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ABSTRACT

Cross-domain knowledge distillation often suffers from domain shift. Although
domain adaptation methods have shown strong empirical success in addressing
this issue, their theoretical foundations remain underdeveloped. In this paper, we
study knowledge distillation in a teacher—student framework for regularized linear
regression and derive high-dimensional asymptotic excess risk for the student es-
timator, accounting for both covariate shift and model shift. This asymptotic anal-
ysis enables a precise characterization of the performance gain in cross-domain
knowledge distillation. Our results demonstrate that, even under substantial shifts
between the source and target domains, it remains feasible to identify an imita-
tion parameter for which the student model outperforms the student-only base-
line. Moreover, we show that the student’s generalization performance exhibits
the double descent phenomenon.

1 INTRODUCTION

The success of modern machine learning tasks typically requires the availability of large-scale la-
beled datasets. However, collecting labeled data for a new target task is often challenging and ex-
pensive. When data in the target domain is scarce, it is possible to leverage labeled data from related
source domains. Knowledge distillation (KD) (Hinton et al., 2015), originally proposed for model
compression, is a popular technique that transfers knowledge from a capable teacher model trained
on a source domain to a smaller student model. This is achieved by guiding the student model to
mimic the teacher model’s outputs. The extra information in the teacher’s predictions often improves
the student model’s performance when target domain data is limited. KD has recently achieved re-
markable success across several fields including image classification (Radford et al., 2021; Li et al.,
2024), speech recognition (Mingote et al., 2020), and language models (Gu et al., 2023; Agarwal
et al., 2024).

We denote the source domain data and target domain data as (X;,y;) and (X3, y2), respectively.
This work focuses on the following cross-domain KD process: a teacher model is first trained on the
source domain data, and its predicted labels for the target domain inputs are then used to supervise
the training of the student model by minimizing the per-sample objective function,

L(&) = &L(y5,y5) + (1 = E)L(y2, 45), (1)

where ¢ denotes the loss function, y» is the ground-truth label, y5 is the teacher’s predicted label,
and y5 denotes the student’s prediction. The weight parameter &, known as the imitation parameter
(Lopez-Paz et al., 2015), balances the contributions of the teacher’s predictions and the observed
labels during training. We summarize the key findings of this paper in the following informal lemma.

Lemma 1. (informal) Under mild conditions, the excess risk in linear regression with quadratic
loss admits a unique minimizer £*, which can be negative.

Cross-domain KD often suffers from a shift between the source and target domains. For instance,
the source domain may consist of standard American English speech, while a region-specific voice
assistant must handle local dialects. Another example is a face detection model trained on images
of light-skinned individuals (source domain) being applied to images of dark-skinned individuals
(target domain). Learning a discriminative predictor under such domain shifts between source and
target domains is known as domain adaptation (Ganin et al., 2016). While much of the literature on



Under review as a conference paper at ICLR 2026

domain adaptation has focused on improving the performance of KD, relatively little is understood
about when — and how effectively — the student model can learn from the teacher in the presence of
domain shift.

Recently, Emrullah Ildiz et al. (2025) analyzed the weak-to-strong (W2S) generalization of linear
models in a cross-domain setting, and identified the form of the optimal surrogate model. However,
their analysis relies on the condition that the covariance matrices of the source and target domains are
jointly diagonalizable, which limits its ability to capture the influence of eigenvectors. Moreover,
their results are restricted to the setting & = 1 (i.e., pure teacher supervision), leaving the trade-
off between distillation and learning from observed student data unexplored. Motivated by these
limitations, we take a step toward a more complete understanding of the performance gains of cross-
domain KD for linear regression.

In this paper, we present a theoretical analysis of cross-domain KD in the context of linear mod-
els, leveraging tools from random matrix theory. For ridge regression, we study two cases: (i) a
deterministic-parameter setting, in which the teacher and student parameter vectors are non-random;
and (ii) a random-parameter setting, in which a shared parameter vector is drawn from a prior distri-
bution. We also extend our analysis to the ridgeless regression setting. All proofs of the theoretical
results are provided in the appendix. We summarize our contributions as follows:

* High-dimensional risk characterization. We derive precise high-dimensional asymp-
totics for the risk of cross-domain KD via a bias—variance decomposition. Our results
reveal how the excess risk depends on the parameter vectors and the input distributions in
both domains, generalizing the student-only setting of Hastie et al. (2022).

« Utility of cross-domain KD. (“Stones from other mountains can polish jade”). Intuitively,
large domain shifts between the teacher’s and student’s training data might limit — or even
harm — the value of teacher supervision for the student’s generalization. Surprisingly, our
analysis shows that even under substantial domain discrepancies, it is still possible to find
an £ € R such that the student model can outperform the student-only baseline. The
existence of such ¢ depends on the geometry of the models and the covariance matrices of
both domains.

* Double descent phenomenon. We observe that the excess risk, as a function of
the dimension-to-sample-size ratio, exhibits the double-descent phenomenon in KD for
teacher-student model — previously documented by Hastie et al. (2022); Nakkiran et al.
(2021) in student-only models, and by Moniri & Hassani (2025) for £ = 1 under no do-
main shift with isotropic covariance.

1.1 RELATED WORKS

Theory of KD. In recent years, a growing body of work has sought to understand the effects of KD.
The theoretical understanding of distillation began with Phuong & Lampert (2019), who initially
investigated linear student networks. Wei et al. (2021); Borup & Andersen (2021); Das & Sanghavi
(2023); Pareek et al. (2024); Jeong & Chung (2025) theoretically studied self-distillation, a variant
of KD in which the student model has the same architecture as the teacher and is trained on the
same data. Menon et al. (2021) showed that a “Bayes teacher” providing true class probabilities can
reduce the variance of the student’s objective, leading to improved performance. Harutyunyan et al.
(2023) proposed a framework that highlighted a delicate interplay among the teacher’s accuracy, the
student’s margin with respect to the teacher predictions, and the complexity of the teacher predic-
tions. From an information-theoretic perspective, Dissanayake et al. (2025) quantified and explained
the transferred knowledge and knowledge left to distill for a downstream task.

Cross-domain KD and domain adaptation. Many studies have explored various methods to ad-
dress the domain shift problem in the field of KD. Empirical works include Su & Maji (2016);
Kundu et al. (2019); Asami et al. (2017); Li et al. (2023); Xu et al. (2024); Tang et al. (2025). Ye
et al. (2024) proposed the Maximum Conditional Mutual Information method, which enables the
teacher model to capture more contextual information to generate more accurate estimates of the
Bayes conditional probability distribution. The emergence of large language models (LLMs) has
brought new advancements, such as distillation across vastly different architectures and scalable
cross-domain transfer. For more details, readers may refer to Fedus et al. (2022); Ouyang et al.
(2022); Yang et al. (2024). From a theoretical perspective, Emrullah Ildiz et al. (2025) focused
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on the setting where the student is trained using only the teacher’s predictions, and analyzed the
conditions under which the student can outperform the teacher in cross-domain KD.

Weak-to-strong generalization. Weak-to-strong (W2S) generalization (Burns et al., 2024), which
concerns using predictions generated by a weaker teacher model to train a more powerful student
model, is closely connected to KD. Emrullah Ildiz et al. (2025) provided an analysis of ridgeless
regression and proved that when using a weak model as the surrogate (teacher), W2S training can
provably outperform training with true labels. Charikar et al. (2024) assumed that the models are
selected over a convex set, and quantified the gain of the weak-label trained strong model over
the weak model. Wu & Sahai (2025) explored W2S generalization for classification in a spiked
covariance model. Medvedev et al. (2025) explained how W2S generalization can arise in random
feature models described by two-layer networks. Theoretical research in this area has continued to
grow, see Dong et al. (2025); Shin et al. (2025); Moniri & Hassani (2025); Oh et al. (2025), for
example.

1.2 NOTATIONS

We use || - || to denote the spectral norm for matrices and the Euclidean norm for vectors, and || - ||¢
for the Frobenius norm of a matrix. Standard big-O and small-o notations are employed. Moreover,
we denote ©,, = 04 5.(ay,), if ,, /a,, — 0 almost surely. For any sequences a,, > 0 and b,, > 0, we
write a,, < by, if a,, = O(by,), and a,, ~ b,, if both a,, < b,, and b,, < a,,. We use (-) to denote the
indicator function, which takes the value 1 if the condition - holds, and 0 otherwise. Throughout the
paper, ¢ and C' denote constants that may vary from line to line. For a random variable =, we use

x ~ D to indicate that x follows the distribution D.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose there are N; covariates {xg»l) };V:ll drawn i.i.d. from an M -dimensional source distribution

D; and N5 covariates {x§-2)}§y:21 drawn i.i.d. from an M-dimensional target distribution Ds. We
consider a linear regression task specified by an unknown parameter vector 3; € RM:

where 5§7) € R is a zero-mean random noise term with variance o2. Fori = 1,2 and z € C\R™,

define 4 , , ,
X, = (x7, o xf) e RMAN g = (T e RY

i

1 - i i .
Qi(z) = (N_XiXiT - zIM) = (e, e)T e RN
We refer to the case where D1 # D- as a covariate shift, and the case where 81 # (32 as a model
shift.

N1 |

Teacher Model: The teacher model is finetuned on {(xg-l), y§1))}j:1.

. 1 1
= argmn <N1|y1 _ XTI+ Atn,@nz) = A Xay, @)

where \; > 0 is the teacher regularization parameter. The risk of 3; when M ~ Nj in the high-
dimensional setting has been studied extensively in the literature such as Dobriban & Wager (2018);
Hastie et al. (2022).

