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Summary: Successful deployment of machine learning algorithms in healthcare requires careful assessments of their

performance and safety. To date, the FDA approves locked algorithms prior to marketing and requires future updates

to undergo separate premarket reviews. However, this negates a key feature of machine learning–the ability to learn

from a growing dataset and improve over time. This paper frames the design of an approval policy, which we refer

to as an automatic algorithmic change protocol (aACP), as an online hypothesis testing problem. As this process

has obvious analogy with noninferiority testing of new drugs, we investigate how repeated testing and adoption

of modifications might lead to gradual deterioration in prediction accuracy, also known as “biocreep” in the drug

development literature. We consider simple policies that one might consider but do not necessarily offer any error-

rate guarantees, as well as policies that do provide error-rate control. For the latter, we define two online error-rates

appropriate for this context: Bad Approval Count (BAC) and Bad Approval and Benchmark Ratios (BABR). We

control these rates in the simple setting of a constant population and data source using policies aACP-BAC and

aACP-BABR, which combine alpha-investing, group-sequential, and gate-keeping methods. In simulation studies,

bio-creep regularly occurred when using policies with no error-rate guarantees, whereas aACP-BAC and -BABR

controlled the rate of bio-creep without substantially impacting our ability to approve beneficial modifications.
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Due to the rapid development of artificial intelligence (AI) and machine learning (ML),

the use of AI/ML-based algorithms has expanded in the medical field. As such, an increasing

number of AI/ML-based Software as a Medical Device (SaMD) are seeking approval from

the Center of Diagnostics and Radiologic Health (CDRH) at the US Food and Drug Ad-

ministration (FDA). ML algorithms are attractive for their ability to improve over time by

training over a growing body of data. Thus, rather than using a locked algorithm trained on

a limited dataset, developers might like to train it further on a much more representative

sample of the patient population that can only be obtained after deployment. To collect input

on this regulatory problem, the FDA recently outlined a proposed regulatory framework for

modifications to AI/ML-based SaMDs in a discussion paper (FDA, 2019).

Regulating evolving algorithms presents new challenges because the CDRH has histori-

cally only approved “locked” algorithms, i.e. algorithms that do not change after they are

approved. This is a new regulatory problem because updating traditional medical devices

and drugs is often logistically difficult whereas updating software is both fast and easy.

FDA (2019) proposes companies stipulate SaMD Pre-specifications (SPS) and an Algo-

rithm Change Protocol (ACP). When listing the anticipated modifications in the SPS, it

behooves the company to cast as wide a net as possible within FDA-imposed constraints.

The ACP specifies how the company will ensure that their modifications are acceptable for

deployment. Once the FDA approves the SPS and ACP, the company follows these pre-

specified procedures to deploy changes without further intervention. As such, we refer to

the ACP in this paper as an “automatic ACP” (aACP). The aACP is the FDA’s primary

tool for ensuring safety and efficacy of the modifications. However, specific aACP designs or

requirements are noticeably absent from FDA (2019). This paper aims to address this gap.

A manufacturer has two potential motivations for changing an AI/ML-based SaMD: to

advance public health and to increase their financial wealth. Modifications that improve
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performance and usability are encouraged. On the other hand, changes that do not and

are deployed only for the sake of change itself have been used in the past to advance

a manufacturer’s financial interest and are contrary to public interest. Historically, such

modifications have been used to 1) decrease competition because it is difficult for competitors

to compare against an ever-changing benchmark; 2) file for a patent extension and keep

prices artificially high; and 3) increase sales for a supposedly new and improved product

(Gupta et al., 2010; Hitchings et al., 2012; Gottlieb, 2019). To prevent this type of behavior

with drugs and biologics, the FDA regulates modifications through various types of bridging

studies (International Conference on Harmonisation (1998)). Likewise, an aACP should only

grant approval to modifications to AI/ML-based SaMD after ensuring safety and efficacy.

This paper provides a framework for designing and evaluating an aACP, considers a

variety of aACP designs, and investigates their operating characteristics. We assume the

manufacturer is allowed to propose arbitrary (and possibly deleterious) modifications, which

include changes to model parameters, structure, and input features. For this manuscript, we

focus on the setting of a constant population and data source, rather than more complicated

settings with significant time trends. Throughout, we evaluate modifications solely in terms

of their operating characteristics. Thus, the aACPs treat simple models and complex black-

box estimators, such as neural networks and boosted gradient trees, the same. This parallels

the drug approval process, which primarily evaluates drugs on their efficacy and safety with

respect to some endpoints, even if the biological mechanism is not completely understood.

To our knowledge, there is no prior work that directly addresses the problem of regulating

modifications to AI/ML-based SaMD, though many have studied related problems. In online

hypothesis testing, alpha-investing procedures are used to control the online false discovery

rate (FDR) (Foster and Stine, 2008; Javanmard and Montanari, 2015; Ramdas et al., 2017,

2018; Zrnic et al., 2018), which is important for companies that test many hypotheses
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over a long period of time (Tang et al. (2010)). We will consider aACPs that use alpha-

investing to control online error rates; However, we will need to significantly adapt these

ideas for use in our context. In addition, differential privacy methods (Blum and Hardt,

2015; Dwork et al., 2015) have been used to tackle the problem of ranking model submissions

to a ML competition, where the submissions are evaluated using the same test data and

models are submitted in a sequential and adaptive manner. Though that problem is related,

those approaches cannot evaluate modifications that add previously-unmeasured covariates.

Finally, online learning methods are a major motivation for studying this regulatory problem

and can be used to automatically update the model (Shalev-Shwartz, 2012). However, rather

than designing bespoke aACPs for online learning methods, we will consider approval policies

for arbitrary modifications as a first step.

