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ABSTRACT

Federated learning is a learning paradigm that allows the central server to learn
from different data sources while keeping the data private locally. Without con-
trolling and monitoring the local data collection process, the locally available
training labels are likely noisy, i.e., the collected training labels differ from the un-
observable ground truth. Additionally, in heterogenous FL, each local client may
only have access to a subset of label space (referred to as openset label learning),
meanwhile without overlapping with others. In this work, we study the challenge
of federated learning with local openset noisy labels. We observe that many ex-
isting solutions in the noisy label literature, e.g., loss correction, are ineffective
during local training due to overfitting to noisy labels and being not generaliz-
able to openset labels. To address the problems, we design a label communication
mechanism that shares randomly selected “contrastive labels” among clients. The
privacy of the shared contrastive labels is protected by label differential privacy
(DP). Both the DP guarantee and the effectiveness of our approach are theoret-
ically guaranteed. Compared with several baseline methods, our solution shows
its efficiency in several public benchmarks and real-world datasets under different
noise ratios and noise models.

1 INTRODUCTION

Data heterogeneity is a common issue among different data centers. The label spaces of the data
centers are likely different due to the heterogeneity of data sources. For example, the virus variants
during the pandemic may differ in different regions, leading to an extremely heterogeneous data
distribution among data centers. The heterogeneity challenges collaborations among data centers,
e.g., federated learning (FL), where each data center joins as a client to train a uniform and stronger
global model for all the regions without sharing the sensitive data. In addition to a heterogeneous
label space, what makes matters worse is that the observed label space may be noisy due to the
limited knowledge access between different data centers, making this problem more challenging.
This paper aims to provide solutions for a practical FL setting where not only do each client’s
training labels carry different noise rates, but the observed label space at these clients can also be
noisy and differ, even though their underlying clean labels are drawn from the same label space.
We call that such a federated learning system has local openset noise problems if the observed label
space is noisy and differs across clients.

The above local openset label noise will pose significant challenges if we apply the existing learning
with noisy label solutions locally at each client. For instance, a good number of these existing solu-
tions operate with centralized training data and rely on the design of robust loss functions (Natarajan
et al., 2013; Patrini et al., 2017; Ghosh et al., 2017; Zhang & Sabuncu, 2018; Feng et al., 2021; Wei
& Liu, 2021; Zhu et al., 2021a). Implementing these approaches often requires assumptions, which
are likely to be violated if we directly employ these centralized solutions in a federated learning
setting. For example, loss correction is a popular design of robust loss functions (Patrini et al., 2017;
Natarajan et al., 2013; Liu & Tao, 2015; Scott, 2015; Jiang et al., 2022), where the key step is to
estimate the label noise transition matrix correctly (Bae et al., 2022; Zhang et al., 2021b; Zhu et al.,
2021b; 2022). Correctly estimating the label noise transition matrix requires observing the full la-
bel space, when the ground-truth labels are unavailable. In FL, where the transition matrix is often
estimated only with the local openset noisy labels, existing estimators of the noise transition matrix
would fail. Moreover, even though we can have the best estimate of the noise transition matrix if we
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have the ground-truth labels for the local instances, the missing of some label classes would make
the estimate different from the ground-truth one, and again leads to failures (detailed example in
Section 3.1).

Intuitively, we may share some label information among the clients to generalize some centralized
training methods to FL. However, it is against privacy protection, making it challenging in real
usage. Moreover, it is also important to figure out what kind of label information is sufficient to
solve the local openset noisy problems in FL. In this paper, we use the global label distribution as a
hint to local clients, where the hint is used in a contrastive way to avoid overfitting to noisy labels.
To protect privacy during label communication, we randomly flip the shared labels to ensure label
differential privacy (DP). Our contributions are summarized as follows.
• We formally define the openset noise problem in FL, which is more practical than the existing

heterogeneous noisy label assumptions. The challenges along with the openset noise are also
motivated by analyzing the failure cases of the existing popular noisy learning solutions such as
loss correction (Natarajan et al., 2013; Patrini et al., 2017; Liu & Tao, 2015).

• We propose a novel framework, FedDPCont, to solve the openset label noise problem, which
builds on the idea of using globally shared private contrastive labels to avoid overfitting to local
noisy labels.

• To mitigate the gap between the centralized usage of noisy labels and the federated one, we
propose a label communication algorithm with a differential privacy (DP) guarantee. We also
prove that benefiting from label communication, the gradient update of aggregating local loss
with private labels is guaranteed to be the same as the corresponding centralized loss, and further
establish its robustness to label noise.

• We empirically compare FedDPCont with several baseline methods on both benchmark datasets
and practical scenarios, showing that, in terms of FL with openset label noise, directly applying
centralized solutions locally cannot work and FedDPCont significantly improves the performance.

2 RELATED WORKS

Federated learning is a collaborative training method to make full use of data from every client
without sharing the data. FedSGD (Shokri & Shmatikov, 2015) is the way of FL to pass the gradient
between the server and the clients. To improve the performance, FedAvg (McMahan et al., 2017)
is proposed and the model weight is passed between the server and the clients. In practice, openset
problem is common in FL because the source of every client may vary a lot and it is very likely to
find that some of the classes are unique in the specific clients. There are a lot of works to analyze
and solve the non-IID problem in FL (Zhao et al., 2018; Li et al., 2019; 2021; Zhang et al., 2021a;
Li et al., 2020b; Karimireddy et al., 2020; Andreux et al., 2020).

