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ABSTRACT

In the same way that generative models today conduct most of their training in
a self-supervised fashion, how can agentic models conduct their training in a
self-supervised fashion, interactively exploring, learning, and preparing to quickly
adapt to new tasks? A prerequisite for embodied agents deployed in real world
interactions ought to be training with interaction, yet today’s most successful
AI models (e.g., VLMs, LLMs) are trained without an explicit notion of action.
The problem of reward-free exploration is well studied in the unsupervised
reinforcement learning (URL) literature but fails to prepare agents for rapid
adaptation to new demos. Today’s language and vision models are trained on
data provided by humans, which provides a strong inductive bias for the sorts of
tasks that the model will have to solve. However, when prompted to imitate a
new task, some methods perform distribution matching against the demonstration
data without properly accounting for the difficulty of various tasks. The key
contribution of our paper is a method for pre-training interactive agents in a
self-supervised fashion, so that they can instantly mimic expert demonstrations.
Our method treats goals (i.e., observations) as the atomic construct. During
training, our method automatically proposes goals and practices reaching them,
building off prior work in reinforcement learning exploration. During evaluation,
our method solves an (amortized) inverse reinforcement learning problem to
explain demonstrations as optimal goal-reaching behavior. Experiments on
standard benchmarks (not designed for goal-reaching) show that our approach
outperforms prior methods for zero-shot imitation.

1 INTRODUCTION

Figure 1: Zero shot imitation learning. Assum-
ing access to a multi-task environment, our gen-
eralist agent must imagine and practice its own
tasks to effectively imitate unknown task demon-
strations at test time.

Today’s AI agents, whether in language or
robotics, are trained primarily by mimicking
human demonstrations. But, in the same way
that children conduct a large degree of learning
in an unsupervised (adult-free) fashion (Gweon
& Schulz, 2019; Gopnik, 2020; Stahl & Feigen-
son, 2015; Poli et al., 2025; Bonawitz et al.,
2011), how might AI agents develop a foun-
dation of knowledge through exploration and
play, rather than through mimicry? In this
paper, we study the setting where agent pre-
training is done with no demonstrations, no
internet-scale data, and no rewards, but rather
through self-supervised interaction (Agarwal
et al., 2024; Ma et al., 2022; Wu et al., 2018;
Eysenbach et al., 2018; Pathak et al., 2017; Mendonca et al., 2021). The agent proposes goals, at-
tempts to reach them, and learns from these self-collected data. After training, this agent is assessed
by its ability to imitate: given a demonstration, the agent uses a (learned) inverse RL module to in-
fer the demonstrator’s goal, and then uses the (learned) goal-conditioned policies to reach that goal.
Our problem setting is thus zero-shot imitation learning (IL), where we would like to infer behaviors
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from a single demonstration without additional gradient updates (Pirotta et al., 2024; Pathak et al.,
2018; Jang et al., 2021).

It is unclear whether today’s recipe for building generative AI foundation models will be directly
applicable to interactive settings. Though the premise of agents is online exploration or action,
generative models are primarily built by optimizing self-supervised objectives on input data (Bom-
masani et al., 2021) collected offline by humans. In robotics, policies are typically constructed
by either mimicking human demonstrations (Chi et al., 2023; 2024; Octo Model Team et al., 2024;
Reed et al., 2022) or maximizing human-specified rewards (Silver et al., 2016; Wurman et al., 2022).
These approaches do have an explicit notion of action, but agents typically practice on a limited set
of tasks and are not required to infer a demonstrator’s intention. The key idea in our paper is that
self-supervised pretraining for agentic systems should involve interactive exploration and inverse
RL that accounts for the relative difficulty of different tasks (Eysenbach et al., 2020; Ziebart et al.,
2008; Ng & Russell, 2000).

Related work in inferring intentions projects a demonstration onto a hypothesis space of reward
functions and then trains a general-purpose zero-shot RL policy to this space of rewards (Touati &
Ollivier, 2021; Agarwal et al., 2024; Wu et al., 2018). We make the additional key observation that
many tasks can be described in terms of goals, such as navigation or manipulation tasks (Brock-
man et al., 2016). In these settings, goals are described by the agent’s state, and we can imagine
natural extensions of goals to more complex behaviors expanding the state space. Tasks where the
necessary actions are more complex or hierarchical, such as cooking a recipe in a kitchen, could
also be described by a high-dimensional observational state, natural language, or multiple subgoals.
In addition, maintaining a prior that tasks can be described via goals allows us to define reward
functions probabilistically in terms of whether we will reach the goal state in the future and apply
state-of-art goal conditioned reinforcement learning methods (GCRL) to an even further reduced
hypothesis space of reward functional forms (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz
et al., 2017). Although this heuristic limits the reward functions we can infer, we show experimen-
tally that by projecting behavior on the restricted space of goal-conditioned reward functions, we
can more efficiently summarize and imitate a range of tasks from important benchmarks. Therefore,
we re-imagine solving the zero-shot imitation learning task by first inferring the expert’s goal and
then commanding a zero-shot goal-conditioned RL policy to this inferred goal. We start by assess-
ing our method on goal-reaching tasks, and then evaluate on reward-maximization tasks not tied to
particular goal states. Our main contributions can be summarized as follows:

• We propose a contrastive inverse reinforcement learning algorithm (CIRL) for self-
supervised pretraining of interactive agents that extends contrastive reinforcement learning
(CRL) methods to the MaxEnt RL setting and includes automatic goal sampling during pre-
training. Training involves exploration and learning via trial and error, yet requires no demon-
strations, no rewards, and no preferences.

• Unlike some structurally similar methods, we prove that our method is consistent: it correctly
infers the user’s goal using inverse RL, accounting for the relative difficulty of reaching
different goals.

• Empirically, we show that our method performs effective autonomous exploration and rapid
adaptation in the standard URLB benchmark (Laskin et al., 2021), outperforming prior zero-
shot imitation and zero-shot RL methods.