Student Model Trained with Cross-Domain KD: We use the pre-trained teacher model together
with covariates {x§2) } évil to generate predictions:

2 2N\T
vy = (yi,...,y}VQ)T = (xg )7"'7X§V3) Be.
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The student model is finetuned on the target domain data {(X;—Q), y](-Q))} ;\/22 , and the teacher’s predic-

tions {(x§2) 2 Y5)} ;V:zl, using the per-sample objective function defined in equation 1 with an imitation

parameter &, as follows:

. . 1 1
Bs = argmin £(¢) = argmin | —ly5 —X38(% ) + (1 = &) lly2 = X3 801> ) + AlIB)?
B B8 N2 N2
= (X2X3 + NoAIar) ™' (6Xoyh + (1 - €)Xayo),

3)
where A is the student regularization parameter. While it is common to restrict £ € [0, 1] (Lopez-
Paz et al., 2015), we do not impose this constraint, in line with Das & Sanghavi (2023); Pareek
et al. (2024). From equation 3, the parameter £ is independent of Q2, making it possible to choose

a negative £ that achieves better generalization performance. For the covariates x!" and the noise

J
terms E;-Z),’L' =1,2, 1 < j < N,;, we make the following assumptions, which are standard in the
random matrix theory literature (see, e.g., Bai & Silverstein (2010)).

Assumption 1. Suppose X1, Xo, €1, and €, are mutually independent. Moreover, we assume

(a) the covariates are generated according to
X; = (2)Y%2Z;, fori=1,2,

where Z; = (zj(;)) is an M x N; random matrix with i.i.d. entries of zero mean and unit variance,
and X, is a positive semi-definite matrix. Furthermore, we assume for all p € N, there is a constant
Cp such that

max |27 |P < . @)

(b) M ~ Ny ~ No.

(c) €; € RNi is a random vector consisting of i.i.d. entries of zero mean, variance o2, and for all
p € N, there is a constant cj, such that

Ele{"? < c,.
max Ele;”[” < ¢

While we allow zﬁ) and zﬁ) to follow different distributions — a form of covariate shift — our theo-
retical results do not depend on their specific distributions, provided that the moment conditions in

Assumption 1(a) are satisfied. The requirement that all moments of zﬁ) exist can be relaxed to the
existence of (8 4 ¢)—th moment for any positive constant ¢, with minor modifications to our proof
and hence we do not pursue this generalization here. The following assumption on the structure of
the covariance matrices is imposed to facilitate theoretical analysis and rule out degenerate cases.

Assumption 2. Let T be a small constant. Denote the eigenvalues of ¥; by ot > o%--- > %, > 0.
(a) (Boundedness of ;). We assume that max;—1 2 | X;| = o < 771,
(b) (Anti-concentration at 0). For i = 1,2, the empirical spectral distribution of 3; satisfies

| M ‘
MZ(S(O’;ST)Sl—T.

Jj=1

Let (x,) be an unseen sample of the target task, that is y = 34 x + €, where x ~ D5 and ¢ follows

the same distribution with 552). Under the mean squared loss, the generalization ability is quantified

by the risk of the estimator s :

R(B,) = Exyly — BIXI” = Exy (B2 — Bs)Tx + 2 = | 25/%(82 - B)I” + o,

where E , denotes the expectation taken with respect to (w.r.t.) the pair (x, y). The excess test risk
is defined as follows:

ER(8;) = R(8s) — 0% = |=3/% (82 — B5)|I>. )
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When ¢ = 0, 8 reduces to the ridge regression estimator for the student only model, and we denote
the corresponding excess risk by ERg. Note that ER(3s) can be decomposed into bias and variance
as ER(3;) = Bias + Var, where

Bias = ||2§/2(52 - Ex,yﬁS)Hza

Var = [|25/2(8, — Ex,8,)|%.

One may easily check that ER = O(1) almost surely. In the remainder of this paper, we derive
asymptotic expressions for the bias and variance terms to analyze the generalization performance of
the student model using tools from random matrix theory.

2.2 RANDOM MATRIX THEORY

Before proceeding to the theoretical analysis, we introduce several key quantities from random ma-
trix theory that will appear in our main results. For any distribution G supported on R™ = [0, c0),
its Stieltjes transform is defined as

mea(z) :/ ! dG(z), z ¢ supp(G).

xr—Zz

Next, we define the asymptotic eigenvalue density of random matrices via its Stieltjes transform.
This lemma is well-known in the random matrix theory literature (e.g., Bai & Silverstein (2010)).

Lemma 2. Let X = XY2Z be a random matrix, where Z. = (zj,) € RM*N M ~ N satisfies
Assumption 1(a), and 3 satisfies Assumption 2. For each z € C\RJC there exists a unique m =
mp(z) € C satisfying the equation

1 1 > 1 z

_ - J— - — ; Cx~»Cx >
z - + NTr1 e - NTrEH, with 3z3m(z) > 0, (6)

3 THEORETICAL ANALYSIS

In this section, we analyze the excess risk ER(3;) defined in 5 under three distinct settings. In
Section 3.1, we consider the case where 3; and 3. are deterministic, with their difference being
arbitrary. In Section 3.2, we study the scenario in which 8; = 35 and the common parameter vector
is drawn from a prior distribution. Finally, in Section 3.3, we analyze ridgeless regression under the
regime where M < Njp, N» and the covariance matrices 31, 35 are invertible.

Before presenting the main results, we first introduce some necessary notation. For M, N,,3; and
z < 0, the Stieltjes transform determined by Lemma 2 is denoted by m;(z).

Let HZ(Z) = —(Z + zmi(z)Ei)_l, i = 1,2. We write Ql = Ql(—/\t), Q2 = QQ(_)\S),
IT, = II;(—X\) and II; = II»(—)) for notational simplicity. For any deterministic matrix A
with bounded spectral norm, we define

SilA)=A+ (15 Lhs I - LT = b2
N’i 7 1 N1 7 1
Moreover, when A = I,,, we denote
d d
I = 51"[1(2;”2:_)\t =ILS (I, I = &H2(Z)|Z=_)\s = IS (a2,

The other quantities are summarized in Table 1.

3.1 DETERMINISTIC REGRESSION PARAMETERS

We now state our first main result.
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Table 1: Some notations used in the theoretical results

E, =1I,5(Z)I1;, E; =118 (T1,85(32)II,)IT;
E; =115 (3.I1)I1, E4 =I1,85:(30)II,, Ej = 3,11,

Theorem 1. Let v = (31 — Bo. For the deterministic vectors ||B1] and ||B2|, assume that
1811l [|1B2]| < e for some constant c. Under Assumptions 1-2, the following results hold:

Bias — Bias + 04.5.(1), Var= Var + 0a.5.(1),
where
Bias = ¢28] [\’E1 + A2AZE; — 202AE;3 81 + 2663 [A2Ey — A Es)y
+ A2BIEafBo + 26B] MNILEs — AN TLEY By + 9T [ = 20\E5 + AM2E4]y ()
+ 2824 T AMESIT — ANZELIL — A SLI0 + AAESTTL | By,

and
- 2 2 1—£)202
Var = gNU Tr[(25 — 2\Es + \2Ey) (T — AIT))] + %Tﬂ}:g, SASLIT]. 8
1 2

This theorem characterizes the dependence of ER(3s) on the geometry of 31, 31,32, and 3s.
We provide an illustrative example here. Suppose that 33; admits the spectral decomposition 3; =
U,,;AiUZ-T, for i = 1, 2. Consider the term ﬁlTl'Il E53,, which can be expressed as

Bl (e + A1) T s + AsmaBn) ' B2 = (M) 71 B] (1 +miA1) U UzA0B:, (9)
H:éij(m The vector 3; = U,;[3; captures
the alignment between 3; and the eigenvectors of ¥;. The right-hand side of equation 9 explicitly
reveals how the term 3 IT; E5 3, depends on B, the eigenvalues of 337 and 35, and the eigenvector
overlap U] U, between the two covariance matrices. In the special case where each 3; is aligned
with an eigenvector of 3; — for simplicity, suppose it corresponds to the first eigenvector — the

expression equation 9 further simplifies to 3] B (AsA¢) ™ FmiA 11} f(l1j+m,2 A ,which depends on

the eigenvalues of 33; and the inner product 3] 3, . This observation extends the results of Hastie
et al. (2022), which considers high-dimensional least squares regression within a single domain
(corresponding to £ = 0 in equation 3).

where .A.Q is a diagonal matrix with entries Ag,jj =

3.2 RANDOM REGRESSION PARAMETERS

In this section, we assume that the vector 3; = B3 = 3 is random, and consider the excess risk
under two population covariance matrices, 3; and 3, which may be equal or distinct. Before
presenting the main result, we introduce the following assumption, commonly used in the literature
(Dobriban & Wager, 2018; Moniri & Hassani, 2025).

Assumption 3. The regression parameter vector 3 = (B1, ..., Bar)" € RM is random, with each
entry i.i.d., and [, satisfies

52

EB, =0, EB? = e and E|VMB1|P < C,,

forany p € N, where C,, is a constant depending only on p.
Theorem 2. Suppose Assumptions 1-3 hold. Then the following asymptotic expressions hold:

—

~2
Bias = UM ENTrELIT, + 26NN I g + A2 Tr X, 1)
— 2 NATY S ILIT) + EANZTr [Eq(—2IT; + EAIT))] | = Bias + 0,4.4.(1),

and Var = Var + o, 5., which coincides with the expression in Theorem 1.
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This theorem extends the result of Moniri & Hassani (2025), which considers the case of no covari-
ate shift, with inputs drawn i.i.d. from N(0,I5s) in the context of W2S generalization (i.e., when
& = 1). Our framework generalizes this analysis by allowing £ € R, thereby providing a more com-
prehensive understanding of the trade-off between learning from the teacher and from the observed
labels.

Let m, (2), m,(2) be the Stieltjes transforms of the standard Marchenko-Pastur law with parameters
M /Ny, M/N,, respectively; their explicit forms are given in equation 28. The following corollary
follows immediately from Theorem 2 and the fact that IT; = m I/, IIo = myI (see, e.g., Alex
et al. (2014)).

Corollary 1. Suppose 1 = 3o = Ip. Write mq = mq(—At), My = my(—As). Under Assumption
1 and Assumption 3, we have the following expressions:

Bias = 5°[€*Afm) + 26\ Aamymy + A2mby — 26N Asmym

— 2N NImhmy + ENNIm mb] + 04.5.(1),

and
M
Var = 0% 5= [m; — 20smymy + Amymb — Am + 20 Asmym] — AAImmb]
1
M
+ (1= 80 3= [my — Asmb] + 0a.s.(1),
2
where m/|, m/, denote the derivatives evaluated at z = — )\, and z = — ), respectively:

d
m,; = &ml(z)tzﬂ\tamé = &mz(z)L:,As-

As previously noted, we do not restrict £ to the interval [0, 1]. It has been shown in Das & Sanghavi
(2023) that the optimal value of £ may exceed 1. In Corollary 2 below, we present a toy example
demonstrating that even when the input data across domains are i.i.d. and in the absence of model
shift — i.e., with no domain shift — the limiting optimal value of £ can be negative.

