CONSISTENT ZERO-SHOT IMITATION WITH CONTRASTIVE GOAL INFERENCE

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032 033 034

035

037

038

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

In the same way that generative models today conduct most of their training in a self-supervised fashion, how can agentic models conduct their training in a selfsupervised fashion, interactively exploring, learning, and preparing to quickly adapt to new tasks? A prerequisite for embodied agents deployed in real world interactions ought to be training with interaction, yet today's most successful AI models (e.g., VLMs, LLMs) are trained without an explicit notion of action. The problem of pure exploration (which assumes no data as input) is well studied in the reinforcement learning literature and provides agents with a wide array of experiences, yet it fails to prepare them for rapid adaptation to new tasks. Today's language and vision models are trained on data provided by humans, which provides a strong inductive bias for the sorts of tasks that the model will have to solve (e.g., modeling chords in a song, phrases in a sonnet, sentences in a medical record). However, when they are prompted to solve a new task, there is a faulty tacit assumption that humans spend most of their time in the most rewarding states. The key contribution of our paper is a method for pre-training interactive agents in a self-supervised fashion, so that they can instantly mimic human demonstrations. Our method treats goals (i.e., observations) as the atomic construct. During training, our method automatically proposes goals and practices reaching them, building off prior work in reinforcement learning exploration. During evaluation, our method solves an (amortized) inverse reinforcement learning problem to explain demonstrations as optimal goal-reaching behavior. Experiments on standard benchmarks (not designed for goal-reaching) show that our approach outperforms prior methods for zero-shot imitation.

1 Introduction

Today's AI agents, whether in language or robotics, are trained primarily by mimicking human demonstrations. But, in the same way that children conduct a large degree of learning in an unsupervised (adult-free) fashion (Gweon & Schulz, 2019; Gopnik, 2020; Stahl & Feigenson, 2015; Poli et al., 2025; Bonawitz et al., 2011), how might AI agents develop a foundation of knowledge through exploration and play, rather than through mimicry? In this paper, we study the setting where agent pretraining is done with no demonstrations, no internet-scale data, and no rewards, but rather through self-supervised practice. The agent proposes goals, attempts to reach them, and learns from

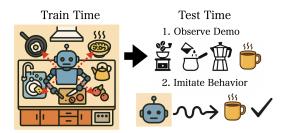


Figure 1: **Zero shot imitation learning.** Assuming access to a multi-task environment, our generalist agent must imagine and practice its own tasks to effectively imitate unknown task demonstrations at test time.

these self-collected data. After training, this agent is assessed by its ability to imitate: given a demonstration, the agent uses a (learned) inverse RL module to infer the demonstrator's goal, and then uses the (learned) goal-conditioned policies to reach that goal. Our problem setting is thus *zero-shot imitation learning (IL)*, where we would like to infer behaviors from a single demonstration without additional updates (Pirotta et al., 2024; Pathak et al., 2018; Jang et al., 2021).

056

057

058

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

080

081

082

083

084

085

086 087

090

091

092

093

094

095

096

098

099 100 101

102 103

104

105

106

107

It is unclear whether today's recipe for building generative AI foundation models will be directly applicable to *interactive* settings. While generative models are primarily built by optimizing selfsupervised objectives on input data (Bommasani et al., 2021), doing so requires that a human can supply these data and assumes that the goal of agents is to find patterns in data. The key premise of agents is that they act, and that their actions have consequences, yet this recipe for building generative AI models does not include an explicit notion of exploration or action. In robotics, policies are typically constructed by either mimicking human demonstrations (Chi et al., 2023; 2024; Octo Model Team et al., 2024; Reed et al., 2022) or maximizing human-specified rewards (Silver et al., 2016; Wurman et al., 2022). These approaches do have an explicit notion of action, but agents typically practice on limited set of tasks, and those are not required to learn how to infer a human's intention. The key idea in our paper is that self-supervised pretraining for agentic systems should involve interaction. Such pretraining involves exploration: agents should propose their own goals and learn to reach them via trial and error. Such pretraining also requires inverse RL, inferring the desired goal from a human demonstration. When inferring goals, there is an important yet subtle difference between intentions and outcomes: a person that takes a 6-hour flight to attend a 3-hour wedding does not enjoy flights $2\times$ more than weddings.

Related work in inferring intentions projects a demonstration onto a hypothesis space of reward functions and then trains a general-purpose zero-shot RL policy to this space of rewards. We make the additional key observation that many tasks can be described in terms of goals, such as navigation or manipulation tasks (Brockman et al., 2016). In these settings, goals are described by the agent's state, and we can imagine natural extensions of goals to more complex behaviors by including position, velocity, acceleration, etc. into the state space. Tasks where the necessary actions are more complex or hierarchical, such as cooking a recipe in a kitchen, could also be described by a high-dimensional observational state, demonstrating the expressivity of a goal-conditioned inductive bias. In addition, maintaining a prior that tasks can be described via goals allows us to define reward functions probabilistically in terms of whether we will reach the goal state in the future and apply state-of-art goal conditioned reinforcement learning methods (GCRL) to an even further reduced hypothesis space of reward functional forms (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017). Therefore, we re-imagine solving the zero-shot imitation learning task by first inferring the expert's goal (thereby projecting onto the restricted space of goal-conditioned reward functions fully parameterized by goal vectors), and then commanding a zero-shot goal-conditioned RL policy to this inferred goal. We start by assessing our method on goal-reaching tasks, and then evaluate on reward-maximization tasks not tied to particular goal states.

Our main contributions can be summarized as follows:

- We propose a contrastive inverse reinforcement learning algorithm (CIRL) for self-supervised pretraining of interactive agents that extends contrastive reinforcement learning (CRL) methods to the MaxEnt RL setting and includes automatic goal sampling during pre-training. Training involves exploration and learning via trial and error, yet requires no demonstrations, no rewards, and no preferences.
- Unlike some structurally similar methods, we prove that our method is consistent: it correctly
 infers the user's goal using inverse RL, accounting for the relative difficulty of reaching
 different goals.
- Empirically, we show that our method performs effective autonomous exploration and rapid adaptation in the standard URLB benchmark (Laskin et al., 2021), outperforming prior zero-shot imitation and zero-shot RL methods.

Taken together, our results are a step towards the self-supervised pre-training of agents.

2 RELATED WORK

We turn to GCRL benchmarks to test our hypotheses for goal-conditioned zero-shot IL. Several state-of-art methods on goal-reaching RL use variants of temporally contrastive objectives to learn representations and policies, and extend successor feature-based methods to high dimensional environments (Wang et al., 2023; Eysenbach et al., 2022; Myers et al., 2024). However, prior methods are limited in their assumption of access to the test-time distribution of goals, an offline pretraining dataset, or a hand-designed exploration policy (Pathak et al., 2018; Eysenbach et al., 2022). Given

the strength of these methods in RL settings, we naturally ask whether their representations would be useful for imitation, and whether we can extend them to also learn to command their own goals. We build off the JaxGCRL benchmark to test our ideas with the Contrastive Reinforcement Learning (CRL) algorithm on a well-designed suite of tasks (Bortkiewicz et al., 2025).

Approaches to zero-shot imitation learning combine approaches to inverse RL and exploration/data collection to solve the problem. We'll discuss these individual components first and then discuss key prior methods for zero-shot imitation.