This paper evaluates the rates at which different policies make bad approvals as well as

their rates of approving beneficial modifications. Due to the analogy between this problem

and noninferiority testing of new drugs, we investigate how repeated testing of proposed

modifications might lead to gradual deterioration in model performance, also known as “bio-

creep” (Fleming, 2008). We compare simple aACPs that one might consider, but do not

necessarily have error-rate guarantees, to policies that do provide error rate control. For

the latter, we define two online error rates appropriate for this context—the expected Bad

Approval Count (BAC) and Bad Approval and Benchmark Ratios (BABR)—and control

them using policies aACP-BAC and aACP-BABR, respectively. In simulation studies, bio-

creep frequently occurred when using the simple aACPs. By using aACP-BAC or -BABR

instead, we significantly reduce the risk of bio-creep without substantially reducing the rate

of model improvement. Based on these findings, we conclude that 1) bio-creep is a major

concern when designing an aACP and 2) there are promising solutions for mitigating it

without substantially hindering model improvements.
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1. Motivating examples

We present examples of actual AI/ML-based medical devices and discuss possible modifica-

tions that manufacturers might consider. The examples are ordered by increasing regulatory

complexity and risk. Throughout, we only discuss regulating modifications to the software

and assume the intended use of the device remains constant.

1.1 Blood tests using computer vision

Sight Diagnostics has developed a device that collects and images blood samples to estimate

complete blood count (CBC) parameters. They are evaluating the device in a clinical trial

(ClinicalTrials.gov ID NCT03595501) where the endpoints are the estimated linear regression

parameters (slope and intercept) between their CBC parameter estimates and gold standard.

The FDA requires locking the entire procedure, which includes blood collection, imaging,

and the ML algorithm, prior to marketing. Nonetheless, the company might want to improve

the accuracy of their test after obtaining regulatory approval. For instance, they can train

more complex models that capture nonlinearities and interactions (between covariates and/or

outcomes) or use a different FDA-approved device to image the blood sample. All these

changes have the potential to improve prediction accuracy, though it is not guaranteed.

To regulate such modifications, we will need to define acceptable changes to endpoint

values. This is not straightforward when multiple endpoints are involved: Do all endpoints

have to improve? What if the model has near-perfect performance with respect to some

endpoints and room for improvement for others? To tackle these questions, we must run

both superiority and non-inferiority (NI) tests. Moreover, introducing NI tests prompts even

more questions, such as how to choose an appropriate NI margin.

1.2 Detecting large vessel occlusion from CT angiogram images of the brain

ContaCT is a SaMD that identifies whether CT angiogram images of the brain contain

a suspected large vessel occlusion. If so, it notifies a medical specialist to intervene. The
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manufacturer evaluated ContaCT using images analyzed by neuro-radiologists. The primary

endpoints were estimated sensitivity and specificity. The secondary endpoint was the differ-

ence in notification time between ContaCT and standard-of-care. ContaCT achieved 87%

sensitivity and 89% specificity and significantly shortened notification time.

Having obtained FDA approval (FDA, 2018), the company might want to improve Con-

taCT by, say, training on more images, extracting a different set of image features, or utilizing

clinical covariates from electronic health records. This last modification type requires special

consideration since the distribution of clinical covariates and their missingness distribution

are susceptible to time trends.

1.3 Blood test for cancer risk prediction

GRAIL is designing a blood test that sequences cell-free nucleic acids (cfNAs) circulating in

the blood to detect cancer early. They are currently evaluating this test in an observational

study (ClinicalTrials.gov ID NCT02889978) where the gold standard is a cancer diagnosis

from the doctor within 30 months. For time-varying outcomes, one may consider evaluating

performance using time-dependent endpoints, such as those in Heagerty and Zheng (2005).

After the blood test is approved, GRAIL might still want to change their prediction

algorithm. For example, they could collect additional omics measurements, sequence the

cfNAs at a different depth (e.g. lower to decrease costs, higher to improve accuracy), or train

the model on more data. Regulating modifications to this blood test is particularly difficult

because the gold standard might not be observable in all patients, its definition can vary

between doctors, and it cannot be measured instantaneously. In fact, the gold standard might

not be measurable at all because test results will likely affect patient and doctor behavior.

2. Problem Setup

In this section, we provide a general framework and abstractions to understand the approval

process for modifications to AI/ML-based SaMD. We begin with reviewing the approval
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process for a single AI/ML-based SaMD since it forms the basis of our understanding and

is a prerequisite to getting modifications approved.

2.1 AI/ML-based SaMD

Formally, the FDA defines SaMD as software intended to be used for one or more medical

purposes without being part of a hardware medical device. An AI/ML-system is software

that learns to perform tasks by tracking performance measures. A SaMD must be approved

for a specific indication, which describes the population, disease, and intended use. Here

we only consider SaMDs whose predictions do not change the observed outcome; We leave

SaMDs that affect the observed outcome (e.g. by recommending treatment) to future work.

Predictive accuracy is typically characterized by multiple endpoints, or co-primary end-

points (Offen et al., 2007; FDA, 2017). The most common endpoints for binary classifiers are

sensitivity and specificity because they tend to be independent of disease prevalence, which

can vary across subpopulations (Pepe, 2003). Additionally, we can evaluate endpoints over

different subgroups to guarantee a minimum level of accuracy for each one.

