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Abstract

Multi-modal learning is essential for understanding information in the real world.
Jointly learning from multi-modal data enables global integration of both shared
and modality-specific information, but current strategies often fail when observa-
tions from certain modalities are incomplete or missing for part of the subjects.
To learn comprehensive representations based on such modality-incomplete data,
we present a semi-supervised neural network model called CLUE (Cross-Linked
Unified Embedding). Extending from multi-modal VAEs, CLUE introduces the
use of cross-encoders to construct latent representations from modality-incomplete
observations. Representation learning for modality-incomplete observations is
common in genomics. For example, human cells are tightly regulated across multi-
ple related but distinct modalities such as DNA, RNA, and protein, jointly defining
a cell’s function. We benchmark CLUE on multi-modal data from single cell
measurements, illustrating CLUE’s superior performance in all assessed categories
of the NeurIPS 2021 Multimodal Single-cell Data Integration Competition. While
we focus on analysis of single cell genomic datasets, we note that the proposed
cross-linked embedding strategy could be readily applied to other cross-modality
representation learning problems.

1 Introduction

Data from complex systems span multiple modalities. For example, to perceive the world we need
to see images, hear sounds, and read text. Learning how to represent multi-modal data in a way
that captures both shared and complementary information across modalities is a fundamental ML
task.[1, 2] Previous works have demonstrated that multi-modal learning improves video [3]] and
image classification[4], and modality-translation[5]].

Multi-modal learning is of critical importance in biology. Biological processes in cells involve
multiple regulatory layers that are composed of different types of parts, such as DNA[6, (7, 8] RNA[9]],
and protein[10], but these layers directly influence each other, resulting in an intrinsic need for multi-
modal understanding. In recent years, single-cell technologies have enabled measuring a variety of
data modalities at single-cell resolution, including specialized techniques capable of simultaneously
measuring two or more modalities in the same cell (SHARE-seq[ 1], sci-CAR[12], SNARE-seq[13]],
CITE-seq[14]])). However, quality of multi-modal experiments is typically lower than unimodal ones.
Further, unimodal datasets can be generated on a much larger scale (tens of millions of cells, as
opposed to thousands of cells). Therefore, in-silico integration of these unimodal data may provide
great value for understanding inner workings of complex cell systems [[15}[16]].
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Figure 1: Cross-Modality Representation Learning: Figure represents a schematic example with
three data modalities, where each study (dataset) has measured a subset of the modalities. Our cross
modality representation approach learns the complete set of modalities for each dataset.
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In particular, a pressing computational question is how to utilize the limited and noisy datasets from
multi-modal experiments as a reference to pair the larger set of high quality unimodal data, in order
to generate pseudo-multi-modal datasets that enable high-quality downstream analyses. To address
this, we propose to use cross-modality representation learning (Figure [I)) to learn comprehensive
representations from modality-incomplete (unimodal) data. We show that our approach results in a
significant improvement compared to competing approaches.

In this paper, we propose a semi-supervised neural network model called CLUE (Cross-Linked
Unified Embedding). The model uses paired multi-modal data as supervision to learn a combined
representation by jointly training cross-encoders across data modalities. Based on this framework,
CLUE learns modality-specific representations, which are then combined to build an effective
embedding in the multi-modal space for each cell. As a result, CLUE can automatically pair single-
cell data from different modalities. Further, while other methods in this domain seek to find a
common information/representation across the modalities, CLUE preserves both shared and modality-
specific information. CLUE achieved state-of-the-art performance in the multi-modal single-cell data
integration challenge as demonstrated by its top performance on all of the assessment categories in
the NeurIPS 2021 Multimodal Single-cell Data Integration Competition. Also, we provide additional
experiments illustrating CLUE’s state-of-the-art performance.

2 Related work

In this section, we will first introduce general, existing machine learning approaches and then focus
on tailored approaches in single cell genomics.

2.1 The general multi-modality learning problem

CLUE aims to learn a coordinated representation[1]: each modality has a corresponding projection
function, and constrains across the projection functions ensures some level of coordinated repre-
sentation learning. Multi-modal machine learning has shown impressive performance in computer
vision and NLP [4, |5, [17, [18]]. For example, aligned VAE [19]] aligns modality-specific embedding
space by minimizing the MSE of embeddings from paired data. Coupled VAE [20] uses a "translator"
decoder to reconstruct a given modality from the embedding. Others methods, including CLIP[4]
and DALL-2[5]], apply contrastive learning to form a coordinated space. Furthermore, attention-
based methods focus on the learned interactions between modalities to improve the quality of the
coordinated representation(21}, 22].

