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ABSTRACT

The probabilistic forecasting of time series is a well-recognized challenge, particu-
larly in disentangling correlations among interacting time series and addressing the
complexities of distribution modeling. By treating time series as temporal dynam-
ics, we introduce KooNPro, a novel probabilistic time series forecasting model that
combines variance-aware deep Koopman model with Neural Processes. KooNPro
introduces a variance-aware continuous spectrum using Gaussian distributions to
capture complex temporal dynamics with improved stability. It further integrates
the Neural Processes to capture fine dynamics, enabling enhanced dynamics cap-
ture and prediction. Extensive experiments on nine real-world datasets demonstrate
that KooNPro consistently outperforms state-of-the-art baselines. Ablation studies
highlight the importance of the Neural Process component and explore the impact
of key hyperparameters. Overall, KooNPro presents a promising novel approach
for probabilistic time series forecasting.

1 INTRODUCTION

Time series forecasting is a critical task with applications in supply chain management, finance, energy,
and healthcare. Probabilistic forecasting is particularly valuable as it quantifies uncertainty, enabling
robust decision-making for downstream tasks like inventory optimization and risk management.
For example, in supply chain management, it helps businesses prepare for demand fluctuations by
planning across multiple scenarios, reducing costs, and improving efficiency.

While traditional methods like Auto-Regressive Integrated Moving Average (ARIMA) (Said &
Dickey, 1984) and the family of Kalman filters (Auger et al., 2013) struggle with the complexities of
real-world time series, deep learning approaches such as Recurrent Neural Networks (Salehinejad
et al., 2017), and subsequently to Long Short-Term Memory networks (?). The application of the
attention mechanism (Vaswani et al., 2017) has led to the emergence of Transformer-based approaches
like Zhou et al. (2021), Wu et al. (2021), and Zhou et al. (2022). Additionally, diffusion probabilistic
models (Ho et al., 2020; Rasul et al., 2021; Li et al., 2022; Fan et al., 2024) have emerged as a
promising paradigm for probabilistic forecasting, with recent works like Kollovieh et al. (2024)
demonstrating their potential. Moreover, foundation models for time series forecasting, such as
Ansari et al. (2024), have introduced the concept of learning a universal representation for diverse
time series tasks. Despite these advancements, many deep learning models focus primarily on point
estimation, which limits their ability to fully capture the uncertainty and dynamics inherent in complex
systems.

State space models, such as Rangapuram et al. (2018a) Deep Factors Wang et al. (2019), and Paria
et al. (2021) offer an alternative by modeling time series as low-dimensional latent decompositions.
These methods excel at representing temporal dynamics in reduced spaces but often rely on fixed
assumptions about state transitions, which may fail to generalize to highly nonlinear and non-
stationary scenarios. Dynamic mode decomposition (DMD) is a powerful tool for modeling time
series as dynamic systems (Kuttichira et al., 2017), aiming to identify the underlying dynamics
and subsequently utilize them for prediction (Kou & Zhang, 2019; Yuan et al., 2021). However,
DMD’s reliance on discrete eigenvalues (dot spectrum) restricts its ability to describe the nonlinear
patterns of complex systems. Koopman theory offers a powerful framework for analyzing nonlinear
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systems by representing them in a linear but infinite-dimensional space. The ability to decompose
complex dynamics into Koopman eigenfunctions has inspired many works to incorporate this theory
into time series modeling. Combining the Koopman theory (Koopman, 1931) with deep learning
(Lusch et al., 2018) enhances the ability to model temporal dynamics with greater sophistication,
leading to more accurate predictions. For example, models such as Liu et al. and Wang et al. (2023)
enhance predictive capabilities through deep Koopman theory by learning the continuous spectrum
of dynamics. However, these models are often affected by spectrum pollution, leading to unstable
convergence and reduced accuracy, especially in highly nonlinear systems (Colbrook & Townsend,
2024).

To address this, the concept of pseudospectra has been introduced. Pseudospectra accounts for the
potential regions where eigenvalues may appear under different perturbation conditions, which makes
them more robust to noise and better suited for capturing continuous variations. Inspired by the
idea of perturbations in pseudospectra and drawing on the notion that probability distributions also
characterize variables within a neighborhood by measuring their overall dispersion (Colbrook et al.,
2024), we propose a variance-aware continuous spectrum and model it using Gaussian distributions.
In this way, the perturbation of eigenvalues is not only determined by their local perturbations but also
influenced by the Gaussian distribution over global dynamics. Moreover, to better capture the global
patterns of dynamic systems, we utilize the latent representation of the DMD mean as a condition to
guide the learning of the spectrum, thereby obtaining the final variance-aware continuous spectrum
distribution. We introduce a learnable Koopman operator to model the global evolution of feature
representations through variance-aware continuous spectrum analysis.

To solve the proposed variance-aware continuous spectrum distribution, we integrate it into the Neural
Process (NP) framework (Garnelo et al., 2018b; ?) to employ its probabilistic inference capabilities.
Specifically, we introduce KooNPro, a novel probabilistic approach that integrates the latent feature
representation obtained from NP with the representation learned through variance-aware continuous
spectrum modeling to enhance the global modeling capability of the dynamic system. We employ
variational inference to solve this new modeling framework and derive a new Evidence Lower Bound
(ELBO) to optimize the combined model. By incorporating variance-aware continuous spectrum,
KooNPro maintains high predictive accuracy and robustness in high-dimension and non-stationary
tasks, achieving state-of-the-art performance. Our contributions are summarized as follows:

• We introduce KooNPro, a novel probabilistic prediction model that synergistically integrates
the probabilistic Koopman model with NP. Drawing inspiration from perturbations in pseu-
dospectra, KooNPro incorporates a variance-aware continuous spectrum to learn temporal
dynamics effectively. Additionally, it utilizes NP to capture the underlying global dynamics
that govern the entire time series, facilitating improved predictive capabilities.

• Extensive experiments conducted on diverse real-world datasets convincingly demonstrate
the superiority of our proposed model. It consistently achieves state-of-the-art performance,
significantly outperforming existing methods across two metrics.

• We perform a comprehensive ablation studies demonstrating the ability of NP to capture
temporal dynamics, thereby enhancing prediction performance, and evaluate the impact
of key hyperparameters on model efficacy. Additionally, we provide a detailed case study
that visually illustrates the prediction performance of KooNPro, yielding intuitive and
interpretable results.

2 RELATED WORK

This work engages with three key areas: probabilistic time series prediction, the probabilistic
Koopman model, and Neural Processes. While each of these fields has received considerable
attention, we limit our discussion to the most pertinent studies to ensure brevity. A more extensive
review of the literature can be found in the AppendixA.