Inverse RL Achieving general, adaptable agents is challenging via reward engineering and may lead to unintended behaviors (Amodei et al., 2016). Thus, we turn to learning from demonstrations (LfD), assuming we have access to limited data from an expert (Finn et al., 2016; Fu et al., 2018; Pirotta et al., 2024; Yu et al., 2019). The main approaches to LfD are behavioral cloning (BC) and inverse reinforcement learning (IRL). BC casts learning an imitation policy as a supervised learning problem. While BC can work well in practice, it suffers from poor performance under distributional shift and can overfit its expert demonstrations (Ross et al., 2011; Pomerleau, 1988; Bojarski et al., 2016). IRL attempts to infer reward functions/corresponding policies from demonstrations (Ng & Russell, 2000). Since the reward inference problem is inherently under-specified, a common modeling choice is the Maximum Entropy assumption, which assumes that expert demonstrations select actions to maximize both the sum of expected discounted rewards and the entropy of the distribution of actions over states (Ziebart et al., 2008). Extensions such as GAIL, AIRL, and GCL were developed to use deep function approximators for single-task IRL (Ho & Ermon, 2016; Fu et al., 2018; Finn et al., 2016). Current multi-task/meta IL algorithms can be categorized as hierarchical, gradient-based, or context-based (Chen et al., 2023). Gradient-based approaches, such as (Finn et al., 2017; Yu et al., 2018) combine meta-learning with IL to recover a policy, but at inference time, require a one-shot gradient step to adapt to a new task whereas our method adapts zero-shot. Context-based approaches such as SMILE and PEMIRL learn a latent variable to represent the task contexts and train a context-conditioned policy that can be applied zero-shot to new tasks (Seyed Ghasemipour et al., 2019; Yu et al., 2019). Both of these methods train a context encoder and then apply AIRL to learn the parameters of a context-conditioned reward function. Our approach is similar (encoding goals as a form of context) but takes this one step further by proving that the multi-task IRL problem can actually be reduced to a purely goal-inference problem when we our expert optimizes a goal-conditioned reward function. Therefore, we can use zero-shot RL algorithms to recover policies without loss of performance instead of using less stable adversarial methods. We also demonstrate the theoretical soundness and computational superiority of our mean field inference model over PEMIRL's full-trajectory input model.

Exploration While BC and IRL can be performed on offline datasets, we would prefer to enable zero-shot imitation through purely online methods that can be applied out-of-the-box in novel environments. This requires our IL agent to perform its own exploration, which CRL currently does not support (Eysenbach et al., 2022). For our goal-conditioned setting, automatic goal sampling enables us to autonomously generate training objectives. Goal sampling approaches broadly fall into two categories: adversarial methods and distribution-based methods. Adversarial methods such as ASP and GoalGAN introduce a second policy for sampling goals (OpenAI et al., 2021; Florensa et al., 2018). While effective for simple domains, these methods can struggle with high-dimensional goal spaces and require careful balancing of the adversarial training process. State distribution approximation methods such as Skew-Fit, EDL, VUVC, RIG, MEGA, and DISCERN control the probability of selecting a goal via the empirical state visitation density, usually trying to cover the full state space with exploration (Pong et al., 2020; Campos et al., 2020; Kim et al., 2023; Nair et al., 2018; Pitis et al., 2020; Warde-Farley et al., 2018). Our method, GoalKDE, adopts a simple form of RIG, although more complex methods could also be benchmarked in future work.

Zero-Shot Imitation Learning BC-Zero addresses multi-task zero-shot imitation by scaling diverse, human-in-the-loop data collection and training a single task-conditioned behavior-cloned policy that can execute novel text instructions at test time (Jang et al., 2021). However, unlike our method, BC-Zero gathers task-labelled expert data via teleoperation and requires human interventions in a DAgger-style loop, whereas our method trains purely online and collects its own data using a self-supervised objective and exploration. Zero-Shot Visual Imitation uses goal-conditioned policies to imitate experts trained via a model-based forward consistency loss (Pathak et al., 2018).

However, unlike our work, they hand-devised an exploration policy to generate data for model-based training, whereas our data collection is fully self-supervised for model-free training. Forward-Backward (FB) Representations enable zero-shot RL through the use of forward models predicting state visitation distributions and backward models estimating likelihoods of reaching states from initial conditions (Touati & Ollivier, 2021; Pirotta et al., 2024). However, these imitation learning results assume access to offline pretraining data prior to inference while we operate in the online setting. We also prove that their method of inferring rewards using their backward model is inconsistent for IRL, and show empirically how this leads to lower-performing imitation policies compared to our method.

3 PRELIMINARIES

Definition 1. The zero-shot imitation learning problem assumes we are given a single expert trajectory $\tau = (s_0, a_0, ..., s_T, a_T)$ at inference time, generated by some unknown expert policy π_E with trajectory distribution $p_{\pi_E}(\tau)$. No reward function is available. We must produce a policy $\hat{\pi}_{CIRL} \in \Pi$ that successfully reproduces the behavior of π_E defined by its unknown reward function, thereby achieving low regret.

To solve this problem, we will model the environment as a goal-conditioned MDP, defining a reward function that depends on a goal and thereby assuming that expert policies π_E have behaviors that can be described as goal-reaching. Then, we can infer the reward function associated with π_E via Max-Ent IRL. To do this, we will infer the goal \hat{g} associated with π_E , and command a goal-conditioned policy to \hat{g} that is trained with CRL. In the subsequent sections, we will prove that performing Max-Ent IRL with a goal-conditioned reward is equivalent to performing goal inference. We operate in the pure online RL setting, assuming no access to offline expert data during pretraining. This includes no access to the test-time goal distribution, a departure from CRL's oracle assumptions.

3.1 Contrastive RL

We define a goal-conditioned MDP by a tuple (S,A,G,P,r,ρ) , where S is the state space, A is the action space, G is the goal space (equivalent to the state space in our formulation); $p:S\times A\times S\to [0,1]$ describes the transition probabilities between states; $r:S\times A\times G\to \mathbb{R}$ is a goal-conditioned reward function, defined as $r(s_t,a_t,g)=(1-\gamma)p(s_{t+1}=s_g\mid s_t,a_t)=r_g(s_t,a_t),$ for some discount factor γ ; $\rho_0(s_0)$ specifies the initial state distribution, and p(g) specifies some test-time distribution over goals. We use τ to define a finite horizon trajectory as a sequence of states and actions: $\tau=(s_0,a_0,\cdots,s_T,a_T),$ and write the likelihood of a trajectory under policy π as $p(\tau)=\rho_0(s_0)\prod_t p(s_{t+1}\mid s_t,a_t)\pi(a_t\mid s_t).$ We also define the discounted future state s_f occupancy measure (density) of goal-conditioned policy $\pi:S\times G\to \Delta(A)$ as $p_{\gamma}^{\pi}(s_f|s,a,g)=(1-\gamma)\sum_{t=0}^{\infty}\gamma^t p_t^{\pi}(s_t\mid s,a,g)$ and the marginal distribution as $p_{\gamma}^{\beta}(s_f)=\int p^{\beta}(s,a)p_G(g)p_{\gamma}^{\beta}(s_f\mid s,a,g)dsdadg$, where $\beta:S\to A$ is the behavioral policy. Using the contrastive RL algorithm, we can estimate the discounted state occupancy using Noise Contrastive Estimation (Oord et al., 2018) and obtain the critic function $f_{\phi,\psi}^{\star}(s,a,g)=\log\frac{p_{\gamma}^{\pi}(s_f|s,a,g)}{p_{\gamma}^{\beta}(s_f)}=\frac{1}{p_{\gamma}^{\beta}(s_f)}\cdot Q_{sf}^{\pi(\cdot|\cdot)}(s,a)$, where $Q_{sf}^{\pi}(s,a)\triangleq\mathbb{E}_{\pi(\tau|s_f)}\left[\sum_{t'=t}^{\infty}\gamma^{t'-t}r_{s_f}(s_{t'},a_{t'})\,|\,s_t=s,a_t=a\right]$