2 RELATED WORK

We turn to GCRL benchmarks to test our hypotheses for goal-conditioned zero-shot IL. Several
state-of-art methods on goal-reaching RL use variants of temporally contrastive objectives to learn
representations and policies, and extend successor feature-based methods to high dimensional envi-
ronments (Wang et al., 2023; Eysenbach et al., 2022; Myers et al., 2024). However, prior methods
are limited in their assumption of access to the test-time distribution of goals, focus on the offline
setting, or a hand-designed exploration policy (Pathak et al., 2018; Eysenbach et al., 2022). Given
the strength of these methods in RL settings, we naturally ask whether their representations would
be useful for imitation, and whether we can extend them to also learn to command their own goals.
We build off the JaxGCRL benchmark to test our ideas with the Contrastive Reinforcement Learning
(CRL) algorithm on a well-designed suite of tasks (Bortkiewicz et al., 2025).
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Our work builds on a rich literature on URL, which use reward-free data to improve performance
and generalization of RL algorithms. Some methods focus on extracting reusable representations
(Agarwal et al., 2024; Wu et al., 2018; Ghosh et al., 2023; Ma et al., 2022; Blier et al., 2021;
Sikchi et al., 2024). However, some of these methods that offer strategies for inferring rewards from
demonstrations contain a faulty assumption that matching the expert distribution is sufficient for
inferring the demonstrator’s policy without accounting for the partition function over tasks (Touati
& Ollivier, 2021; Sikchi et al., 2024). Other works focus on unsupervised discovery of diverse skills
(Gregor et al., 2016; Machado et al., 2017; Eysenbach et al., 2018; Sharma et al., 2019; Eysenbach
et al., 2021; Klissarov & Machado, 2023; Zahavy et al., 2022; Park et al., 2023a;b; Zheng et al.,
2024; Wang et al., 2024). While some of these exhibit zero-shot policy inference capabilities from
rewards or goals, they are not designed to perform zero-shot imitation from demonstrations and
do not necessarily discover all possible skills (Agarwal et al., 2024; Zheng et al., 2024; Eysenbach
et al., 2021). Methods of online unsupervised exploration for pretraining policies tackle problems
under similar assumptions as our work, but do not handle zero-shot inference given trajectories
(Pathak et al., 2017; 2019; Mendonca et al., 2021; Rajeswar et al., 2022). There has also been
significant development of offline unsupervised pre-training methods, but these could suffer under
poor exploration and do not focus on the interaction between exploration and policy learning in
unfamiliar environments. Our method is highly connected to prior work on learning universal, high
dimensional successor representations, with applications to both online and offline settings (Dayan,
1993; Barreto et al., 2016; Borsa et al., 2018; Ma et al., 2018; Touati & Ollivier, 2021; Touati et al.,
2022; Pirotta et al., 2024). Like these works, our method contains an inductive bias influencing
which tasks we focus on, namely those that are goal-reaching. We show that this restriction becomes
particularly useful for inverse RL, even for arbitrary reward functions.

Approaches to zero-shot imitation learning combine approaches to inverse RL and exploration/data
collection to solve the problem. We’ll discuss these individual components first and then discuss
key prior methods for zero-shot imitation.

Inverse RL Achieving general, adaptable agents is challenging via reward engineering and may
lead to unintended behaviors (Amodei et al., 2016). Thus, we turn to learning from demonstrations
(LfD), assuming we have access to limited data from an expert (Finn et al., 2016; Fu et al., 2018;
Pirotta et al., 2024; Yu et al., 2019). The main approaches to LfD are behavioral cloning (BC) and
inverse reinforcement learning (IRL). BC casts learning an imitation policy as a supervised learning
problem. While BC can work well in practice, it suffers from poor performance under distributional
shift and can overfit its expert demonstrations (Ross et al., 2011; Pomerleau, 1988; Bojarski et al.,
2016). IRL attempts to infer reward functions/corresponding policies from demonstrations (Ng
& Russell, 2000). Since the reward inference problem is inherently under-specified, a common
modeling choice is the Maximum Entropy assumption, which assumes that expert demonstrations
select actions to maximize both the sum of expected discounted rewards and the entropy of the
distribution of actions over states (Ziebart et al., 2008). Extensions such as GAIL, AIRL, and GCL
were developed to use deep function approximators for single-task IRL (Ho & Ermon, 2016; Fu
et al., 2018; Finn et al., 2016). Current multi-task/meta IL algorithms can be categorized as gradient-
based or context-based (Chen et al., 2023). Gradient-based approaches, such as (Finn et al., 2017;
Yu et al., 2018) combine meta-learning with IL to recover a policy, but at inference time, require a
one-shot gradient step to adapt to a new task whereas our method adapts zero-shot. Context-based
approaches such as SMILE and PEMIRL learn a latent variable to represent the task contexts and
train a context-conditioned policy that can be applied zero-shot to new tasks (Seyed Ghasemipour
et al., 2019; Yu et al., 2019). Our approach is similar (encoding goals as a form of context) but
takes this one step further by proving that the multi-task IRL problem can actually be reduced to a
purely goal-inference problem when we our expert optimizes a goal-conditioned reward function.
Therefore, we can use zero-shot RL algorithms to recover policies without loss of performance
instead of using less stable adversarial methods.

Exploration While BC and IRL can be performed on offline datasets, we would prefer to enable
zero-shot imitation through purely online methods that can be applied out-of-the-box in novel en-
vironments. This requires our IL agent to perform its own exploration, which CRL currently does
not support (Eysenbach et al., 2022). For our goal-conditioned setting, automatic goal sampling en-
ables us to autonomously generate training objectives. Goal sampling approaches broadly fall into
two categories: adversarial methods and distribution-based methods. Adversarial methods such as
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ASP and GoalGAN introduce a second policy for sampling goals (OpenAI et al., 2021; Florensa
et al., 2018). While effective for simple domains, these methods can struggle with high-dimensional
goal spaces and require careful balancing of the adversarial training process. State distribution
approximation methods such as Skew-Fit, EDL, VUVC, RIG, MEGA, and DISCERN control the
probability of selecting a goal via the empirical state visitation density, usually trying to cover the
full state space with exploration (Pong et al., 2020; Campos et al., 2020; Kim et al., 2023; Nair et al.,
2018; Pitis et al., 2020; Warde-Farley et al., 2018). Our method, GoalKDE, adopts a simple form of
RIG, although more complex methods could also be benchmarked in future work.