We now define a model developer (the manufacturer) in mathematical terms. Let X be the

support of the targeted patient population, where a patient is represented by their covariate

measurements. Let Y be output range (possibly multivariate). Let Q be a family of prediction

models f ∶ X ↦ Y. Each model f defines the entire pipeline for calculating the SaMD output,

including feature extraction, pre-processing steps, and how missing data is handled. The

model developer is a functional g that maps the training data (XT , YT ) ∈ X n × Yn to a

function in Q. Let P be the family of distributions for X ×Y . The performance of a model f

on population P ∈ P is quantified by the K-dimensional endpoint m ∶ Q ×P ↦ RK . For each

endpoint mk, we assume that a larger value indicates better performance.

2.2 Modifications to AI/ML-based SaMD

The proposed workflow in FDA (2019) for modifying an AI/ML-based SaMD iterates between

three stages. First, the manufacturer proposes a modification by training on monitoring
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and/or external data and adds this to a pool of proposed modifications. Second, the aACP

evaluates each candidate modification and grants approval to those satisfying some criteria.

The most recently approved version is then recommended to doctors and patients. Finally,

a new batch of monitoring data is collected, which can be used to evaluate and train future

models. For simplicity, suppose these three stages are executed in the above order over a

fixed grid of time points t = 1,2, ....

The model developer is allowed to propose arbitrary modifications in a sequential and

possibly adaptive manner. For example, the modification can depend on all previously

collected monitoring data as well as the set of approvals up to that time point. For generality,

we represent each modification as an entirely separate model. Let filtration Ft be the sigma

algebra representing the information up to time t, which includes observed monitoring data,

proposed models, and aACP outputs up to time t. The model developer is a sequence of

functionals {gt ∶ t = 1,2, ...}, where gt is a Ft-measurable functional mapping to Q. Let f̂t be

the realized model proposal at time t. In addition, suppose that each proposed model f̂t has

a maximum wait time ∆t that specifies how long the manufacturer will wait for approval of

this model, i.e. the model is no longer considered for approval after time t +∆t.

Time trends are likely to occur in long-running processes, as found in long-running clinical

trials and non-inferiority trials (Altman and Royston, 1988; Fleming, 2008). This includes

changes to any component of the joint distribution between the patient population and

the outcome, such as the marginal distributions of the covariates, their correlation structure,

their prognostic values, and the prevalence of the condition. As such, let the joint distribution

at time t of patients Xt and outcomes Yt be denoted Pt. The value of endpoint m for model

f at time t is then m(f,Pt). More generally, we might characterize a model by the average

endpoint value over time points t to t+D−1 for some D ≥ 1. We denote the average endpoint
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using m(f,Pt∶t+D−1), where Pt∶t′ indicates a uniform mixture of Pt, ...,Pt′ . Here D acts as a

smoothing parameter; Larger D increases the smoothness of endpoint values.

Finally, this paper assumes that monitoring data collected at time t are representative

of the current population Pt. Of course, satisfying this criteria is itself a complex issue.

We will not discuss the challenges here and instead refer the reader to Pepe (2003) for more

details, such as selecting an appropriate sampling scheme, measuring positive versus negative

examples, and obtaining gold standard versus noisy labels.

2.2.1 Defining acceptable modifications.

[Figure 1 about here.]

A fundamental building block for designing an aACP is defining when a modification is ac-

ceptable to a reference model. Our solution is to represent which modifications are acceptable

using a directed graph between models in Q. If there is a directed edge from model f to model

f ′, then it is acceptable to update f to f ′. This “acceptability graph” is parameterized by a

pre-defined vector of non-inferiority margins ε ∈ RK
+ . An update from f to f ′ is acceptable if

it demonstrates non-inferiority with respect to all endpoints and superiority in at least one

(Bloch et al., 2001, 2007). So for a binary classifier where the endpoints are sensitivity and

specificity, one may select the NI margins to encourage modifications that shift the model

to a better ROC curve (Figure 1). An acceptability graph is formally defined below:

Definition 1: For a fixed evaluation window D ∈ Z+ and NI margin ε ∈ RK
+ , the ac-

ceptability graph at time t over Q contains the edge from f to f ′ if mk(f,Pt∶t+D−1) − εk ≤

mk(f ′,Pt∶t+D−1) for all k = 1, ...,K and there is some k = 1, ...,K such that mk(f ′,Pt∶t+D−1) >

mk(f,Pt∶t+D−1). The existence of this edge is denoted f →ε,D,t f ′ and f ↛ε,D,t f ′ otherwise.

In this paper, we assume D is fixed and use the notation f →ε,t f ′. For simplicity, Definition 1

uses the same NI margin across all models. In practice, it may be useful to let the margin

depend on the reference model or the previously established limits of its predictive accuracy.
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We obtain different graphs for different choices of ε. For instance, ε = 0 means that a model

is only acceptable if it is superior with respect to all endpoints, though this can be overly

strict in some scenarios. Setting ε ≠ 0 is useful for approving modifications that maintain the

value of some endpoints or have very small improvements with respect to some endpoints.

Finally, we define hypothesis tests based on the acceptability graph. In an ε-acceptability

test, we test the null hypothesis that a model f ′ is not an ε-acceptable update to model f

at time t, i.e. H0 ∶ f ↛ε,t f ′ . A superiority test is simply an ε-acceptability test where ε = 0.

3. An online hypothesis testing framework

At each time point, we suppose an aACP evaluates which candidates to approve by running

a battery of hypothesis tests. Since AI/ML-based SaMDs can be modified more easily and

frequently compared to drugs, the aACP may run a large number of tests. To account for

the multiplicity of tests, we will frame aACPs as online hypothesis testing procedures where

the goal is to control the error rate over a sequence of tests.

Each aACP specifies a sequence of approval functions At for times t = 1,2, ... (Figure 2),

where At is a F̃t-measurable function that outputs the index of the most recently approved

model at time t (some value in {0, ..., t−1}). Filtration F̃t is the sigma-algebra for monitoring

data up to time t and proposed models and aACP outputs up to time t−1. The index of the

latest approved model at time t is denoted Ât. A model was approved at time t if Ât ≠ Ât−1.