3.2 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING (MAXENT IRL)

We will use the MaxEnt IRL framework to infer reward functions and policies from expert demonstrations. This framework assumes that demonstrations come from a MaxEnt RL policy:

$$\tilde{\pi}^* = \arg\max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \left(r_g \left(s_t, a_t \right) + \alpha \mathcal{H} \left(\pi \left(\cdot \mid s_t \right) \right) \right) \right],$$

where α is an optional parameter to control the trade-off between reward maximization and entropy maximization. Without loss of generality, we can assume $\alpha = 1$ for notational simplicity. The

trajectory likelihood under the optimal maximum entropy policy is then

$$p^{\star}\left(\tau = \left\{\boldsymbol{s}_{0:T}, \boldsymbol{a}_{0:T}\right\} \mid g\right) = \frac{1}{Z_g} \left[\rho_0\left(s_0\right) \prod_{t=0}^T p\left(s_{t+1} \mid s_t, a_t\right)\right] \exp\left(\sum_{t=0}^T r_g\left(s_t, a_t\right)\right).$$

where $Z_g = \int \rho(s_0) \prod_t P(s_{t+1} \mid s_t, a_t) e^{r_g(s_t, a_t)} d\tau$. We can then define the MaxEnt IRL problem:

$$\min_{\boldsymbol{g}^{\prime}} \mathbb{E}_{p(g)} \left[D_{\mathrm{KL}}(p_{E}(\tau | g) \, \| \, p^{\star} \, (\tau = \left\{ \boldsymbol{s}_{0:T}, \boldsymbol{a}_{0:T} \right\} \mid \boldsymbol{g}^{\prime}) \right].$$

3.3 GOAL INFERENCE

The MaxEnt IRL problem involves inferring reward parameters from a demonstration, and our reward functions are completely parameterized by goals g. Therefore, we will perform inference to recover the latent goal of an actor from observed data. Applying Bayes' Rule to the trajectory likelihood of a MaxEnt RL policy, the posterior distribution over goals is

$$p^{\star}(g \mid \tau) = \frac{p^{\star}(\tau \mid g)p(g)}{p(\tau)} \propto p(g)e^{\sum_{t} r_{g}(s_{t}, a_{t}) - \log Z_{g}}$$

The partition function Z_g is important for inferring goals, since it gives us a notion of average reward collected along all possible trajectories for a given reward function $r_g(s,a)$. If an expert demonstration collects more reward than this average over trajectories, it is more likely that the demonstration is associated with this particular goal (Eysenbach et al., 2020). The partition function is difficult to estimate, so we will instead fit a variational posterior $q_{\xi}(g|\tau)$ to perform goal inference (Dragan et al., 2013; Zurek et al., 2021).

4 METHOD

Our algorithm, CIRL, consists of the following components: (1) self-supervised contrastive RL pretraining to learn maximum entropy soft Q-values and a corresponding goal conditioned policy, (2) a goal inference model to learn the variational posterior, and (3) automatic goal sampling during pretraining. Each will be discussed in the subsequent sections. Our key contribution is in using goal inference and a goal-conditioned reward to couple IRL with CRL for a successful online imitation learning algorithm. However, certain components, such as the specific goal sampling method, could be substituted.

4.1 MAXIMUM ENTROPY CONTRASTIVE REINFORCEMENT LEARNING

We build an extension of contrastive reinforcement learning under the Maximum Entropy assumption. While CRL just learns the sum of discounted future rewards, we also need to estimate the sum of discounted future entropy to optimize the MaxEnt RL objective. Following prior work (Haarnoja et al., 2018; Eysenbach et al., 2022), we define the the entropy regularized goal-conditioned reward function as $\tilde{r}_g(s_t, a_t) \triangleq (1 - \gamma)\delta(s_t = g) - \alpha \log \pi(a \mid s, g)$, where $\delta(\cdot = g)$ is the delta measure at the goal g. Given a set of goals sampled from a goal distribution $g \sim p_{\mathcal{G}}(g)$, this new reward function allows us to rewrite the objective of the goal-conditioned policy as maximizing the entropy-regularized discounted state occupancy measure: $\max_{\pi} \mathcal{L}_{\text{Actor}}(\pi)$,

$$\mathcal{L}_{Actor}(\pi) = \mathbb{E}_{g \sim p_{\mathcal{G}}(g), \tau \sim \pi(\tau|g)} \left[(1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \left(r_{g}(s, a) - \alpha \log \pi(a \mid s, g) \right) \right]$$
 (1)

$$= \mathbb{E} \underset{s_f \sim p_{\pi}(s_f = g \mid s, a, g), a_f \sim \pi(a_f \mid s_f, g)}{g \sim p_{\pi}(s_f = g \mid s, a, g), a_f \sim \pi(a_f \mid s_f, g)} [\delta(s_f = g) - \alpha \log \pi(a_f \mid s_f, g))]$$

$$(2)$$

$$\approx \mathbb{E}_{g \sim p_{\mathcal{G}}(g), s \sim p^{\beta}(s), a \sim \pi(a|s, g)} \left[\exp(f_{\phi, \psi}(s, a, g)) - \alpha \log \pi(a \mid s, g) \right] = \tilde{Q}_g(s, a) \quad (3)$$

Thus, we augment CRL to optimize the soft Q function $\tilde{Q}_g(s,a)$ by optimizing the CRL loss $\mathcal{L}_{\text{Critic}}(\phi,\psi)$ with critic function $f_{\phi,\psi}(s,a,g)$ that estimates expected discounted future state occupancy as well as an additional loss term $\mathcal{L}_{\text{Entropy}}(\theta)$ that estimates expected discounted future

entropy. This term will be optimized with temporal difference updates. See Appendix B for more details on the algorithm.

4.2 VARIATIONAL GOAL INFERENCE

Following the motivation of Section 3.3, we will learn a variational distribution $q_{\xi}(g|\tau)$ to match the true posterior $p^{\star}(g|\tau)$. We optimize the forward KL objective to achieve this (Ambrogioni et al.,

2019; Yu et al., 2019):
$$\min_{\xi} D_{KL} \left(p^{\star}(g \mid \tau) \| q_{\xi}(g \mid \tau) \right) = \min_{\xi} \mathbb{E}_{p^{\star}(g,\tau)} \left[\log \frac{p^{\star}(g \mid \tau)}{q_{\xi}(g \mid \tau)} \right]$$

By additionally noting that the g we infer should have high mutual information with τ , we simplify our objective to $\min_{\xi} -I_{p^{\star}}(g;\tau) + D_{KL}\left(p^{\star}(g\mid\tau)\|q_{\xi}(g\mid\tau)\right) = \max_{\xi} \mathbb{E}_{q\sim p(g);\tau\sim p^{\star}(\tau\mid q)}\left[\log q_{\xi}(g\mid\tau)\right] = \max_{\xi} \mathcal{L}_{\mathrm{Info}}\left(\xi\right).$

When our policy is trained to optimality, it will emit a trajectory distribution equivalent to $p^*(\tau|g)$. Thus, we can use our online learned MaxEnt RL policy to sample trajectories both for contrastive RL pre-training and for learning the variational posterior.