Zero-Shot Imitation Learning BC-Zero addresses multi-task zero-shot imitation by scaling di-
verse, human-in-the-loop data collection and training a single task-conditioned behavior-cloned
policy that can execute novel text instructions at test time (Jang et al., 2021). However, unlike
our method, BC-Zero gathers task-labelled expert data via teleoperation and requires human in-
terventions in a DAgger-style loop, whereas our method trains purely online and collects its own
data using a self-supervised objective and exploration. Zero-Shot Visual Imitation uses goal-
conditioned policies to imitate experts trained via a model-based forward consistency loss (Pathak
et al., 2018). However, unlike our work, they hand-devised an exploration policy to generate data for
model-based training, whereas our data collection is fully self-supervised for model-free training.
Forward-Backward (FB) Representations and RLZero enable zero-shot imitation through matching
the demonstrator’s state visitation distributions (Touati & Ollivier, 2021; Pirotta et al., 2024; Sikchi
et al., 2024). However, we prove for the FB representation that without accounting for the partition
function, this method leads to systematic misidentification of the demonstrator’s true policy.

3 PRELIMINARIES

Definition 1. The zero-shot imitation learning problem assumes we are given a single expert tra-
jectory τ = (s0, a0, ..., sT , aT ) at inference time, generated by some unknown expert policy πE
with trajectory distribution pπE (τ). No reward function is available. We must produce a policy
π̂CIRL ∈ Π that successfully reproduces the behavior of πE defined by its unknown reward function,
thereby achieving low regret. π̂CIRL should be inferred from πE with no additional environment in-
teraction, test-time data, or gradient updates.

To solve this problem, we will model the environment as a goal-conditioned MDP, defining a reward
function that depends on a goal and thereby assuming that expert policies πE have behaviors that can
be described as goal-reaching. Then, we can infer the reward function associated with πE via Max-
Ent IRL. To do this, we will infer the goal ĝ associated with πE , and command a goal-conditioned
policy to ĝ that is trained with CRL. In the subsequent sections, we will prove that performing Max-
Ent IRL with a goal-conditioned reward is equivalent to performing goal inference. We operate
in the pure online RL setting, assuming no access to offline expert data during pretraining. This
includes no access to the test-time goal distribution, a departure from CRL’s oracle assumptions.

3.1 CONTRASTIVE RL

We define a goal-conditioned MDP by a tuple (S,A,G, P, r, ρ), where S is the state space, A is the
action space, G is the goal space (equivalent to the state space in our formulation); p : S × A ×
S → [0, 1] describes the transition probabilities between states; r : S × A × G → R is a goal-
conditioned reward function, defined as r (st, at, g) = (1 − γ)p (st+1 = sg | st, at) = rg(st, at),
for some discount factor γ; ρ0(s0) specifies the initial state distribution, and p(g) specifies some
test-time distribution over goals. We use τ to define a finite horizon trajectory as a sequence of
states and actions: τ = (s0, a0, · · · , sT , aT , ), and write the likelihood of a trajectory under policy
π as p(τ) = ρ0 (s0)

∏
t p (st+1 | st, at)π (at | st). We also define the discounted future state sf

occupancy measure (density) of goal-conditioned policy π : S × G → ∆(A) as pπγ (sf |s, a, g) =

(1 − γ)
∑∞
t=0 γ

tpπt (st | s, a, g) and the marginal distribution as pβγ (sf ) =
∫
pβ(s, a)pG(g)p

β
γ (sf |

s, a, g)dsdadg, where β : S → A is the behavioral policy. Using the contrastive RL algorithm,
we can estimate the discounted state occupancy using Noise Contrastive Estimation (Oord et al.,
2018) and obtain the critic function f⋆ϕ,ψ(s, a, g) = ∥ϕ(s, a)−ψ(g)∥2 = log

pπγ (sf |s,a,g)
pβγ (sf )

= 1

pβγ (sf )
·
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Q
π(·|·)
sf (s, a), where Qπsf (s, a) ≜ Eπ(τ |sf )

[∑∞
t′=t γ

t′−trsf (st′ , at′) | st = s, at = a
]

(Eysenbach
et al., 2022).

3.2 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING (MAXENT IRL)

We will use the MaxEnt IRL framework to infer reward functions and policies from ex-
pert demonstrations. This framework assumes that demonstrations come from a MaxEnt
RL policy π̃∗ = argmaxπEτ∼π

[∑T
t=0 (rg (st, at) + αH (π (· | st)))

]
where α is an op-

tional parameter to control the trade-off between reward maximization and entropy max-
imization. Without loss of generality, we can assume α = 1 for notational sim-
plicity. The trajectory likelihood under the optimal maximum entropy policy is then
p⋆ (τ = {s0:T ,a0:T } | g) = 1

Zg

[
ρ0 (s0)

∏T
t=0 p (st+1 | st, at)

]
exp

(∑T
t=0 rg (st, at)

)
, where

Zg =
∫
ρ (s0)

∏
t P (st+1 | st, at) erg(st,at)dτ . We can then define the MaxEnt IRL problem as

ming′ Ep(g) [DKL(pE(τ |g) ∥ p⋆ (τ = {s0:T ,a0:T } | g′)].

3.3 GOAL INFERENCE

The MaxEnt IRL problem involves inferring reward parameters from a demonstration, and our re-
ward functions are completely parameterized by goals g. Therefore, we will perform inference to
recover the latent goal of an actor from observed data. Applying Bayes’ Rule to the trajectory like-
lihood of a MaxEnt RL policy, the posterior distribution over goals is p⋆(g | τ) = p⋆(τ |g)p(g)

p(τ) ∝
p(g)e

∑
t rg(st,at)−logZg . The partition function Zg is important for inferring goals, since it gives

us a notion of average reward collected along all possible trajectories for a given reward function
rg(s, a). If an expert demonstration collects more reward than this average over trajectories, it is
more likely that the demonstration is associated with this particular goal (Eysenbach et al., 2020).
The partition function is difficult to estimate, so we will instead fit a variational posterior qξ(g|τ) to
perform goal inference (Dragan et al., 2013; Zurek et al., 2021).