Probabilistic time series prediction: Recent developments in probabilistic forecasting for time series
integrate deep learning, statistical approaches, and diffusion models. Rangapuram et al. (2018b),
Salinas et al. (2020) and Li et al. (2021) combine state space models with deep learning. Feng et al.
(2023) and Tang & Matteson (2021) developed attention-based mechanisms that enhance long-range
dependencies for improved forecast accuracy. Gaussian Processes (GP), combined with temporal
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decomposition, were used by Yan et al. (2021), Nguyen & Quanz (2021), and Salinas et al. (2019)
to better model uncertainty in multivariate settings. The data distribution-based generative models
proposed by (Gouttes et al., 2021) and the Kalman filter-based approaches of de Bézenac et al.
(2020), blend probabilistic techniques for better scalability and robustness. Diffusion models, such as
those proposed by Rasul et al. (2021), Li et al. (2022), and Fan et al. (2024), model forecasting as a
denoising task, excelling in high-dimensional settings.

Probabilistic Koopman model: The Koopman theory has been developed in lots of fields, the
most related work is the probabilistic Koopman model, originally proposed by Morton et al. (2019).
Han et al. (2022) designed a stochastic Koopman neural network for control, in which the latent
observables are represented through a Gaussian distribution. Colbrook et al. (2024) integrates the
concept of variance into the Koopman framework by introducing variance-pseudospectra, thereby
ensuring convergence within the model. For time series tasks, Naiman et al. (2023) utilized Koopman
theory to represent the latent conditional prior dynamics via a linear map, while Mallen et al. (2024)
introduced a framework enabling probabilistic forecasting for systems with periodically varying
uncertainty.

Neural process: Neural Processes (NPs), first proposed by Garnelo et al. (2018a) as Conditional Neu-
ral Processes, bridge neural networks’ scalability and Gaussian Processes’ ability to model uncertainty.
Garnelo et al. (2018b) provide flexible, probabilistic function approximations, making them efficient
and adaptable across tasks. Attentive Neural Processes (Kim et al., 2019), Convolutional Conditional
Neural Processes (Gordon et al., 2019b), Gaussian Neural Processes (Bruinsma et al., 2021) and
autoregressive NP (Bruinsma et al., 2023), deploy different methods to probe the relation between
input-output pairs. Other work extends NPs to meta-learning, such as Meta-Learning Stationary
Stochastic Processes (Foong et al., 2020) and Meta-Learning Probabilistic Inference (Gordon et al.,
2019a). Comprehensive surveys by Jha et al. (2022) have organized these developments, exploring
their wide applications in uncertainty-aware learning.

3 BACKGROUND

3.1 KOOPMAN THEORY AND CONTINUOUS SPECTRUM

The spectral decomposition of the Koopman operator is a powerful tool for understanding the
underlying dynamics. If the operator has a discrete spectrum, it can be expressed in terms of its
eigenvalues λj and eigenfunctions ϕj , where Kϕj = λjϕj . This decomposition reveals how different
modes contribute to the system’s evolution. However, many complex systems exhibit a continuous
spectrum, indicating chaotic or highly irregular behavior. In such cases, the Koopman operator’s
spectrum is not composed of isolated eigenvalues but rather a continuum, requiring a more nuanced
analysis. The operator can be represented through a spectral measure σ and an integral over the
continuous spectrum: Kg(x) =

∫
σ
eiωtdE(ω)g(x), where E(ω) is a projection-valued measure.

This spectral approach provides a comprehensive framework for capturing both regular and chaotic
components of a system’s dynamics. While the Koopman operator effectively models dynamics for
predictive purposes, it is prone to spectral pollution, which can impede convergence and stability.
Inspired by perturbations in pseudospectra and the notion that probability distributions characterize
variables through overall dispersion, we propose a variance-aware continuous spectrum and model it
using Gaussian distribution. This method ensures that eigenvalue perturbations are influenced not
only by local disturbances but also by the Gaussian distribution over the dynamics.

3.2 NEURAL PROCESS

A stochastic process can be viewed as a random function F : X → Y where inputs can be regarded
as indexing the output random variables. With a relaxed use of notation, we employ p(f) in denoting
a stochastic process, where f map inputs x ∈ X to y ∈ Y . When fulfilling exchangeability and
consistency as stated by Kolmogorov’s extension theorem (Oksendal, 2013), Neural Process (NP)
cited by Garnelo et al. (2018a) is a stochastic process that describes the predictive distribution over
the target set (xD,yD) := (xi,yi)i∈D given the context set (xC ,yC) := (xi,yi)i∈C . Garnelo et al.
(2018b) prompts use the distribution of a high-dimensional random vector S to represent p(f) as

p(yD|xD,xC ,yC) :=

∫
p(yD|xD,S)p(S|xC ,yC)dS. (1)
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NP can be divided into two components: an encoder that maps the input-output pair of the context set
(xC ,yC) to S for representing pf , and a decoder combine S with xD to generate yD. Due to the
intractable log-likelihood, NPs adopt amortized variational inference as Kingma & Welling (2014)
and maximize the evidence lower bound (ELBO) of the log-likelihood as follows

log (yD|xD,yC ,xC) ≥ Eq∼q(S|xD,yD)
[logp (yD|xD,S)]−DKL (q (S|xD,yD) ||p (S|xC ,yC)) .

(2)

4 METHOD

This section offers a detailed overview of our model, with the complete architecture illustrated
in Fig.1. The central idea of our approach is to learn temporal dynamics for probabilistic future
prediction by integrating Neural Process (NP) with the probabilistic deep Koopman model. Initially,
NP captures the discrete spectrum of dynamics governing the entire time series which is shown by
the downward arrows in Fig.1. Additionally, inspired by the concept of pseudospectra, we utilize the
probabilistic deep Koopman model to refine these dynamics, obtaining a variance-aware continuous
spectrum for prediction which is demonstrated by the shadowed box in Fig.1.
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Figure 1: p(S|τD) and p(S|τC) are the latent representation of DMD mean over the target set and
the context set respectively. Given the first time step z1 in the target set, the encoder Φ generates the
latent variable h1. We apply Koopman operator A to h1 for T −1 steps then generate the distribution
of h2:T . Finally, the decoder Φ−1 map h2:T back to origin space to generate the distribution of z2:T .

4.1 CAPTURE TEMPORAL DYNAMICS BY NP

The proposed model first identifies the distribution of the latent variable S ∈ Rs in Eq.1 through an
embedding τ which is presented in the left part of Fig.1. The latent variable integrates the underlying
dynamics present in the time series, which allows the model to be more reactive to global features of
the time series. In time series analysis, dynamic mode decomposition (DMD) is a classical method
that elucidates the relationship between time series data and corresponding dynamics. However,
DMD’s reliance on the dot spectrum limits its capacity to capture the nonlinear patterns inherent
in complex systems, thereby constraining its predictive power. To address these limitations, we
integrate NP with DMD to generate a stochastic process that captures the dynamics of time series
more effectively.