Corollary 2. Suppose the conditions in Corollary 1 hold. The limiting optimal value of £ < 0 if

M
AsAm  SNR — — > 0, (10)
Ny

where SNR = g—z = “f—f + 04.5.(1).

Remark 1. We call the case £ < 0 anti-learning against the teacher’s supervision, in contrast to
& > 1, which Das & Sanghavi (2023) termed anti-learning the observed (possibly noisy) labels.
This corollary provides insight into the selection of &: the sign of the limiting optimal value of &
depends not only on parameters (i, \s) but also on data-related factors (SNR, data dimension, and

sample sizes of both domains).

3.3 RIDGELESS REGRESSION

In this section, we consider the minimum {5 norm least squares (ridgeless) regression estimator.
Specifically, the teacher model is defined by
Be = (X1X )" Xyy1,
where (X;X7])* denotes the Moore-Penrose inverse of X; X/ . Similarly, the ridgeless estimator of
3s takes the form
Bs(XoX3)[EXo X3 Be + (1 — ) Xaya).

Theorem 3. (1) Suppose 31, B2 are deterministic, and Assumptions 1-2 hold. We further assume
M
— -1

’ N

Define f(\) = Bias and g(\) = Var, with \ = As = A, where the expressions for Bias and Var

are provided in equation 7 and equation 8, respectively. We have

Bias = f(0") + 04.5.(1), Var = g(0") + 04..(1). (11)

(2) Suppose B = 31 = B2 are random and Assumptions 1-3 hold. Then, the estimated expressions

in equation 11 still holds with f(\) = Bias replaced by the Bias defined in Theorem 2.

> T, T < O—min(zi) <-..- < Umax(zi) < 7—717 f()rl - 12
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If a matrix A is nonsingular, At = A~!. The following corollary gives the characterization of
ER([3;) in the under-parameterized setting.

Corollary 3. Suppose the conditions in Theorem 3 hold and jv\—ll M <1 — 7. The estimator for

N
student model obtained by equation 1 is the averaging estimator: ’
B =EB7" + (1 - €)BF, where B = (XiX]) ™' Xiys, i =1,2. (12)
Adopting the notation v = (31 — Bo in Theorem 1, we have
— . — 5 o M 0 1 _
Bias = £2973,5, Var = (1 — ¢)%0? N, i + SZJZN] - ]\jTrEgEl L

Based on the conclusions of Theorems 1-3, the high-dimensional asymptotic excess risk, regarded as
a function of &, is a quadratic function. Given that the excess risk is non-negative, the quadratic func-
tion opens upwards. This observation is consistent with Pareek et al. (2024), where self-distillation
is considered. Given a £ € R, the gain of cross-domain KD is characterized by the reduction in
excess risk, ERg — ER((3;).

Proposition 1. Under the conditions of Theorem 1 and Assumption A.1 for the deterministic case
in Appendix B.7, there exists a value of ¢ € R such that

min (ER(B;) — ERg) < 0. a.s. (13)

Moreover, under the conditions of Theorem I and Assumption A.2 for the random case in Appendix
B.7, the inequality 13 also holds.

Remark 2. This proposition shows that, even in the presence of a significant domain discrepancy, it
is possible to find a value of ¢ € R such that the student model outperforms the student-only baseline
(i.e., training on the observed labels only). We provide further details in Appendix B.7, where we
provide closed-form expressions for the optimal £* under several common settings and demonstrate
that covariate shift can, in some cases, be beneficial for KD .

3.4 NUMERICAL SIMULATIONS

— |yl =0.63, Theory & 1.24 — 53, Theory -
[l =0.89, Theory %, Theory
e |lyll=0.63, Simulation. e I, Simulation.
® |yl =0.89, Simulation. ® I, Simulation
—=— Ridge o 1171 -~ Ridge

114

=
o

Excess Risk
Excess Risk

o
©

0.8 1

-02-0.1 00 01 02 03 04 05 06 07 08 09 10 11 -02-0.1 00 01 02 03 04 05 06 07 08 09 10 11
13

(a) Model shift (b) Covariate shift

Figure 1: Student’s excess risk in the presence of domain shift. Solid lines represent theoretical
values, while scattered points denote simulation results (averaged over 100 trials). The dashed green
line indicates the theoretical performance for student-only baseline, corresponding to ridge regres-
sion trained solely on the target domain data. (a) Settings: (A, As) = (0.1,0.5), (M, Ny, N3) =
(400, 600,200), X, = X5 = I,. The vectors B2 = (1,...,1)T/v/M, 0> = 1. We label the case
|yl =0.63asv = —(2,...,2,0,...,0)T //M with the first M /10 entries equal to —2/+/M, and
the case ||| = 0.89 with the first M /5 entries equal to —2/v/M. (b) Settings: (A, As) = (0.1,0.5),
B1 = By ~ N(0, M~'Tp), (M, Ny, Na) = (600, 200,300), 2, = 415, 3y = diag(dy, . . ., das)
with d; = 0.646(i < M/2) +0.256(M/2 <i < M), 0% = 1.

We plot the excess risk of the student model: (a) under model shift with identical covariate distri-
butions, and (b) under covariate shift with identical parameter vectors, in Figure 1. All theoretical
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20
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Excess Risk
Excess Risk

/
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M/Ny MIN>

(a) Excess risk as a function of Nﬂl for varying A+ (b) Excess risk as a function of ]\% for varying &

Figure 2: Non-monotone student excess risk curves. We set Xy = I, ¥ = diag(dy,- - ,dn)
where d; = 0.646(i < &)+ 0.256(% < i < M). (a) Results are shown for fixed M = 600 and
As = 0.05 with different N;. (b) Results are shown for fixed Na and (A, As) = (0.05,0.001), with
varying M.

values of the Stieltjes transform presented in this paper are obtained by solving equation 6. Due to
space limitations, the numerical validation of Corollary 3 is provided in Appendix C.2. Simulation
results, averaged over 100 independent trials, show good agreement with the theoretical predictions.

Furthermore, we present numerical simulations of ER/(3s) as a function of A\ and ) for various
values of &; these results are included in Appendix C.3.

4 DOUBLE DESCENT OF THE EXCESS RISK

In this section, fixing &, \; and A\, we examine the excess risk as a function of the dimension M
and the sample sizes N; and N,. We find that the student model exhibits the double descent phe-
nomenon, characterized by a non-monotonic behavior of the excess risk as a function of the ratio of
dimension-to-sample-size. This phenomenon is consistent with findings in various linear regression
settings (Hastie et al., 2022; Nakkiran et al., 2021; Belkin et al., 2020; Moniri & Hassani, 2024),
and has been previously observed by Moniri & Hassani (2025) in the special case of pure teacher
supervision without domain shift, where the risk was studied as a function of NM1

Using our theoretlcal predictions from Theorem 2, we plot the excess risk of the student model,
ER = ER(¥ N, )» as a function of in Figure 2(a). The double descent phenomenon is evident
for all three values of \;. As A decreases the peak of the risk curve shifts towards £ Ny =1.1In

Figure 2(b), we plot ER = ER( ) against 1\/12 , while allowing £ w, to vary simultaneously. We

consider different values of £ and observe that the double descent phenomenon is most pronounced
in the regime of anti-learning against the teacher’s supervision (¢ < 0). In contrast, when £ = 1.1,
no double descent occurs within the ratio range [0.5, 1.5].

5 EXTENSION

5.1 NONLINEAR CASE

Our theoretical results are initially established for linear models; however, we anticipate that they can
be extended to more general settings. To explore this extension, we conduct numerical simulations

specifically for nonlinedr models here. We assume the source data {(x; w (l))} are generated
i.i.d. according to y f( ) ( ) , for1 < 7 < Nj. The target data {( JS ))}j\zl are
generated according to 7/ f( (2>) ;2), for 1 < j < Ns. Suppose XE )~ Dh 1<j<MN
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and Xg_z) ~ D5, 1 < j < Ns. We refer to the case D1 # D5 as a covariate shift, and the case where

f # f as a model shift.

We consider learning the unknown function using a fully connected two-layer neural network with
n hidden neurons: fyxn(x) = a'o(Wx), where W € R™M g the weight matrix, and o(-) is
an activation function applied entrywise. When the random weight matrix W is fixed and only
the second-layer weight a is optimized, the model reduces to a kernel regression model, where the
kernel defined by x — o(Wx) is referred to as the conjugate kernel (Neal, 2012). The teacher

model is given by fiy(x) = al o(W;x), with
: 1 =
a = argain { - lys ~ o(XTW)all*+ Aal? .
a Nl
We use fiy (X;—Q)) together with the covariates {x§-2)}§-\21 to generate predictions y%. Then the

student model is finetuned on the target domain data and y5. The student model takes the form
fin(x) = alo(W1x) with

. 1 1
a. = agiing (v - oKTWDal?) + (1 (- Ive - XIWDall) + Al

We also examine a setting where the teacher model is a deeper neural network. Specifically, while
keeping the student model fixed, we let the teacher be a Four-layer fully connected network:

fin = af 0(W30(Wao(Wix))),
where ,
a, = argmin F||y1 — [0(W30(Waa(W1X1))]Ta|? + A ja®.
a Ny

We set D1 = N(0,41y) and Dy = N(0,1p). Let f(x) = (87%)* + 1, f(x) = (8Tx)2.
Because Dy # D5 and f # f, both covariate shift and model shift are present in this setting. More
details and the numerical results are provided in Appendix C.1.