4 METHOD

Our algorithm, CIRL, consists of the following components: (1) self-supervised contrastive RL
pretraining to learn maximum entropy soft Q-values and a corresponding goal conditioned policy,
(2) a goal inference model to learn the variational posterior, and (3) automatic goal sampling during
pretraining. Our key contribution is in using goal inference and a goal-conditioned reward to couple
IRL with CRL for a successful online imitation learning algorithm. However, certain components,
such as the specific goal sampling method, could be substituted.

4.1 MAXIMUM ENTROPY CONTRASTIVE REINFORCEMENT LEARNING

We build an extension of contrastive reinforcement learning under the Maximum Entropy assump-
tion. While CRL just learns the sum of discounted future rewards, we also need to estimate the sum
of discounted future entropy to optimize the MaxEnt RL objective. Following prior work (Haarnoja
et al., 2018; Eysenbach et al., 2022), we define the the entropy regularized goal-conditioned reward
function as r̃g(st, at) ≜ (1 − γ)δ(st = g) − α log π(a | s, g), where δ(· = g) is the delta
measure at the goal g. Given a set of goals sampled from a goal distribution g ∼ pG(g), this new
reward function allows us to rewrite the objective of the goal-conditioned policy as maximizing the
entropy-regularized discounted state occupancy measure: maxπ LActor(π),

LActor(π) = Eg∼pG(g),τ∼π(τ |g)

[
(1− γ)

∞∑
t=0

γt (rg(s, a)− α log π(a | s, g))

]
(1)

= E g∼pG(g),s∼ρ(s),a∼π(a|s,g),
sf∼pπγ (sf=g|s,a,g),af∼π(af |sf ,g)

[δ(sf = g)− α log π(af | sf , g))] (2)

≈ Eg∼pG(g),s∼pβ(s),a∼π(a|s,g) [exp(fϕ,ψ(s, a, g))− α log π(a | s, g)] = Q̃g(s, a) (3)
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Thus, we augment CRL to optimize the soft Q function Q̃g(s, a) by optimizing the CRL loss
minϕ,ψ LCritic(ϕ, ψ), where

LCritic(ϕ, ψ) = EB

[
−
∑|B|
i=1 log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(si,ai,gj)

)
−

∑|B|
i=1 log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(sj,aj,gi)

)]
for{

fϕ,ψ (si, ai, gj)i,j

}
over the elements of the batch B (Bortkiewicz et al., 2025). The critic function

fϕ,ψ(s, a, g) estimates expected discounted future state occupancy, and the actor objective combines
this with an additional term LEntropy(θ) = −Eg∼pG(g),τ∼π(τ |g) [(1− γ)

∑∞
t=0 γ

t (α log π(a | s, g))]
that estimates expected discounted future entropy. This term will be optimized with temporal differ-
ence updates. See Appendix B for more details on the algorithm.

4.2 VARIATIONAL GOAL INFERENCE

Following the motivation of Section 3.3, we will learn a variational distribution qξ(g|τ) to match
the true posterior p⋆(g|τ). We optimize the forward KL objective to achieve this (Ambrogioni
et al., 2019; Yu et al., 2019): minξDKL (p⋆(g | τ)∥qξ(g | τ)) = minξ Ep⋆(g,τ)

[
log p⋆(g|τ)

qξ(g|τ)

]
=

maxξ Eg∼p(g);τ∼p⋆(τ |g) [log qξ(g | τ)] = maxξ LInfo (ξ).

When our policy is trained to optimality, it will emit a trajectory distribution equivalent to p⋆(τ |g).
Thus, we can use our online learned MaxEnt RL policy to sample trajectories both for contrastive
RL pre-training and for learning the variational posterior.

Another way to model the variational posterior is with the mean field approximation: qξ(g|τ) =∏T
t=0 qξ(g|st, at), where each local state-action independently influences the distribution over the

goal. This form can be much easier to train since parameters ξ are now shared across state-
action inputs. We can rewrite the expression for the true posterior as p⋆(g | τ) = p⋆(τ |g)p(g)

p(τ) ∝
p(g)e

∑T
t=0 rθ(st,at,g)−

1
T logZθ ∝

∏T
t=0 e

rθ(st,at,g)− 1
T Zθ , and note that it precisely takes a mean

field form when the input trajectory is finite. Thus, we can establish a corollary to motivate the use
of the mean field approximation when optimizing LInfo (ξ) for our method, training a Gaussian MLP
to perform amortized variational inference with the mean field approximation.
Corollary 1. Without loss of generality, the class of mean field goal inference models includes the
true posterior distribution.

4.3 CIRL IS CONSISTENT

Our main theoretical result is to show that our method infers the correct distribution over expert
goals. This statement is non-trivial because the most-frequented states may not be the user’s in-
tended state, so correctly performing goal inference requires reasoning about the relative difficulty
of different goals. Proof can be found in Appendix A.1.
Lemma 1. Let policy πdemo be given. CIRL produces policy πCIRL that consistently
infers rewards by converting the MaxEnt IRL problem into a goal inference problem:
minθ Ep(g) [DKL(pE(τ |g) ∥ p⋆(τ |g)] =⇒ maxξ Eg∼p(g);τ∼p⋆(τ |g) [log qξ(g | τ)]

IRL with FB is Inconsistent FB (Touati & Ollivier, 2021) is presented as a method that can learn
optimal policies for any task and proposes to imitate trajectories by inferring their reward and then
using the corresponding reward-maximizing policy. In this section, we show that even if FB learns
optimal policies for every reward function, it doesn’t correctly identify which reward function a
demonstrator is maximizing, thereby provably failing to perform zero-shot imitation. Proof can be
found in Appendix A.2.
Lemma 2. There exists an MDP with two unique reward-maximizing policies (π1, π2), where FB
incorrectly demonstrates policy π1 with policy π2.