We utilize Takens’ theory like Yuan et al. (2021), define a time series z1:T ∈ RT×d×k, where T
denotes time length, d denotes features and k denotes delay embedding length, and let x = z1:T−1,
y = z2:T . To estimate the dynamics governing time series in the context set, we employ an MLP τ
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to embed x̂ ∈ R(T−1)×d×1, ŷ ∈ R(T−1)×d×1 as the initial component of delay embedding like

τC := τ(xC ,yC) = ψ

(
1

c

c∑
i=1

vec
(
x̂†ŷ

))
, (3)

where ψ denotes a learnable multilayer perception (MLP), c represents the number of items in the
context set, and the eigenvalue of x̂†ŷ can approximate the dot spectrum of dynamics. We model the
distribution of S by a factorized Gaussian parametrised by τC , i.e.,

p(S|xC ,yC) = N (S;µ(τC), σ(τC)). (4)

Denote p(S|τC) := p(S|xC , yC) for any set C, thus p(S) represents the distribution of underlying
dynamics according to different time series sets. The ELBO in Eq.2 can be reformulated as follows

log(yD|xD,yC ,xC) ≥ Eq∼q(S|τD)
[logp(yD|xD,S)]−DKL(q(S|τD), p(S|τC)). (5)

The second term captures the difference in the distribution of S, reflecting the diversity of temporal
dynamics across different time series. Although we employ τ to embed the dot spectrum that
characterizes temporal dynamics, it provides only a coarse approximation. Regarding the first term,
we maximize it using the probabilistic deep Koopman model, which provides a more nuanced
representation of temporal dynamics through the lens of the pseudospectra.

4.2 PROBABILISTIC DEEP KOOPMAN MODEL

The probabilistic deep Koopman model shown in the shadowed box of Fig.1 concentrates on explain-
ing local characteristics of time series, namely intricate temporal dynamics, with a variance-aware
continuous spectrum. This approach offers a deeper understanding of temporal dynamics behavior
over time, leading to improved predictive capabilities. In essence, estimating the true temporal
dynamics is equivalent to maximize the expection Eq(S|τD)

[logp(yD|xD,S)].

For simplicity, we discuss only the data in the target set and omit the index D. Firstly, we vectorized
the delay embedding time series of size (T − 1) × d × k to x = z1:T−1 of size (T − 1) × (d ·
k)× 1. Following Lusch et al. (2018), We employ three MLPs, an encoder ϕ : Rd×k → Rn and a
decoder ϕ−1 : Rn → Rd×k to identify an appropriate linear space, along with an auxiliary network
κ : Rn+s → Rn to learn the continuous spectrum of dynamics. For the encoder ϕ, we define
h1:T−1 = ϕ(x) and hypothesize the latent space created by ϕ possesses linear characteristics, thus
the dynamics in such space can be described as follows

ht+1 = eλt∆tht. (6)

We assume ht represents the eigenvalue of the dynamics, consisting of a pair of conjugate numbers,
and λt to be pure imaginary like Lange et al. (2021), let λt = jωt, thus we have

Re(ht+1) = Re(ht)⊙ cos(ωt∆t)− Im(ht)⊙ sin(ωt∆t), (7)
Im(ht+1) = Re(ht)⊙ sin(ωt∆t) + Im(ht)⊙ cos(ωt∆t), (8)

where ⊙ is the element-wise product. We can simplify Eq.7 and Eq.8 to

ht+1 := A(ht,ωt). (9)

In order to learn the continuous spectrum A, which is conditioned on the global temporal dynamics
representation S, we utilize the auxiliary network κ to project the concatenation of ht and S to κt,

κ :

[
ht

S

]
7→ κt. (10)

Drawing on the theory of pseudospectra, we aim to learn dynamic information not only from the
eigenvalues but also from their neighborhoods. To facilitate this, we employ an auxiliary network to
generate the corresponding Gaussian distribution of ωt parameterized by κt as

p(ωt|ht,S) = N (ωt;µ(κt), σ(κt)). (11)

To simplify our model, we assume the independence of h1:T−1 on the linear space. Consequently,
we can describe the uncertain dynamics as

p(ω1:T−1|h1:T−1,S) =

T−1∏
t=1

N (ωt;µ(κt), σ(κt)). (12)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Since ht = A(ht−1,ωt−1), it yields that p(hT |ω1:T−1,h1:T−1,S) = 1. Thus, the variance-aware
continuous spectrum in the linear space can be characterized within the framework of the Gaussian
distribution like

p(h2:T |h1:T−1,S) = p(hT |ω1:T−1,h1:T−1,S)p(ω1:T−1|h1:T−1,S) (13)

=

T−1∏
t=1

N (ωt;µ(κt), σ(κt)). (14)

Utilizing the decoder ϕ−1, we map the temporal dynamic evolution from the linear space back to the
original space, as follows

p(z2:T |h2:T ) =

T∏
t=2

N (zt;µ(ϕ
−1(ht)), σ(ϕ

−1(ht))). (15)

The likelihood p(y|x,S) in Eq.5, where x = z1:T−1 and y = z2:T , can be derived as follows
p(y|x,S) = p(z2:T |h1:T−1,S) = p(z2:T |h2:T )p(h2:T |h1:T−1,S), (16)

given that the encoder ϕ is a deterministic function. Insert Eq.14 and Eq.15 to Eq.16, we can draw
the expectation as

Eq∼q(S|τD)
[logp(yD|xD,S)] = Eq∼q(S|τD)

[

T∑
t=2

log(p(zt|ht)) +

T−1∑
t=1

log(p(ht+1|ht,S))]. (17)

The first term can be interpreted as the prediction loss, while the second term represents the linear loss,
as described in Lusch et al. (2018). By maximizing the ELBO in Eq.5, we derive SC approximates
the dynamics for each time series present during the training phase. Consequently, our predictions in
the test phase commence with the initial z1 ∈ R1×d×k like

zT̃ = ϕ−1(AT̃−1(ϕ(z1),SC)). (18)
It is crucial to note that the time length T during the training stage is distinct from the prediction
horizon T̃ , with the input history length solely determined by the delay embedding length k. This
allows us to train a single model to forecast future values of arbitrary length.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments on nine real-world datasets to evaluate the
performance of KooNPro against state-of-the-art baselines. We demonstrate the capacity of Neural
Process to enhance and investigate the influence of key hyperparameters of KooNPro through ablation
studies. Finally, we visualize the prediction results for the Solar dataset and analyze the relationship
between prediction error and variance.

5.1 SETTINGS

Datasets. We consider nine real-world datasets characterized by a range of temporal dynamics,
namely ETTs, Solar, Electricity, Traffic, Taxi, and KDD-cup. The data is recorded at
intervals of 15 minutes, 30 minutes, 1 hour, or 1 day frequencies. Refer to Appendix B.3 for details.
All datasets are split chronologically and adopt the same train/validation/test ratios, i.e., 7:1:2.