Assuming companies are not interested in approving older models, we require Ât ≥ Ât−1.

[Figure 2 about here.]

Different approval functions lead to different aACPs. In this paper, we only consider aACPs

that evaluate candidate modifications using prospectively-collected monitoring data, i.e. data

collected after the candidate modification has been proposed, as candidate modifications can

train on all previously-collected monitoring data. The following are two simple aACPs that

one may plausibly consider but do not provide error-rate guarantees:
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aACP-Baseline approves any modification that demonstrates ε-acceptability to the initially

approved model at a fixed level α. This can be useful when the initial model has high

predictive accuracy. The manufacturer may also argue this is reasonable policy because the

current laws only require a model to perform better than placebo, i.e. the standard of care

without utilizing AI/ML-based SaMDs.

aACP-Reset approves any modification that demonstrates ε-acceptability to the currently

approved model at some fixed level α. As opposed to aACP-Baseline, this policy encourages

the model to improve over time.

4. Online error rates for aACPs

We define two online Type I error rates for this setting and describe aACPs that uniformly

control these error rates over time. Manufacturers and regulators should select the error

rate definition and aACP most suitable for their purposes. These aACPs achieve error rate

control as long as their individual hypothesis tests are controlled at their nominal levels.

For both definitions, the error rate at time T is evaluated over the window 1∨(T −W ) to T

for some width W ≥ 1. The hyperparameter W must be pre-specified and specifies different

trade-offs between error control and speed: W =∞ requires the strongest error rate control,

but is overly strict in most cases, and W = 1 requires the weakest error control, but can lead

to bad long-running behavior. The desired trade-off is typically in between these extremes.

4.1 Bad approval count

We define a bad approval as one where the modification is unacceptable with regards to

any of the previously approved models. The first error rate is defined as the expected Bad

Approval Count (BAC) within the current window of width W :

Definition 2: The expected bad approval count within the W -window at time T is

BACW (T ) = E
⎡⎢⎢⎢⎢⎣

T

∑
t=1∨(T−W )

1{∃t′ = 1, ..., t − 1 s.t. f̂Ât′ ↛ε,t f̂Ât}
⎤⎥⎥⎥⎥⎦
.



Automatic algorithm change policies 11

This error rate captures two important ways errors can accumulate over time: bio-creep and

the multiplicity of hypotheses. We discuss these two issues below.

When a sequence of NI trials is performed and the reference in each trial is the latest model

that demonstrated NI, the performance of the approved models will gradually degrade over

time; This phenomenon has been called bio-creep in previous work (Fleming, 2008). Bio-

creep can also happen in our setting: Even if each approved model demonstrates superiority

with respect to some endpoints and NI with respect to others, repeated applications of ε-

acceptability tests can still lead to approval of strictly inferior models. The risk of bio-creep

is particularly pronounced because the model developer can perform unblinded adaptations.

To protect against bio-creep, Definition 2 counts it as a type of bad approval.

Second, when a long sequence of hypothesis tests is performed, the probability of a false

rejection is inflated due to the multiplicity of hypotheses. Definition 2 accounts for multiplic-

ity by summing the probabilities of bad approvals across the window. It is an upper bound

for the probability of making any bad approval within the window, which is similar to the

definition of family-wise error rate (FWER). In fact, we use the connection between FWER

and BAC in the following section to design an aACP that controls this error rate.

4.1.1 aACP to control bad approval counts. We now present aACP-BAC, which uniformly

controls BACW (⋅). An aACP is defined by its skeletal structure, which specifies the sequence

of hypothesis tests run, and a procedure that selects the levels to perform the hypothesis tests.

To build up to aACP-BAC, we i) first describe a simple aACP skeleton that launches a fixed

sequence of group sequential tests (GSTs), ii) add gate-keeping to increase its flexibility, and

iii) finally pair it with a sequence of F̃t-measurable functions {αt ∶ t = 1,2, ...} for choosing the

hypothesis test levels. The full algorithm is given in Algorithm 1 in Supporting Information.

For now, we assume the distributions are constant and simply use the notation →ε in place

of →ε,t. We discuss robustness to time trends in a later section.

[Figure 3 about here.]
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Let us first consider a simple aACP skeleton that compares each proposed model to

previously approved models using a single hypothesis test (Figure 3). More specifically, at

time t, it launches a group sequential ε-acceptability test with the null hypothesis

H0 ∶ ∃t′ = 1, ..., t s.t. f̂Ât′ ↛ε f̂t. (1)

The number of interim analyses is the maximum wait time ∆t and the critical values are

chosen according to an alpha-spending function specified prior to launch (DeMets and Lan,

1994). At each time point, we also perform interim analyses for all active hypothesis tests (i.e.

those not past their maximum wait time). The aACP approves f̂j at time t if it demonstrates

acceptability to f̂Â1
, ..., f̂Ât−1 . If multiple models are acceptable, it selects the latest one.