4.4 GOAL-SAMPLING

During training, we use states stored in the replay buffer to continually fit a Gaussian Kernel Density
estimator (KDE) approximating the distribution of visited states. This buffer is pre-filled at the start
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Figure 2: Zero-shot imitation learning with CIRL via goal inference. CIRL combines goal-conditioned
contrastive RL pre-training, automatic goal sampling for exploration, and a mean field goal inference model to
imitate expert demonstrations. Here we see how an Ant’s imitation policy and posterior distribution over goal
states evolve across timesteps toward a final maximum a posteriori (MAP) estimate.

of training with data from a randomly initialized policy, and at each iteration, we select the state from
the buffer that has the lowest probability under the KDE to train the policy. We call this method of
automatic exploration: GoalKDE. See Appendix B for a summary of the full CIRL algorithm.

5 EXPERIMENTS

Figure 3: Value of self-supervised RL pre-
training CIRL consistently outperforms the al-
ternative FB representation zero-shot imitation
method as well as the naive 1-NN policy baseline.

Our method contains components for self-
supervised RL pretraining, automatic goal sam-
pling, and goal inference. We ablate each in
turn, and show that CIRL (CRL Pre-training +
GoalKDE Exploration + Mean Field Goal In-
ference Model) can learn good representations
for imitation across several environments. We
use the JaxGCRL and Unsupervised Reinforce-
ment Learning Benchmark (URLB) environ-
ments (Bortkiewicz et al., 2025; Laskin et al.,
2021). Details are provided in Appendix C.

For our evaluation, we train an expert policy us-
ing CRL under oracle goal sampling. Using this
policy, we sample 2000 goals from the oracle
test distribution of goals and unroll the CRL ex-
pert policy toward each goal. For each expert demonstration, we perform zero-shot IL across our
ablation setup, reporting imitation score (the ratio between the cumulative return of the algorithm
and the average cumulative reward of the expert) (Pirotta et al., 2024). Unless otherwise noted, all
methods were trained online. The only exceptions are FB (Offline) and goal-conditioned behavioral
cloning (GCBC), which use the CRL expert policy data. FB (Offline) uses 2000 distinct trajectories
of 1025 steps each sampled from the CRL expert policy. GCBC trains a goal-conditioned policy
with the same number of update steps as the CRL expert. We also further evaluate using non-goal-
conditioned policy demonstrations trained with URLB rewards on the Ant Forward, Ant Jump, and
Ant Flip tasks and demonstrate the capability of CIRL to imitate these policies with low regret.

5.1 CIRL W/ SELF-SUPERVISED PRETRAINING OUTPERFORMS BASELINES

We first compare CIRL against several baselines for imitation learning, including those with and
without access to expert data during training. For each environment, we compared the reward earned
by an expert policy (CRL) and the imitation learning method, reporting the fraction of expert reward
achieved as the “imitation score.” The baselines, both trained with no access to expert information,
include the Nearest Neighbor baseline, which in a given state considers the 1-NN state in the ex-
pert demonstration and applies its corresponding action. We also include the URL baselines of FB
representation (Touati & Ollivier, 2021), PSM (Agarwal et al., 2024), and HILP (Wu et al., 2018).
The inferred latents for these methods were computed from expert demonstration states (Pirotta
et al., 2024). As seen in Figure 3, CIRL consistently outperforms all baselines, regardless of en-
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vironment difficulty, making it the most promising technique for learning to imitate in unfamiliar
goal-conditioned environments. Even if we train the FB representation with data from the expert
policy, this baseline is unable to achieve comparable imitation scores to our method.

5.2 CIRL PRE-TRAINING OUTPERFORMS THE FB REPRESENTATION

CIRL and FB representation’s algorithms have two main structural differences: the way
it learns the successor representation and the way it infers intentions. To better under-
stand why CIRL outperforms the FB representation, we hold the method of inferring in-
tentions constant and only use information from the last state of the expert demonstration.

Figure 4: Summarizing behavior via goals
yields better imitation than reward-based ex-
planations. When using the last expert demon-
stration state as the goal, CIRL achieves high im-
itation scores on goal-conditioned environments
while FB struggles to infer goal-conditioned re-
ward functions from online learning.

Note that for tasks where the goal state is tran-
sient (e.g. tossing a ball to reach a particular
height), the last state in a trajectory may not
contain enough information about the true goal,
but for Ant, Reacher, and Pusher, the agents are
able to reach and stay at all possible goals. As
seen in Figure 4, FB only achieves a small frac-
tion of the imitation score of CIRL under these
conditions. This result provides evidence that
learning reward functions is indeed more ex-
pressive than summarizing behavior via goals,
as it is easier for CIRL to learn a successor rep-
resentation for reaching goals than it is for FB
to learn more general reward functions. Addi-
tionally, in Figure 9 in Appendix D, even if we
instead use the CIRL inferred goal to compute a
latent for the FB representation, we are still not
able to match CIRL’s performance, though per-
formance does improve compared to using the
averaged backward representation of the entire
demonstration or the backward representation of the last state.

5.3 MEAN FIELD APPROXIMATION IMPROVES GOAL INFERENCE

Figure 5: Mean field goal inference models out-
perform alternative full τ input models.

Our theory suggests that inferring goals using a
mean field approximation should preserve pre-
dictive power compared to using the full τ as
input to the context encoder. We also have
fewer parameters to train under the mean field
assumption, and thus hypothesize that it will
outperform the full τ alternative. Testing this
across environments with CIRL and GCBC, in
Figure 5, we see that mean field goal inference
universally outperforms the alternative of infer-
ring goals, regardless of environment or train-
ing algorithm. These experiments validate our
corollary of the preserved predictive power of
mean field goal inference, with the added com-
putational benefits of this simplified modeling
choice. The mean field assumption also allows
us to reliably infer goals from partial trajecto-
ries, as shown in Figure 2, where we see the
posterior distribution hone in on the true goal as the imitator observes more of the demonstration.