Baselines. We assess the predictive performance of KooNPro in comparison with multivariate time
series forecasting models, including GP-Copula (Salinas et al., 2019), Transformer-MAF (Rasul et al.,
2021), TimeGrad (Rasul et al., 2021), TACTiS (Ashok et al., 2023), D3VAE (Li et al., 2023), DPK
(Mallen et al., 2024), and MG-TSD (Fan et al., 2024).

Evaluation Metrics. Following previous work (Fan et al., 2024), We assess our model and all
baselines using CRPSsum (Continuous Ranked Probability Score), a widely used metric for proba-
bilistic time series forecasting, as well as NRMSEsum (Normalized Root Mean Squared Error).
The details of metrics is shown in Appendix C.

Implementation details. The training process is early stopped within 5 epochs using the Adam
optimizer with a fixed learning rate of 10−5. We set the mini-batch size to 128. Additional hyper-
parameters, such as time length T , delay embedding length k, and layers of MLPs are detailed in
Appendix B.2. All models are trained and tested on a single NVIDIA RTX4070Ti 12GB GPU.
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5.2 RESULTS

Table 1: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) across nine real-world datasets. The means and standard errors are based on
10 independent runs of retraining and evaluation. The best performances are in red and the second
are in blue.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Electricity Traffic Taxi Cup

GP-Copula
C-s 0.537±0.019 0.264±0.023 0.241±0.043 0.147±0.019 0.305±0.024 0.078±0.035 0.199±0.008 0.286±0.066 0.217±0.000

N-s 0.835±0.032 0.383±0.032 0.424±0.088 0.172±0.027 0.671±0.034 0.122±0.058 0.293±0.018 0.412±0.115 0.346±0.010

Trans-MAF
C-s 0.800±0.049 0.223±0.012 0.379±0.029 0.228±0.040 0.964±0.013 0.144±0.046 0.477±0.021 0.403±0.046 0.257±0.013

N-s 1.285±0.188 0.315±0.024 0.577±0.082 0.356±0.065 1.665±0.022 0.245±0.079 0.762±0.031 0.598±0.029 0.390±0.010

Timegrid
C-s 0.547±0.022 0.241±0.002 0.227±0.029 0.212±0.015 0.594±0.011 0.044±0.010 0.455±0.020 0.327±0.058 0.271±0.087

N-s 0.889±0.039 0.325±0.000 0.363±0.072 0.291±0.018 1.081±0.015 0.072±0.014 0.560±0.016 0.498±0.095 0.341±0.097

TACTIS
C-s 0.601±0.004 0.208±0.002 0.634±0.009 0.142±0.015 1.871±0.022 0.254±0.012 0.456±0.003 0.981±0.013 0.276±0.008

N-s 0.907±0.010 0.320±0.006 1.013±0.010 0.320±0.006 2.309±0.528 0.391±0.016 1.871±0.003 1.170±0.013 0.403±0.013

D3VAE
C-s 0.445±0.023 0.266±0.016 0.219±0.009 0.177±0.017 0.312±0.035 0.198±0.020 0.265±0.027 0.257±0.008 0.243±0.035

N-s 0.662±0.029 0.479±0.027 0.257±0.058 0.263±0.007 0.642±0.070 0.253±0.104 0.926±0.103 0.391±0.038 0.501±0.005

DPK
C-s 0.718±0.011 0.471±0.024 0.556±0.018 0.341±0.062 0.753±0.035 0.784±0.008 0.827±0.007 0.843±0.009 0.728±0.029

N-s 1.026±0.012 0.725±0.040 0.887±0.023 0.391±0.157 1.130±0.040 1.062±0.005 1.160±0.007 1.165±0.010 1.147±0.056

MG-TSD
C-s 0.430±0.038 0.174±0.009 0.254±0.054 0.129±0.009 0.298±0.025 0.107±0.055 0.528±0.057 0.250±0.073 0.323±0.015

N-s 0.693±0.083 0.220±0.017 0.394±0.076 0.292±0.046 0.623±0.026 0.155±0.063 0.710±0.058 0.347±0.078 0.638±0.056

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

Tab.1 presents the CRPSsum and NRMSEsum values, averaged over 10 independent runs.
The results demonstrate that our model exhibits superior performance in both CRPSsum and
NRMSEsum, consistently outperforming all baseline models across the nine datasets.

In comparison, traditional baseline models (e.g., GP-Copula and Timegrid) have higher CRPSsum

values on most datasets, which indicates their difficulty in handling complex time series data.
Compared to modern deep generative models (e.g., D3VAE and TACTIS), KooNPro achieves a better
balance between predictive stability and accuracy. Although MG-TSD shows a slight advantage
in NRMSEsum on certain datasets (e.g., ETTs series), its CRPSsum fluctuates significantly,
suggesting an inadequate characterization of distributional uncertainty. Our KooNPro introduces
variance-aware spectra to enhance global pattern capturing, avoiding spectral instability caused by
local perturbations, thus achieving higher stability and accuracy in handling complex nonlinear
patterns. This demonstrates its effectiveness in high-dimensional time series forecasting.

5.3 ABLATION STUDY

In this section, we conduct an ablation study to identify the factors contributing to the success of
KooNPro in prediction tasks. First, we delve into the contribution of Neural Process (NP), whose
primary function is to learn the underlying dynamics across various time segments and represent
these dynamics within S. To evaluate the effectiveness of NP, we record the KL-divergence between
SD and SC during the training stage as depicted in the upper section of Fig.2. It can be observed
that the KL divergence in the training set decreases over time, converging to a similar level as that
of the validation set around the 70th epoch. This suggests that the model is effectively learning the
underlying dynamics of time series. To test the generalization capability of the learned SC , We draw
150-time segments from the test set and calculate the KL divergence with SC as showcased in the
lower section of Fig.2. The low-level KL-divergence indicates that SC can approximate temporal
dynamics even for data instances that were not present in the training set. To assess the contribution
of NP, we train a probabilistic Koopman model, following the procedure detailed in Sec.4.2 excluding
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SD. Thus the prediction process is described as follows

zT̃ = ϕ−1(AT̃−1(ϕ(z1))). (19)

In Tab.2, we compare the prediction performance of KooNPro and without NP version, we observe a
degradation in accuracy and an increase in deviation, resulting in collapsed and unstable performance.
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Figure 2: The upper section illustrates the KL-divergence between SD and SC during the training
phase, with epochs of training stages on the x-axis and an exponential scale on the y-axis. The lower
section analyzes 150 test dataset time segments, displaying their KL-divergence with SC , with the
x-axis using an exponential scale and the y-axis showing time series counts.