A drawback of this simple aACP skeleton is that it fails to adapt to new model approvals

that occur in the middle of a group sequential test (GST). Consider the example in Figure 3,

where a GST with null hypothesis H0
f̂0↛εf̂1

is launched at time t = 1 and a second GST with

null hypothesis H0
f̂0↛εf̂2

is launched at time t = 2. If f̂1 is approved at time t = 3, this aACP

cannot approve f̂2 since its GST only compares f̂2 to f̂0. Ideally, it could adapt to the new

approval and add a test comparing f̂2 to f̂1.

aACP-BAC addresses this issue by evaluating proposed model f̂t using a family of accept-

ability tests instead (Figure 4). In addition to the aforementioned test for the null hypothesis

(1), this family includes acceptability tests to test each of the null hypotheses

H0,j ∶ f̂j ↛ε f̂t for j = Ât + 1, ..., t − 1. (2)

As before, a model is approved at time t only if it demonstrates acceptability compared to

all approved models up to time t. To control the online error rate, aACP-BAC controls the

FWER for each family of tests using a serial gate-keeping procedure. Recall that gate-keeping

tests hypotheses in a pre-specified order and stops once it fails to reject a null hypothesis

(Dmitrienko and Tamhane, 2007). No alpha adjustment is needed in gate-keeping; It controls
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FWER at α by performing all tests at level α. Here, the tests are naturally ordered by the

index of the reference models, from oldest to latest. Moreover, this ordering maximizes the

probability of approval, assuming the proposed models improve in predictive accuracy. We

use the overall hierarchical rule to perform GSTs with gate-keeping Tamhane et al. (2018).

To uniformly control BACW (⋅) at α, aACP-BAC computes an over-estimate of BACW (t)

at each time t and selects level α̂t such that the over-estimate is bounded by α. Using a

union bound like that in Bonferroni correction, it uses the over-estimate

B̂ACW (t) =
t

∑
t′=1

α̂t′1{t −W ≤ t′ +∆t′ ≤ t} (3)

and selects α̂t such that

B̂ACW (t) ≤ α. (4)

See supporting information for a proof that aACP-BAC achieves the nominal rate.

Alternatively, we can think of aACP-BAC as an alpha-investing procedure (Foster and

Stine, 2008) that begins with an alpha-wealth of α, spends it when a family of tests is

launched, and earns it back when the family leaves the current window. Thus, aACPs

that control BAC over window size W = ∞ inevitably have low power to approve later

modifications because they only spend but never earn alpha-wealth. This is analogous to the

so-called “alpha-death” issue that occurs in procedures that control online FWER (Ramdas

et al., 2017). We sidestep the issue of alpha-death by selecting a reasonable value for W .

[Figure 4 about here.]

4.2 Bad approval and benchmark ratios

If the goal is to ensure that the SaMD improves on average and occasional drops in per-

formance are tolerated, the approval policies for controlling BACW can be overly strict and

unnecessarily conservative. There are two solutions to this problem. One approach (reward-

approach) is to reward the company for each superior model by resetting the level alpha.
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The FDA essentially uses this procedure right now, as each clinical trial resets the alpha-

spending clock. Another idea (FDR-approach) is to draw on the false discovery rate (FDR)

literature: These procedures control the expected proportion of false rejections rather than

the FWER, which has higher power when some of the null hypotheses are false (Benjamini

and Hochberg, 1995). This section defines a second online error rate based on these ideas.

The reward-approach punishes bad approvals and rewards the approval of superior models.

To signify that a recent set of modifications has led to the creation of a superior model, we

now define aACPs with an additional function that can label models as “benchmarks.” By

labeling a model as a benchmark, the aACP is claiming that it is superior to the previous

benchmark. More formally, we define a benchmark function Bt as a F̃t measurable function

that outputs the index of the latest benchmark model at time t. For t = 0, we have B0 ≡ 0. We

require benchmarks to be a previously approved model since superiority implies acceptability.

Again, we use the hat notation to indicate the realized benchmark index. A bad benchmark

is one in which f̂B̂t−1 ↛0,t f̂B̂t . We do not compare against all previous benchmarks since ↛0,t

is a transitive property when the superiority graph is constant.

Based on the FDR-approach, we now introduce bad approval and benchmark ratios. An

aACP needs to control both ratios to control the frequency of bad approvals and benchmarks.

Definition 3: For NI margin ε, the bad approval ratio within W -window at time T is

BARW (T ) =
∑Tt=1∨(T−W ) 1{∃t′ = 1, ..., t − 1 s.t. f̂Ât′ ↛ε,t f̂Ât}

1 +∑Tt=1∨(T−W ) 1{B̂t ≠ B̂t−1}
. (5)

The bad benchmark ratio within W -window at time T is

BBRW (T ) =
∑Tt=1∨(T−W ) 1{f̂B̂t−1 ↛0,t f̂B̂t}
1 +∑Tt=1∨(T−W ) 1{B̂t ≠ B̂t−1}

. (6)

Since only approved models can be designated as benchmarks, BARW is an upper bound for

the proportion of bad approvals (this is approximate because the denominator is off by one).

The denominator in (5) was deliberately chosen to be the number of unique benchmarks

rather than the number of approvals because the latter is easy to inflate artificially. We can
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simply propose models by alternating between two models that are ε-acceptable to each other.

This strategy does not work for benchmarks because they require demonstrating superiority.

4.2.1 aACP to control bad approval and benchmark ratios. Instead of controlling the

expectations of (5) and (6), we describe aACP-BABR for controlling the modified expected

bad approval and benchmark ratios. These modified ratios are based on a similar quantity

in the online FDR literature known as modified online FDR (Foster and Stine, 2008). We

chose to control the modified versions because they can be controlled under less restrictive

conditions and using relatively intuitive techniques (Ramdas et al., 2017). Moreover, Foster

and Stine (2008) found that modified online FDR has similar long-running behavior to online

FDR. We define modified expected bad approval and benchmark ratios below.