Label noise is common in the real world (Agarwal et al., 2016; Xiao et al., 2015; Zhang et al.,
2017; Wei et al., 2022b). Traditional works on noisy labels usually assume the label noise is class-
dependent, where the noise transition probability from a clean class to a noisy class only depends on
the label class. There are many statistically guaranteed solutions based on this assumption (Natarajan
et al., 2013; Menon et al., 2015; Liu & Tao, 2015; Liu & Guo, 2020). However, this assumption fails
to model the situation where different group of data has different noise patterns (Wang et al., 2021).
For example, different clients are likely to have different noisy label spaces, resulting totally different
underlying noise transitions. Existing works on federated learning with noisy labels mainly assume
the noisy label spaces are identical across different clients (Yang et al., 2022; Xu et al., 2022). There
are other notable centralized solutions relying on the memorization effect of a large model (e.g.,
deep neural network) (Li et al., 2020a; Liu, 2021; Song et al., 2019; Xia et al., 2021; Liu et al., 2020;
Cheng et al., 2020). However, in a federated learning system, simply relying on the memorization
effect would fail, i.e., the model can perfectly memorize all local noisy samples during local training,
since the local data is likely to be imbalanced and with a limited amount (Han et al., 2020; Liu, 2021).
The idea of contrastive labels is to punish the overfitting, which is supposed to avoid memorizing
openset local noisy samples. Besides, the concept “openset” is also used in Tuor et al. (2021), where
the focus is on the out-of-distribution features and their labels are called openset noise. It is different
from ours since they did not focus on in-distribution mislabeled data.

2



Under review as a conference paper at ICLR 2024

3 FORMULATIONS AND MOTIVATIONS

Federated learning Consider a K class classification problem in a federated learning system with
C clients. Each client c ∈ [C] := {1, · · · , C} holds a local dataset Dc := {(xc

n, y
c
n)}n∈[Nc],

where Nc is the number of instances in Dc and Nc := {1, · · · , Nc}. Assume there is no overlap
among Dc,∀c. Denote the union of all the local datasets by D := {(xn, yn)}n∈[N ]. Clearly, we
have D = ∪c∈[C]Dc and N =

∑
c∈[C] Nc. Denote by Dc the local data distribution, (Xc, Y c) ∼

Dc the local random variables of feature and label, D the global/centralized data distribution, and
(X,Y ) ∼ D the corresponding global random variables. Denote by X , Xc, Y , and Yc the space
of X , Xc, Y , and Yc, respectively. FL builds on the following distributed optimization problem:
argminθ

∑
c∈[C]

Nc

N · Lc(θ), where f is the classifier, θ is the parameter of f . f and f stand
for the same model but different output. f := argmaxi∈[K] f . To this end, the local training
and global model average are executed iteratively. In local training, each client learns a model
fc : X → Y with its local dataset Dc by minimizing the empirical loss Lc(θc) defined as: Lc(θc) :=
1
Nc

∑
n∈[Nc]

ℓ(fc(x
c
n; θc), y

c
n), where for classification problems, the loss function is usually the

cross-entropy (CE) loss: ℓ(f(X; θ), Y ) = − ln (f(X;θ)[Y ]), Y ∈ [K], indicating taking the negative
logarithm of the Y -th element of f given input X and model parameter θ. In the following global
model average, each client c sends its model parameter θc to the central server, which is further
aggregated following FedAvg (McMahan et al., 2017): θ =

∑
c∈[C]

Nc

N · θc.

3.1 OPENSET NOISE IN FEDERATED LEARNING

When the label y is corrupted, the clean dataset D becomes the noisy dataset D̃ := {(xn, ỹn}n∈[N ]

where ỹn is the noisy label and possibly different from yn. The noisy data (xn, ỹn) can be viewed as
the specific point of the random variables (X, Ỹ ) which is from the distribution D̃. Noise transition
matrix T characterizes the relationship between (X,Y ) and (X, Ỹ ). The shape of T is K × K
where K is the number of classes in D. The (i, j)-th element of T represents the probability of
flipping a clean label Y = i to noisy label Ỹ = j, i.e., Tij := P(Ỹ = j|Y = i). If Ỹ = Y
always holds, T is an identity matrix. Note the above definition builds on the assumption that T is
class-dependent, which is a common assumption in centralized learning with noisy labels (Natarajan
et al., 2013; Menon et al., 2015; Liu & Tao, 2015). However, in FL, T is likely to be different for
different clients (a.k.a. group-dependent (Wang et al., 2021)). Specifically, we use T to denote the
global noise transition matrix for D̃ and Tc to denote the local noise transition matrix for D̃c. In
a practical federated learning scenario where the data across different clients are non-IID, different
clients may have different label spaces. When the labels are noisy, we naturally have the following
definition of openset label noise in FL.

Definition 1 (Openset noisy labels in FL). The label noise in client c is called openset if Ỹc ̸= Ỹ .

Generation of openset noise We propose the following noise generation process to model openset
label noise in practical FL systems. Denote by 1c,k the indicator random variable that label class
k is included in client c, where 1c,k = 1 (w.p. Qc,k) indicates client c has data belonging to class
k and 1c,k = 0 otherwise. The indicators {1c,k | ∀c ∈ [C], k ∈ [K]} are generated independently
with the probability matrix Q, where the (c, k)-th element is Qc,k := E[1c,k]. In practice, if all
the elements in {1c,k|k ∈ [K]} are identical, meaning the client c can observe nothing or all the
classes, then {1c,k|k ∈ [K]} will be re-generated until client c is an openset client. Denote by
Ik := {c|1c,k = 1, c ∈ [C]} the set of clients that include class k. Denote by D̃(k) = {n|ỹn = k}
the indices of instances that are labeled as class k. For each k ∈ [K], instances in D̃(k) will be
distributed to clients with 1c,k = 1 either uniformly or non-uniformly as follows.

• Uniform allocation: Randomly sample (without replacement) |D̃(k)|/|Ik| indices from D̃(k) and
allocate the corresponding instances to client c. Repeat for all c ∈ Ik.

• Non-uniform allocation: Generate probabilities {uc|c ∈ Ik} from Dirichlet distribution Dir(1)
with parameter 1 := [1, · · · , 1] (|Ik| values). Randomly sample (without replacement) |D̃(k)| · uc

indices from D̃(k) and allocate the corresponding instances to client c. Repeat for all c ∈ Ik.