5.2 DEPENDENCE BETWEEN DOMAINS

In this section, we consider two cases in which X; and X are not fully independent; Case 1:
Assume X exhibits weak dependence on X5 in the following sense: X; = aXsy + X, where

a — 0as M — oo, and )~(1 is independent of X, and takes the form 2%/221. It is easy to

see Cov(xj(-l),x?)) = Cov(x§-2)7 ax§-2)) = a3y. Case 2: Suppose X is a signal-plus-noise data

matrix: X; = Xy 4+ A, where A is a deterministic signal matrix with ||A| = o(v/M). This
model captures realistic scenarios in domain adaptation where the source and target domains share
a common underlying data matrix, but differ by a small deterministic shift—such as a faint shared
signal across features in source domain. In Case 1, our theoretical analysis remains valid. For Case
2, we obtain a new limiting behavior; the theoretical results and technical details are provided in
Section B.9.

6 CONCLUSION

In this paper, we present a theoretical analysis of cross-domain KD for linear models using random
matrix theory. Through the bias-variance decomposition, we precisely characterize the asymptotic
expressions of excess risk for the student model in the high-dimensional setting. A surprising finding
is that when the imitation parameter & is allowed to take any real value, cross-domain KD may
outperform training solely on the target domain — even in the presence of significant discrepancies
between source and target domains. This highlights the potential of distillation to effectively transfer
knowledge across highly heterogeneous domains.

Our work also points to several promising directions for future research. Our theoretical analysis is
currently limited to linear models; extending it to more complex architectures, particularly nonlinear
models, would significantly broaden its applicability. Furthermore, while we observe the double
descent phenomenon using the established theoretical limits; a rigorous theoretical characterization
of this behavior in nonlinear models remains an important avenue for future investigation.

10
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Qwen3 is used to polish the writing.

B PROOFS

B.1 BaAsic TooLs

Preliminary definitions and auxiliary lemmas used in the proofs of the main results are provided in
this section.

Lemma 3. (Lemma B.26 in Bai & Silverstein (2010)) Let C be an M x M deterministic matrix
and z € RM be a random vector of independent entries. Assume that Ex; = 0,E|z;|?> = 1, and
E|z;|* < Cy. Then for any £ > 1,

Elz"Cz — TrC|* < ¢ ((C4TrCC*)*/? + CoTr(CC*)*/?),
where ¢y is a constant depending on £ only.

Before stating the subsequent results, it is convenient to introduce the notion of stochastic domina-
tion.

Definition 1. Let x = x®), ¢ = ¢P) be two families of p-dependent random variables. We say that
X is stochastically dominated by ( if for all small ¢ > 0 and large constant £ > 0,

P([x®| > p|cP]) <p~*

Sor all large p. If x is stochastically dominated by (, we use the notation x < ¢ or x = O<((). We
say an event £, holds with high probability if

IP’(EPC) < p~* for any fixed £ > 0.

Lemma 4. (Lemma 22 in Yang et al. (2025)) Let Z satisfies Assumption 1(a)-(b). Suppose % <
1 — 7. Then we have

(VM = VN)? + O<(VN) € Auin(2Z)" < Amax(ZZ7) < (VM +VN)? + O (VN).

The upper bound on )\max(ZZT) still holds without the assumption M/N <1 — 1.

Lemma 5. (Corollary 25 in Yang et al. (2025)) Suppose €1, ..., €; are independent random vectors
satisfying Assumption 1(c). Then, we have that for any deterministic vector v € RN,

vTei| <ollv], i=1,...t,
and for any deterministic matrix B € RNV*N,
lelBe; — (i = §)o*TeB| < o2 ||B||g, fori,j € [t].
Moreover, for any deterministic vector v, we have
Ivie;| < a|vll, i € [t].

Definition 2. Ler A, B, € RP*? be sequences of random or deterministic symmetric real matrices.
We say A, By, are equivalent, denoted by A, < B, if

1
Z;Ter(Ap —By) = 04.5.(1) and UT(Ap —By)v =04.5(1)

for any sequence of deterministic matrices D,, and all deterministic vectors u, v such that

lim sup [|[D,[| < o0, lim sup max{]ul|, v} < oc.
p P

Lemma 6. (1) (Theorem 2.6 in Couillet & Liao (2022)) We denote by o the probability measure
associated with m determined in Lemma 2. Let X = X'/2Z € RM*N where the entries of Z
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are i.i.d. centered random variables with unit variance and finite 8 + c-th moment, for any positive
constant c. Suppose Assumption 1(b) and Assumption 2 hold. Then for z € C\R™, we have

Q(2) xII(2), Q(z) = m(2)Iy, (14)

-1
—ZIM) , T(2) = (21 +2mZ) "L

(2) When % < 1 — 7, equation 14 still holds at z = 0.

Proof: Let u,v be two deterministic unit vectors and fx(A) = u'Q(—\)v for A < 0. Since
)\min(XTXT) > 1(1 — \/M/N)?* with high probability, we have |fy(N)] < [[Q(-N)] < 1,
I FA )] < 13-Q(=A)|| £ 1 with high probability. Therefore, {fx(A)} is equicontinuous with
high probability. By applying the Arzela-Ascol theorem, fy converges uniformly to its limit
f(\) = u'II(—\)v. By the Moore-Osgood theorem, we can exchange limits and get

lim fy(0)= lim lim fy(A\) = lim lim fy(\) = lim u'II(-\)v = u'II(0)v, a.s.,

N—o0 N—0c0o A—=0— A—=0—- N—=oo A—0—

where we use the fact that both Q and IT are analytic in an open neighborhood of 0 with high
probability. Similarly, we can derive ; TrAQ(0) = 5 TrATI(0) + 04.5.(1), which completes the
proof.

Lemma 6 shows that II(z) is a deterministic equivalent of Q(z). For technical reasons, we further
require the following result.

Lemma 7. Suppose the conditions in Lemma 6 hold. A denotes a deterministic M x M matrix
with bounded spectral norm. For any fixed complex numbers Z1,%s € C\R™T, we have for all
deterministic vectors u, v,

u' (Q(21)AQ(%) — I(21)S(A)IL(Z))v = oq.s.(|u V), (15)

L Tr3II(Z)AIL(Z)

S = A T ITenE) (14 2Te0() - ST S

s, (16)

Moreover, for any deterministic matrix C € RM*M satisfying |C|| < C for some constant C, we
have

TCIQ(A)AQ(S) I (3)S(A)Ts(5)] = 0. (1) (17)

The proof of this lemma is deferred to Appendix B.8.

Remark 3. Lemma 7 provides the deterministic equivalent of Q(21)AQ(22). Lin & Pan (2024)
established the local laws for the Q(Z1)AQ(Z2). However, their results require RZ1, RZ5 to be
sufficiently close to supp(o) and Sz1, Sz to be bounded below by N ~'*¢, where c is any fixed
constant. Lemma 7 extends the result to other regions.

Remark 4. 7o relax the moment assumption, we apply a standard truncation argument commonly
used in random matrix theory (e.g., Yang et al. (2025)). This approach allows us to employ Lemma 4
under the weaker finite (8 + c)-th moment condition, introducing only a negligible additional error
term that depends on M but does not affect the leading-order asymptotics of our results. Moreover,
a careful examination of the proofs shows that the same moment condition is also sufficient to es-
tablish Lemma 7. Consequently, all of our theoretical conclusions remain valid under this relaxed
assumption.
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B.2 PROOF OF THEOREM 1

To simplify notation, we set z; = — A, 22 = — . Recalling equation 2 and equation 3, we get
1
Bs — B2 = EQQ [EXoX3 B + (1 — )Xo (X382 +€2)] — B2
1 1
= EQQ E§X2XgQ1X1(XIﬁ1 +e1)+(1—Xo(X]B2 +€2)| — Bo

= &[T + 22Q2) (s + 21Q1)B1 — B2 + fNil(IM +22Q2)Q1 X164

(18)
+ (1= &) [(Xp + 22Q2)B2 — Ba] + (1 — E)NL2Q2X2€2
=87 + £22Qov +£21Q1B1 + 22Q202 + £2122Q2Q1 81 +as + ae.
a as as ay
By this, we decompose ER((3;) as follows:
ER(ﬂS) = (ﬂs - 62)1—22(55 - 52)
(19)

6 6
= &y Sy + 22(%‘ + Zhn + Z hij,
i=1 i=1

1<izj <6

where
2

bi =&y Eoay, by = ’|Eé/2ai| . hij = a! Zaaj.

Next, we compute the limit of each term above.
Let n € N*. According to the Definition 1 and the Borel-Cantelli lemma, we have
X(n) = 04.5.(1)if x(n) < n™°
for any constant ¢ > 0. By this, the limits of by, ba, b3, by can be readily obtained using Lemma 6:
by = 207" QaXoy = 207 Ty X0y + 04.6.(1),
by = 217 22Qu 61 = 217 ToI 81 + 04.5.(1),
by = £22085 Qo oy = 2205 Mo Xoy + 04.5.(1),
by = 21207 $2QaQu 81 = § 21207 Tl By + 04..(1),

where the last identity is due to
Y'22[Q2Q1 — TLIL B = v"22[(Q2 — M) Q1 + M2(Q) — IT1)| 81 = 04.s.(1).

We now consider the terms contributing to Var. By Lemma 5 and the identity

1
T QUXX] =Ty +21Qs i =12, (20)
we find that
§%a° T
hss — WTT(IM + 22Q2) B (I + 22Q2) Qi X1 X{ Q|
1

(21)
1
= WH(IM + 22Q2)Eo(Ins + 22Q2)(Q1 + 21Q7)|IF S

5

For any deterministic matrix C € RM*M gatisfying ||C|| is bounded, and having the spectral de-
composition

M
C = E )\iuiviT,
i=1

16
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we have by Lemma 6 that

M
1 1
MTrCQ1Q2 = ; AiTru;v] Q1 Qo

LM
=7 > Aivi QiQou,
i=1 (22)

M
1
= M Z )\iV;r]-_IlHQui + Ogq.s. (1)

i=1

1
= MTI‘CH1H2 + 04.5.(1).