5.4 BETTER AUTOMATIC GOAL SAMPLING IMPROVES IMITATION SCORES

While we see that CIRL with GoalKDE automatic goal sampling outperforms our baselines with
no expert data, we ablate our GoalKDE goal sampling method against oracle goal sampling (which
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trains CRL on the test-time goal distribution) to experimentally quantify the gap between these
methods. We see in Figure 6 that in the Reacher environment, training CRL policies with GoalKDE
can yield near-perfect imitation scores, and that sometimes GoalKDE can better explore the state
space for more generalizable policies. However, for the higher dimensional state spaces in Ant and
Pusher, a combination of more sophisticated goal sampling techniques or more training steps on
more automatically sampled goals could boost performance beyond oracle sampling. See Figure 8
in Appendix D for additional results ablating the CIRL goal inference method as well as Figure 10
for analysis of limitations of GoalKDE in increasingly complex PointMaze environments.

5.5 CIRL SUPPORTS IMITATION BEYOND GOAL-CONDITIONED ENVIRONMENTS

Figure 6: GoalKDE exploration vs. oracle goal
sampling during CRL pre-training. Holding
the goal inference method constant (mean field
inference), we find that GoalKDE sampling can
achieve a significant fraction of imitation score
compared to the oracle baseline, and can even out-
perform this baseline in some environments.

We run further experiments on the standard
URLB benchmark, which is not designed for
goal-reaching, to show that CIRL outperforms
prior methods for zero-shot imitation when im-
itating policies (1) trained with more general
reward functions and (2) which require ex-
panding the goal hypothesis space. Following
the URLB Benchmark, we train expert poli-
cies on the Ant Forward, Ant Jump, and Ant
Flip tasks with PPO on non-goal-conditioned
reward functions, and report regret of CIRL in-
ferred policies compared to these expert poli-
cies. We see in Figure 7 that CRL pre-training
methods can achieve lower regret than FB,
HILP, or PSM imitation policies by inferring
goals involving the ant’s torso 3D position and
linear/angular velocity. CRL + Oracle goal
sampling could perform better in some environ-
ments due to sampling fewer infeasible goals,
and extensions to CIRL’s exploration scheme based on related work could overcome this difficulty
(OpenAI et al., 2021). Thus, CIRL can scale to more complex reward functions as long as we
sufficiently expand the goal space to capture the task.

6 LIMITATIONS AND CONCLUSION

Figure 7: CIRL inferred goals efficiently summarize complex
rewards. CIRL achieves lower regret than FB when imitating
URLB policies with non-goal-reaching rewards.

Since not all reward functions
are goal reaching, future work
could close the gap between
these reward hypothesis classes
by exploring richer goal rep-
resentations, such as language
or multi-modal spaces, and
consider summarizing behavior
with multiple sub-goals. Our
method also requires access to a
simulator and would require fur-
ther research to evaluate appli-
cability in safety-critical settings, settings where collecting data is prohibitively expensive, or human
interaction settings. With more complex goal spaces, related work in exploration could be applied
as a substitute for our GoalKDE method. A full comparison of goal-sampling methods is outside
of the scope of this paper. Our main aim is to propose a full pipeline for enabling imitation via an
imagine-and-practice loop in the complete absence of expert data. We introduced a framework for
goal-conditioned maximum entropy inverse reinforcement learning that leverages self-supervised
contrastive RL pretraining, automatic goal sampling, and a mean field variational goal inference
model to enable zero-shot imitation from a single demonstration without access to an offline expert
data during training. By re-framing reward inference as goal state inference and coupling this with
CRL, our method learns transferable policies across diverse task distributions.
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7 REPRODUCIBILITY STATEMENT

All experiments in this paper are completely reproducible by running the experiments in our code:
https://anonymous.4open.science/r/cirl-3CD7/README.md.. Background information
on the environments used and algorithm implementations can be found in the Appendix, and any-
thing not noted can be assumed to follow the defaults of the JaxGCRL and URLB benchmarks
(Bortkiewicz et al., 2025; Laskin et al., 2021). Our method is based on open source Brax (Freeman
et al., 2021) and Jax (Bradbury et al., 2018) libraries. We also used LLMs in completing this work
for two purposes: to polish the paper, including generating some of the icons used in Figure 1 and
for the additional purpose of aiding in code writing (via the Cursor AI application).
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Hinne, Eric Maris, and Marcel van Gerven. Forward amortized inference for likelihood-free
variational marginalization. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pp. 777–786. PMLR, 16–18 Apr 2019. URL
https://proceedings.mlr.press/v89/ambrogioni19a.html.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Francis Christiano, John Schulman, and Dan-
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A THEORETICAL ANALYSIS

A.1 CIRL IS CONSISTENT

Proof. MaxEnt IRL corresponds to the following objective:

argmin
θ

DKL

(
pπE(τ)∥p⋆(τ)

)
= argmax

θ
EpπE (τ) [log p

⋆(τ)]
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Under MaxEnt modeling, each goal g induces a trajectory model p⋆(τ | g) ∝[
ρ0 (s0)

∏T
t=0 p (st+1 | st, at)

]
exp

(∑T
t=0 rg (st, at)

)
with log-partition logZg . In a goal-

conditioned setting, taking the reward to be entirely determined by g means the family {p⋆(τ | g)}g
is indexed by goals, and the learning objective can be posed as minimizing the average forward KL

min
θ

Ep(g) [DKL (pE(τ | g)∥p⋆(τ | g))] ,

where p(g) is the goal prior used both in data collection and modeling.

Define the expert and model joints over (τ, g) as pE(τ, g) = p(g)pE(τ | g) and p⋆(τ, g) =
p(g)p⋆(τ | g). When the same prior p(g) is used, the average conditional KL equals a joint for-
ward KL :

Ep(g) [DKL (pE(τ | g)∥p⋆(τ | g))] = Ep(g) [DKL (pE(τ, g)∥p⋆(τ, g))] ,

by applying Bayes Rule and canceling the identical priors.