2.2 Related work in single-cell genomics

A common approach for integrating data in single cell genomics is to represent multi-modal data in a
shared representation space. Various downstream analyses such as clustering, cell type annotation, and
cell-fate trajectory reconstruction are then performed using the embedded representations. Existing
methods can be categorized to unsupervised and semi-supervised approaches.
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Unsupervised methods Unsupervised methods integrate cells from different modalities without
paired multi-modal measurements. The key here is to build a feature transformation between different
modalities so that all modalities are represented in the same feature space. For example, Seurat
v3[23] transforms ATAC-seq data to RNA-seq space via the gene activity scores, computed as the
normalized sum of cis open chromatin read counts within a certain distance cutoff from each gene.
Standard approaches such as Canonical Correlation Analysis (CCA) can then be applied because of
the computationally paired feature spaces. Online iNMF [24], LIGER [25]] and MOFA+ [26]] follows
similar feature transformations, but apply Negative Matrix factorization (NMF) to separately model
shared and modality-specific information. GLUE [27] adopts a graph variational autoencoder (VAE)
to model the prior regulatory relationship between open chromatin regions and genes, which enables
an improved feature transformation, yielding improved performance.

Semi-supervised methods Semi-supervised methods make use of paired multi-modal measure-
ments. Dictionary learning in Seurat v4 [28] uses paired multi-modal data as a bridge to interconnect
other unimodal data by representing each unimodal cell as the linear combination of a common set of
atoms (i.e., paired multi-modal cells). Extending from the deep generative VAE model, Babel[29]
uses modality-specific encoders and decoders to learn the translation between different modalities.
Similar to Babel, Polarbear[30] trains a separate translator to model the translation between different
modalities. Cobolt [31]], MultiVI [32]] and scMVP [33] also apply multiple VAEs and align the
embedding space using joint embedding.

Common limitation of previous methods The common VAE-based approaches assume there is
a "Reference" embedding space, where data from all modalities are projected into. As a byprod-
uct of this assumption, existing methods mainly learn modality-shared information and discard
modality-specific information. As we show, CLUE can learn from both modality-shared and specific
information, and this capability is important for its top performance on single cell genomic tasks.

3 Notations and Formulation

Let x,(f) € R™* represent sample ¢ from modality & (k € K = {1,2, ..., K'}), where my, is the
number of features. We denote the set of modalities observed for sample ¢ as C... For convenience,
we also define xfccz as a shorthand for {ng) |k e K.}

Data from each modality is generated from a latent variable z; € R? via a generative distribution
p(xk|2k; 0k ). Here, z,, represents a section of the underlying global representation relevant to the
corresponding modality, and 6 is the set of learnable parameters in the generative distribution. Note
that the modality-specific representation z;’s are correlated, as they are jointly determined by a
common global representation. We represent the global sample representation with the concatenation
of all modality-specific latent variables z = (z1, Zs, ..., Zx ), and denote the joint prior distribution as

p(Z) = p<zlaz2a "-;ZK)~

The multi-modality integration task Given a set of samples for which an arbitrary combination
of modalities is observed (/C.), the objective is to learn the most comprehensive representation z for
all samples even when a subset of modalities are not observed for all samples. In other words, we are

interested in inferring the posterior distribution p(z|x,(§3), which is dynamically defined based on the
set of modalities profiled in each sample. )

4 CLUE

CLUE is a deep generative model that can align data from different modalities after training on
partially paired multi-modal data. It builds upon the multi-VAE architecture where data from different
modalities are projected into a shared latent space using modality-specific VAEs. The key difference
is that CLUE models the shared latent space as a combination of modality-specific sub-spaces,
and extends the basic multi-VAE architecture by including cross-encoders that project data from
each modality into the sub-spaces of all modalities. This feature facilitates learning from both
modality-shared and specific information. Below, we start by introducing the model architecture.



4.1 Multi-modal Variational Inference

For a generative model, the marginal likelihood of a sample ¢ can be written as:

xi)10) = /prk>|zk, p(z)dz (1)

ke,
We can derive the following evidence lower bound (ELBO) by introducing a variational posterior

a(zlx); ¢):

lnp(xggz;ﬂ) = 1n/p(x,%2|z;0)p(z)dz

o o gy 4 0)
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Regularization term
Reconstruction term

Maximizing the ELBO effectively maximizes the marginal data likelihood and minimizes the error of
the variational posterior at the same time.