Similarly, by recalling the notation IT;S; (I )II; = IT} for i = 1,2, one may check by Lemma 7
that

1 1
MTrCQQQ% = Mﬂcngn’l + 04.5.(1),
1 1

MTI‘CQlQ% = MTYCHlH’Q,

1 ) (23)
MTrQQCquf = MTrHQSQ(C)Hngl + 04.5.(1),

1 1
MTrqlchQg = MTrl'IlSl(C)Hll'[’g + 04.5.(1).
Then by Lemma 6, Lemma 7, equation 20 and equation 21, for £ # 0, we have

h55 1

252 = ETT(IM + 20Q2)a(Ins + 22Q2)(Q1 + 21Q7)

1
= ETY (22 + 2:32Qa + 22Qo s + 25Qa X2 Qa] [TIy + 211T)] + 04.5.(1)
1
= VTI‘ [22 + 2293115 + Z%HQSQ(ZQ)HQ] [Hl + 211__[,1]
1

+ 04.5.(1).
Likewise, we have by Lemma 6 that

1
hes = (1 — f)QUQFTFEz(IM + 2Q2) Q2
L (24)
=(1- f)QJQFTl“Ez(Hz + 2o115) + 04.5.(1).
2

Let d = min {dist (zl,RJr),dist (22, R*)}. According to Lemma 5 and the fact following from
equation 20 that

1
\/THQz‘XiH =/1Qi +2Q7| < Vd ' +d72z| S 1,
one has for j = 1,2, 3,4,

g
|hsj| = |hys| < MHXIQl(IM + 21Q2)Baa,|| S

1
/va

[ —

g
|hej| = |hje| < M||X-2I—Q222aj” < Wi

and

1
bs + bg| < —.
165 + ol VM
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Using Lemma 5 again, it can be shown that

2
es| = lhss| < 75 X3 Qe Ba(Lys + 2Q2) Qi X Je
< 02\/N2|X5Q222(IM +22Q) Xy > _ 1
~ M M? ~ VM
Therefore, we get
4
bs + be + hes + hse + Z(th + hj, + hej + hjs) = 04.5.(1).
j=1

We now turn to the terms h;;, ¢ = 1,2, 3,4. By Lemma 7, we have
hi = £2237T Qa2 Qay
= 2237 T158:(22) Moy + 04.5.(1),
hoy = €221 8] Q132Q1 81
= 2781 I 81 ()11 81 + 04.5.(1),
has = 2305 Q2X2Q23:
= 2583 1185 (22) 282 + 04.5.(1),
has = €27 2381 Q1Q222Q2Q1 81
= 22123 E6] QI8 (22)M2Q1 81 + 0a.s.(1)
= 2125 B T 81 (2S5 () T2) T B1 + 04.6.(1).

Similarly, one can obtain the limits of the remaining terms in h;;,1 < ¢,j < 6:

hia = hoy = 522122’7TQ222Q1/61

= 21297 T 50011 81 + 04.5.(1),
his = hg1 = £258; Q232Qay

= €258 T8, (22) oy + 04.6.(1),
his = hy = £21257" Q2 32Q2Qu1 61

= 21257 TIS2(Z2)IILIL1 By + 04.6.(1),
has = hsz = £21228] Q1322Q2/3:

= £21228]{ 11 25T 85 + 04.5.(1),
hos = hay = €227 28] Q132Q2Q1 81

= 2128 Q1 EoT1,Q1 81 + 045 (1)

= 22720 B{ II1 S1 (ZoI15)IL1 B1 + 04.5.(1),
has = hag = £21238; Q2 X2QoQ1 81

= £2125 83 285 (32)TLIL By + 04.5.(1).

Combining the above estimates, we conclude the proof of Theorem 1.

B.3 PROOF OF THEOREM 2

We use the same notation as in Appendix B.2. Note that v = 3; — B2 = 0. Denoting
H=£21Q1 + 22Q2 + £2122Q2Qu, (25)

by equation 18, we have
Bs — B =HB + a5 + as.

18



Under review as a conference paper at ICLR 2026

Hence, the excess risk becomes

ER(B,) = |=5/%(8s - B)|

=BTH'S,HB+2 ) BTH Shai + ) his.
i=5,6 1=5,6

Using Lemma 5, by Assumption 3 we have

BTH'=,HS — —TrHTEQH < —||HT22HHF < \ﬁ

By equation 25, we have

1 1
MTrEQHHT = — [fQZ%TTEQQ% +£212Tr32[Q1Q2 + Q2Q4]
+ 25 Tr%,Q5 + €227 20 TrEs[Q2QF + Q1 Q2]

42621 22TrQe 35 QuQy + €22222TrQu %, Qo Q2 (26)

6
=2t
i=1
where
L 29 2 2 % 2
= M& ZlTr22Q17t2 = MﬁzleTrQng,tg = MTYEQQQ,
§

262122 252,
$21%) 1 ZﬂQZEQqul

2
ty = 2%2522TT22Q2Q%J5 = TrQ2%2Q2Qu, 6 =
We next consider the terms ¢;,¢ = 1, ..., 6. In the subsequent proof, we shall make use of Lemma 6,
Lemma 7 and the property that 35115 = I153,.

By equation 22, we have

282129
to =

TI'H1H222 + Oq.s. (1)

tl = 52 M’I‘I‘Egﬂl —|— Ogq.s. (1)
The limits of ¢3, ¢4, t5, tg can be derived by equation 23:
% ,
ts = MT‘I‘EQH2 + 04.5.(1),

522%22

ty = 2 TI‘EQHQH& + Oa.s.(l)a

282123
M

§22123
tﬁ M T 1_.[282(22)]:[2]:[1 + Oq.s. ( )

ts =

TI'HQSQ(EZ)HQ]-—Il + 0q.s. (1)a

and

Using Lemma 5, we find

1
IBTH Szas5| < M3 7 I B2 (L + 2Q2) Qi XalF < T
1
Ty T
|B8'H Xsae| < M3/2||Q2X2||F S i

Therefore, the terms 3TH"X5a;,i = 5, 6 are ignorable. The proof is now complete.
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B.4 PROOF OF COROLLARY 3

Letting A\ = A\s = 0, by equation 3, we obtain
B = €07 + (1 - )2t
= (X X)X (X B+ e1) + (1 - €)(XoX3) ' Xo(X3 82 + €2)
=&B1 + (1= )B2 + £(XaX]) " Xier + (1 - §)(X2X]) ™ Xoe.
Plugging this into ER(3;), one may obtain that
ER(B,) = |2,/%(8: - B
= [|=* 6y + €(XaXT) " Xier + (1 - )(XoX]) ™ Xoeo] [
= Bias + hy + hy + 2hg + 2hy + 2hs,

where
hy = 2T XT (X XT) 12 (X X)X e,

hy = (1 —€)e3 XJ (XaX]) ' B (XaX]) ' Xae,
hy = 4755 (X1 X]) ' X1 e,
hy =&(1— &)y B (XoX]) ' Xoe,
hs = (1 — el X (XaX]) "2 (XoX3) ' Xoen.
By Lemmas 4-5, we have with high probability,
|ho — (1 = €)?0*Tr(XoX]) ' 8o| = |he — (1 — £)?0°Tr(Z2Z2) |
< (1-6%0°(2223) s

27)

Lemma 6 implies that with high probability,
M
Tr(Z2Zd) ™ = ——— +04.5.(1).
2
Combining this with equation 27, we obtain with high probability,
M
hoy=(1—¢6)%0* ——— (1404, (1)).
2= (1= %% -7 (14 000 (1)

Similarly, one may derive with high probability,
|| < o | XT (X2 X) ' B2(XoX]) ' Xo| e

1 —
= 02\ TH(X, XT) 12X, XT) 1 < AL

Using Lemmas 4-5, the following estimate holds with high probability,
|y — €0 Tr(X X ) ' S| < [ Z2(X1X]) e

1
S VMIZPI 2@z R S

Then by Lemma 4 and Lemma 6, one has with high probability,
-1
1 1 _ _
Te(X;X]) 'S, = NlTr<lelzI> IS 8 Sl

1 Ny

= T332 40, (1).
NlNl—M T2u924q +0()
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Therefore, for £ # 0, we get with high probability,
1
€202

_ 1 _
hy = Tr(XyX[) 'S + 04.4.(1) = mrﬁzﬁh ' 04.6.(1).

We note that o ial/2 12 )
lvI* 2 Bias = £[|35" y[|* 2 Amin(Z2) 171" 2 7%

Since 0p7(31) < 1,01(X2) < 1, it is easy to see Var ~ 1. Using Lemmas 4-5, we get with high
probability
|hs| < E20|ly T2 (X0 XT) 7 Xy |
< &0/ Bias|| 2,/ (X, X)X |
VBias 1 _ Bias 1
S < +
~ M4 pML/A \/M \/M

1 — —
< ——(Bias + Var).
Vi )

Similarly, we can estimate with high probability

1 — —
|hs| < —=(Bias + Var).

VM

Combining the above estimates on h;,¢ = 1,2, 3,4, 5, the proof of Corollary 3 is completed.

B.5 PROOF OF THEOREM 3

For simplicity, we present the proof only for deterministic 3; and 35; the extension to the random
case follows by similar reasoning and is therefore omitted. Denote P x, and P x, by

Py, = (X;X])"X;X], Pyx, = (XoX])"XoX].
Note that for any rectangular matrix A and compatible B,
(AAT)™B = lim (AAT + AI,)"'B.
A—0+
We can apply this to A = \/%Xi for i = 1,2 and rewrite the bias as
Bias = i (A,
ias = lim_far(A)
where

6 4
Fu) =70y +2> bi+ > hi+2 Y hj,
i=1 i=1 1<izj<4
and all terms on the right-hand side are given in Section B.2, under the setting Ay = A\¢ = \. Itis
straightforward to see that | fas(\)| < 1. Now we consider f5,()). Let A . (+) denote the smallest
positive eigenvalue. Lemma 4 implies that for i = 1, 2,

2 2
1 ; [M 1 1, M
ﬁi)\max(XiXiT) S 20’1 (1 + M) 5 MALD(X?XD Z 50']\'[ (1 - NZ> , @.S.

Recall that ||31]], ||B2|| < c¢. Then, by equation 18, we have with high probability

ENBIQ1T2Q1 6

d d
ool = |—
‘d)\ > ’d/\

= 2¢2

1
AﬁIQ%ExlxlTEQQlﬁl

1
< 267 B 2INQu 12 HqilelxI

< C, /\max(Xlx—lr/Nl) <
= Qi (X XT/N) + A2
1
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Excess Risk

Figure 3: Theoretical excess risk for different A.. Settings: (M, N1, N2) = (200,200, 600),3; =
3y =TIy, As = 0.5, SNR=4, 31 = B, ~ N(0, ), 0% = 1.