Another way to model the the variational posterior is with the mean field approximation: $q_{\xi}(g|\tau) = \prod_{t=0}^{T} q_{\xi}(g|s_t, a_t)$, where each local state-action independently influences the distribution over the goal. This form can be much easier to train since parameters ξ are now shared across state-action inputs. We can rewrite the expression for the true posterior as $p^*(g \mid \tau) = \frac{p^*(\tau|g)p(g)}{p(\tau)} \propto p(g)e^{\sum_{t=0}^{T} r_{\theta}(s_t,a_t,g)-\frac{1}{T}\log Z_{\theta}} \propto \prod_{t=0}^{T} e^{r_{\theta}(s_t,a_t,g)-\frac{1}{T}Z_{\theta}}$, and note that it precisely takes a mean field form when the input trajectory is finite. Thus, we can establish a corollary to motivate the use of the mean field approximation when optimizing $\mathcal{L}_{\text{Info}}(\xi)$ for our method, training a Gaussian MLP to perform amortized variational inference with the mean field approximation.

Corollary 1. Without loss of generality, the class of mean field goal inference models includes the true posterior distribution.

4.3 CIRL IS CONSISTENT

Our main theoretical result is to show that our method infers the correct distribution over expert goals. This statement is non-trivial because the most-frequented states may not be the user's intended state, so correctly performing goal inference requires reasoning about the relative difficulty of different goals. Proof can be found in Appendix A.1.

Lemma 1. Let policy π_{demo} be given. CIRL produces policy π_{CIRL} that consistently infers rewards by converting the MaxEnt IRL problem into a goal inference problem:

$$\min_{\theta} \mathbb{E}_{p(g)} \left[D_{KL}(p_E(\tau|g) \parallel p^{\star}(\tau|g)) \right] \implies \max_{\xi} \mathbb{E}_{g \sim p(g); \tau \sim p^{\star}(\tau|g)} \left[\log q_{\xi}(g \mid \tau) \right]$$
(4)

IRL with FB is Inconsistent FB (Touati & Ollivier, 2021) is presented as a method that can learn optimal policies for any task and proposes to imitate trajectories by inferring their reward and then using the corresponding reward-maximizing policy. In this section, we show that even if FB learns optimal policies for every reward function, it doesn't correctly identify which reward function a demonstrator is maximizing, thereby provably failing to perform zero-shot imitation. Proof can be found in Appendix A.2.

Lemma 2. There exists an MDP with two unique reward-maximizing policies (π_1, π_2) , where FB incorrectly demonstrates policy π_1 with policy π_2 .

4.4 GOAL-SAMPLING

During training, we use states stored in the replay buffer to continually fit a Gaussian Kernel Density estimator (KDE) approximating the distribution of visited states. This buffer is pre-filled at the start of training, and at each iteration, we select the state from the buffer that has the lowest probability under the KDE. We call this method of automatic exploration: GoalKDE.

See Appendix B for a summary of the full CIRL algorithm consisting of these main method components.

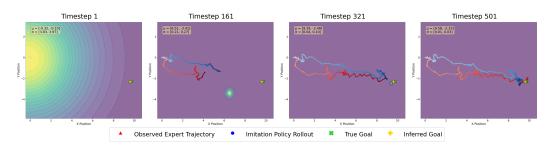


Figure 2: **Zero-shot imitation learning with CIRL via goal inference.** CIRL combines goal-conditioned contrastive RL pre-training, automatic goal sampling for exploration, and a mean field goal inference model to imitate expert demonstrations. Here we see how an Ant's imitation policy and posterior distribution over goal states evolve across timesteps toward a final maximum a posteriori (MAP) estimate.

5 EXPERIMENTS

Our method contains components for self-supervised RL pretraining, automatic goal sampling, and goal inference. We ablate each in turn, and show that CIRL (CRL Pre-training + GoalKDE Exploration + Mean Field Goal Inference Model) can learn good representations for imitation across several environments. We use the JaxGCRL and Unsupervised Reinforcement Learning Benchmark (URLB) environments (Bortkiewicz et al., 2025; Laskin et al., 2021). Details on these environments are in Appendix C.

For our evaluation, we train an expert policy using CRL under oracle goal sampling. Using this policy, we sample 2000 goals from the oracle test distribution of goals and unroll the CRL expert policy toward each goal. For each expert demonstration, we perform zero-shot IL across our ablation setup, reporting imitation score (the ratio between the cumulative return of the algorithm and the average cumulative reward of the expert) (Pirotta et al., 2024). We also further test non-goal-conditioned polices trained with URLB rewards to make an Ant run at a particular minimum forward velocity or jump to a target height, and demonstrate the capability of CIRL to imitate these policies with low regret.

5.1 CIRL w/ Self-Supervised Pretraining Outperforms Baselines in Absence of Expert Data

We first compare CIRL against several baselines for imitation learning, including those with and without access to expert data during training. For each environment, we compared the reward earned by an expert policy (CRL) and the imitation learning method (1-Nearest Neighbor (NN) and FB), reporting the fraction of expert reward achieved as the "imitation score." The baselines, both trained with no access to expert information, include the Nearest Neighbor baseline, which in a given state considers the 1-NN state in the expert demonstration and applies its corresponding action. We also include the FB representation baseline, where the inferred latent used to command the FB policy is computed from the averaged back-

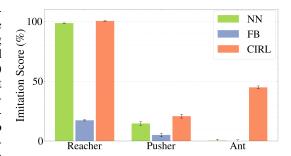


Figure 3: Value of self-supervised RL pretraining CIRL consistently outperforms the alternative FB representation zero-shot imitation method as well as the naive 1-NN policy baseline.

ward representation of expert demonstration states (Pirotta et al., 2024). As seen in Figure 3, CIRL consistently outperforms both baselines, regardless of environment difficulty. The NN policy can perform adequately in simple environments such as Reacher, but this baseline has less than 20% imitation score in environments with higher-dimensional state-action spaces. CIRL also consistently outperforms the FB representation related method, making it the most promising technique for learning to imitate in unfamiliar environments.

379 380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403 404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428 429

430

431

5.2 CIRL Pre-Training Outperforms the FB Representation

CIRL and FB representation's algorithms have two main structural differences: the way it learns the successor representation and the way it infers intentions. To better understand why CIRL outperforms the FB representation, we hold the method of inferring intentions constant and only use information from the last state of the expert demonstration.