In this way, all the clients have openset label noise, i.e., Yc ̸= Ỹ,∀c ∈ [C].
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Example Consider the following example. For a data distribution (X,Y ) ∼ D where Y ∈ Y :=
{1, 2, · · · ,K}, the set of all the opensets is the combination of Y except the full set of Y and the
empty set. For example, if Y is {1, 2, 3}, there would be 2K − 2 = 6 different combinations of the
noisy label space: {1, 2, 3, (1, 2), (1, 3), (2, 3)}. It should be noted that it is still possible that the
union of all the clients still cannot cover Y . An example of the real and openset T in the 3-class
classification problem is as follows. Suppose the real noise transition matrix Treal is shown on the
LHS. However, if we only observe Ỹc = {1, 2} in client c, the optimal estimate of T relying only
on D̃c could only be TOptEst even though we know Dc. This is because when Ỹc = {1, 2}, we have
P(Ỹ = 3) = 0 ⇒ P(Ỹ = 3|Y = 3) = 0, resulting that the other two probabilities have to be
normalized from (1/16, 3/16) to (1/4, 3/4) to get a total probability of 1.

Treal =

 1 0 0
1/3 2/3 0
1/16 3/16 3/4

 , TOptEst =

 1 0 0
1/3 2/3 0
1/4 3/4 0


Local openset noise is challenging A good number of correction approaches in the learning with
noisy labels literature would require using the transition matrix T . For instance, loss correction
(Patrini et al., 2017) is a popular tool to solve the noisy label problem as

ℓ→(f(X), Ỹ ) := ℓ(T⊤f(X), Ỹ ) (1)

where T⊤ is the transpose of T . The key step of the loss correction approach is to estimate a correct
T . However, if the label space is openset, the best estimated T will lead to a wrong prediction result.
Based on the example above, the best-corrected output is

T⊤f(X) =

1 1/3 1/4
0 2/3 3/4
0 0 0

f1(X; θ)
f2(X; θ)
f3(X; θ)

 =

f1(X; θ) + f2(X; θ)/3 + f3(X; θ)/4
2f2(X; θ)/3 + 3f3(X; θ)/4

0

 , (2)

where f = [f1, f2, f3]
⊤ and fn is the n-th element of f . The model cannot distinguish class 3 which

is reasonable. However, it will misclassify class 2 to class 3 because class 3 has a larger weight. For
example, given an instance (x, y = 2), the cross entropy loss is − ln(2f2(x; θ)/3 + 3f3(x; θ)/4)
where f3(x; θ) = 1 leads to the minimization of the loss, making the loss correction fail.

3.2 OUR MOTIVATION AND BUILDING IDEA

The above example highlights the challenge of adapting approaches that use noise transition matrix
T to our openset FL setting. Therefore, we hope to circle around by building our solutions upon
ideas that do not require the knowledge of T .

According to the previous analyses, the main difficulty of local openset label noise exists in the mis-
match of clean and noisy label spaces within a local client. Changing the label space is challenging
in FL since it often requires sharing data between clients. Therefore, we need to solve two technical
challenges here: 1) What kind of information can be shared to mitigate the heterogeneity introduced
by local openset label noise? 2) How do we use the shared information to help training?

For the first challenge, we consider sharing the “private labels” since only sharing the label without
disclosing features is usually less sensitive than sharing features in many cases, e.g., face recogni-
tion. Additionally, it is relatively easier to protect the label privacy by random responses (Ghazi
et al., 2021). For the second challenge, given only the private labels, we propose to use them “con-
trastively” to punish the overfitting of noisy labels. Intuitively, for a multi-class classification task,
e.g., 10 classes, a randomly picked private label y̌n is likely to be a wrong label for a randomly
picked feature xn′ . Therefore, rather than guiding the model the memorize this pattern, we can just
use it contrastively or negatively, i.e., −ℓ(f(xn′), y̌n). Therefore, the new loss function with Private
Labels becomes

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn), y̌n′). (3)
The design is related to works such as (Wei et al., 2022a; Liu & Guo, 2020; Cheng et al., 2020),
while the key difference is the selection of the labels for the second term, i.e., the private labels are
drawn from the whole label space while directly using the above approach requires getting labels
locally. Intuitively, the “new” label has to be sampled globally; otherwise, the global information is

4



Under review as a conference paper at ICLR 2024

missing and the negative effect of local openset label noise would induce performance degradation.
Additionally, label communications in FL should be private. We defer the detailed explanation of
its necessity to Appendix B.3.

4 PROPOSED METHOD

We propose the following label communication-aided algorithm FedDPCont, which we also illus-
trate in Figure 1. There are two critical stages to guarantee the success of the proposed methods
with good DP protection:
• Stage 1: Privacy-preserving global label communication given in Section 4.1
• Stage 2: Contrastive gradient updates at the local client using ℓPL given in Section 4.2 and the

shared label information from Stage 1.

4.1 LABEL COMMUNICATION

Label privacy protection is an essential feature of FL so we cannot pass Ỹ to the other clients,
directly. To protect privacy, we adopt the label differential privacy (DP) as Definition 2.
Definition 2 (Label Differential Privacy (Ghazi et al., 2021)). Let ϵ > 0. A randomized algorithm
A is said to be ϵ-label differentially private (ϵ-labelDP) if for any two training datasets D and D′

that differ in the label of a single example, and for any subset S of outputs of A,
P(A(D) ∈ S) ≤ eϵ · P(A(D′) ∈ S).

The high-level idea is to achieve label privacy (DP), each client c will use a symmetric noise transi-
tion matrix TDP to flip their local labels to protect their labelDP:

TDP[y, ỹ] := P(Ỹ = ỹ|Y = y) =

{
eϵ

eϵ+K−1 , if ỹ = y,
1

eϵ+K−1 , if ỹ ̸= y.

where K is the number of classes. Then only the flipped labels are shared between the clients and
the server. It is easy to show that sharing the flipped labels using TDP suffices to preserve labelDP:
Theorem 1 (Label Privacy in FedDPCont). Label sharing in FedDPCont is ϵ-labelDP.

Denote by p̃c
n the one-hot encoding of ỹcn. The whole label communication process is presented in

Algorithm 1. At the beginning of the algorithm, the server will initialize TDP according to ϵ and
broadcast TDP to all C clients. For each client c, it calculates the DP label distribution of every
data point (xc

n, ỹ
c
n) as p̌c

n = T⊤
DPp̃

c
n, where p̌c

n is the distribution of DP label in client c. With this
distribution, the client generates the DP private label y̌cn, n ∈ [Nc] for every data point and every
client sends all y̌cn back to the server. After obtaining all y̌cn from the clients, the server aggregates
the label and calculates the posterior label distribution p̌. To restore the correct distribution of Ỹ ,
the server calculates (T⊤

DP)
−1p̌. Note that

(T⊤
DP )

−1T⊤
DP (

C∑
i=1

p̃c
n)/C = p̃.