Apply the KL chain rule to the joint KL:

DKL (pE(τ, g)∥p⋆(τ, g)) = DKL (pE(τ)∥p⋆(τ)) + Eτ∼pE(τ) [DKL (pE(g | τ)∥p⋆(g | τ))] ,

Thus our MaxEnt IRL objective is

min
θ

Ep(g)DKL (pE(τ | g)∥p⋆(τ | g)) = min
θ

{
DKL (pE(τ)∥p⋆(τ)) + EpE(τ)DKL (pE(g | τ)∥p⋆(g | τ))

}
(4)

Now we note that our marginal distribution p⋆(τ) =
∫
p(g)p⋆(τ |g)dg is a difficult integral to

compute and thus apply variational inference by introducing the amortized variational distribution
qξ(g; τ). Then

log p⋆(τ) = ELBO(θ, ξ; τ) +DKL(qξ(g|τ)∥p⋆(g|τ))
where

ELBO = Eqξ [log p(g) + log p⋆(τ |g)− log qξ(g|τ)]

Taking the expectation over expert trajectories:

min
θ
{DKL (pE(τ)∥p⋆(τ))} = max

θ
EpE(τ) [log p

⋆(τ)]

= max
ξ

Eqξ [log p(g) + log p⋆(τ |g)− log qξ(g|τ)]

= min
ξ

[DKL(qξ(g|τ)∥p⋆(g|τ))]

Now we see the major issue with using the ELBO/reverse KL is that it requires us to be able to
evaluate the conditional likelihood p⋆(τ |g). This is impossible in our scenario, but we could sample
from it since we can sample from the trajectory distribution of our MaxEnt RL policy. This motivates
the use of Forward Amortized Variational Inference (FAVI), which uses the forward KL instead
of the reverse KL in its optimization (Ambrogioni et al., 2019).

The loss function of FAVI derives from the joint-contrastive variational inference objective and is
expressed as:

LFAVI[p, q] = D(p⋆(g, τ)∥qξ(g, τ))
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To approximate the intractable posterior p⋆(g | τ), we factorize the variational joint as the product
of a variational posterior qξ(g | τ) and a sampling distribution of the data:

qξ(τ, g) = qξ(g | τ)k(τ)

Now we note:

DKL(p
⋆(τ, g)∥qξ(τ, g)) = Ep⋆(τ,g)

[
log

p⋆(τ, g)

qξ(g | τ)k(τ)

]
(5)

= −Ep⋆(τ,g)[log qξ(g | τ)] + Ep⋆(τ,g)
[
log

p⋆(τ, g)

k(τ)

]
(6)

Considering only the terms that depends on q, we can define the FAVI loss as follows:

LFAVI = −Ep⋆(τ,g)[log qξ(g | τ)]

This is precisely the loss function LInfo (ξ) we train. Therefore, for our goal-conditioned setting,
the IRL problem can be reduced to one of learning a variational posterior with FAVI. Importantly,
note that the partition function is implicit within the samples we generate from the joint distribution
via g ∼ p(g), τ ∼ p⋆(τ | g), allowing us to consistently infer goals where methods that ignore the
partition function do not.

A.2 FB IS INCONSISTENT

We prove this by providing a counterexample. The key idea in the counterexample is that an infre-
quently visited state may nonetheless be the policy’s desired goal. We illustrate this with a simple
2-state MDP.

Proof. We define an MDP with 2 states (s1, s2) and 2 actions (a1, a2) with the following dynamics:

p(s′ | s, a) =


s1, if s = s1, a = a1
s1, w.p. 1

2 if s = s1, a = a2
s2, w.p. 1

2 if s = s1, a = a2
s2, if s = s2

. (7)

Assume that the initial state is distributed p0(s) = 1(s1). Note that state Y has just one action. The
only decision to make is the action at initial state X . Since all MDPs have deterministic optimal
policies, there are just two unique (potential) reward-maximizing policies for this MDP:

π1(a | s) =
{
a1 if s = s1
any action if s = s2

(8)

π2(a | s) =
{
a2 if s = s1
any action if s = s2

(9)

We will show that when data are collected from policy π2, FB infers that data were collected with
policy π1. This policy is clearly different, achieving different amounts of rewards (for all non-trivial
reward functions).

We next compute the occupancy measure for policy π2. From the initial state x, the policy transitions
to state y with probability 1

2 at each time step. Thus, the probability of still being at state x after t
time steps decays as 1/2t. The occupancy measure can thus be written as:

ρπ2(s = X) = (1− γ) + [1 + γ
1

2
+ γ2

1

22
+ γ3

1

23
+ · · · ] (10)

= (1− γ)
∞∑
t=0

(γ/2)t =
1− γ
1− γ/2

. (11)
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Then ρπ2(s = Y ) = 1− ρπ2(s = X). Thus, when γ is small enough, policy π2 “spends more time
at” state x than state y:

γ <
2

3
=⇒ ρπ2(s = s1) > ρπ2(s = s2). (12)

This will be a problem for FB, which infers rewards based not on the difficulty of maximizing them,
but rather instead based on visitation counts:

zR =
∑
t

B(st). (13)

Without loss of generality, we assume that B(st) = 1(st), a one hot vector; this solution is always
admissible if the representations have high-enough dimension. Thus, the inferred reward function is

r(s) =

{
1−γ

1−γ/2 if s = s1
γ/2

1−γ/2 if s = s2
(14)

Note that state s1 has a higher reward than state s2 with γ < 2
3 . Thus, the reward-maximizing policy

for this reward function is π1 (which stays in s1 ), not π2 (which sometimes transitions to the lower
reward state s2 ).

This demonstrates that FB incorrectly identifies demonstrations from π2 as coming from π1. The
fundamental issue is that FB uses the occupancy measure directly as the reward signal without con-
sidering the partition function or the policy’s optimality under that reward. This leads to systematic
misidentification of the demonstrator’s true policy.