The remaining terms in f},(\) can be bounded in a similar manner, and hence | f},(A\)| < 1 almost
surely. Therefore, {fy/(x)} is equicontinuous almost surely. By the Arzela-Ascoli theorem, fj;
converges uniformly to its limit f, almost surely. By the Moore-Osgood theorem, we can exchange
limits and get,

i 5 S ) = g, i P ) =707, s
Similarly, letting gas(A) = hss + hee With hss and hgg as defined in Section B.2 under the setting
At = As = A, we get gy converges uniformly to its limit, g, and

. . ) _ . . . — + LS.

il o) =l on ) =000%)
By Theorem 1, f = Bias and g = Var under the setting A = A\ = . It is easy to verify that the
remaining terms appearing in 19 are asymptotically negligible, and that f, g are right-continuous.
The proof is completed.

B.6 PROOF OF COROLLARY 2

The Stieltjes transform of the Marchenko-Pastur distribution is given by

m,(z) = [ At <l—%>—z—¢2<ﬂj—1—%>2—4%.

(28)
T —z N2
We take the derivative of ER(3;) with respect to £, and evaluate itat { = 0 :
0 MY\ d
—ER = o2 AdAm; SNR — — | — s (1)
¢ 8 £=0 7 ( vt Nz)dz (2ma(2) 2= + 0 (1)
Since
m (z)—/ 4 (x)——1+/id (@)
my(2) = [ ———demp2(®) = o 5 domp2(T),
we hence get that
d
g(zmg(z)) > 0|z:—)\5‘ (29)
Therefore, (%ER(BS)\&:O and A\ ASNR — NMQ share the same sign almost surely. That is, the

limiting optimal value of £ is negative when equation 10 holds, which establishes Corollary 2.

We provide an example in Figure 3 to illustrate this corollary. Specifically, when A\; = 0.5, the
limiting optimal value of £ is positive, whereas when Ay = 0.01, it becomes negative.
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B.7 DETAILS FOR PROPOSITION 1 AND REMARK 2

Recall that ER denotes the excess risk of the ridge regression model trained solely on the target
domain data.

Assumption A.1. When (31, B2 are deterministic, we assume that :

2
g
‘BI)\t)\S [TT, 25115 — AJT, T8, (22) 5] 35 — 3, T (T — AT

BT N2TL,S8, ()1, — Asnzzm‘ >

where c is a positive constant.
Assumption A.2. If 3 = 31 = B3 is random, we assume that
~2

o :
M

|:)\t)\STI‘H1H222 — AtAgTYHQSQ(EQ)H2H1:| — %TI‘[EQ(HQ — ASH/Q)H > c,
2

where c is a positive constant.

Proof of Proposition 1: (i) Suppose the conditions in Theorem 1 hold. Note that
0

78 ER(B:) e = 267 AIL BTl — AXTL 165 (521 ] B

202
+ 207 [AN2T1585(39) Iy — AT 35y — MTr[zg(Hg — AIIY)] + 04.6.(1).

Under the conditions in Theorem 1 and Assumption A.1, the asymptotic excess risk is a quadratic
function whose minimizer is bounded away from 0. Therefore, ming ER(/3;) is strictly less than
ERj almost surely.

(i1) Similarly, suppose Assumption A.2, under the conditions of Theorem 2, the inequality equa-
tion 13 holds by noticing that
0 252 20

2
8—§ER(65)|§:O = S [ MATILIL S, — AN TS, (S)TILIL | - Emm(m — AJI)]

+ 04.5.(1).
Further discussion on Remark 2: To clarify the dependence of Assumption A.l on the geometry

of 31, X9, 31, 32 and the noise strength o2, we consider a simple example in which 3o = I,;.
Then we have

0 o2 M
aER(ﬁs)k:O = A (1my — Ay B 1 B — N, (e~ Asmny) — As(my — M) 85
+ 04.5.(1)
oM d
= (>\s)\t5-1rnlﬁ2 - Tz - /\sﬁ;—')’ ) &(ZMQ(Z))’Z:,)\S + 04.5.(1),

) (30)
where my(2) is defined in equation 28. Recalling equation 29, we have |6%ER([35)|5:0| > cif

le] > C for some constant C'. Below, we discuss two cases, when 31 = I, and when 3 # Iy

e 3, = I,,. The term e becomes
oM

N, BB - )

e = Ashm, B3] B —

Recall that the limiting ridge risk is minimized at A} = %, with asymptotic excess
risk o2 N%QQ(—)\;‘) (Hastie et al., 2022). Taking As = A\X, we have

e =\ (\my —1)8] Ba.
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Note that

X
Amy — 1= —/ ooy )\tdQMpJ(l‘) < 0.

Therefore, in a small neighborhood containing 0, ER(3;) is monotonic in £, indicating
that the teacher’s supervision is helpful — even outperforming the optimal ridge regression
— provided that 31 and 35 are not asymptotically orthogonal.

¥, # I By taking As = A}, e becomes
mi10;

M
e=A(MBIILB — B3 B1) = — A Z

i=1

Thmio Tuu/ Bs, 31
10%

where m; is determined by Lemma 2 and ¥; = Zf\il oiuiuiT represents the spectral
decomposition of X;. By equation 31, the alignment of 3; (¢ = 1, 2) with the eigenvectors
of 3 determines whether Assumption A.1 is satisfied. Therefore, given A\; = );, under
the “help” of covariate shift, even if 3] B2 = 0, it may still be possible to find a £ such
that ER(3;) < ERy, a.s. By comparing with the case where 37 = I, we find that the
presence of covariate shift can, in some cases, be beneficial.

Note that, up to asymptotically negligible terms, ER can be expressed as a quadratic function of
£ : ER(Bs,&) = A€? + BE + C. Below we provide closed-form expressions for the asymptotic
optimal £* = — % under several common settings.

(1) Wheny = By — B, 2, 2L < (147),

a*M c
Ny — M

M o?

0,1).
No— M N =M (0.1)

—1
&= <’7T22"/ + o2 Tr22211>

(2) When 3 = 31 = 35 is random, and 31 = 3o = I,

where

M 5
~ (my — Asmy) — %AMS (mymy — Asmym, )
* 2
: A+ Ay + Ay
52 2/ 2 / 2\2, 1, 1
A= ) (Afmy — 20fAsmam + NEATmymy)

M
Ay = A (my — 2Asmymy + N2mymb — Aemy + 20 Asmom) — A AZmimb)
M
As = E (mz - )\smlg) .

(3) When B = 31 = 32,3 = Iy,

*

BTN — Ay T8 + ZM () — Aemdy)

BTN+ A2l — 2, | TG B+ U N gy, T 4+ @2 (1 — Amd)

Ny

B.8 PROOF OF LEMMA 7

The following result, which is an immediate consequence of Lemma 2, will be used in the proof

below:

—1
—zm = <1 + ;TrEH(z)> . (32)

We abuse notation by writing z; and z; for z; and Z,, respectively, whenever there is no risk of
ambiguity. Without loss of generality, we assume ||u|| = ||v|| = 1 and z1, 22 lie on the negative real
axis, as the other cases follow by analogous arguments.
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Using standard techniques of martingale decomposition (see, e.g., Bai & Silverstein (2010)), we can
prove the almost sure convergence of the random part:

uTQ(Zl)AQ(ZQ)V = uT]EQ(Zl)AQ(ZQ)V + 04.5.(1). (33)

Therefore, it suffices to consider the term u'EQ(z;)AQ(22)v. Let 01 > --- > o), denote the
eigenvalues of X. For the sequence of deterministic matrices, we denote A p; = o(1) if ||A || — 0.

Since
Q(21)AQ(22) = Q(21)AIL(22) + Q(21)A(Q(22) — II(22)), (34)
we obtain by Lemma 6 that
u'EQ(21)AQ(22)v = u"EQ(21) ATl (22)v + u'EQ(21)A(Q(22) — M(22))v
— WTTI(20)ATI(25)v + u"EQ(21) A(Q(z2) — I(2))v + (1),

where the second identity follows from Lemma 6, the Dominated Convergence Theorem and the
fact that

—1 _ _
ITX(20) | = max 21 + zom(z1)oi] <[z |7 [|ATI(22)v]| < [|A][[TT(22)]| < |2of 7| Al

(35)

Therefore, our task reduces to finding the deterministic equivalent of

EQ(21)A (Q(z2) — I(22)).

Denote

—1
X vl o (XXTL
k= xrey, Q_i(2) = N 2Iar .

By Sherman-Morrison formula, one may easily check that

~Q r(2)xpx] Q_x(2)

Q(2) = Qkl2) — 57 s PR
Qi (2)xi o
QP = 1T q (o
We show here the following result for future use:
%ET&CQ,I(ZI)AQ,I(@) = %ETrCQ(m)AQ(Zz) +o(1), (37)

where C € RM*M g 3 deterministic matrix with | C|| < C for some constant C. We decompose

Q(21)AQ(22) — Q-1(21)AQ_;(22)
=[Q(z1) — Q-1(21)]AQ(22) + Q_1(21)A[Q_1(22) — Q_1(22)].

Applying the identity
A7'-B'=B/(B-A)A}, (38)

we have for¢: = 1,2, and C € RM*M yith finite spectral norm (where C may be a deterministic
matrix, or a random matrix that is either dependent on or independent of X),

1 - -
N|TY[Q(21‘) - Q_1(%)|C| = %|XIQ(%‘)CQ—1(21)X1| <N

We denote d = min{dist(z1, R"), dist(z2, R")}. One may easily check that d ~ 1. Then by

%1]1* = 0a.5.(1).