To apply TDP and (TDP)
−1 sequentially, FedDPCont enables the clients to share the information

with the others while DP is guaranteed. Finally, the client calculates the local loss according to
Equation (3) where Ỹ is sampled from P(Ỹ = i) := ((T⊤

DP)
−1p̌)[i]. This label communication

procedures guarantees ϵ-DP.

4.2 FEDDPCONT

Based on the distribution P(Ỹ |D̃), we propose FedDPCont, a novel framework based on FedAvg,
to solve the local openset noise problem. Denote by ∆

(r)
c := θr+1

c − θrc , the variation of model
parameters in the r-th round of the local training in client c. Recall θc is the parameter of fc.

Denote by ∆(r) := θr+1−θr the variation of model parameters in the r-th round of the correspond-
ing global gradient descent update assuming the local data are collected to a central server. Define
P(Dc|D) := P((X,Y ) ∼ Dc | (X,Y ) ∼ D). Numerically, it is calculated as Nc/N for client c
given D. We have the following theorem for the calibration property of FedDPCont.
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Algorithm 1 Label Communication in FedDPCont
1: Initialization: The server initialize TDP according to ϵ and broadcast TDP to all clients.

# Client label differential privacy protection
2: for c in C clients do
3: calculate p̌c

n = T⊤
DPp̃

c
n,∀n ∈ [Nc].

4: generate the private label y̌cn using P(y̌cn = i) = p̌c
n[i],∀i ∈ [K], n ∈ [Nc].

5: send {y̌cn}n∈[Nc] to the server
6: end for
7: The server aggregates the label {y̌cn}n∈[Nc] sent from all C clients.
8: The server calculates the posterior label distribution p̌: p̌[i] := 1

N

∑C
c=1

∑N
n=1 1(y̌

c
n = i).

9: The server calculates (T⊤
DP)

−1p̌ and sends it to each client c.
10: The client c samples the ỹn′ in Eqn. (3) following P(Ỹ = ỹn′) = ((T⊤

DP)
−1p̌)[ỹn′ ].

1
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Figure 1: The illustration of FedDPCont. Step 1 is the TDP generation where the server generates TDP
according to ϵ and sends it to each client. After receiving TDP, Step 2 is the label communication.
Every client c calculates DP label Y̌c according to TDP and the noisy label Ỹc. Clients send Y̌c to
the server. The server aggregates every Y̌c, calculates the posterior label distribution p̌ and sends
(T⊤

DP)
−1p̌ to every client for the contrastive term sampling. Step 3 is the loss calculation using

the noisy label Ỹc on every client c, the model prediction Ŷc and Y ′
c sampled from (T⊤

DP)
−1p̌ and

calculate loss. Step 4 is the back-propagation for contrastive gradient updates.

Theorem 2 (Local clients with FedAvg). The aggregated model update of FedDPCont is the same
as the corresponding centralized model update, i.e.,∑

c∈[C]

P(Dc|D) ·∆(r)
c = ∆(r),

Theorem 2 shows that the extra effect of local openset label noise can be mitigated by sharing private
labels and FedAvg. Note the theorem only discusses the case in the expectation level (infinite data
size), meaning the gap between distributed learning and centralized learning given limited data still
exists. Given Theorem 2, we can further show ℓPL is robust to label noise as what has been done for
centralized training (Liu & Guo, 2020).

The details of FedDPCont are shown in Algorithm 2. At the beginning of FedDPCont, the server
and the clients c initialize the model and each client c initialize its own dataset Dc = {Xc, Ỹc} and
loss function ℓ. After this, the server generates the DP matrix TDP and sends it to every client and
every client c can generate DP labels y̌cn. Next, every client c sends y̌cn to the server, and the server
aggregates DP labels according to Section 4.1. After aggregation at the server, a posterior label
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Algorithm 2 FedDPCont.
1: Server: initialize model fg , global step size αg and global communication round R.
2: Each Client c: initialize model fc , the dataset Dc = {(xc

n, ỹ
c
n)}n∈[Nc], local learning rate αc

and local updating iterations E.
3: The server generates and broadcasts TDP to all clients according to Definition 2.
4: Clients generate DP labels y̌cn and send y̌cn to the server according to Section 4.1.
5: The server aggregates y̌cn and calculate the posterior label distribution p̌.
6: The server send (T⊤

DP)
−1p̌ to each client.

7: for i = 1→ R do
8: Randomly select C ′ clients from C according to λ
9: for c in C ′ clients do

10: fc ← f
11: for j = 1→ E do
12: ŷcn ← fc(x

c
n),∀n ∈ [Nc]

13: Sample (ync )
′ following (T⊤

DP)
−1p̌,∀n ∈ [Nc].

14: Lc ← 1
Nc

∑Nc

n=1(ℓ(ŷ
c
n, ỹ

c
n)− ℓ(ŷcn, (y

n
c )

′))
15: fc ← fc − αc · ∇Lc

16: end for
17: end for
18: f ← f − αg ·

∑C′

c=1(fc − f)
19: end for

distribution p̌ can be computed and the server sends (T⊤
DP)

−1p̌ back to the client so that the client
can sample the private label from this distribution. To simulate the practical usage, only part of
rather than all clients will participate in the training in one round. The clients are chosen randomly
according to the federated fraction λ. The selected clients sample the “contrastive label” Y ′

c from
the distribution (T⊤

DP)
−1p̌ and calculate the loss Lc according to Eq. (3) by using the output of

the model Ŷc. The model weight is updated by Lc and the server weight is averaged according to
FedAvg (McMahan et al., 2017), which is the end of one communication round.