B ALGORITHM

We present pseudocode for training our zero-shot IL method based on contrastive RL pretraining:

Algorithm 1 Contrastive IRL

1: Input: CRL loss LCritic and energy function fϕ,ψ(s, a, g) = ϕ(s, a)Tψ(g) (Eysenbach et al.,
2022), Entropy-regularization value function LEntropy, actor objective LActor , variational poste-
rior loss Linfo

2: Initialize ϕ, ψ, θ, ξ, π and a pre-filled replay buffer D
3: repeat
4: in parallel over environments
5: g = argmingKDE(D)
6: Store τ ∼ π(s, g) in D
7: for j = 1, . . . ,num updates do
8: Randomly sample (with discount) a batch B fromD of state-action pairs and

goals from their future
9: Update critic:

(ϕ, ψ)← (ϕ, ψ)− α∇ϕ,ψ
[
LCritic(B;ϕ, ψ

)
]

10: Update entropy-regularization value function:
(θ)← (θ)− α∇θ

[
LEntropy(B; θ

)
]

11: Update policy:
π ← π − α∇π

[
LActor(B;ϕ, ψ, π)

]
12: Update variational posterior:

q ← q − α∇ξ
[
LInfo(B;ϕ, ψ, π)

]
13: until convergence

C EXPERIMENTAL DETAILS

We ran our experiments building off the JaxGCRL benchmark (Bortkiewicz et al., 2025). Unless
otherwise mentioned, we used the same hyperparameters as that implementation. α used for Maxi-
mum Entropy IRL was 1e-5. For the FB representation, PSM and HILP baselines, we use the same
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encoder networks as in JaxGCRL and the same actor and critic learning rates. The metric value net
for the HILP baseline similarly uses the JaxGCRL encoder architecture for the phi network. For
the context encoder, we also use the JaxGCRL encoder and train to predict the mean and variance
of a Gaussian. The backbone MLP of the JaxGCRL encoder networks has a hidden width of 256
units, hidden depth of 2 layers, and 1 skip connection. We use the Swish activation after each hidden
Dense layer. We used the seed 1 to train each type of policy.

Table 1: Reacher environment hyperparameters

hyperparameter value

batch size 1024
num timesteps 20,000,000
num environments 256

Table 2: Pusher environment hyperparameters (goal: 3D position and 3D linear velocity)

hyperparameter value

batch size 256
num timesteps 60,000,000
num environments 512

Table 3: Ant environment hyperparameters (goal: 2D position)

hyperparameter value

batch size 512
num timesteps 30,000,000
num environments 1024

Table 4: Ant environment hyperparameters (goal: 3D position and 3D linear velocity)

hyperparameter value

batch size 256
num timesteps 600,000,000
num environments 512
healthy z range (0.0, 4.0)
target z Uniform over range (0.2, 2.0)
target 3D linear velocity Uniform over (-1.0, 1.0)

Table 5: Ant environment hyperparameters (goal: 3D angular velocity)

hyperparameter value

batch size 256
num timesteps 600,000,000
num environments 512
target 3D angular velocity Uniform over (-2.5, 2.5)
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Table 6: PointMaze environment hyperparameters (goal: 2D position)

hyperparameter value

batch size 1024
num environments 256
num timesteps 20,000,000 (U-Maze)

40,000,000 (Big Maze)
60,000,000 (Hardest Maze)

C.1 ENVIRONMENTS

Reacher: This environment is a 2D manipulation task involving a two-jointed robotic arm. The
goal is to move the arm’s end effector to a sampled 2-dimensional target located randomly within a
workspace disk. The 11-dimensional state space includes joint angles and velocities along with the
position of the end effector. The 2-dimensional action represents torques applied at the arm’s hinge
joints.

Figure 8: Ablating CIRL. For Pusher, most of
the performance gap is due to goal inference, but
for the Ant environment, most of the performance
gap is likely due to distribution shift induced by
GoalKDE.

Pusher: This features a 3D robotic arm and
a movable object resting on a surface. The ob-
jective is to push the object into a 2D goal lo-
cation randomly sampled at each episode re-
set. The 23-dimensional state space includes
the arm’s joint angles, velocities, and the posi-
tion of the movable object. The 7-dimensional
action space controls the robotic arm via con-
tinuous motor torques at its joints.

Ant: This locomotion task involves a
quadruped navigating towards target XY posi-
tions randomly sampled from a circle around
its starting position. The 29-dimensional state
space comprises the robot’s joint positions, ori-
entations, and velocities, and the 8-dimensional
action space consists of torques applied to each of the multiple leg joints. When using CIRL to infer
URLB rewards, we expand the goal space to include the 3D position and 3D linear velocity or 3D
angular velocity.

Figure 9: Use the backward representation of
the CIRL inferred goal to command the FB
policy. Comparing alternate methods of comput-
ing the FB latent against the standard FB baseline,
CIRL still achieves higher imitation scores.

PointMaze: This navigation task involves a
point mass navigating towards a target XY posi-
tion in a constructed maze. The 4-dimensional
state space includes the position and linear ve-
locity of the point mass, and the 2D action
space controls linear force along slide joints of
the point mass in the environment. The possible
configurations include U-Maze (20 x 20 maze
layout), Big Maze (32 x 32 maze layout), and
Hardest Maze (36 x 48 maze layout), in order
of increasing state space size.

D ADDITIONAL RESULTS

Figure 8 ablates CIRL performance against al-
ternate goal inference methods: knowing the
true goal or inferring the goal to be the last state of the expert demonstration. When we provide
the true goal to a policy trained with CRL and GoalKDE exploration, we get a significant boost in
imitation score, with any gap in imitation score from 100% likely due to distribution shift between
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goals sampled via GoalKDE and those from the oracle test distribution, and alternative methods for
goal exploration are a promising area for future work in GCRL. For goal-conditioned expert poli-
cies, inferring the last state to be the goal can be a strong baseline, but would fail when we try to
imitate a task such as an Ant jumping.

Figure 10: Testing the limits of GoalKDE as a
goal-sampling method for CIRL. We see that
the performance gap between CRL + Oracle and
CIRL widens as the state space of PointMaze en-
vironments grows.

In Figure 9, we imagine if the FB representa-
tion had access to the CIRL mean field inferred
goal. Using this state to compute a backward
representation latent to command the FB pol-
icy, FB is still not able to match the perfor-
mance of CIRL. This is likely because FB must
perform more exploration to learn a zero-shot
policy for all possible rewards, including goal-
reaching rewards, while CIRL has a smaller hy-
pothesis space of rewards to explore and learn.
However, we do note that FB with the inferred
goal does outperform FB with the latent com-
puted from either the last state of the demon-
stration or the averaged backward representa-
tion of all states in the demonstration.

In Figure 10, we perform further analysis of
GoalKDE’s capabilities across increasingly complex PointMaze environments, with U Maze having
the smallest state space and Hardest Maze having the largest. We see that as the state space grows,
the performance gap between GoalKDE and Oracle goal sampling widens.
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