Table 2: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) between KooNPro and without NP version (denoted as without-NP). The
smaller mean and standard error indicate better performance.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Electricity Traffic Taxi Cup

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

without-NP
C-s 0.390±0.083 0.218±0.120 0.332±0.068 0.155±0.042 0.341±0.059 0.093±0.027 0.313±0.051 0.252±0.068 0.674±0.224

N-s 0.609±0.117 0.318±0.169 0.511±0.103 0.243±0.056 0.531±0.065 0.144±0.036 0.590±0.095 0.380±0.092 1.058±0.341

Next, we investigate the impact of the hyperparameter time length T and delay embedding length k
on the prediction performance. In Pic.3, we investigate those hyperparameters work in the ETTh1
dataset. The orange and transparent orange curves report the change of metric CRPSsum and
NRMSEsum along with the T increase. We find the prediction accuracy of KooNPro increases
dramatically with increasing T until T = 30. After that, the accuracy can’t improve even if we pay
more resources. The same picture appeared when we ablate k shown in the blue and transparent blue
curves. This phenomenon may suggest that temporal dynamics behind time series can’t be unveiled
by simply improving the learning time segment. Additional ablation studies across various datasets
are presented in the AppendixD.

5.4 CASE STUDY

The predictive capability of KooNPro arises from its ability to capture the underlying dynamics
of time series data effectively, we illustrate this using the Solar dataset, which comprises hourly
measurements from 137 solar plants located in Alabama state. The dataset exhibits a clear diurnal
pattern: values are non-zero from 6:00 to 18:00 and zero at night. In robust probabilistic prediction,
large errors often correlate with high variance, reflecting uncertainty. We evaluate this by examining
the relationship between prediction variance and accuracy, measured by the mean absolute error
(MAE) of the predicted mean relative to the true value. A scatter plot of MAE against prediction
variance, presented in the right panel of Fig.4, reveals a correlation of 0.94 with a significance
level near zero, demonstrating that KooNPro effectively captures underlying temporal dynamics and
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Figure 3: The top axis shows the increase in time length T , while the bottom axis indicates the
increase in delay embedding length k. The orange and transparent orange curves represent the
CRPSsum and NRMSEsum for increasing T . The blue and transparent blue curves correspond
to these metrics for increasing k. Error bars reflect the standard error from 10 independent retraining
and evaluation runs.

provides reliable predictions. The left panel visualizes the ground truth and predictions for the first
eight plants over 24 hours. The results demonstrate that KooNPro accurately captures the temporal
fluctuations in Solar energy generation: the predicted mean closes to zero during nighttime and
rises to varying peaks during daylight hours for each plant. Furthermore, the prediction intervals
widen during peak sunlight periods, reflecting the reliability of the predictive result.
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Figure 4: The left panel illustrates the correlation between the MAE of the prediction means relative
to the true values and the prediction variance. The title indicates that the correlation achieves 0.95
and the significant level is 6.74 × e − 13. The right panel visualizes the changes in the first eight
dimensions of the Solar dataset over 24 hours.

6 CONCLUSION

This paper presents KooNPro, a novel probabilistic forecasting model that treats time series as tempo-
ral dynamics. KooNPro employs a variance-aware continuous spectrum, inspired by pseudospectra
concepts, to capture underlying dynamics in time series. It integrates Neural Processes to comprehend
global dynamics across the entire series, enhancing its learning capabilities. Extensive experiments on
nine real-world datasets demonstrate KooNPro’s superior performance compared to state-of-the-art
methods. Comprehensive ablation studies explore the origins of KooNPro’s predictive power, while
visualizations of Solar dataset predictions showcase its accuracy and reliability.
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A APPENDIX: RELATED WORK

This work engages with three key areas: probabilistic time series prediction, the probabilistic
Koopman model, and Neural Processes. While each of these fields has received considerable attention
in recent literature. Here we talk only most related work:

Probabilistic time series prediction: Recent developments in probabilistic forecasting for time
series integrate deep learning, statistical approaches, and diffusion models. State space models have
been significantly enhanced by deep learning, as seen in (Rangapuram et al. (2018b)), (Salinas et al.
(2020)) and (Li et al. (2021)), where they effectively capture temporal dynamics and handle missing
data. (Feng et al. (2023)) and (Tang & Matteson (2021)) developed attention-based mechanisms
that enhance long-range dependencies for improved forecast accuracy. Gaussian Processes (GP),
combined with temporal decomposition, were used by (Yan et al. (2021)) and (Nguyen & Quanz
(2021)) to better model uncertainty in multivariate settings. (Salinas et al. (2019)) proposed a Gaussian
copula process, and (Ashok et al. (2023)) combine Gaussian copula and attention mechanism for
capturing dependencies in high-dimensional multivariate forecasting. The data distribution-based
generative models proposed by (Gouttes et al. (2021)) and the Kalman filter-based approaches
of (de Bézenac et al. (2020)), blend probabilistic techniques for better scalability and robustness.
Diffusion models, such as those proposed by (Rasul et al. (2021)), (Li et al. (2022)), and (Fan et al.
(2024)), model forecasting as a denoising task, excelling in high-dimensional settings. For faster
training and prediction, (Shen & Kwok (2023)) introduced non-autoregressive diffusion models.
(Wen et al. (2024)) introduced spatio-temporal diffusion models, extending these methods to spatial
dependencies.

Probabilistic Koopman model: Over the past two decades, Koopman techniques have garnered
substantial attention, with applications spanning analysis (Brunton et al. (2016)), (Takeishi et al.
(2017)), (Lusch et al. (2018)), (Azencot et al. (2019)); control Abraham et al. (2017), Korda & Mezić
(2018), Kaiser et al. (2021), (Narasingam et al. (2023)); optimization (Dogra & Redman (2020)),
(Manojlović et al. (2020)), (Naiman & Azencot (2021)), (Redman et al. (2021)), and forecasting
Azencot et al. (2020), Lange et al. (2021), (Wang et al. (2023)), (Liu et al.), (Tayal et al. (2023)).
(Brunton et al. (2021)) comprehensively discusses these advances and highlights future research
directions. The most closely related work to ours is the probabilistic Koopman model, originally
proposed by (Morton et al. (2019)). (Han et al. (2022)) designed a stochastic Koopman neural
network for control, in which the latent observables are represented through a Gaussian distribution.
(Colbrook et al., 2024) integrates the concept of variance into the Koopman framework by introducing
variance-pseudospectra, thereby ensuring convergence within the model. For time series tasks,
(Naiman et al. (2023)) utilized Koopman theory to represent the latent conditional prior dynamics via
a linear map, while (Mallen et al. (2024)) introduced a framework enabling probabilistic forecasting
for systems with periodically varying uncertainty.