Definition 4: For NI margin ε, the modified expected bad approval ratio within W -

window at time T is

meBARW (T ) =
E [∑Tt=1∨(T−W ) 1{∃t′ = 1, ..., t − 1 s.t. f̂Ât′ ↛ε,t f̂Ât}]

E [1 +∑Tt=1∨(T−W ) 1{B̂t ≠ B̂t−1}]
. (7)

The modified expected bad benchmark ratio within W -window at time T is

meBBRW (T ) =
E [∑Tt=1∨(T−W ) 1{f̂B̂t−1 ↛0,t f̂B̂t}]
E [1 +∑Tt=1∨(T−W ) 1{B̂t ≠ B̂t−1}]

. (8)

Next, we describe how aACP-BABR uniformly controls meBARW (⋅) and meBBRW (⋅) at

levels α and α′, respectively (Algorithm 2). We begin with its skeleton and then discuss the

alpha-investing procedure. Again, we assume the distributions Pt are constant.

aACP-BABR uses the acceptability tests from aACP-BAC to approve modifications and

superiority tests to discover benchmarks. So at time t, in addition to launching a family of

acceptability tests to evaluate model f̂t for approval, aACP-BABR also launches a family of

group-sequential superiority tests comparing f̂t to models with indices {B̂t−1, ...., t − 1}, which

are executed in a gate-keeping fashion from oldest to latest. Let ∆′
t be the maximum wait

time for the superiority tests, which can differ from the maximum wait time for acceptability
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tests. A model f̂j is designated as a new benchmark at time t if it demonstrates superiority

to models f̂B̂j−1 , ..., f̂B̂t−1 . If multiple benchmarks are discovered at the same time, the aACP

can choose any of them (we choose the oldest one in our implementation).

aACP-BABR uses an alpha-investing procedure based on Ramdas et al. (2017) to control

the error rates. Let the F̃t-measurable function α′t specify the level to perform superiority

tests launched at time t. At time t, aACP-BABR constructs over-estimates of the error rates

BARW (t) and BBRW (t) and selects α̂t and α̂t′ such that the over-estimates are no larger

than the nominal levels. The over-estimates are

B̂ARW (t) = ∑
t
t′=1 α̂t′1{t −W ≤ t′ +∆t′ ≤ t}

1 +∑tt′=1∨(t−W ) 1{B̂t′ ≠ B̂t′−1}
(9)

B̂BRW (t) = ∑
t
t′=1 α̂

′
t′1{t −W ≤ t′ +∆′

t′ ≤ t}
1 +∑tt′=1∨(t−W ) 1{B̂t′ ≠ B̂t′−1}

. (10)

It selects α̂t and α̂′t such that

B̂ARj(t) ≤ α ∀j = 1, ...,W (11)

B̂BRj(t) ≤ α′ ∀j = 1, ...,W. (12)

(We consider all window sizes since we also need to over-estimate future errors BARW (t′)

and BBRW (t′) for t′ > t.) So, aACP-BABR earns alpha-wealth when new benchmarks are

discovered, which unites ideas from FDR-approach and reward-approach. See the supporting

information for a proof that aACP-BABR provides the desired error control.

4.3 Effect of time trends

Time trends are likely to occur when an aACP is run for a long time. We now discuss how

robust aACP-BAC and -BABR are to time trends. We consider levels of increasing severity:

the distributions are relatively constant over time (no-trend), the distributions are variable

but the acceptability graphs are relatively constant (graph-constant), and the acceptability

graphs change frequently (graph-changing).

When the distributions are relatively constant over time, aACP-BAC and -BABR should
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approximately achieve their nominal error rates. Recall that the two aACPs perform paired

T-tests by approximating the distribution Pt∶t+D−1 with monitoring data sampled from Pj∨j′∶t−1,

which is reasonable when the distributions are relatively constant over time. When there are

multiple endpoints, one can either choose a GST that rejects the null hypothesis when all

endpoints surpass the significance threshold at the same interim time point or when the

endpoints surpass their respective thresholds at any interim timepoint. The former approach

is more robust to time trends with only modest differences in power (Asakura et al., 2014).

When the distributions are not constant but the acceptability graphs are, the GSTs have

inflated error rates since they only guarantee Type I error control under the strong null. To

handle heterogeneity in distributions over time, we can instead use combination tests, such

as Fisher’s product test and the inverse normal combination test, to aggregate results across

time points (Fisher, 1932; Hedges and Olkin, 1985). Since we assumed that the acceptability

graphs are constant, this tests the null hypothesis that the shared acceptability graph does

not have a particular edge (i.e. H0 ∶ f ↛ε,⋅ f ′); The alternative hypothesis is that the edge

exists. Thus, we can replace GSTs with combination tests to achieve the desired error control.

The most severe time trend is where the acceptability graphs change frequently. Controlling

error rates in this setting is difficult because previous data is not informative for future time

points. In fact, even bad approvals are not well-defined since the relative performance of

models changes over time, e.g. an approval at time t that looks bad at time t+ 1 might turn

out to be a very good at time t + 2. As such, we recommend checking that the acceptability

graphs are reasonably constant to ensure proper use of aACP-BAC and -BABR. For example,

one could track a moving average for the evaluation metrics of all previously proposed

modifications and check that their values and/or their relative orderings are stable over

time.
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5. Cumulative utility of an aACP

Just as hypothesis tests are judged by their Type I error and power, aACPs should be

judged by their rates for approving bad and good modifications. Taking a decision-theoretic

approach, we characterize the rate of good approvals as the cumulative mean of an endpoint,

which we refer to as “cumulative utility.” This quantity is similar to “regret” in the online

learning literature (Shalev-Shwartz, 2012).

Definition 5: The cumulative utility of an aACP with respect to endpoint m is

E [ 1

T

T

∑
t=1

m (f̂Ât ,Pt)] . (13)

There is no single aACP that maximizes (13) for all possible model developers since we

allow arbitrary unblinded adaptations. Instead, we suggest running simulation studies under

probable model improvement rates to understand the cumulative utility under different aACP

settings, such as window size W , NI margin ε, and monitoring data batch size.