Privacy Issue. We are aware that the label distribution recovered by our algorithm may also be a
concern of privacy. However, the existing works about the attack in federated learning are mainly
from embedding layers Melis et al. (2019), fully-connected layers Zhao et al. (2020); Geiping et al.
(2020); Pan et al. (2020), and model gradients Aono et al. (2017); Melis et al. (2019). Different
from the leakage of individual labels, the recovered label distribution by our algorithm has much
less information. There is no direct evidence of the harm of leaking an imperfect label distribution
to the best of our knowledge. In Table 3, we will illustrate that different DP privacy level (ϵ) corre-
sponds to different performance, indicating that, even though we have restored the distribution of Ỹ
(Algorithm 1, Line 9), it is still different from the original one.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTS SETUP

To validate the generality and effectiveness of FedDPCont, we select several public datasets with
various levels of difficulties, including CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) as bench-
mark datasets and CIFAR-N (Wei et al., 2022b), Clothing-1M (Xiao et al., 2015) as real-world
datasets. To simulate the practical usage, we first apply the noise on the label and generate the
openset candidates according to the number of classes K for every client because only the noisy la-
bel is visible to the client in the real world. On CIFAR-10 and CIFAR-100, we apply the symmetric
noise for benchmark testing while we apply random noise for practical simulation. Furthermore, we
also test the performance using Clothing-1M and CIFAR-N to test the performance of FedDPCont
in real-world scenarios.

For baseline methods, we use FedAvg (McMahan et al., 2017), forward loss correction (LC) (Patrini
et al., 2017), FedProx (Li et al., 2020b), Co-teaching (Han et al., 2018) and T-revision (Xia et al.,
2019), FedBN (Li et al., 2021), FedDyn (Acar et al., 2021), Scaffold (Karimireddy et al., 2020)
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Table 1: The performance (the best accuracy) of all methods on CIFAR-10 and CIFAR-100.
FedDPCont is always the best method.

Dataset Methods Symmetric Random
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

FedAvg 76.84±0.91 63.34±1.82 43.83±0.51 22.13±1.25 76.24±1.58 59.19±1.01 46.80±2.63 21.80±0.28
LC 79.14±0.35 63.57±0.61 44.33±1.13 22.98±1.60 74.96±1.92 61.49±3.02 40.52±2.18 23.84±3.37

FedProx 70.54±0.57 59.35±0.65 45.61±0.97 22.70±1.10 68.51±0.92 58.61±0.38 43.97±1.06 24.64±2.59
CIFAR-10 Co-teaching 78.64±0.45 70.60±0.47 48.63±0.57 21.06±2.10 75.11±0.39 59.00±1.19 31.30±2.03 17.10±3.78

T-revision 69.16±6.20 51.86±6.64 31.93±2.56 15.27±1.87 64.69±5.08 46.22±1.17 31.81±2.83 17.12±0.73
FedDyn 70.88±0.77 58.58±1.14 42.83±1.23 20.70±1.66 70.13±0.99 58.91±3.06 42.11±2.84 25.21±2.98
FedBN 67.82±0.91 53.49±0.85 39.33±2.52 19.50±0.99 66.66±4.69 58.20±1.58 41.38±1.89 22.66±2.03
Scaffold 64.02±0.13 55.50±0.96 37.48±2.16 15.10±0.43 59.13±0.83 50.36±1.54 34.73±4.12 18.23±1.66

FedDPCont 84.77±0.12 75.75±1.96 55.50±1.33 24.64±0.55 82.15±0.24 72.69±1.57 59.06±1.38 27.55±1.49
FedAvg 47.78±0.50 32.63±0.27 20.32±0.51 10.62±0.26 47.75±0.29 31.06±0.79 20.14±0.32 9.71±0.43

LC 48.92±0.42 33.15±0.23 20.39±0.36 10.43±0.45 49.03±0.17 32.67±0.75 19.78±0.67 10.13±0.36
FedProx 32.14±0.27 24.68±0.11 16.52±0.77 8.85±0.60 31.77±0.30 25.03±0.47 17.16±0.64 8.84±0.50

CIFAR-100 Co-teaching 41.15±0.28 29.81±0.72 18.01±0.28 8.73±1.08 40.55±1.79 28.51±1.41 18.47±1.95 6.56±1.38
T-revision 48.21±0.56 31.35±0.46 17.41±0.22 7.79±0.28 48.24±0.47 30.91±0.55 16.95±0.78 7.46±0.20
FedDyn 31.73±0.79 23.35±0.23 15.53±0.21 7.82±0.04 32.22±0.35 23.83±0.42 16.27±0.59 7.86±0.10
FedBN 40.71±1.19 25.61±0.53 14.52±0.18 6.64±0.32 38.96±0.86 24.54±0.86 13.52±0.73 6.63±0.17
Scaffold 31.56±0.20 24.85±0.38 14.42±0.93 2.10±0.35 28.49±0.75 21.74±0.48 11.19±1.23 1.97±0.44

FedDPCont 53.39±0.43 34.99±1.66 21.35±0.69 11.02±0.66 51.73±0.36 34.43±0.72 21.35±0.72 10.64±0.43

methods. We are aware that there are other noisy learning methods that achieve impressive per-
formance, e.g., DivideMix (Li et al., 2020a). However, their underlying semi-supervised learning
mechanisms and mix-up data augmentation (Zhang et al., 2018) methods introduce massive training
cost and are out of the scope of this paper. We leave discussions related to the computation cost
and performance comparisons with such method to Appendix D.1. The local updating iteration E
is 5 and the federated fraction λ is 0.1. The architecture of the network is ResNet-18 (He et al.,
2016) for CIFAR dataset and ResNet-50 (He et al., 2016) with ImageNet (Deng et al., 2009) pre-
trained weight for Clothing-1M. The local learning rate αl is 0.01 and the batch size is 32. The total
communication round with the server R is 300 and differential privacy ϵ are 3.58, 5.98 and 3.95
for CIFAR-10, CIFAR-100 and Clothing-1M, respectively to keep eϵ/(eϵ+K−1) 0.2 in Section 4.1.
All the experiments are run for 3 times with different random seeds to validate the generality of our
methods. The details of the implementation of every baseline method in the FL setting can be found
in the Appendix.