When a factorized variational posterior q(z|x,(ccz; ?) = ek 4(zx |x,(€2; @) is used, the reconstruction
term becomes:

/ [ a(zilxii0) 3 mp(lzw: O)dz = 3 E,, o p(x"|zii0) @)
ke

ke ke,

However, for the regularization term, the joint prior p(z) = p(21, 22, ..., Zx ) is difficult to learn due
to the correlation between modality-specific latent variables. Here we approximate it with a factorized
prior p(z) = [],cx P(2x), which simplifies the regularization term into:

= >~ KL (a(mlxs 0)Ip(z1)) ©)
kex
The overall ELBO is thus:
ELBO(:60,6) = Y [E,,, 0, InP(xf” |22:0) = KL (a(zi x5 6) [p(za) )| @)

ke

4.2 Self-Linked Variational Autoencoders

Intuitively, data from the same modality should be the most informative for inferring modality-specific

latent states, so it is reasonable to apply the approximation q(zk|x,(ccr); ) = q(zg |X(C) ). In that
case, the ELBO becomes: )

BLBO.(x:0:6) = 3 [0 0y PO 1223 60) = KL (a(zlx73 ) p()) | 5)
S

Following the approach of VAEs, we can implement the generative distributions p(ng) |zi; 0) by

decoder neural networks, and the variational posteriors g(z |x,(:); ) by encoder neural networks.
However, the above approximation leads to K independent VAEs. The full latent z = (21, z2, ..., 2k )
can only be inferred when all modalities are observed.



4.3 Cross-Linked Variational Autoencoders

To allow full inference of latent z with modality-incomplete data, some of the latent variables
corresponding to unobserved modalities must be inferred from other observed ones, necessitating
a cross-modality encoding scheme. To achieve this, avoid the previous approximation and model

the variational posteriors q(zk\x,(cc); ¢) directly. We use the following data-adaptive encoders to
implement the dynamically-deﬁne& variational posterior:

q(zalxi0) = ] alzalx; o) (6)
k'ek.
The ELBO term is then:
ELBO ross(x\: 0, 6) (7
=Y |E oy np(x) |z;0) — KL | ] alzelxw; ¢)llp(ze) (8)
[k exc, a(znlxyrs0) MPAXy " | Zk; q(2Zk |Xk5 Q)| |P(Zk
ke k'ek.

The model essentially introduces a matrix of encoders ¢(z|x ; ¢) that map between all modality
pairs. The "self-encoders" (k = k') map data to the latent variable of the corresponding modality
while the "cross-encoders" (k # k') map data to latent variables of other modalities. For a given
sample, the inferred latent of modality £ combines self- and cross- inferences from all its observed
modalities. For example, let modality 1 be RNA and modality 2 be protein. The cross-encoder
q (22 | x1) encodes RNA data to the protein latent space, and the cross-encoder ¢ (21 | x2) encodes
protein data to the RNA latent space. These cross-encoders will learn to translate information from
one modality to another after being trained with multi-modal cells where both RNA and protein are
observed. Thus, for a unimodal cell where only the protein modality is observed, latent representation
of the missing RNA modality can be imputed with cross-encoder ¢ (21 | 22), and vice versa.
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Figure 2: CLUE model architecture

The cross-linking architecture allows the model to learn useful information from multi-modal observa-
tions, generalizing to cases where certain modalities are missing. For example, multi-modal samples
where a pair of modalities ¢, j are simultaneously observed can be utilized to train the cross-encoders
q(zi|x;) and ¢(z;|x;), enabling us to infer the latent z;, z; fully even when one of x; and x; is
missing.

4.4 Additional alignment losses

Beyond the ELBOs, we add the following two objectives to further align the learned representations:



Mean squared error loss The intuition behind the mean squared error loss is simple. Representa-
tions z inferred from different modalities of the same multi-modal sample should be "close" to each
other:

1 g
cmmw)zEc‘K‘§:\4>—z@F ©)
¢ ke,
2\ ~ q(zx\; 0) (10)
z(9) = ! Z z,(:) (11)
|ICC| keK.

Adversarial loss We train a modality discriminator g(k|z; ) to tell which data modality a latent
representation z is inferred from. The encoders are then trained adversarially to fool the modality
discriminator, so that the representations from different modalities are well-aligned:

1
£D(¢a ’(/}) =E. W Z Eq(z\xk;qb) 1HQ(k|Z; ’(/})‘| (12)
¢ ke,
4.5 Opverall objectives
Let:
Loatr(6,6) = Ee [~ELBO.i (%3 0, 0)] (13)
ﬁcross(67 (b) = Ec [_ELBOcross (X)(CCZ; 97 ¢):| (14)

The overall training objectives can be written as:
HﬁxADEDW%w)

. 15)
Igl(j)n Aselfﬁself (97 d)) + )\cross»ccross (97 d)) + )\MSE['MSE(QS) + )‘D»CD (¢7 1/})
In summary, the mean squared error and the cross prediction use the pairing information to learn the
local alignment, while the adversarial learning aligns these embedding in a global manner.