Note that for tasks where the goal state is transient (e.g. tossing a ball to reach a particular height), the last state in a trajectory may not contain enough information about the true goal, but for Ant, Reacher, and Pusher, the agents are able to reach and stay at all possible goals. As seen in Figure 4, FB only achieves a small fraction of the imitation score of CIRL under these conditions. This performance difference likely stems from two important sources. Firstly, related work on FB representations usually utilize an offline dataset to aid in pretraining and sampling of latent vectors. Since our FB method doesn't have access to expert data, utilizing a more sophisticated latent exploration scheme may benefit FB-IL methods and is left to future work. Secondly, this result provides evidence that learning reward functions is indeed more expressive than summarizing behavior via goals, as it is easier for CIRL to learn a succes-

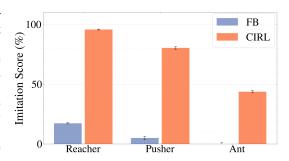


Figure 4: Summarizing behavior via goals yields better imitation than reward-based explanations. When using the last expert demonstration state as the goal, CIRL achieves high imitation scores on goal-conditioned environments while FB struggles to infer goal-conditioned reward functions from online learning.

sor representation for reaching goals than it is for FB to learn more general reward functions.

5.3 MEAN FIELD APPROXIMATION IMPROVES GOAL INFERENCE

Our theory suggests that inferring goals using a mean field approximation should preserve predictive power compared to using the full τ as input to the context encoder. We also have fewer parameters to train under the mean field assumption, and thus hypothesize that it will outperform the full τ alternative. Testing this across environments with CIRL and GCBC, in Figure 5, we see that mean field goal inference universally outperforms the alternative of inferring goals, regardless of environment or training algorithm. These experiments validate our corollary of the preserved predictive power of mean field goal inference, with the added computational benefits of this simplified modeling choice. The mean field assumption also allows us to reliably infer goals from partial trajectories, as shown in Figure 2, where we see the posterior distribution hone in on the true goal as the imitator observes more of the expert demonstration.

Method CIRL GCBC Environment ant pusher easy reacher 20 40 60 80 100 Full Tau Imitation Score (%)

Figure 5: Mean field goal inference models outperform alternative full τ input models For all environments, the Mean Field model should contain the true posterior and is computationally easier to train, making it the superior choice for CIRL.

5.4 BETTER AUTOMATIC GOAL SAMPLING IMPROVES IMITATION SCORES

While we see that CIRL with GoalKDE automatic goal sampling outperforms our baselines with no expert data, we ablate our GoalKDE goal sampling method against oracle goal sampling (which trains CRL on the test-time goal distribution) to experimentally quantify the gap between these methods. We see in Figure 6 that in the Reacher environment, training CRL policies with GoalKDE

can yield near-perfect imitation scores, and that sometimes GoalKDE can better explore the state space for more generalizable policies. However, for the higher dimensional state spaces in Ant and Pusher, a combination of more sophisticated goal sampling techniques or more training steps on more automatically sampled goals could boost performance beyond oracle sampling. See Figure 8 in Appendix $\mathbb D$ for additional results ablating the CIRL goal inference method to isolate the impact of GoalKDE on performance.

5.5 CIRL Supports Imitation Beyond Goal-Conditioned Environments

We run further experiments on the standard URLB benchmark, which is not designed for goal-reaching, to show that CIRL outperforms prior methods for zero-shot imitation when imitating policies (1) trained with more general reward functions and (2) which require expanding the goal hypothesis space. Following the URLB Benchmark, we train expert policies on the Ant Forward and Ant Jump tasks with PPO on non-goal-conditioned reward functions, and report regret of CIRL inferred policies compared to these expert policies. We see the results in Figure 7, where the CIRL policy on the Ant environment now has a larger goal space to include 3D position and linear velocity. We see that CRL pre-training methods can achieve lower regret than FB representation imitation. CRL + Oracle goal sampling could perform better in some environments due to sampling fewer infeasible goals, and extensions to



Figure 6: GoalKDE exploration vs. oracle goal sampling during CRL pre-training Holding the goal inference method constant (mean field inference), we find that GoalKDE sampling can achieve a significant fraction of imitation score compared to the oracle baseline, and can even outperform this baseline in some environments.

CIRL's exploration scheme based on related work could overcome this difficulty (OpenAI et al., 2021). Thus, CIRL can scale to more complex reward functions as long as we similarly expand the goal space to sufficiently capture the task.

6 Limitations and Conclusion

Future work could extend our framework to explore richer goal representations, such as language or multi-modal spaces. With more complex goal spaces, related work in exploration could be applied as a substitute for our GoalKDE method. A full comparison of goal-sampling methods is outside of the scope of this paper. Our main aim is to propose a full pipeline for enabling imitation via an imagine-and-practice loop in the complete absence of expert data.

We introduced a framework for goalconditioned maximum entropy inverse reinforcement learning that leverages selfsupervised contrastive RL pretraining, automatic goal sampling, and a mean field variational goal inference model to enable

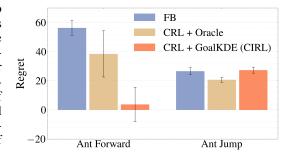


Figure 7: **CIRL inferred goals efficiently summarize complex rewards**. CIRL achieves lower regret than FB when imitating URLB policies with non-goal-reaching rewards.

zero-shot imitation from a single demonstration without access to an offline expert data during training. By re-framing reward inference as goal state inference and coupling this with CRL, our method learns transferable goal-conditioned policies that can generalize across diverse task distributions.

7 REPRODUCIBILITY STATEMENT

All experiments in this paper are completely reproducible by running the experiments in our code: https://anonymous.4open.science/r/cirl-3CD7/README.md. Background information on the environments used and algorithm implementations can be found in the Appendix, and anything not noted can be assumed to follow the defaults of the JaxGCRL and URLB benchmarks (Bortkiewicz et al., 2025; Laskin et al., 2021). Our method is based on open source Brax (Freeman et al., 2021) and Jax (Bradbury et al., 2018) libraries.

We also use LLMs for two purposes: to aid/polish the paper, including generating some of the icons used in Figure 1 and for the additional purpose of aiding in code writing (via the Cursor AI application).

REFERENCES

Luca Ambrogioni, Umut Güçlü, Julia Berezutskaya, Eva van den Borne, Yağmur Güçlütürk, Max Hinne, Eric Maris, and Marcel van Gerven. Forward amortized inference for likelihood-free variational marginalization. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 777–786. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/ambrogioni19a.html.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Francis Christiano, John Schulman, and Dandelion Mané. Concrete problems in ai safety. *ArXiv*, abs/1606.06565, 2016. URL https://api.semanticscholar.org/CorpusID:10242377.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/453fadbd8ala3af50a9df4df899537b5-Paper.pdf.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. *arXiv* [cs.CV], April 2016.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel, Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher R'e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A. Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models. ArXiv, 2021. URL https://crfm.stanford.edu/assets/report.pdf.