5.2 SYNTHETIC OPEN-SET LABEL NOISE

There are two strategies:
• Symmetric: We first add symmetric label noise (Xia et al., 2019; Han et al., 2018) to dataset
D and get D̃, then distribute D̃ to D̃c,∀c following the uniform allocation in Section 3.1. The
transition matrix T for the symmetric label noise satisfies Tij = η/(K − 1),∀i ̸= j and Tii =
1− η,∀i ∈ [K], where η ∈ {0.2, 0.4, 0.6, 0.8} is the average noise rate.

• Random: We first add random label noise (Zhu et al., 2022) to dataset D and get D̃, then distribute
D̃ to D̃c,∀c following the non-uniform allocation in Section 3.1. The T of random noise is
generated as follows. The diagonal elements of T for the random label noise is generated by η +
Unif(−0.05, 0.05), where η is the average noise rate, Unif(−0.05, 0.05) is the uniform distribution
bounded by −0.05 and 0.05. The off-diagonal elements in each row of T follow the Dirichlet
distribution (1−Tii) ·Dir(1), where 1 = [1, · · · , 1] (K− 1 values). The random strategy is more
practical than the symmetric one.

Results and Discussion Table 1 shows FedDPCont is significantly better than all the baseline
methods in the symmetric strategy across almost all the noise rate settings. It is also better than the
other methods in most settings of the random strategy and can always be the top-2. FedDPCont is
very competitive in all the settings. Table 1 also shows directly applying the methods for centralized
learning with noisy labels cannot be statistically better than the traditional federated learning solution
(FedAvg) and its adapted version (FedProx), indicating the openset label noise in FL is indeed
challenging and special treatments are necessary to generalize the centralized solution to the FL
setting. We also report the accuracy of the last epoch in Table ?? and ?? in Appendix. FedDPCont
also stands out in most cases, showing its stability.
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Table 2: The performance (the best accuracy) of all methods on CIFAR-N and Clothing-1M

Datasets CIFAR-10 CIFAR-100 Clothing-1M

Methods Worst Random Aggregate Fine 1M Noisy Training

FedAvg 46.55±7.82 59.69±4.88 66.41±6.52 22.65±2.29 70.27
LC 46.67±8.21 59.27±5.72 67.27±4.76 22.59±1.66 70.05

FedProx 58.47±0.97 69.35±0.62 74.48±1.00 35.33±0.35 65.96
Co-teaching 24.80±2.27 47.34±21.05 62.04±11.26 17.83±0.39 40.33
T-revision 57.85±19.44 55.06±8.40 63.40±9.99 22.18±1.44 66.95

FedBN 63.07±3.29 73.02±1.45 77.55±2.16 37.59±0.61 -
FedDPCont 63.50±5.63 73.68±4.35 81.86±1.09 40.60±1.91 70.88

Table 3: The influence of different ϵ on the performance.

ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 100 ϵ = 3.58

72.47±2.64 71.60±1.96 72.27±1.87 73.00±1.96 73.75±2.38 72.44±1.52

5.3 REAL-WORLD LABEL NOISE

We also test the performance on two real-world datasets: CIFAR-N (Wei et al., 2022b) and Clothing-
1M (Xiao et al., 2015). Different from the benchmark datasets, these datasets are corrupted naturally.
Clothing-1M is collected from the real website where both data and labels are from the real users.
The noisy ratio is about 0.4 in Clothing-1M. CIFAR-N consists of CIFAR-10 and CIFAR-100. D̃c

is generated according to the random setting given in Section 5.2. The labels of CIFAR-N are
collected from the human annotation. There are three levels of noisy ratio in CIFAR-10, worst,
aggregate and random while there is only one noisy level in CIFAR-100. It can be found that
FedDPCont outperforms all the baseline methods in the real-world dataset, showing great potential
in practical usage.

5.4 EFFECT OF DP LEVEL

According to Section 4.1 and 4.2, label communication and peer gradient updates at local clients
are two key steps in FedDPCont. ϵ is the parameter to control the level of DP protection. Following
Ghazi et al. (2021), we study the influence of ϵ on the performance. We select the CIFAR-10
corrupted by random noise whose ratio is 0.4. All the experiments are run with 10 random seeds.
In terms of the randomness of model initialization and the noise generation, it can be found that
FedDPCont is stable with the change of ϵ, which agrees with our theoretical guarantee.

6 CONCLUSION

We have defined openset label noise in FL and proposed FedDPCont to use globally communi-
cated contrastive labels to prevent local models from memorizing openset noise patterns. We have
proved that FedDPCont is able to approximate a centralized solution with strong theoretical guaran-
tees. Our experiments also verified the advantage of FedDPCont. Admittedly, FedDPCont is only
tested with different label noise regimes with synthetic data partitions. Future works include testing
FedDPCont with real-world FL data partitions and real-world clients such as mobile devices.
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Roadmap The appendix is composed as follows. Section A presents all the notations and their
meaning we use in this paper. Section C introduces the implementation details of the experiments
and how to apply the centralized training methods to FL. Section D shows the experiment results
with more details that are not given in the main paper due to the page limit.

A NOTATION TABLE

Table 4: Table of notations used in the paper
Notation Explanation

η Noisy ratio
C Total number of clients
c Client c in federated learning
Ỹ Random variables for the noisy label
Ŷ Random variables for the output of the model
K Number of classes in Y
T Transition matrix
P The probability
E The expectation
λ Federated fraction to control the number of clients in every round
αg The global step size on the server side
αl The local learning rate on the client side
L, ℓ The loss, the loss function
R The global communication round
E The local updating round
TDP Differential privacy transition matrix
T Transition matrix
A The label communication algorithm
Y̌c Labels protected by differential privacy
p̃c
n one-hot encoding of ỹcn
p̌ The posterior label distribution after differential privacy corruption

θ, θrc The model parameters, the model parameters of client c at r-th round
e1, e2 The noisy ratio of class 1 and 2 of the global dataset in binary classification
ek1 , e

k
2 The noisy ratio of class 1 and 2 of the local client k in binary classification

m1 The number of samples which are wrongly labeled from 1 to 2 in binary classification
m2 The number of samples which are wrongly labeled from 2 to 1 in binary classification
∆

(r)
c The variation of model parameters in r-th round of the client c

X, Y Random variables for the feature and label
X ,Y The space of X , Y
fc,fg The client model, The global model
N,Nc Total number of samples, number of samples in client c
(xc

n, y
c
n) The n-th example in the client c

Dc := {(xc
n, y

c
n)}n∈[Nc] Dataset of client c

D := {(xn, yn)}n∈[N ] Dataset
Ik := {c|1c,k = 1, c ∈ [C]} The vector indicating whether client c can access class k or not

B PROOFS AND ANALYSES

In this section, we present all the proofs of the theorems.