5 Result

We applied the CLUE model to the problem of multi-modal single-cell data integration. We first
introduce the dataset and metric used to evaluate the performance of the model, followed by the
results. Next, we additionally compare our model with MultiVI[32], Cobolt[31]], and the "bridge
integration" in Seurat v4. We show that CLUE outperforms previous methods.

5.1 Datasets

NeurIPS 2021 Multi-modality Competition Datasets[34] The NeurIPS multi-modal competition
used data from two types of recent technologies for measuring single-cell multi-modal data: 10X
genomics Multiome and CITE-seq[35]. Multiome measures DNA accessibility and gene expression
simultaneously. By dividing the genome into bins of fixed length, DNA accessibility information was
converted into a 100,000-dimensional matrix. After filer for gene expression, the gene expression
matrix includes measurements for 20,000 genes per cell. Due to technical limitations, these two
matrices are highly sparse. CITE-seq simultaneously captures proteins (n=134) surface and gene
expression information inside cell. The Multiome training dataset includes 42,492 cells, and the test
dattaset includes 20,009 cells,. The CITE-seq training dataset includes 66,175 cells, and the test
dataset includes 15,066 cells. The data splitting scheme is identical to that used in the competition.

Share-seq dataset In addition to the competition data, we also use a dataset from mouse skin gen-
erated with SHARE-seq[11]. SHARE-seq simultaneously measures gene expression and chromatin
accessibility. In this dataset, there is a total of 34,774 cells from four different batches (53, 54, 55, 56).
We leave one batch (53) out for testing, and use the other three batches (54, 55, 56) for training data.



5.2 Metric

Matching Score Average confidence placed on correct matching. Specifically, a cross-modality
matching matrix M is first constructed by computing a Jaccard index of cross-modality nearest
neighbors in the integrated embedding space:

- J(NNg; ANNj;) U (NNji 0 NNy )| (16)
“ = (NN;; UNN,;) U (NN,; U NNy, )|

where NN;; is the nearest neighbor of profile 7 in the modality of profile j. The matching score is
computed as follows:

. 1 -
Matching Score = N Z Z M, ; * 05,5 (17)
1 J

where M is obtained by row-normalizing the matching matrix M. 03,5 is 1 if profile ¢ and j were
measured in the same cell and 0 otherwise. IV is the number of observations.

FOSCTTM Fraction of Samples Closer than True Match[36]. If true pairing information is
available for NV cells then the FOSCTTM is calculated as:

1 (0 NG

_ b n o
FOSCTTM = o= ; i +; ~ s

2\ = 1 | d(xj,y5) < d(xi,y)},nS) = {7 | d(xi,y5) < d(xi,y:)}]

ngi) and néi) represent the number of cells that are closer to the sth cell than their true matches in the

opposite dataset. d is the Euclidean distance. Lower FOSCTTM values indicate higher accuracy.

5.3 Competition results
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Figure 3: Integration result of both multi-modality task on never seen test data

There were 280 teams participated in the competition. Our method CLUE won the competition in the
test dataset with a decisive lead(Table[T). The competition used matching score to evaluate model



performance on four sub-tasks: pairing ATAC(Chromatin accessibility) to GEX(gene expression),
ADT(Protein abundance) to GEX, and reversely, GEX to ATAC and GEX to ADT; then an overall
score was calculated of these four sub-tasks. CLUE scored between 0.049 and 0.058, which was
almost 1000x higher than the random matching baseline model. Other top teams used several
technologies including VAE, NMF and contrastive learning. Our score was higher than the Top2
method by 26% and the Top3 method by 158%.

We use a non-linear dimension reduction method, UMAP[37], to visualize the embedding for test
data. On the 2D scatter plot of UMAP visualization, each point is a single modality profile. We first
color the points by modality, which shows that CLUE integrates the two different modalities very
well. Coloring by cell type indicates that the embedding captures the biological variation well(Figure

Table 1: The matching score of the Top 5 team in the competition.