Elizabeth Bonawitz, Patrick Shafto, Hyowon Gweon, Noah D. Goodman, Elizabeth Spelke, and Laura Schulz. The double-edged sword of pedagogy: Instruction limits spontaneous explo-

- ration and discovery. *Cognition*, 120(3):322–330, 2011. ISSN 0010-0277. doi: https://doi.org/10.1016/j.cognition.2010.10.001. URL https://www.sciencedirect.com/science/article/pii/S0010027710002258. Probabilistic models of cognitive development.
- Michał Bortkiewicz, Władek Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski, Łukasz Kuciński, and Benjamin Eysenbach. Accelerating Goal-Conditioned RL Algorithms and Research. In *International Conference on Learning Representations*, 2025. URL https://arxiv.org/pdf/2408.11052.
- James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. *ArXiv*, abs/1606.01540, 2016. URL https://api.semanticscholar.org/CorpusID:16099293.
- Victor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-I-Nieto, and Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1317–1327. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/campos20a.html.
- Jiayu Chen, Dipesh Tamboli, Tian Lan, and Vaneet Aggarwal. Multi-task hierarchical adversarial inverse reinforcement learning. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of Robotics: Science and Systems (RSS)*, 2023.
- Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, 2024.
- Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. Legibility and predictability of robot motion. In *Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction*, HRI '13, pp. 301–308. IEEE Press, 2013. ISBN 9781467330558.
- Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history with inverse rl: hindsight inference for policy improvement. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive learning as goal-conditioned reinforcement learning. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Chelsea Finn, Sergey Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy optimization. In *International Conference on Machine Learning*, 2016. URL https://api.semanticscholar.org/CorpusID:8121626.
- Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation learning via meta-learning. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (eds.), *Proceedings of the 1st Annual Conference on Robot Learning*, volume 78 of *Proceedings of Machine Learning Research*, pp. 357–368. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/v78/finn17a.html.

- Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement learning agents. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1515–1528. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/florensa18a.html.
 - C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax a differentiable physics engine for large scale rigid body simulation. *arXiv* [cs.RO], June 2021.
 - Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement learning. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rkHywl-A-.
 - Alison Gopnik. Childhood as a solution to explore–exploit tensions. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 375(1803):20190502, 2020. doi: 10.1098/rstb.2019. 0502. URL https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2019.0502.
 - Hyowon Gweon and Laura Schulz. From exploration to instruction: Children learn from exploration and tailor their demonstrations to observers' goals and competence. *Child Development*, 90(1):e148–e164, 2019. doi: https://doi.org/10.1111/cdev.13059. URL https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/cdev.13059.
 - Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning*, pp. 1861–1870. Pmlr, 2018.
 - Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, NIPS'16, pp. 4572–4580, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.
 - Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea Finn. BC-z: Zero-shot task generalization with robotic imitation learning. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?id=8kbp23tSGYv.
 - Leslie Pack Kaelbling. Learning to achieve goals. In *International Joint Conference on Artificial Intelligence*, 1993. URL https://api.semanticscholar.org/CorpusID:5538688.
 - Seongun Kim, Kyowoon Lee, and Jaesik Choi. Variational curriculum reinforcement learning for unsupervised discovery of skills. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
 - Misha Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/091d584fced301b442654dd8c23b3fc9-Paper-round2.pdf.
 - Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making. In *International Conference on Machine Learning*, 2024. URL https://proceedings.mlr.press/v235/myers24a.html.
 - Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual reinforcement learning with imagined goals. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf.

- Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In *Proceedings of the Seventeenth International Conference on Machine Learning*, ICML '00, pp. 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.
 - Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot policy. In *Proceedings of Robotics: Science and Systems*, Delft, Netherlands, 2024.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Predictive Coding. arXiv:1807.03748 [cs, stat], July 2018. URL http://arxiv.org/abs/1807.03748. arXiv: 1807.03748.
 - OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter Welinder, Ruben D'Sa, Arthur Petron, Henrique Pondé de Oliveira Pinto, Alex Paino, Hyeonwoo Noh, Lilian Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play for automatic goal discovery in robotic manipulation. *ArXiv*, abs/2101.04882, 2021. URL https://api.semanticscholar.org/CorpusID:231592353.
 - Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Fred Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2131–21313, 2018. doi: 10.1109/CVPRW.2018.00278.
 - Matteo Pirotta, Andrea Tirinzoni, Ahmed Touati, Alessandro Lazaric, and Yann Ollivier. Fast imitation via behavior foundation models. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *International Conference on Representation Learning*, volume 2024, pp. 12685–12724, 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/370645ae400005f888e418f46b594539-Paper-Conference.pdf.
 - Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration for long horizon multi-goal reinforcement learning. In *Proceedings of the 37th International Conference on Machine Learning*, ICML'20. JMLR.org, 2020.
 - Francesco Poli, Marlene Meyer, Rogier B. Mars, and Sabine Hunnius. Exploration in 4-year-old children is guided by learning progress and novelty. *Child Development*, 96(1):192–202, 2025. doi: https://doi.org/10.1111/cdev.14158. URL https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/cdev.14158.
 - Dean A. Pomerleau. Alvinn: an autonomous land vehicle in a neural network. In *Proceedings of the 2nd International Conference on Neural Information Processing Systems*, NIPS'88, pp. 305–313, Cambridge, MA, USA, 1988. MIT Press.
 - Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skewfit: state-covering self-supervised reinforcement learning. In *Proceedings of the 37th International Conference on Machine Learning*, ICML'20. JMLR.org, 2020.
 - Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. *arXiv* [cs.AI], May 2022.
 - Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík (eds.), *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, volume 15 of *Proceedings of Machine Learning Research*, pp. 627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/ross11a.html.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 1312–1320, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/schaul15.html.

- Seyed Kamyar Seyed Ghasemipour, Shixiang (Shane) Gu, and Richard Zemel. Smile: Scalable meta inverse reinforcement learning through context-conditional policies. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/2b8f621e9244cea5007bac8f5d50e476-Paper.pdf.
- David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529(7587):484–489, January 2016.
- Aimee E. Stahl and Lisa Feigenson. Observing the unexpected enhances infants' learning and exploration. *Science*, 348(6230):91–94, 2015. doi: 10.1126/science.aaa3799. URL https://www.science.org/doi/abs/10.1126/science.aaa3799.
- Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.
- Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforcement learning via quasimetric learning. In *International Conference on Machine Learning*. PMLR, 2023.
- David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. *arXiv* [cs.LG], November 2018.
- Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, Haochih Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Outracing champion gran turismo drivers with deep reinforcement learning. *Nature*, 602(7896):223–228, February 2022.
- Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforcement learning with probabilistic context variables. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf.
- Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. *arXiv* [cs.LG], February 2018.
- Brian D Ziebart, Andrew L Maas, J Bagnell, and A Dey. Maximum entropy inverse reinforcement learning. *National Conference on Artificial Intelligence*, pp. 1433–1438, July 2008.
- Matthew Zurek, Andreea Bobu, Daniel S. Brown, and Anca D. Dragan. Situational confidence assistance for lifelong shared autonomy. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2783–2789. IEEE Press, 2021. doi: 10.1109/ICRA48506.2021.9561839. URL https://doi.org/10.1109/ICRA48506.2021.9561839.

A THEORETICAL ANALYSIS

A.1 CIRL IS CONSISTENT

Proof. MaxEnt IRL corresponds to the following objective:

$$\underset{\theta}{\arg\min} D_{\mathrm{KL}} \left(p_{\pi_E(\tau)} \| p^{\star}(\tau) \right) = \underset{\theta}{\arg\max} \mathbb{E}_{p_{\pi_E}(\tau)} \left[\log p^{\star}(\tau) \right]$$

Under MaxEnt modeling, each goal g induces a trajectory model $p^*(\tau \mid g) \propto \left[\rho_0\left(s_0\right) \prod_{t=0}^T p\left(s_{t+1} \mid s_t, a_t\right) \right] \exp\left(\sum_{t=0}^T r_g\left(s_t, a_t\right)\right)$ with log-partition $\log Z_g$. In a goal-conditioned setting, taking the reward to be entirely determined by g means the family $\{p^*(\tau \mid g)\}_g$ is indexed by goals, and the learning objective can be posed as minimizing the average forward KL

$$\min_{\boldsymbol{\rho}} \mathbb{E}_{p(g)} \left[D_{\mathrm{KL}} \left(p_E(\tau \mid g) \| p^{\star}(\tau \mid g) \right) \right],$$

where p(g) is the goal prior used both in data collection and modeling.