Neural process: Neural Processes (NPs), first proposed by (Garnelo et al. (2018a)) as Conditional
Neural Processes, bridge neural networks’ scalability and Gaussian Processes’ ability to model uncer-
tainty. (Garnelo et al. (2018b)) provide flexible, probabilistic function approximations, making them
efficient and adaptable across tasks, but struggled with long-range dependencies and flexible function
distributions. Various models have since emerged to address these limitations. Attentive Neural
Processes (Kim et al. (2019)) introduced attention mechanisms to handle long-range dependencies
better. Convolutional Conditional Neural Processes (Gordon et al. (2019b)) adapted convolutional
layers to process images and time series data more effectively. Gaussian Neural Processes (Bruinsma
et al. (2021)) combined NPs with Gaussian inference, improving performance in regression tasks
by leveraging Gaussian uncertainty. (Lee et al. (2023)) refined uncertainty quantification of NP,
providing better posterior estimation. Other work extends NPs to meta-learning, such as Meta-
Learning Stationary Stochastic Processes (Foong et al. (2020)) and Meta-Learning Probabilistic
Inference (Gordon et al. (2019a)), both addressing generalization to unseen tasks. Recent work
focuses on expanding NP applications to complex data structures. Group Equivariant Conditional
Neural Processes (Kawano et al. (2021))and Versatile Neural Processes (Guo et al. (2023)) improved
the handling of symmetries and representations, enhancing NPs’ capacity to model equivariant and
implicit functions. To improve generation ability furtherly, (Nguyen & Grover (2022)) and (Mohseni
& Duffield (2024)) combine NPs with transformer and neural operator respectively. Comprehensive
surveys by (Jha et al. (2022)) have organized these developments, exploring their wide applications
in uncertainty-aware learning.
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B APPENDIX: IMPLEMENTATION DETAILS

B.1 REPRODUCIBILITY

Our code will be released in an open repository once this paper is accepted.

B.2 DETAILS OF MODEL

In Tab.3, we show the hyperparameters of KooNPro include time length T , Embedding length k,
layers of the encode ϕ, layers of decoder ϕ−1, layers of the auxiliary network κ, layers of ψ employed
in Eq.3. Note that the choice of T and k is based on the ablation study showcased in AppendixD.

Table 3: Hyperparameters of KooNPro

Name T k ϕ ϕ−1 κ ψ

ETTh1 30 10 4 4 4 2
ETTh2 20 10 4 4 4 2
ETTm1 20 10 4 4 4 2
ETTm1 20 10 4 4 4 2

Solar 30 15 8 8 8 3
Electricity 30 10 4 4 4 2

Traffic 20 10 4 4 4 2
Taxi 30 15 6 6 6 3

KDD-cup 10 10 4 4 4 2

B.3 BENCHMARK DATASETS

For our experiments, we use ETTs, Solar, Electricity, Traffic, Taxi, and KDD-cup
open-source datasets, with their properties listed in Tab.B.3. The dataset can be obtained through the
links below.

(i) ETTs: https://github.com/zhouhaoyi/ETDataset

(ii) Solar: https://www.nrel.gov/grid/solar-power-data.html

(iii) Electricity: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

(iv) Traffic: https://pems.dot.ca.gov

(v) Taxi: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

(vi) KDD-cup: https://www.kdd.org/kdd2018/kdd-cup

C APPENDIX: EVALUATION METRIC

We consider two metrics: CRPSsum and NRMSEsum, the first one can describe the predictive
distribution, and the second can describe the distance between truth value and prediction mean, more
details can be found in Gluonts documentation (Alexandrov et al. (2020)).

CRPSsum: CRPS is a univariate, strictly proper scoring rule that quantifies the compatibility of a
cumulative distribution function F with an observed value x ∈ R as:

CRPS =

∫
R
(F(y)− I(x ≤ y))2dy, (20)

where I(x ≤ y) denotes the indicator function. The CRPS achieves the minimum value when
predictive prediction F same as the data distribution. CRPS can be extend to CPRSsum to
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evaluate multivariate distribution:

CRPSsum = Et[CPRS(F−1
sum,

∑
i

xit)], (21)

where F−1
sum is computed by aggregating samples across dimensions and subsequently sorting them

to obtain quantiles. A smaller CRPSsum indicates more accurate predictions.

NRMSEsum: NRMSEsum is an adaptation of the Root Mean Squared Error (RMSE) that
accounts for the scale of the target values. It is defined as follows:

NRMSEsum =

√
mean((Ŷ −Y)2)

mean(|Y|)
, (22)

where Ŷ represents the predicted time series, and Y represents the true target time series.
NRMSEsum quantifies the average squared difference between predictions and true values across
all dimensions, normalized by the mean absolute magnitude of the target values. A smaller
NRMSEsum indicates more accurate predictions.

D APPENDIX: ABLATION STUDY

We conduct ablation studies on the time length T and delay embedding length k across several
datasets. The results indicate that merely extending the learning time segment is insufficient to reveal
the temporal dynamics underlying the time series, as discussed in Sec.5.3. The choices for T and k
presented in Tab.3 are informed by the results of this ablation study.
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Figure 5: Ablation study on ETTh2 dataset.

E FORECAST FRACTIONAL STEPS DATA

To showcase the efficacy of KooNPro in fractional steps scenarios, we conducted predictions on
fMRI data, with time intervals of sample equal to 0.72 seconds. Figure 12 illustrates KooNPro’s
outstanding predictive capability in the fMRI case, demonstrating its ability to handle various time
resolutions effectively.

F SUBSTITUTION NEURAL PROCESS BY ATTENTION NEURAL PROCESS AND
GAUSSIAN PROCESS

Followed by the Attention Neural Process (ANP) (Kim et al., 2019) and combine the scene of our
work, we employ the attention mechanism to generate SD which governs temporal dynamics of the
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Figure 6: Ablation study on ETTm1 dataset.
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Figure 7: Ablation study on ETTm2 dataset.
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Figure 8: Ablation study on Solar dataset.
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Figure 9: Ablation study on Electricity dataset.
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Figure 10: Ablation study on Taxi dataset.
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Figure 11: Ablation study on KDD-cup dataset.
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Table 4: Datasets detail

Name Frequency Dimensions Context length Prediction length

ETTh1 1 hour 7 10 24
ETTh2 1 hour 7 10 24
ETTm1 15 min 7 10 24
ETTm2 15 min 7 10 24

Solar 1 hour 137 15 24
Electricity 1 hour 370 10 24

Traffic 1 hour 862 10 24
Taxi 30 min 1214 15 24

KDD-cup 1 hour 270 10 48
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Figure 12: Predict fMRI signals for 48-time points, and the time interval is 0.72 seconds. The unit of
the x-axis is second. KooNPro predicts both a mean and a variance of the signal. KooNPro is capable
of accurately capturing the wave patterns in fMRI data.

whole time series. To complete the abovementioned process, we set the Key K as xC , the value V as
SC and the query Q as xD, then calculate the SD.

When employing the Gaussian process to predict SD at the target set xD using context set xC and
their corresponding outputs SC by modeling a joint Gaussian distribution. The procedure can be
summarized as follows

KC = k(zC , zC) + σ2
n, (23)

KD = K(zD, zD), (24)
KCD = k(zC , zD), (25)

where k we choose the radial basis function kernel. Consequently, the distribution of SD N (µ,Σ)
can be calculated by

µ = K⊤
CDK

−1
C SC , (26)

Σ = KD −K⊤
CDK

−1
C KCD, (27)

where µ is mean and Σ is covariance.