6. Simulations

Through simulation studies, we evaluate the operating characteristics of the following aACPs:

(1) Blind: Approve all model updates

(2) Reset: Perform an acceptability test at level 0.05 against the last-approved model

(3) Baseline: Perform an acceptability test at level 0.05 against the initial model

(4) aACP-BAC at level α = 0.2 with window W = 15

(5) aACP-BABR at level α = α′ = 0.2 with window W = 15. The ratio of maximum wait

times between the benchmark and approval was fixed at ∆′/∆ = 2.

(6) Fixed: Only approve the first model

The first three aACPs have no error rate guarantees but are policies one may consider; The

others provide error rate control. In the first two simulations, we try to inflate the error

rates of the aACPs. The next two study the cumulative utility of the aACPs when proposed

models are improving on average. The last simulation explores the effects of time trends.



Automatic algorithm change policies 19

In the simulations below, we consider a binary classification task with sensitivity and

specificity as metrics. We compare aACPs by plotting the metrics of the approved model over

time. We test for acceptability/superiority using repeated confidence intervals (Cook, 1994)

and Pocock alpha-spending functions (Pocock, 1977), where ε = 0.05 for both endpoints.

Supporting Information contains summary statistics of aACP performance (Table 1 and

2), simulation details (Section B), and sensitivity analyses to hyperparameters W and ε

(Section C).

6.1 Incremental model deterioration

In this simulation, the proposed models deteriorate gradually. This can occur in practice for

a number of reasons. For instance, a manufacturer might try to make their SaMD simpler,

cheaper, and/or more interpretable by using fewer input variables, collecting measurements

through other means, or training a less complex model. Even if their modifications are well-

intended, the sponsor might end up submitting inferior models. A model developer can also

inadvertently propose adverse modifications if they repeatedly overfit to the training data.

Finally, a properly trained model can be inferior if the training data is not representative of

future time points if, say, the biomarkers lose their prognostic value over time.

This simulation setup tries to induce bio-creep by submitting models that are acceptable

to the currently approved model but gradually deteriorate over time. Each proposed model

is worse by ε/2 in one endpoint and better by ε/4 in the other. By alternating between

deteriorating the two endpoints, the manufacturer eventually submits strictly inferior models.

[Figure 5 about here.]

Bio-creep occurs consistently when using the aACP-Reset since it only compares against

the most recently approved model (Figure 5). Both the sensitivity and specificity for the

approved model at the final time point are significantly worse than the initial model. aACP-
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BAC and aACP-BABR properly controlled the occurence of bio-creep since they require

modifications to demonstrate acceptability with respect to all previously approved models.

6.2 Periodic model deterioration and improvement

Next we consider a simulation in which the proposed modifications periodically decline and

improve in performance. This scenario is more realistic than the previous section since a

manufacturer is unlikely to only submit bad modifications. More specifically, the proposed

models monotonically improve in performance over the first fifteen time points and, there-

after, alternate between deteriorating and improving monotonically every ten time points.

As expected, aACP-Baseline had the worst error and cumulative utility. It performed like

aACP-Blind and the performances of the approved models were highly variable over time

(Figure 6). In contrast, the other aACPs displayed much less variability and the performances

were generally monotonically increasing. aACP-Reset had the highest utility here because it

performs hypothesis tests at a higher level alpha than aACP-BAC and aACP-BABR.

[Figure 6 about here.]

6.3 Accumulating data model updates

We now suppose the manufacturer automatically generates modifications by training the

same model on accumulating monitoring data. In this simulation, the developer iteratively

performs penalized logistic regression. Since model parameters are estimated with increas-

ing precision, the expected improvement decreases over time and performance eventually

plateaus. As such, we investigate aACP behavior over a shorter time period.

aACP-Blind approved good modifications the fastest (Figure 7). We find that the remaining

aACPs, excluding aACP-fixed, are close in cumulative utility because less efficient aACPs

can “catch up”: Even if an aACP fails to approve a small improvement, there will eventually

be a proposal with sufficiently large improvement that is easy to discern. aACP-BABR often

discovered one or no new benchmarks within a window and was unable to earn alpha-wealth
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much of the time because the models improved at a slow pace and performance plateaued

over time. As such, aACP-BAC and -BABR behaved similarly in this simulation.

[Figure 7 about here.]

6.4 Significant model improvements

Next, we simulate a manufacturer that proposes models with large improvements in per-

formance at each time point. Large improvements usually occur when the modifications

significantly change the model, such as adding a highly informative biomarker or replacing

a simple linear model with a complex one that accounts for non-linearities and interactions.

Since large improvements are relatively rare, we used a short total time. We designed the

simulation to be less favorable for aACP-BAC and -BABR. The model developer proposes a

modification that improves both endpoints by 4% compared to the most recently approved

model. Therefore an aACP cannot catch up by simply waiting for large improvements.

[Figure 8 about here.]

As expected, Blind-aACP is the most efficient, followed by aACP-Baseline and aACP-Reset

(Figure 8). The aACPs with error rate control are less efficient. For example, the performance

of the final models approved by aACP-BABR and aACP-Reset differed by 4% on average.

Unlike in previous simulations, there is a clear improvement in efficiency from using aACP-

BABR over aACP-BAP. Since the models here improve at a fast pace, aACP-BABR earns

enough alpha-wealth to discover new benchmarks with high probability.