Define the expert and model joints over (τ, g) as $p_E(\tau, g) = p(g)p_E(\tau \mid g)$ and $p^*(\tau, g) = p(g)p^*(\tau \mid g)$. When the same prior p(g) is used, the average conditional KL equals a joint forward KL:

$$\mathbb{E}_{p(g)} \left[D_{\text{KL}} \left(p_E(\tau \mid g) \| p^{\star}(\tau \mid g) \right) \right] = \mathbb{E}_{p(g)} \left[D_{\text{KL}} \left(p_E(\tau, g) \| p^{\star}(\tau, g) \right) \right],$$

by applying Bayes Rule and canceling the identical priors.

Apply the KL chain rule to the joint KL:

$$D_{\mathrm{KL}}\left(p_{E}(\tau,g)\|p^{\star}(\tau,g)\right) = D_{\mathrm{KL}}\left(p_{E}(\tau)\|p^{\star}(\tau)\right) + \mathbb{E}_{\tau \sim p_{E}(\tau)}\left[D_{\mathrm{KL}}\left(p_{E}(g \mid \tau)\|p^{\star}(g \mid \tau)\right)\right],$$

Thus our MaxEnt IRL objective is

$$\min_{\theta} \mathbb{E}_{p(g)} D_{\mathrm{KL}} \left(p_{E}(\tau \mid g) \| p^{\star}(\tau \mid g) \right) = \min_{\theta} \left\{ D_{\mathrm{KL}} \left(p_{E}(\tau) \| p^{\star}(\tau) \right) + \mathbb{E}_{p_{E}(\tau)} D_{\mathrm{KL}} \left(p_{E}(g \mid \tau) \| p^{\star}(g \mid \tau) \right) \right\}$$
(5)

Now we note that our marginal distribution $p^*(\tau) = \int p(g)p^*(\tau|g)dg$ is a difficult integral to compute and thus apply variational inference by introducing the amortized variational distribution $q_{\xi}(g;\tau)$. Then

$$\log p^{\star}(\tau) = ELBO(\theta, \xi; \tau) + D_{KL}(q_{\xi}(g|\tau)||p^{\star}(g|\tau))$$

where

$$ELBO = \mathbb{E}_{q_{\xi}} \left[\log p(g) + \log p^{\star}(\tau|g) - \log q_{\xi}(g|\tau) \right]$$

Taking the expectation over expert trajectories:

$$\begin{aligned} \min_{\theta} \left\{ D_{\mathrm{KL}} \left(p_E(\tau) \| p^{\star}(\tau) \right) \right\} &= \max_{\theta} \mathbb{E}_{p_E(\tau)} \left[\log p^{\star}(\tau) \right] \\ &= \max_{\xi} \mathbb{E}_{q_{\xi}} \left[\log p(g) + \log p^{\star}(\tau|g) - \log q_{\xi}(g|\tau) \right] \\ &= \min_{\xi} \left[D_{KL} (q_{\xi}(g|\tau) \| p^{\star}(g|\tau)) \right] \end{aligned}$$

Now we see the major issue with using the ELBO/reverse KL is that it requires us to be able to evaluate the conditional likelihood $p^*(\tau|g)$. This is impossible in our scenario, but we could sample

from it since we can sample from the trajectory distribution of our MaxEnt RL policy. This motivates the use of Forward Amortized Variational Inference (FAVI), which uses the forward KL instead of the reverse KL in its optimization (Ambrogioni et al., 2019).

The loss function of FAVI derives from the joint-contrastive variational inference objective and is expressed as:

$$\mathcal{L}_{\text{FAVI}}[p,q] = D(p^{\star}(g,\tau) || q_{\xi}(g,\tau))$$

To approximate the intractable posterior $p^*(g \mid \tau)$, we factorize the variational joint as the product of a variational posterior $q_{\xi}(g \mid \tau)$ and a sampling distribution of the data:

$$q_{\xi}(\tau, g) = q_{\xi}(g \mid \tau)k(\tau)$$

Now we note:

$$D_{KL}(p^{\star}(\tau,g)||q_{\xi}(\tau,g)) = \mathbb{E}_{p^{\star}(\tau,g)} \left[\log \frac{p^{\star}(\tau,g)}{q_{\xi}(g|\tau)k(\tau)} \right]$$

$$\tag{6}$$

$$= -\mathbb{E}_{p^{\star}(\tau,g)}[\log q_{\xi}(g \mid \tau)] + \mathbb{E}_{p^{\star}(\tau,g)}\left[\log \frac{p^{\star}(\tau,g)}{k(\tau)}\right]$$
(7)

Considering only the terms that depends on q, we can define the FAVI loss as follows:

$$\mathcal{L}_{\text{FAVI}} = -\mathbb{E}_{p^{\star}(\tau, g)}[\log q_{\xi}(g \mid \tau)]$$

This is precisely the loss function $\mathcal{L}_{Info}(\xi)$ we train. Therefore, for our goal-conditioned setting, the IRL problem can be reduced to one of learning a variational posterior with FAVI. Importantly, note that the partition function is implicit within the samples we generate from the joint distribution via $q \sim p(q), \tau \sim p^*(\tau \mid q)$, allowing us to consistently infer goals where methods that ignore the partition function do not.

A.2 FB IS INCONSISTENT

We prove this by providing a counterexample. The key idea in the counterexample is that an infrequently visited state may nonetheless be the policy's desired goal. We illustrate this with a simple 2-state MDP.

Proof. We define an MDP with 2 states (s_1, s_2) and 2 actions (a_1, a_2) with the following dynamics:

$$p(s' \mid s, a) = \begin{cases} s_1, & \text{if } s = s_1, a = a_1 \\ s_1, & \text{w.p. } \frac{1}{2} \text{ if } s = s_1, a = a_2 \\ s_2, & \text{w.p. } \frac{1}{2} \text{ if } s = s_1, a = a_2 \\ s_2, & \text{if } s = s_2 \end{cases}$$
(8)

Assume that the initial state is distributed $p_0(s) = \mathbb{1}(s_1)$. Note that state Y has just one action. The only decision to make is the action at initial state X. Since all MDPs have deterministic optimal policies, there are just two unique (potential) reward-maximizing policies for this MDP:

$$\pi_1(a \mid s) = \begin{cases} a_1 & \text{if } s = s_1 \\ \text{any action} & \text{if } s = s_2 \end{cases}$$

$$\pi_2(a \mid s) = \begin{cases} a_2 & \text{if } s = s_1 \\ \text{any action} & \text{if } s = s_2 \end{cases}$$

$$(9)$$

$$\pi_2(a \mid s) = \begin{cases} a_2 & \text{if } s = s_1\\ \text{any action} & \text{if } s = s_2 \end{cases}$$
 (10)

We will show that when data are collected from policy π_2 , FB infers that data were collected with policy π_1 . This policy is clearly different, achieving different amounts of rewards (for all non-trivial reward functions).