In Tab.5 we compare different approaches for generating SD, including cases without it. For clarity,
we refer to the method utilizing ANP as with-ANP and the method utilizing GP as with-GP. The
overall performance of with-ANP is comparable to KooNPro, but ANP exhibits higher computational
complexity than NP, which computational complexity is raised from O(n + m) to O(n(n + m)) (Kim
et al., 2019). The attention mechanism tends to perform well on high-dimensional data. As shown in
Table 5, the predictive performance of with-ANP improves as data dimensionality increases. Notably,
in the taxi dataset, which has the highest dimensionality (1214) among all datasets, with-ANP
outperforms KooNPro in both metrics.

With-GP demonstrates significantly degraded performance, particularly on ETTs. This phenomenon
may be attributed to the critical influence of prior knowledge in defining the kernel k and its
corresponding hyperparameters. Furthermore, the presence of non-learnable parameters may impede
SD from adequately capturing the temporal dynamics governing the entire time series.
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Table 5: Prediction performance when replacing Neural Process (NP) with Attention Neural Process
(ANP), Gaussian Process (GP), or removing NP version (denoted as with-ANP, with-GP, and without-
NP, respectively).

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

with-ANP
C-s 0.334±0.061 0.194±0.063 0.195±0.029 0.107±0.019 0.201±0.062 0.067±0.022 0.197±0.016 0.213±0.056 0.306±0.008

N-s 0.541±0.084 0.300±0.093 0.350±0.061 0.182±0.033 0.371±0.052 0.127±0.033 0.308±0.030 0.314±0.081 0.497±0.008

with-GP
C-s 0.912±0.067 0.613±0.056 0.579±0.023 0.438±0.067 0.304±0.052 0.125±0.033 0.231±0.023 0.349±0.029 0.413±0.159

N-s 1.210±0.061 0.791±0.058 0.861±0.029 0.622±0.075 0.467±0.067 0.205±0.052 0.388±0.016 0.501±0.033 0.655±0.252

without-NP
C-s 0.390±0.083 0.218±0.120 0.332±0.068 0.155±0.042 0.341±0.059 0.093±0.027 0.313±0.051 0.252±0.068 0.674±0.224

N-s 0.609±0.117 0.318±0.169 0.511±0.103 0.243±0.056 0.531±0.065 0.144±0.036 0.590±0.095 0.380±0.092 1.058±0.341

G APPENDIX: LONG-TERM PREDICTION

To evaluate KooNPro’s ability to predict by capturing the temporal dynamics embedded in time
series, we test the performance of various models under increasing prediction lengths, as detailed in
Tab.6. According to the results in Tab.7, KooNPro exhibits the least degradation across both metrics
compared to other methods. This outcome highlights the effectiveness of KooNPro in learning and
leveraging the temporal dynamics of time series for accurate predictions.

Table 6: Datasets detail

Name Frequency Dimensions Context length Prediction length

ETTh1 1 hour 7 10 48
ETTh2 1 hour 7 10 48
ETTm1 15 min 7 10 48
ETTm2 15 min 7 10 48

Solar 1 hour 137 15 48
Electricity 1 hour 370 10 48

Traffic 1 hour 862 10 48
Taxi 30 min 1214 15 48

KDD-cup 1 hour 270 10 72

H APPENDIX: ROBUSTNESS OF PERFORMANCE

To evaluate the robustness of KooNPro’s predictive performance, we test it under varying Signal-
to-Noise Ratio (SNR) conditions (20dB/40dB/60dB). During training, KooNPro is provided with
ground truth data. At the testing stage, Gaussian noise is added to the input data, and the predic-
tions are compared against the ground truth. As presented in Tab.8, the performance degradation
with decreasing SNR remains within acceptable limits, demonstrating KooNPro’s robust predictive
capability across varying noise levels.

I APPENDIX: THE NUMBER OF PARAMETERS OF LEARNED MODEL

The backbone of KooNPro is built on MLPs, so the number of parameters is determined by the
input data dimensions, as well as the depth and width of the MLP. Table 9 provides the memory
consumption of KooNPro’s parameters across different datasets.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) across nine real-world datasets. The means and standard errors are based on
10 independent runs of retraining and evaluation. The best performances are in red and the second
are in blue. The block with a ’-’ denotes a numerical issue encountered during model training with
longer prediction lengths.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Electricity Traffic Taxi Cup

GP-Copula
C-s 0.611±0.031 0.381±0.034 0.646±0.056 0.558±0.054 0.465±0.089 0.234±0.047 0.529±0.006 1.007±0.025 0.731±0.025

N-s 0.909±0.033 0.610±0.062 0.762±0.138 0.844±0.093 0.709±0.085 0.382±0.103 0.713±0.014 1.464±0.057 1.073±0.056

Trans-MAF
C-s 1.271±0.051 0.507±0.014 1.045±0.085 0.279±0.007 - 0.198±0.069 0.596±0.031 0.769±0.046 0.410±0.073

N-s 1.571±0.144 0.780±0.027 1.797±0.122 0.485±0.127 - 0.397±0.127 0.872±0.046 0.936±0.010 0.515±0.083

Timegrid
C-s 0.796±0.084 0.477±0.007 0.458±0.059 0.346±0.010 0.886±0.036 0.263±0.028 0.726±0.050 0.791±0.021 0.421±0.059

N-s 0.953±0.102 0.697±0.009 0.588±0.104 0.455±0.014 1.243±0.056 0.423±0.077 0.932±0.055 0.971±0.195 0.522±0.098

TACTIS
C-s 0.752±0.004 0.401±0.001 1.331±0.013 0.261±0.023 3.786±1.708 0.360±0.004 0.552±0.067 1.368±0.014 0.390±0.018

N-s 0.943±0.004 0.522±0.002 1.853±0.030 0.422±0.023 5.615±2.168 0.498±0.002 0.751±0.023 1.591±0.020 0.505±0.022

D3VAE
C-s 0.916±0.036 0.626±0.044 0.598±0.021 0.737±0.064 0.725±0.064 0.408±0.048 0.704±0.069 0.814±0.035 -

N-s 1.265±0.078 0.861±0.041 0.768±0.067 0.951±0.031 0.919±0.141 0.601±0.051 1.126±0.139 1.308±0.164 -

DPK
C-s 0.891±0.027 0.744±0.071 0.824±0.040 0.519±0.092 0.938±0.004 0.997±0.012 1.131±0.002 0.969±0.006 0.900±0.015

N-s 1.262±0.032 0.998±0.138 1.349±0.070 0.592±0.202 1.301±0.004 1.263±0.013 1.478±0.005 1.213±0.005 1.309±0.024