6.5 Robustness to time trends

Finally, we evaluate the robustness of aACP-BAC and -BABR to time trends by simulating

the three time trend severity levels from Section 4.3. We simulate the endpoints of the

proposed models to follow a sinusoidal curve. In addition, the proposed model is always

strictly inferior to the currently approved model on average. For the graph-constant setting,

the sinusoids are aligned so that the proposed model is unacceptable at all time points. For
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the graph-changing setting, the sinusoids are offset by exactly half the period so that the

proposed model is superior to the currently approved model at certain time points.

The error rates in the graph-constant and no-trend settings were similar (Table 2 in

Supporting Information), which implies that aACP-BAC and -BABR still control error rates

if the acceptability graphs stay relatively constant. However, they performed poorly in the

graph-changing setting since bad modifications appeared superior at particular time points.

7. Discussion

In this work, we have presented and evaluated different policies for regulating modifications

to AI/ML-based SaMDs. One of our motivations was to investigate the possibility of bio-

creep, due to the parallels between this problem and noninferiority testing of new drugs.

We found that the risk of bio-creep is heightened in this regulatory problem compared to

the traditional drug development setting because software modifications are easy and fast to

deploy. Nonetheless, we show that aACPs with appropriate online error-rate guarantees can

sufficiently reduce the possibility of bio-creep without substantial sacrifices in our ability to

approve beneficial modifications, at least in the specific settings discussed in this paper.

This paper only considers a limited scope of problems and there are still many interesting

directions for future work. One direction is to develop more efficient aACPs, perhaps by

spending alpha-wealth more judiciously, discovering benchmarks using a different procedure,

sequestering monitoring data for repeated testing, or considering the special case with pre-

specified modifications. Also, we have not considered aACPs that regulate modifications to

SaMDs that are intended to treat and are evaluated based on patient outcomes.

Our results raise the interesting question regarding the general structure of the regulatory

policy framework. Although aACP-BAC and -BABR mitigate the effect of bio-creep, they

cannot provide indefinite error rate control without large sacrifices in cumulative utility.

So if one desires both indefinite error rate control and fast approval of good modifications,
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perhaps the solution is not to use a fully automated approach. For example, human experts

could perform comprehensive analyses every couple of years and the manufacturer could use

an aACP in between to quickly deploy modifications.

Finally, we highlight that regulating modifications to AI/ML-based SaMDs is a highly

complex problem. This paper has primarily focused on the idealized setting of a constant

diagnostic environment. Our findings suggest that problems with bio-creep is more pervasive

when modifications are designed to accommodate time trends in the patient population,

available measurements, and bioclinical practice. It is crucial that we thoroughly understand

the safety risks before allowing modifications in these more complex settings.
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Figure 1. Example of an acceptability graph for binary classifiers evaluated on sensitivity
and specificity. Given a reference model (triangle) and NI margin ε, a candidate model is
acceptable if one endpoint is non-inferior and the other is superior compared to the reference
model. The NI margin can be chosen to encourage approval of updates to a better ROC
curve. Models in the shaded area are acceptable updates to the reference model. Model 3 is
not acceptable since it is on a strictly inferior ROC curve. Model 1 and 2 are likely on better
ROC curves, but 1 is not within the NI margin and is therefore not acceptable either.
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Pool of candidate 
algorithmŝfj j = 1,...,t

ApprovalŝAj
j = 1,...,t − 1

Automatic Algorithm 
Change Protocol 

(aACP)

̂At:  Most recently approval up to time t

Monitoring data 
up to time t

Figure 2. An automatic Algorithm Change Protocol (aACP) outputs the index of the
most recently approved model Ât at each time t. To do so, it evaluates the pool of candidate
models against the pool of previously approved models using monitoring data collected up
to that time.
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̂A2 = 0 ̂A3 = 1 ̂A4 = 1

H 0̂
f0↛ϵ

̂f1

H 0̂
f0↛ϵ

̂f2

̂A1 = 0

Time 1                        2                          3                          4       

H 0̂
f1↛ϵ

̂f3 ̂f0↛ϵ
̂f3OR

Figure 3. At each time point, this simple aACP launches a single group sequential test
(GST) comparing the newly proposed model to previously approved models. Here, each
model has a maximum wait time of ∆ = 2 and each interim analysis is represented by a
square. A checkmark indicates that the null hypothesis is rejected and an “X” indicates
that the interim analysis is not performed. The final interim analysis for f̂2 is not performed
because its GST only compares f̂2 to f̂0 and not the newly approved model f̂1. Thus, f̂2 has
no chance of being approved.
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Time 1                        2                          3                          4                         
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̂f3OR

Figure 4. At each time point, this aACP launches a family of group sequential tests
(shaded gray boxes) comparing the newly proposed model to previously approved models
as well as other models that might be approved in the interim. Within each family, we test
the hypotheses using a gatekeeping procedure, which provides a mechanism for comparing
a candidate model to newly approved models in the interim. We use the same notation
in Figure 3. An arrow between squares indicates that we rejected a null hypothesis and
proceeded to the next test in the gatekeeping sequence.
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Figure 5. Comparison of the sensitivity and specificity of models approved by different
aACPs when the proposed models are gradually deteriorating. (We omit aACP-Blind from
this plot since it would obviously perform the worst.)
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Figure 6. Comparison of the sensitivity and specificity of models approved by different
aACPs when the proposed models periodically deteriorate and improve in performance.
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Figure 7. Comparison of the sensitivity and specificity of models approved by different
aACPs when the model developer trains a logistic model on accumulating monitoring data.
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Figure 8. Comparison of the sensitivity and specificity of models approved by different
aACPs when the model developer adaptively proposes a significantly better model than the
currently approved model. We evaluate three different settings for aACP-BABR, where a
larger index means that alpha-wealth is spent more greedily.