B.1 PROOF OF THEOREM 1

Proof. Denote by A the label communication algorithm, where the input is y and the output is yDP .
Then after flipping the label y according to the noise transition matrix T , we have

P(A(y) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y,
1

eϵ+K−1 , if yDP ̸= y.
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Accordingly, for another label y′, we have

P(A(y′) = yDP) =

{
eϵ

eϵ+K−1 , if yDP = y′,
1

eϵ+K−1 , if yDP ̸= y′.

Then the quotient of two probabilities can be upper bounded by
P(A(y) = yDP)

P(A(y′) = yDP)
≤ eϵ.

With Definition 2, we know the above equation is exactly the definition of ϵ-labelDP, i.e., the label
communication algorithm is ϵ-labelDP.

B.2 PROOF OF THEOREM 2

Proof. The centralized peer loss on D is

ED[ℓpeer(f(X), Ỹ )] = ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
,

where Ỹ ′ is the random variable whose distribution is the noisy label distribution. For each client c,
the local FedDPCont loss is

EDc [ℓFedDPCont(f(Xc), Ỹc)] = EDc

[
ℓ(f(Xc), Ỹc)− β · ED

Ỹ ′|D̃
[ℓ(f(Xc), Ỹ

′)]
]
,

.

Denote by P(Dc|D) the probability of drawing a data point from client c. We have∑
c∈[C]

P(Dc|D) = 1.

Then ∑
c∈[C]

P(Dc|D)EDc [ℓFedDPCont(f(Xc), Ỹc)]

=
∑
c∈[C]

P(Dc|D)EDc

[
ℓ(f(Xc), Ỹc)− β · ED

Ỹ ′|D̃
[ℓ(f(Xc), Ỹ

′)]
]

=ED

[
ℓ(f(X), Ỹ )− β · ED

Ỹ ′|D̃
[ℓ(f(X), Ỹ ′)]

]
=ED[ℓpeer(f(X), Ỹ )].

Each round may include multiple epochs. Suppose there are t local epochs. The variation of model
parameters in the r-th round of the local training in client c can be decomposed by

∆(r)
c :=θ(r+1)

c − θ(r)c

=θ(r+1,t)
c − θ(r+1,t−1)

c + θ(r+1,t−1)
c + · · · − θ(r,1)c

=
∂EDc

[ℓFedDPCont(f(Xc), Ỹc; θc)]

∂θc

∣∣∣∣
θ=θ

(r+1,t−1)
c

+ · · ·+ ∂EDc
[ℓFedDPCont(f(Xc), Ỹc; θc)]

∂θc

∣∣∣∣
θ=θ

(r+1,1)
c

.

Therefore,∑
c∈[C]

P(Dc|D)∆(r)
c =

∂
∑

c∈[C] P(Dc|D)EDc [ℓFedDPCont(f(Xc), Ỹc; θ
(r+1,t−1)
c )]

∂θc

+ · · ·+
∂
∑

c∈[C] P(Dc|D)EDc [ℓFedDPCont(f(Xc), Ỹc; θ
(r+1,1)
c )]

∂θc

=
∂ED[ℓpeer(f(X), Ỹ ; θ(r+1,t−1))]

∂θ

+ · · ·+ ∂ED[ℓpeer(f(X), Ỹ ; θ(r+1,1))]

∂θ

=∆(r).
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B.3 DETAILS ABOUT THE NECESSITY OF USING A GLOBAL PRIVATE LABEL

To be more concrete, in Liu & Guo (2020), for each example (xn, ỹn), peer loss defines as (an
equivalent form):

ℓPL(f(xn), ỹn) := ℓ(f(xn), ỹn)− ℓ(f(xn), ỹn′), (4)

where ỹn′ is a randomly sampled peer label. Later as a follow-up work (Cheng et al., 2020), ℓCORES
was proposed as a more stable version of ℓPL which has the same expectation as ℓPL:

ℓCORES(f(xn), ỹn) = ℓ(f(xn), ỹn)− EDỸ |D̃
[ℓ(f(xn), Ỹ ], (5)

where DỸ |D̃ is the distribution of Ỹ given dataset D̃. Peer loss and ℓCORES have strong consistency
guarantees. Consider a binary classification problem and let e1 := P(Ỹ = 2|Y = 1) and e2 =

P(Ỹ = 1|Y = 2). Then it was proved in Liu & Guo (2020) the following robustness of peer loss:

Proposition 3 (Robustness of peer loss (Liu & Guo, 2020)). Peer loss is invariant to label noise:

ED̃[ℓPL(f(X), Ỹ )] = (1− e1 − e2) · ED[ℓPL(f(X), Y )].

Moreover, when P(Y = 1) = 0.5 and ℓ is the 0-1 loss, minimizing peer loss on noisy distribution D̃
is equivalent to minimizing 0-1 loss on clean distribution D.