MG-TSD
C-s 0.619±0.056 0.435±0.099 0.371±0.085 0.269±0.005 1.000±0.001 0.174±0.027 0.617±0.045 0.409±0.051 0.590±0.091

N-s 0.967±0.071 0.627±0.117 0.539±0.109 0.318±0.050 1.610±1.286 0.283±0.035 0.882±0.053 0.621±0.068 0.767±0.073

KooNPro
C-s 0.488±0.025 0.376±0.025 0.365±0.018 0.227±0.002 0.417±0.021 0.165±0.017 0.401±0.014 0.396±0.023 0.327±0.014

N-s 0.746±0.044 0.541±0.035 0.564±0.023 0.343±0.034 0.657±0.040 0.287±0.017 0.715±0.030 0.658±0.042 0.457±0.021

Table 8: KooNPro represents the case where the input data is noise-free, while 20dB, 40dB, and
60dB indicate scenarios where Gaussian noise is added to the input, resulting in SNR of 20dB, 40dB,
and 60dB, respectively.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

60dB
C-s 0.367±0.023 0.195±0.029 0.183±0.017 0.111±0.012 0.229±0.032 0.074±0.008 0.192±0.023 0.248±0.017 0.217±0.055

N-s 0.586±0.023 0.284±0.032 0.380±0.021 0.132±0.015 0.323±0.042 0.118±0.014 0.333±0.029 0.337±0.021 0.339±0.105

40dB
C-s 0.385±0.028 0.221±0.021 0.271±0.033 0.152±0.001 0.243±0.039 0.192±0.052 0.213±0.019 0.274±0.015 0.229±0.019

N-s 0.608±0.049 0.317±0.024 0.565±0.048 0.162±0.003 0.359±0.038 0.283±0.061 0.344±0.029 0.380±0.012 0.352±0.031

20dB
C-s 0.432±0.021 0.251±0.010 0.311±0.018 0.194±0.017 0.269±0.047 0.287±0.058 0.268±0.016 0.285±0.026 0.249±0.020

N-s 0.687±0.034 0.331±0.028 0.491±0.026 0.245±0.019 0.385±0.056 0.415±0.049 0.369±0.024 0.384±0.012 0.395±0.036
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Table 9: Comparison of memory usage for different models’ parameters across datasets (in MB).

Model ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

Trans-MAF 9.69 9.69 9.69 9.69 12.21 16.73 26.26 33.08 14.79

Timegrid 4.22 4.22 4.22 4.22 25.93 29.32 37.83 45.06 27.82

TACTIS 7.48 7.48 7.48 7.48 7.49 7.49 7.50 7.51 7.49

D3VAE 58.41 58.41 58.41 58.41 58.72 59.29 60.50 61.36 59.05

DPK 0.17 0.17 0.17 0.17 0.25 0.40 0.70 0.92 0.34

MG-TSD 2.41 2.41 2.41 2.41 3.05 6.33 14.60 21.65 5.87

KooNPro 1.73 1.73 1.73 1.73 10.23 7.18 14.42 17.50 5.60

Fig.13 illustrates the relationship between the number of parameters and the predictive performance
of each model on ETTm2. The results show that KooNPro achieves the best performance with the
fewest parameters.
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Figure 13: The relationship between the number of parameters and prediction performance of
different models on ETTm2 is shown. The x-axis represents the number of parameters, while the
y-axis denotes CRPSsum. Performance improves as you move closer to the bottom-left corner of
the plot.

J COMPARE TO DEEPAR/MQ-CNN

DeepAR and MQ-CNN are univariate probabilistic prediction methods. Therefore, we predict each
dimension separately and report the mean performance across all dimensions in Table 10.

K DETAILS ON TRAINING BASELINES

We train baselines by open code which is reported in corresponding papers, and follow the default
setting. The code for the baseline methods is obtained from the following sources.
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Table 10: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) across nine real-world datasets. The means and standard errors are based on
10 independent runs of retraining and evaluation. The best performances are in red and the second
are in blue.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

kooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

DeepAR
C-s 0.431±0.010 0.194±0.063 0.482±0.031 0.611±0.073 0.602±0.032 0.214±0.014 0.289±0.018 0.521±0.101 0.882±0.066

N-s 0.577±0.019 0.300±0.093 0.742±0.058 0.925±0.102 1.138±0.042 0.378±0.032 0.422±0.035 0.914±0.151 1.329±0.038

MQ-CNN
C-s 0.507±0.060 0.377±0.024 0.427±0.061 0.486±0.068 0.755±0.023 0.155±0.023 0.753±0.117 0.673±0.069 1.136±0.043

N-s 0.771±0.076 0.741±0.094 0.956±0.062 0.872±0.062 1.323±0.107 0.214±0.028 1.012±0.159 1.035±0.160 1.658±0.207

• GP-Copula: https://github.com/mbohlkeschneider/gluon-ts/tree/mvrelease
• Transfomer-MAF:https://github.com/zalandoresearch/pytorch-

ts/tree/master/pts/model/transformertempflow
• Timegrad: https://github.com/zalandoresearch/pytorch-ts
• TACTIS: https://github.com/servicenow/tactis
• D3VAE: https://github.com/ramber1836/d3vae
• DPK: https://github.com/AlexTMallen/koopman-forecasting
• MG-TSD: https://github.com/Hundredl/MG-TSD

1.GP-Copula (2019): A method combining Gaussian Processes with Copulas to model complex
dependencies between variables in multivariate time series, providing uncertainty estimates and
capturing nonlinear correlations.

2. Transformer-MAF (2021) Combines Transformers with Masked Autoregressive Flow (MAF)
to model long-term dependencies and the conditional probability distribution of time series data
effectively.

3. TimeGrad (2021) A diffusion model-based approach for time series forecasting, which progres-
sively generates samples to capture complex dynamics and uncertainty in the data.

4. TACTiS (2023) A probabilistic autoregressive model leveraging Transformers to handle non-
stationary time series, focusing on dynamic structures and probabilistic predictions.

5. D3VAE (2023) A deep variational autoencoder (VAE)-based model designed for time series,
featuring a dynamic decoder to effectively capture and predict complex temporal structures.

6. DPK (2024) Dynamic Probabilistic Kernel (DPK) models probabilistic dependencies in time series
using a dynamic kernel-based approach, balancing flexibility and efficiency for multivariate data.

7. MG-TSD (2024) Multi-Granularity Time Series Decomposition (MG-TSD) decomposes time
series into components of varying frequencies or trends, modeling each with a probabilistic framework
to capture multi-scale patterns.

L BACKGROUND

Koopman operator theory provides a linear perspective on nonlinear dynamical systems by focusing
on the evolution of observables, which are functions of the system state. For a dynamical system
described by xn+1 = F(xn), where x represents the state vector, the Koopman operator K acts on an
observable g such that Kg(x) = g(F(x)). This approach transforms the problem into analyzing the
linear operator K in the space of observables, despite the underlying dynamics being nonlinear. The
advantage of this transformation lies in applying linear operator theory, particularly spectral theory,
to gain insights into the system’s behavior.
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