impact on the overall solution of the deblending inverse problem.262
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PnP iterations To begin with, we assess the importance of the PnP iterations compared to simply263

training the self-supervised denoiser on pseudo-deblended data and applying it directly to the entire264

dataset. Although not shown here, the result of this one-shot denoising produces a solution with an265

overall error of roughly 19%. This is much worse than both the conventional and PnP method and266

therefore considered not suitable.267

The x-update The ablation study with regard to the x-update is provided in the supplementary268

material. This includes a study on the effect of the number of inner iterations and the ⇢ parameter. For269

our continuous deblending problem, we have shown that they could be safely fixed to 3 and 1. Future270

experiments with different datasets and blending strategies are required to verify this assumption.271

The y-update In our implementation we propose to start with a randomly initialized network and272

train it for a fixed number of epochs at every outer iteration. A warm start strategy is employed such273

that the weights of the network at a given outer iteration are initialized to those obtained at the end274

of the training of the previous outer iteration. The efficacy of this approach is shown in figure 4a,275

where we compare on-the-fly training with and without warm starts, where the latter re-initializes276

the network at every y-update. From the error curves, we can safely conclude that warm starting the277

network is clearly beneficial. Since there is no theoretical justification for this particular strategy, we278

consider a few other alternative strategies. The first strategy is to use a pre-trained network. Here279

pre-training is achieved by denoising the pseudo-deblended data in a self-supervised manner; this280

approach could greatly reduce the computational cost of the overall algorithm since we do not need281

to train the network at every iteration. A comparison of the relative error with that of the proposed,282

on-the-fly training shown in figure 4b reveals that after a few outer iterations, the network is unable283

to further remove the remaining noise in the data.

Figure 4: a) Error for network training with and without warm starts. b) Error when running the PnP
algorithm with a network pre-trained on the pseudo-deblended data.

284

Another option is to stop training the network after a few outer iterations. Ideally, the network will285

have learnt how to remove the noise encountered during the first iterations, and extra training will286

not improve the denoiser capabilities. We run experiments where we stop the training after a fixed287

number of outer iterations to see whether there is an added benefit to continuing training the network.288

Results are shown in figure 5a. In all of the scenarios we clearly see that stopping the training after

Figure 5: a) Error for on-the-fly training where training is stopped after a certain number of outer
iterations. b) Error for different number of training epochs. c) Error when using the network at the
end of the PnP algorithm for the entire process versus our proposed on-the-fly training strategy.

289
a certain number of outer iterations leads to a stagnation in the error, or even worse to an increase290
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in the error at later iterations. This behaviour is known as semiconvergence in the inverse problems291

community. Both results are perhaps not surprising, as the input to the network at every iteration292

contains a different noise level compared to that of earlier iterations: the noise in xk constantly293

reduces during the overall inversion. Therefore, the network is required to learn a slightly different294

task at each time. In figure 5b, we assess the impact of the number training epochs for the denoiser.295

We clearly observe that at some point the curves for 30 and 20 epochs start to coincide, meaning296

that there is no additional gain in the extra 10 epochs of training. The curve for training with 10297

epochs seems stagnant after the first three iterations, but eventually it picks up momentum and goes298

down again. Note that, in terms of overall epochs, the cost of performing 30 outer iterations with299

10 epochs each is the same as using 10 outer iterations with 30 epochs each. However, every outer300

iteration carries an additional cost of three inner iterations for the x-update, which is not negligible as301

it requires evaluating the forward and adjoint of the blending operator. In general, it seems beneficial302

to perform more epochs in the early outer iterations, although there is a limit after which the error303

starts to stagnate. Moreover, training with 60 epochs leads to overfitting.304

Finally, to further investigate the generalization capabilities of the network for blending problems,305

the network weights are saved after the last outer iteration of the PnP algorithm. The PnP algorithm306

is then re-run using the saved network without performing any on-the-fly training. Figure 5c shows307

that this strategy fails, illustrating that the network may have forgotten how to deal with the higher308

noise levels encountered in the early iterations. This results highlights the importance of using a309

self-supervised denoiser that can be easily and cheaply trained on-the-fly. The use of pre-trained310

denoising networks such as DnCNN may instead require training multiple networks with different311

noise levels, unless a bias-free, non-blind network is used [52].312

6 Limitations and Conclusions313

Limitations Our algorithm requires the setting of a number of hyperparameters, namely the number314

of inner and outer iterations, the parameter ⇢, and the number of epochs for the self-supervised315

denoiser. The number of epochs seems to have a major impact on the quality of the deblending316

process and the overall convergence properties of our algorithm. Additional hyperparameters that317

have not been explored in this work are associated with the network itself, e.g. the number of layers,318

the activation function, batch size, etc. This is also a direction for further research. Another drawback319

is that there is no convergence guarantee, since our operator B is underdetermined and therefore not320

strongly convex [39]. Empirically, we observe that xk and yk tend to converge to similar values for321

some carefully selected hyperparameters, indicating that at least in our experiments the algorithm322

converges successfully. Similarly, to obtain convergence guarantees for the PnP method, the denoiser323

has to be Lipschitz continuous; when a neural network is used, this means that spectral normalization324

is required during training. In [50], it was shown that PnP algorithms can be convergent when325

combined with carefully pre-trained denoisers that satisfy such condition.326

Societal impact Blended acquisition greatly reduces the time required to acquire seismic data,327

thereby limiting the impact of seismic acquisitions on the environment. Apart from shooting at shorter328

intervals, there is no difference compared to conventional acquisition. Moreover, recent research has329

suggested that the energy emitted by each source could be lowered. This may provide acquisition330

solutions that are more environmentally friendly for marine life.331

Conclusions We have introduced a novel hybrid algorithm for seismic deblending, combining the332

physics of the blending operator with a self-supervised denoiser that is naturally embedded into the333

Plug-and-Play framework. We have adapted the network architecture in [27] to enforce an extended334

blind spot along an entire axis (time, in our case) instead of single pixels. Because the denoiser is335

self-supervised, our approaches bypasses the need for ground truth labels that are usually unavailable336

for seismic applications. Experiments on a field dataset have shown that the proposed method can337

outperform a state-of-the-art, sparsity-based algorithm. Moreover, as show in the supplementary338

material, our algorithm is independent on the type of acquisition, which is usually an issue for339

conventional algorithms. Although our algorithm requires the setting of a number of hyperparameters,340

we have argued that the number of inner iterations and ⇢ can most likely be set to a fixed number341

and this easily generalizes to different seismic acquisitions. However, the network architecture and342

the number of epochs may require tuning for different acquisition setups. We hope to address these343

issues by having an adaptive strategy for setting the number epochs in future work.344
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