1 ~ M ~ ~ 2M
v TQ(=) = Q-1(2)]Cf < H(1Q(=)Cll + 1Q-1(2:)Cl) < —7, fori =1,2,

and the Dominated Convergence Theorem, we obtain equation 37. By similar arguments, we get for
any deterministic unit vectors u, v,

u"ECQ(z)Cv

u"ECQ_1(z)Cv + o(1)
=u'CII(z)Cv + o(1), i = 1,2, (39)
u"ECQ(21)AQ(22)Cv = u"ECQ_1(21)AQ_,(22)Cv + o(1),

25



Under review as a conference paper at ICLR 2026

where C and C are deterministic M x M matrices with finite spectral norms.
We denote
1 T g ]. T
b = NXkQ—k(Zz)le b= NEXkQ—k(Zz)Xka
1

~ 1
bk: = NX-/CI—Q—/C(ZI)XIW b= NEXZQ_I"(ZI)X’C'

It follows directly from the proof of equation 37 that

b

1 1
—ETrEQ_1(20) = —TrSTI(23) + o(1),
) N 1\<2 N 2 (40)
b

%]mzcz,l(zz) . %T@H(ZQ) +o(1).

Recalling equation 32, we rewrite EQ(21)A (Q(z2) — II(22)) as

EQ(21)A(Q(22) — M(22)) = EQ(21)AQ(22) (Tnr — Q' (22)TL(22))
= EQ(21)AQ(22) (TT " (25) — Q' (22)) T(22)

=EQ(21)AQ(22) ( - —XXT - 22m2> TI(z5)

EH(ZQ) B iEQ(zl)AQ(Z2)XX_TH(Z’2)-

= EQ)AQE) [ Trprs
41

An application of equation 36 yields that

1 & + 1 o Q_r(z0)xpx]
N Z EQ(21)AQ(22)xx, = N Z EQ(Z&)AW
k=1 k=1
b— by, }

N
— 75 ZEQ(%)AQ%(@)XkXZ {1 + T+br)

_ (11+b {ZEQ 2)AQ_ (m)xux] + EQ(21) AQ(ZQ)XBXT]

1
= — (EF, + EF,),
1+b( 1 2)

} R (42)
where B = diag(b — b1y, b— bN), and

N
F, = %ZQ(Zl)Aka(@)XkXZa F, = %Q(Zl)AQ('Q)XBXT'

We now bound the spectral norm of F5. Define the event
1 T M 2
E=¢—=ZZ"|| <2(1 —) 7.
{F1z2") <20+ 57}

1H

‘We then have

EFs| < BF | < 12l 5xBxT)

< IA[IE]
< g

- 1 -
< CEmax|b—by| + N\/Emkax|b — by|2E||ZZT||26(£€).

[ (1+V/9)’E|B||5(€) + %EIIBHHZZTW«‘TC)]

By using the inequality that (see e.g. Bai & Silverstein (2010))
P(EC) < N~ forany £ > 0,
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we have

E||ZZ7|*5(£°) < EI|ZZT[[F3(7) < \/E[|ZZT|{P(EC) “3)

< N100(N=101y — o(N~1).
It can be shown by Lemma 3 that for £ > 1,
E|z] 21/2Q_;X%z;, — TrEQ_;(2)["
(Nt)f

JEE_|z] 2V2Q_x =%z, — TrEQ_1(2)|Y]

N¢
E[(TrQ?,)"/* + Tr(Q-x)"]

N¢

P(jb—bi| > t) <

<t~ *c

S Ct—fN—é/27
where we use the fact that
M

Tr(Q-k(22))" < MQ-s(=)[" < 57

By taking a large enough ¢, we have

E max |b — by,| = </ —|—/ )P(max|5—bk|>t)dt
k t<N-1/4 t>N—1/4 k

N
gN*1/4+/ > P(|b — bi| > t)dt 44
t>N-1/4 T
< 2N~V4,
Similarly, one may obtain }
Em}gmx|b—bk|2 = o(1). (45)

This, along with equation 43 and equation 44, implies that
[EFs | = o(1).

By using equation 36, we rewrite

N
Y EQ(21)AQ_ (22)xkx]

1

EF, =

2|~
i

1 Q—k(zl)XkXZQ—k(Zl)]

E[Q-k(=1) — N 1+ by,

AQ ;. (z2)xkx),

2=

M= [

N 1 ) T 3
EQ 1 (21)AQ_,(22)xsx] — % ZE NQ—k(le)j’“;(:Q H) AQ_(z2)xkxy,

=z =
=
Il
I

—EQ_1(21)AQ_,(22)% ZE Q-k(21)xxf Qk(21) AQ_(22) X1,

N

T 2 B ke Qi) AQ ()

=1

=EQ_1(21)AQ_;(22)

7 (bx — b)
XXy 1+ by

! - (EF: + BF)
(46)
where

Fi = —Q_1(21)x1x{ Q_1(22)AQ_; (22)x1%] ,

by — b
paxi (11—|- b1).

1
N

Fo = —Q_1(z1)x1%] Q_1(22)AQ_, (22

1
N
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We first consider EF5. Let i1, v denote a pair of unit vectors satisfying

@,V =arg max [ EFyv|,
lall=]v]=1

andlety = Q_1(2,)@ = (y1,...,yar)". Using the Burkholder’s inequality (Burkholder, 1973), we

have
M M
2
E YiZi1 E Yi
i=1 i=1

M
< CElyl|*+CEY v} <1,

~
i=1

4
Ely'x;|* =E < cE

2 M
+ CEZ lyizal*
i=1

where we use the inequality
M M 2
Syt < (ny) < Iyl
i=1 i=1

Likewise, we have E|x] v|* < 1. It follows from Lemma 3 that

~ c
Blby — Bl < (@2, (21))"* + TrQL, (1) <

and
Elx{ Q_1(z1)x1|° < CE[x{ Q_1(21)x1 — ETrEQ_1(21)|* + CIETYEQ_1(21)|* < N*.
Since by > 1, we can bound the spectral norm of EF; as
|EF,| = [@"EFy¥v| < E[a"Fyv|

1 ~ -
< NE|UTQ,1(21)X1XIQ,1(Zl)AQil(ZQ)X1X1V||b1 — b

1 ~ =
< VBT VRERT Q1 (1) AQ_y (22)x (by — B)f?

IN

1 ~ -
e VEY BT wlt BT Q) (1) AQ_ (2 Bl — B

1
< CNO(N) =o(1).

Therefore, it suffices to find the deterministic equivalent of EF;. We recall the definition above
equation 34 that Ap; = o(1) if ||A ]| = o(1). Let E_1 () = E[-|x2, ..., x]. We have

]EFl = %EQ,1(Zl)Xlx-lrQ,1(Zl)AQil(Zz)Xlx-lr

TEQ (20 [E-1xix] Q1 (21)AQ_ (22)x1x]
= %EQ,l(zl)zl/QE,l[zlzIz:l/?Q,l(zl)AQ,l(22)21/2z1z1]21/2
= %EQA(ZH (Tr2Q1(21)AQ_(22)]®

(47)
+ LEQ(21)2[Qu1(21)AQ 1 () + Qi (22)AQ 4 (21)] =

+ < (B2l = 3)EQ_1(21) 2" 2diag(2'/?Q_1(21)AQ_, (22)E'/?)n!/2

]

= E[Tr2Q_1(21)AQ_;(22)]Q-1(21)T + o(1)

- =

= — |ETr=Q(21)AQ(22) |TI(21)E + o(1),

=
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where the last identity is due to equation 37, equation 39 and

%E ([TrEQ-1(21)AQ_1(22)] Q-1(21)%

:%]E[TrEQ_l(zl)AQ_l(ZQ) —ETr2Q_1(21)AQ_;(22)|Q-1(21)=

—|—% [ETrEQ_1(21)AQ_1(22)]Q-1(21)XZ

= SE[TSQ(:) AQ() (213 + o(1).

By equation 40, equation 42, equation 46 and equation 47 and the fact that ||TI(z2)]|| is bounded, we
have

1
NEQ(zl)AQ(zg)XXTH(zg)

:(1—1H3)EF1H(z2) +0(1)

:1}#5 EQ-1(:1)AQ 4 (22) ST (z2) — - i ZEF1TI(2) | +o(1)

_EQ(21)AQ()STM(z)  y[ETrEQ(21)AQ(22)]II(21) E11(25) +o(1)

1+ A TrET(z0) (1+ +TrEI(20))(1 4+ 4 TrEII(21)) '

This, along with equation 34, equation 41, leads to
EQ(z1)AQ(22)
1
TT(2)ATI(2) + N[ETrEQ(zl)AQ(zg)]H(zl)EH(zg) +o(1). (48)

(14 +TrEII(22))(1 4+ +TrEII(z))

Multiplying both sides of the above equation on the left by 32, and taking the trace, we obtain

%ETrZQ(Zl)AQ(ZQ)

LETrEQ(21)AQ(22)] & TrEII (21 ) I(22)
(1+ % TreII(22))(1 + 1 TrEII(2))

:%TrEH(zl)AH(zQ) + +o(1).

It follows that

LETSQ(:1)AQ(=)

_( L Tr3TI(21 ) X1 (22)
B (14 +TrET(20))(1 + + TrEIT

(49)

-1
(2’1))> NTrEH(zl)AH(Z2) +o(1).

Plugging equation 49 into equation 48, we get
EQ(21)AQ(z2) = M (z1)ATI(2,)
+TrEII(2)AIL 50
i = r1 =) (22)1 I1(21)X11(22) + o(1). C0
(1+ $Tr3I(22)) (1 + 4 TrETL(21)) — + TrETI(2; ) STI(20)

+

The result equation 15 follows by combining the equation 50 with equation 33. Now we prove
equation 17. Using a proof analogous to that of equation 33, we can obtain that

S TC[Q(1)AQ(22) ~ EQ(1)AQ(=2)] = 04 (1), (51)

We denote the spectral decomposition of C by

M
C = E )\iuiviT.
i=1
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By equation 50, we have

M
L TICEQ(:1)AQ(2) = %Tr; NuvTEQ(:1)AQ(2:)

M
= % Z AiviEQ(21)AQ(22)u;
=1

1 M
=7 Z v TI(21)S(A)TI(22)u; + o(1)

1
= M’I‘rCH(m)S(A)H(Z‘z) +o(1).

This, along with equation 51, establishes equation 17.

B.9 DETAILS OF SECTION 5.2

In Case 1 of Section 5.2, where X; = aXs + 5(1, the following result holds.

Proposition 2. Suppose that Xl, X, €1 and 5 satisfy Assumptions 1-2. Then Theorem 1 continues
to hold. Moreover, if we additionally impose Assumption 3, then Theorem 2 remains valid.