Can we then follow the above idea and implement either ℓPL or ℓCORES by requiring each client
to sample the “peer label” ỹn′ locally? Unfortunately, the answer is no. There are two technical
challenges:

First, sampling peer labels locally leads to wrong results. A local sampling for the private label will
lead to a distribution that does not capture the global one on P(Ỹ ), then challenge the theoretical
guarantees of the existing results. To see this, we consider a binary classification problem. Assume
that we have two clients c = 1 and c = 2, where client 1 can only access noisy labels 1 and client 2
only accesses noisy labels 2, respectively. Suppose the number of data points in each class (globally)
is N1 = N2 = N/2. If there are m1 samples that are wrongly labeled from Y = 1 to Ỹ = 2 and m2

samples that are wrongly labeled from Y = 2 to Ỹ = 1, respectively, we can know the global noisy
ratios are e1 = P(Ỹ = 2|Y = 1) = 2m1/N and e2 = P(Ỹ = 1|Y = 2) = 2m2/N, respectively.
For centralized training, we know from Proposition 3 that there is an invariant property. However,
due to the openset, the locally noisy ratio differs from the globally noisy ratio and the invariant
property is broken. Specifically, the local noisy ratios are e11 = P(Ỹ1 = 2|Y1 = 1) = 0 and
e12 = P(Ỹ1 = 1|Y1 = 2) = 1 where Y1 is the label and Ỹ1 is the corrupted label in client 1. Then the
invariant property in Proposition 3 becomes

ED̃1
[ℓPL(f(X), Ỹ )] = (1− e11 − e12) = 0,

which is a constant for any model f . Therefore, peer labels need to be redesigned in FL with openset
noisy labels.

Second, there are privacy concerns in redesigning peer labels. Intuitively, since we know local
sampling fails, the global information is inevitable in redesigning peer labels. Therefore, the privacy
issues need to be addressed in label communications.

C IMPLEMENTATION DETAILS

Platform and Programming Environment We train our model on NVIDIA RTX A5000 server
with torch and torchvision 1.10 and 0.11, respectively. The details of the baseline methods are as
follows.

Loss correction We apply FedAvg in the first 150 rounds to make the weight stable. At the 150th
round, the transition matrix of every client will be estimated according to the confidential score of
95%. The predicted label whose confidential score is over 95% is considered as the ground truth
so that we can get every transition matrix of every client. We apply loss correction in the rest 150
rounds according to Equation 1.
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Table 5: Comparison of DivideMix and FedDPCont in terms of time and number of epochs
on benchmark dataset. R stands for random noise in Section 5.2. Compared with DivideMix,
FedDPContis lightweight and can produce relatively reliable results.

Dataset Methods 0.2 0.4 0.6 0.8 Epochs Time (hr)

DivideMix 79.28±0.33 65.62±4.48 53.28±2.16 20.70±5.00 300 22.33±1.15
CIFAR-10 FedDPCont 84.77±0.11 75.75±1.96 55.50±1.33 24.64±0.55 300 4.17±0.29

DivideMix 70.31±2.19 59.24±1.90 48.91±4.59 24.29±2.19 300 27.67±1.03
CIFAR-10 (R) FedDPCont 82.15±0.24 72.69±1.57 59.06±1.38 27.55±1.49 300 3.90±0.17

DivideMix 58.31±0.47 46.62±0.37 31.9±0.85 19.87±0.52 300 30.33±2.52
CIFAR-100 FedDPCont 53.39±0.43 34.99±1.66 21.35±0.69 11.02±0.66 300 3.87±0.13

DivideMix 57.31±0.08 45.6±0.51 30.95±0.57 19.40±0.53 300 29.33±1.53
CIFAR-100 (R) FedDPCont 51.73±0.36 34.43±0.72 21.35±0.13 10.64±0.43 300 4.28±0.25

Co-teaching Co-teaching uses two same networks to distinguish the noisy data and the clean data.
Similarly, we initialize two same networks when the client initializes and update the two clients in
the same way as the original co-teaching network. The server also keeps two models. In every
communication round, the weights of the two models will average correspondingly.

T-revision T-revision consists of three steps: estimation of T , loss correction, and T-revision. In
the first 20 communication rounds, the selected clients update the weight at every communication
round and all the clients estimate Tc. After the 20th round, the selected clients at every commu-
nication apply forward loss correction for another 140 rounds. After the 160th round, we apply
T-revision.

DivideMix DivideMix uses two same networks to distinguish the noisy label. One network is
used to assign the pseudo label, the other network is used to the classification. The pseudo label is
generated by a Gaussian mixture process. In addition, DivideMix uses mix-up data augmentation to
boost performance. In FL paradigm, every client will maintain two clients and do the same operation
as the centralized training in DivideMix.

Other Baseline Methods For the other baseline methods, we follow the original settings in their
papers.

D EXPERIMENT RESULTS

D.1 DIVIDEMIX DETAILS

Compared with DivideMix, FedDPCont is a lightweight method. Due to the mix-up augmentation
method and dual-model architecture design, DivideMix needs more time to converge. We compare
the performance of DivideMix and FedDPCont in terms of the epoch and the training time. All the
experiments are done on a server with an AMD EPYC 7513 32-Core Processor and RTX A5000
NVIDIA GPU to guarantee the training time is calculated fairly. The results on benchmark and
real-world datasets are given in Table 5 and 6.

We can find that FedDPCont needs much less time than DivideMix in all cases and outperforms on
all CIFAR-10 datasets for both benchmark and real-world cases. FedDPCont depends heavily on
the estimation of the distribution of the dataset from label communication as given in Section 4.1.
When the data belonging to each class is fewer or the noisy ratio is higher, the difficulty of precise
estimation becomes much larger. Compared with FedDPCont, DivideMix uses another model to
generate the pseudo label so that the performance can be less sensitive to the heterogeneity but
will be much slower. In the practical usage, FedDPCont is a reliable choice in terms of speed and
performance.
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Table 6: Comparison of DivideMix and FedDPCont in terms of time and number of epochs on the
noisy real-world dataset. Compared with DivideMix, FedDPContis lightweight and can produce
relatively reliable results.

Dataset Methods Accuracy Epochs Time (hr)

DivideMix 59.50±5.90 300 33.00±1.73
CIFAR-10-N-Worst FedDPCont 63.50±5.63 300 3.76±0.31

DivideMix 66.45±2.69 300 21.50±0.71
CIFAR-10-N-Random FedDPCont 73.68±4.35 300 3.43±0.12

DivideMix 71.98±2.27 300 25.50±0.71
CIFAR-10-N-Aggregate FedDPCont 81.86±1.09 300 3.83±0.29

DivideMix 45.66±0.15 300 13.85±0.21
CIFAR-100-N FedDPCont 40.60±1.91 300 2.63±0.18
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