Team GEX2ATAC ATAC2GEX GEX2ADT ADT2GEX Overall

CLUE 0.0560 0.0583 0.0495 0.0516 0.0539

Novel! 0.0482 0.0482 0.0373 0.0373 0.0427
SCEMMAPDTHCOFF? 0.0071 0.0099 0.0322 0.0344 0.0209
Liuz Lab BCM? 0.0120 0.0120 0.0250 0.0252 0.0185
SysMo * 0.0124 0.0127 0.0153 0.0159 0.0141

! VAE + Contrastive learning
% VAE-based methods
3 NMF + Contrastive Learning

5.4 Integration Benchmark

In addition to the comparing CLUE to existing methods on the challenge dataset, we also compared
CLUE’s performance with three other methods (Bridge integration in Seurat V4, MultiVI, and Cobolt).
We performed hyperparameter search for all deep-learning-based methods. Bridge integration method
in Seurat V4 is not able to handle such a large paired datasets due to the memory limitation of R. So
we downscale the paired data to benchmark the performance of all these methods with CLUE. We
also note that the Cobolt, MultiVI are not designed for the CITE-seq data so the result is significant
worse than on the Multiome data.

Table 2: The matching score of benchmark methods in the competition data

Methods GEX2ATAC ATAC2GEX GEX2ADT ADT2GEX Overall
CLUE 0.0560 0.0583 0.0495 0.0516 0.0539
Cobolt 0.0349 0.0356 0.0147 0.0123 0.0244

MultiVI 0.0261 0.0296 0.0063 0.0056 0.0169

Bridge-integration 0.0158 0.0117 0.0126 0.0102 0.0116

Table 3: The matching score of the benchmark methods in the SHARE-seq data

Methods GEX2ATAC ATAC2GEX Overall
CLUE 0.136 0.134 0.135
MultiVI 0.0579 0.0623 0.0601
Cobolt 0.0431 0.0486 0.0458
Bridge-integration 0.0375 0.0296 0.0335

We first evaluated the performance using the matching score on competition dataset and the SHARE-
seq dataset.As shown in Table CLUE is the best methods compared to other four methods. The
Overall score is 0.0539 which is higher than other methods from 121% to 364%(Table [2] Table [3).
We also calculate the FOSCTTM score for all methods and compare the performance(Table [).



Table 4: The FOSCTTM score of the benchmark methods in the competition data

Methods Multiome CITE  Overall
CLUE 0.0183  0.0140 0.0162
Bridge-integration 0.0377 0.0311 0.0344
Cobolt 0.0296  0.0457 0.0377
MultiVI 0.0398  0.0872  0.0635

5.5 Ablation study

In this section, we explore the contribution of various modeling choices using ablation. CLUE has
three important components: the cross-loss, the mean squared error loss and the adversarial loss.

Table 5: The matching score with different combinations of loss components

Leross Lvmse Lo  GEX2ATAC  ATAC2GEX GEX2ADT ADT2GEX  Overall

v v v 0.0560 0.0583 0.0495 0.0516 0.0539
v v 0.0499 0.0483 0.0400 0.0423 0.0451
v v 0.0460 0.0457 0.0412 0.0448 0.0444

v v 0.0224 0.0212 0.0286 0.0413 0.0284
v 0.0127 0.0135 0.0320 0.0429 0.0253

v 0.0292 0.0264 0.0210 0.0233 0.0250
v 0.0130 0.0117 0.0098 0.0114 0.0115

0.0001 0.0001 0.0002 0.0002 0.0001

The ablation experiments shows that all components contribute to the final performance while the
adversarial learning loss is the most important, without which the matching score will drop 47.3%.
The performance will drop 16.5% without the mean square error loss and 17.6% without the cross
loss.

6 Conclusion

We present a semi-supervised neural network called CLUE to learn latent representations based
on multi-modality datasets. We applied CLUE to integrate cellular information including gene
expression, protein abundance, and DNA accessibility at single-cell resolution. Extensive assessment
on benchmark datasets illustrate that CLUE achieves the state-of-the-art performance on two standard
evaluation metrics . Our model provides a principled approach to combining paired and unpaired
measurements in single cell genomics applications. As future work, an online platform can be
developed to enable users to query for "cells’ that are similar to a set of pre-specified cells.

The proposed cross-linked embedding strategy described here can also have broader application
to other domains. We note that our model contains K2 cross-encoders for X modalities, so for
applications with very large K, scalability can pose a challenge. However, with shared preprocessing
layer for each of the K modalities, model size can be effectively reduced, allowing efficient training
in most real world applications where K < 5.

7 Code Availability

CLUE for the single-cell multi-modality integration is incorporated in the scglue package| All source
code is available in https://github.com/gao-1lab/GLUE.
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