Proof: We recall that z; = —\¢, 20 = —A\s. We only consider hss in equation 19 here and the
remaining terms can be handled analogously. By equation 21, it suffices to estimate
1
NTY(IM + 22Q2) B2 (Ins + 22Q2)(Q1 + 21Q7).
Since
—1

1 - 1~ = - -
Q= (NX1XI—leM> = (NX1XI—211M+A) , A= %(X1X§+X2X1+axzxg).

We denote Ql = (ﬁil }N(I — 21 M)fl. Applying equation 38 and Lemma 4, we have with high
probability,

- ~ 1
B[ = [1Q1 — Q| = [Q1AQu] < WHAII Sa=o(l). (52)

Then we obtain . . N N B
TTQQ} = TTrQe%(Qf + B + EQu + QIE)

E
TrQ2X2Q7 + 04.5.(1),

Z2
N
where we use the fact that

1 ~ M ~ ~
QB < QBB S 1B = 00 (1),

By similar argument, we have

2.2

TZTI(INI + 22Q2) o (Inr + 22Q2)(Q1 + 21Q3) + 04.5.(1).

The proof is completed.

hss =

For Case 2 in Section 5.2, we have the following proposition, which also covers the setting of self-
distillation.

Proposition 3. Suppose X; = Xo + A is a signal-plus-noise data matrix, with ||A| = o(v'M).
The regression parameter vector 3 = 31 = B9 satisfies Assumption 3. When \s # A\, we have

= a b c
Bias = MTrZQ[Hg(—)\t) — T (—X)] + MTrEQH/Q(—)\t) + MTI‘EQH/Q(_)\S)7
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1620
1621 520—2
1622 Var = T (dTI‘EQ[HQ()\t) — 1—.[2(7)\5)] + eTrEgH;(*)\t) + fTI‘ZQHIQ()\S)>
1623 1

1624 2 2 1 /
+ (1 — 0 —Tr3s [TI5(—X\) — AJI5(— X
1625 ( 5) N, r 2[ 2( S) s 2( 5)]»

1626 where

1627 o — 262 | 2EAA(EN — A) _ 25/\2)&2 h— §2/\2 _

1628 As — A (As — Ap)? (As — As)?’ t

:Zi o2 26N N2 de 2)s . A2 . A2 2As At

1631 : /\t - /\s’ >\t - )\s (>\t - )\5)2 (>\s - /\t)3 (>\t - >\s>2’

2 2 2

1632 e= At 2As A\t . AL L f= A5 AN -

1633 ()‘t - )‘S) ()‘s - )‘t) As — At ()\s - )\t)

1634 When \ = \g = A\, Bias is given in equation 54 and

1635 - 1 €252

1636 Var = (1 — £)?0? —Tr3, (T, + MII,) +

1637 N M
k 4

1638  with Hé’“) _d (111;( )|Z}X

1639

1640 Proof: By an argument analogous to that used for equation 52, one may readily verify that

o 1Q1(2) — Qa(2)[| = o(1).

1642

1643

1644 1 1

1645 MTrEQHHT =M E27TrEyQ3(21) + 262120 TrEsQa(21) Qa(22) +26727 20 TrE2Qa(22) Q5 (21)

1646 b t2
1647 + Z%TI‘Z:QQS(ZQ) + 252’12% TT[QQ (ZQ)Z:QQQ (ZQ)QQ (Zl)]

1648
1649
1650 + €227 25 Tr[Qa(22)22Qa(22)Q3(21)] | + o(1).
1651 £

1652
1653

1654 Qa(21) — Qa(z2) = (21 — 22)Q2(21)Q(22), Qa2(21)Q2(22) = Q2(22)Qa(21).

1655 Then we have
1656 1 282120 Q2(21) — Qa(22) 282122

—t = T 2 = T 2 ].__[ - ]._.[ a.s 1 9
1657 ik M T2 p—— M(z1— ) 305 [ (21) 2(22)] + 0a.s.(1)
1658 5 o
1659 1 28"z 2

ety = —=> 178
1660 M™? 7 Mz — z)
1661 262212 ,
1662 = —mTrzzﬂz(zl) -

1663 1 9222

122: Mtg = mTYZQ[QQ(Zl) — Q2(22)]Q2(22)

28z 22

1666 1<2 /

= ————=_Tr3sII5(29) +
1667 M(zl - 22) 2 2< 2)

1668 1 €222 ,
1669 Mtzl = mTI‘EQ[QQ(Zl) — QQ(ZQ)]
1670 5 5 -
1671 - %Trgg Q2(2) + Q2(z1) — o Q2(21) — Qa(22)
1672 (21 — 22) 21 — 2o
2,2,2 5
1673 £°25 25 , , 2622 22
= ————=-Tr3, |10 II —
M(z1 — 22)2 13 [y (1) + T3 (22)]

and

2622\
)\t - )\s '

TrE,[TT, — 3ATT, + 3A2TISY — NPT1SY),

Then equation 26 becomes

ts

We note that when z; # zo,

Tr3s[Q2(21) — Q2(22)]Q2(21)
25%%22 B . )
Moy — )2 P o2lM2(21) = Ta(22)] + 00 (1),

2 2
M(flziljiﬂzﬂzﬂnﬂzl) — My (22)] + 04.5.(1),

WTYEZ[HQ(ZD —IIy(22)] + 04.5.(1).
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Based on above results, we have ﬁTrEQHHT = ]gi;s + 04.5.(1). As for the variance, one may
check that

52 0_2

j—
55 Nl

-+ Z%(ZQ — 21)71221_[/2(2’2) -+ Z%(Zl — 22)7222[]]2(21) — HQ(ZQ)] — 22122(22 — 21)72TI'22H/2(2’1)
+ 22122(21 — ZQ)iZTrEQ[H2(Z2) — ]._.[2(21)]

Tr 22[]12(2’1) + 21]._.[/2(2’1)] + 22’2(2’2 — 21)7122[]:[2(2:2) — Hg(zl)]

+ 2125(21 — 22) PTeEp [T (21) + I (20)] — 2125 (21 — 22)° Tr[Ma(21) — Ma(22)]| + 0a.s.(1),

(53)
and the limit of hgg is the same as that in equation 24, where hs5, hgg are given in Appendix B.2.

When A = Ay = A, denoting Q2 = Q2(—\), we have

%TrZQHHT = [(1 +O2NTrE,Q2 — (26 + EHNTrE, Q5 + §2A4Tr22Q;1]

_ {(1 2N TYSLIT, — (26 + )N TS, Y + 54)\4Tf221'1(23)} +04.5.(1),

=

—

Bias
(54)
where we use Vitali’s convergence theorem. Similarly, we have

2 2
hss = %Tri)z[ﬂg + 3200, + 322112 + 2T1Y)] + 04..(1),

and the limit of hgg coincides with the one given in equation 24. The proof is completed.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 NONLINEAR MODELS

When considering more complex models, we fix the student model and let the teacher model be a
deeper fully connected neural network:

fin = al 6(W30(Wa0(W1x))),

where

1 = = =
a; = argmin EHyl — [U(Wga(Wgo(Wlxl))]TaHQ + )\t||a||2.
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Figure 4: Excess risk estimated over 30 trials. We set (M, Ny, N3) = (50,200, 100). (a) Settings:

(A, ds) = (0.5,0.2), o(x) = 2. The weight matrices W € R™"*M and W € R"*M have
ii.d. centered Gaussian entries with variance M ~!, where (n,n1) = (100,200). (b) Settings:
At = Xs = 0.2, (ng,m1,n2,n3) = (M, 600,400, 200). The weight matrices W,; € R™*™i~1 have
i.i.d. centered Gaussian random variables with variance n;_; ~'. We use the Leaky ReLU activation:
o(z) =0.01z0(z < 0) + zd(x > 0).

C.2 DEMONSTRATION OF COROLLARY 3

— |lvl =3.58, Theory
llvl =3.58, Theory
— vl =0, Theory
llyl = 3.58, Simulation.
= |yl =3.58, Simulation.
= |y| =0, Simulation.

4.0

Figure 5: Theoretical predictions (solid curves) versus simulation results (scatter points, averaged
over 100 independent trials) for ridgeless regression. We set (M, N1, No) = (400, 600, 600), B2 =
\/%(1, ., DT 02 = 1 and By = I);. We label the case ||v|| = 3.58 as v = \;—%(1, e 1,0,..,0)T
with the first M /5 entries equal to 1. The orange and green curves correspond to the setting where
3, = diag(4, ..., 4, i, s i), with the first half of the diagonal entries equal to 4 and the second half

equal to %. The dark blue curve corresponds to the setting where 31 = 41,,;.

Figure 5 presents empirical results that support 3. The gap between the orange and green curves
quantifies the impact of model shift on the excess risk. Furthermore, the gap between the dark blue
and orange curves reflects the role of the term Trz;122 as characterized in Corollary 3.

C.3 IMPACT OF REGULARIZATION PARAMETERS

To examine the impact of the regularization parameters A, \s, we plot the empirical excess risk of
the student model for (¢, As) € [0.01,0.5]% in Figures 6-8 (averaged over 5 trials), correspond-
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ing to £ = 0.5,—0.5 and 1.5, respectively. We set 31 = B2 ~ N(0, ﬁIM),(M7 Ny, No) =
(400, 300, 200), 02 = 1. We set 3 = I, in the absence of covariate shift. Under covariate shift,
we set Xy = diag(dy, ..., dpr), where

d; = 0.648(i < M/2) +0.256(M/2 < i < M).

From these figures, we observe that when £ > 1, the influence of \; becomes large. In contrast, in
the case £ = —0.5, A\ almost dominates the variation of the excess risk, reflecting a weaker impact
of the teacher’s guidance (anti-learning against the teacher’s supervision).

Excess Risk

11

(a) With covariate shift (b) Without covariate shift

Figure 6: Excess risk when £ = 0.5.

Excess Risk o Excess Risk

B : “S]; :
£ 4

: b
g .

1s . “SL )
- :

(a) With covariate shift (b) Without covariate shift

Figure 7: Excess risk when £ = —0.5.
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Excess Risk Excess Risk

(a) With covariate shift (b) Without covariate shift

Figure 8: Excess risk when £ = 1.5.
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