We next compute the occupancy measure for policy π_2 . From the initial state x, the policy transitions to state y with probability $\frac{1}{2}$ at each time step. Thus, the probability of still being at state x after t time steps decays as $1/2^t$. The occupancy measure can thus be written as:

$$\rho^{\pi_2}(s=X) = (1-\gamma) + \left[1 + \gamma \frac{1}{2} + \gamma^2 \frac{1}{2^2} + \gamma^3 \frac{1}{2^3} + \cdots\right]$$
 (11)

$$= (1 - \gamma) \sum_{t=0}^{\infty} (\gamma/2)^t = \frac{1 - \gamma}{1 - \gamma/2}.$$
 (12)

Then $\rho^{\pi_2}(s=Y)=1-\rho^{\pi_2}(s=X)$. Thus, when γ is small enough, policy π_2 "spends more time at" state x than state y:

$$\gamma < \frac{2}{3} \implies \rho^{\pi_2}(s = s_1) > \rho^{\pi_2}(s = s_2).$$
 (13)

This will be a problem for FB, which infers rewards based not on the difficulty of maximizing them, but rather instead based on visitation counts:

$$z_R = \sum_t B(s_t). \tag{14}$$

Without loss of generality, we assume that $B(s_t) = \mathbb{1}(s_t)$, a one hot vector; this solution is always admissible if the representations have high-enough dimension. Thus, the inferred reward function is

$$r(s) = \begin{cases} \frac{1-\gamma}{1-\gamma/2} & \text{if } s = s_1\\ \frac{\gamma/2}{1-\gamma/2} & \text{if } s = s_2 \end{cases}$$
 (15)

Note that state s_1 has a higher reward than state s_2 with $\gamma < \frac{2}{3}$. Thus, the reward-maximizing policy for this reward function is π_1 (which stays in s_1), not π_2 (which sometimes transitions to the lower reward state s_2).

This demonstrates that FB incorrectly identifies demonstrations from π_2 as coming from π_1 . The fundamental issue is that FB uses the occupancy measure directly as the reward signal without considering the partition function or the policy's optimality under that reward. This leads to systematic misidentification of the demonstrator's true policy.

B ALGORITHM

We present pseudocode for training our zero-shot IL method based on contrastive RL pretraining:

Algorithm 1 Contrastive IRL

```
1: Input: CRL loss \mathcal{L}_{\text{Critic}} and energy function f_{\phi,\psi}(s,a,g) = \phi(s,a)^T \psi(g) Eysenbach et al. (2022), Entropy-regularization value function \mathcal{L}_{\text{Entropy}}, actor objective \mathcal{L}_{\text{Actor}}, variational posterior loss \mathcal{L}_{\text{info}}
```

2: Initialize ϕ , ψ , θ , ξ , π and a pre-filled replay buffer \mathcal{D}

```
3: repeat
```

4: in parallel over environments

5:
$$g = \arg\min_{g} KDE(\mathcal{D})$$

6: Store
$$\tau \sim \pi(s, g)$$
 in \mathcal{D}

7: **for**
$$j = 1, \ldots, \text{num_updates do}$$

8: Randomly sample (with discount) a batch \mathcal{B} from \mathcal{D} of state-action pairs and goals from their future

9: Update critic:

$$(\phi, \psi) \leftarrow (\phi, \psi) - \alpha \nabla_{\phi, \psi} |\mathcal{L}_{\text{Critic}}(\mathcal{B}; \phi, \psi)|$$

10: Update entropy-regularization value function:

$$(\theta) \leftarrow (\theta) - \alpha \nabla_{\theta} [\mathcal{L}_{\text{Entropy}}(\mathcal{B}; \theta)]$$

11: Update policy:

$$\pi \leftarrow \pi - \alpha \nabla_{\pi} \left[\mathcal{L}_{Actor}(\mathcal{B}; \phi, \psi, \pi) \right]$$

12: Update variational posterior:

$$q \leftarrow q - \alpha \nabla_{\mathcal{E}} \left[\mathcal{L}_{Info}(\mathcal{B}; \phi, \psi, \pi) \right]$$

13: **until** convergence

C EXPERIMENTAL DETAILS

We ran our experiments building off the JaxGCRL benchmark (Bortkiewicz et al., 2025). Unless otherwise mentioned, we used the same hyperparameters as that implementation. α used for Maximum Entropy IRL was 1e-5. For the FB representation, we use the same encoder networks as in JaxGCRL and the same actor and critic learning rates. For the context encoder, we also use the JaxGCRL encoder and train to predict the mean and variance of a Gaussian.

Table 1: Reacher environment hyperparameters

hyperparameter	value
batch size	1024
num timesteps	20,000,000
num environments	256

Table 2: Pusher environment hyperparameters (goal: 3D position and 3D linear velocity)

hyperparameter	value
batch size	256
num timesteps	60,000,000
num environments	512

Table 3: Ant environment hyperparameters (goal: 2D position)

hyperparameter	value
batch size	512
num timesteps	30,000,000
num environments	1024

Table 4: Ant environment hyperparameters (goal: 3D position and 3D linear velocity)

hyperparameter	value
batch size	256
num timesteps	600,000,000
num environments	512
healthy z range	(0.0, 4.0)
target z	Uniform over range (0.2, 2.0)
target 3D linear velocity	Uniform over (-1.0, 1.0)

C.1 ENVIRONMENTS

Reacher: This environment is a 2D manipulation task involving a two-jointed robotic arm. The goal is to move the arm's end effector to a sampled 2-dimensional target located randomly within a workspace disk. The 11-dimensional state space includes joint angles and velocities along with the position of the end effector. The 2-dimensional action represents torques applied at the arm's hinge joints.

Pusher: This features a 3D robotic arm and a movable object resting on a surface. The objective is to push the object into a 2D goal location randomly sampled at each episode reset. The 23-dimensional state space includes the arm's joint angles, velocities, and the position of the movable object. The 7-dimensional action space controls the robotic arm via continuous motor torques at its joints.

Ant: This locomotion task involves a quadruped navigating towards target XY positions randomly sampled from a circle around its starting position. The 29-dimensional state space comprises the robot's joint positions, orientations, and velocities, and the 8-dimensional action space consists of torques applied to each of the multiple leg joints. When using CIRL to infer URLB rewards, we expand the goal space to include the 3D position and 3D linear velocity.

D ADDITIONAL RESULTS

 Figure 8 ablates CIRL performance against alternate goal inference methods: knowing the true goal or inferring the goal to be the last state of the expert demonstration. When we provide the true goal to a policy trained with CRL and GoalKDE exploration, we get a significant boost in imitation score, with any gap in imitation score from 100% likely due to distribution shift between goals sampled via GoalKDE and those from the oracle test distribution, and alternative methods for goal exploration are a promising area for future work in GCRL. For goal-conditioned expert policies, inferring the last state to be the goal can be a strong baseline, but would fail when we try to imitate a task such as an Ant jumping.

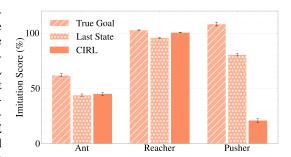


Figure 8: Improving CIRL imitation scores For the Pusher environment, we can achieve perfect imitation by providing the true goal to the CRL + GoalKDE policy, but for the Ant environment, most of the performance gap is likely due to distribution shift between goals explored by GoalKDE and those commanded at test time. Discovering a more efficient combination of goal inference architectures and self-supervised exploration algorithms would close the gap.