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ABSTRACT

Cross-domain knowledge distillation often suffers from domain shift. Although
domain adaptation methods have shown strong empirical success in addressing
this issue, their theoretical foundations remain underdeveloped. In this paper, we
study knowledge distillation in a teacher–student framework for regularized linear
regression and derive high-dimensional asymptotic excess risk for the student es-
timator, accounting for both covariate shift and model shift. This asymptotic anal-
ysis enables a precise characterization of the performance gain in cross-domain
knowledge distillation. Our results demonstrate that, even under substantial shifts
between the source and target domains, it remains feasible to identify an imita-
tion parameter for which the student model outperforms the student-only base-
line. Moreover, we show that the student’s generalization performance exhibits
the double descent phenomenon.

1 INTRODUCTION

The success of modern machine learning tasks typically requires the availability of large-scale la-
beled datasets. However, collecting labeled data for a new target task is often challenging and ex-
pensive. When data in the target domain is scarce, it is possible to leverage labeled data from related
source domains. Knowledge distillation (KD) (Hinton et al., 2015), originally proposed for model
compression, is a popular technique that transfers knowledge from a capable teacher model trained
on a source domain to a smaller student model. This is achieved by guiding the student model to
mimic the teacher model’s outputs. The extra information in the teacher’s predictions often improves
the student model’s performance when target domain data is limited. KD has recently achieved re-
markable success across several fields including image classification (Radford et al., 2021; Li et al.,
2024), speech recognition (Mingote et al., 2020), and language models (Gu et al., 2023; Agarwal
et al., 2024).

We denote the source domain data and target domain data as (X1,y1) and (X2,y2), respectively.
This work focuses on the following cross-domain KD process: a teacher model is first trained on the
source domain data, and its predicted labels for the target domain inputs are then used to supervise
the training of the student model by minimizing the per-sample objective function,

L(ξ) = ξℓ(yt2, y
s
2) + (1− ξ)ℓ(y2, y

s
2), (1)

where ℓ denotes the loss function, y2 is the ground-truth label, yt2 is the teacher’s predicted label,
and ys2 denotes the student’s prediction. The weight parameter ξ, known as the imitation parameter
(Lopez-Paz et al., 2015), balances the contributions of the teacher’s predictions and the observed
labels during training. We summarize the key findings of this paper in the following informal lemma.

Lemma 1. (informal) Under mild conditions, the excess risk in linear regression with quadratic
loss admits a unique minimizer ξ∗, which can be negative.

Cross-domain KD often suffers from a shift between the source and target domains. For instance,
the source domain may consist of standard American English speech, while a region-specific voice
assistant must handle local dialects. Another example is a face detection model trained on images
of light-skinned individuals (source domain) being applied to images of dark-skinned individuals
(target domain). Learning a discriminative predictor under such domain shifts between source and
target domains is known as domain adaptation (Ganin et al., 2016). While much of the literature on
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domain adaptation has focused on improving the performance of KD, relatively little is understood
about when – and how effectively – the student model can learn from the teacher in the presence of
domain shift.

Recently, Emrullah Ildiz et al. (2025) analyzed the weak-to-strong (W2S) generalization of linear
models in a cross-domain setting, and identified the form of the optimal surrogate model. However,
their analysis relies on the condition that the covariance matrices of the source and target domains are
jointly diagonalizable, which limits its ability to capture the influence of eigenvectors. Moreover,
their results are restricted to the setting ξ = 1 (i.e., pure teacher supervision), leaving the trade-
off between distillation and learning from observed student data unexplored. Motivated by these
limitations, we take a step toward a more complete understanding of the performance gains of cross-
domain KD for linear regression.

In this paper, we present a theoretical analysis of cross-domain KD in the context of linear mod-
els, leveraging tools from random matrix theory. For ridge regression, we study two cases: (i) a
deterministic-parameter setting, in which the teacher and student parameter vectors are non-random;
and (ii) a random-parameter setting, in which a shared parameter vector is drawn from a prior distri-
bution. We also extend our analysis to the ridgeless regression setting. All proofs of the theoretical
results are provided in the appendix. We summarize our contributions as follows:

• High-dimensional risk characterization. We derive precise high-dimensional asymp-
totics for the risk of cross-domain KD via a bias–variance decomposition. Our results
reveal how the excess risk depends on the parameter vectors and the input distributions in
both domains, generalizing the student-only setting of Hastie et al. (2022).

• Utility of cross-domain KD. (“Stones from other mountains can polish jade”). Intuitively,
large domain shifts between the teacher’s and student’s training data might limit – or even
harm – the value of teacher supervision for the student’s generalization. Surprisingly, our
analysis shows that even under substantial domain discrepancies, it is still possible to find
an ξ ∈ R such that the student model can outperform the student-only baseline. The
existence of such ξ depends on the geometry of the models and the covariance matrices of
both domains.

• Double descent phenomenon. We observe that the excess risk, as a function of
the dimension-to-sample-size ratio, exhibits the double-descent phenomenon in KD for
teacher-student model – previously documented by Hastie et al. (2022); Nakkiran et al.
(2021) in student-only models, and by Moniri & Hassani (2025) for ξ = 1 under no do-
main shift with isotropic covariance.

1.1 RELATED WORKS

Theory of KD. In recent years, a growing body of work has sought to understand the effects of KD.
The theoretical understanding of distillation began with Phuong & Lampert (2019), who initially
investigated linear student networks. Wei et al. (2021); Borup & Andersen (2021); Das & Sanghavi
(2023); Pareek et al. (2024); Jeong & Chung (2025) theoretically studied self-distillation, a variant
of KD in which the student model has the same architecture as the teacher and is trained on the
same data. Menon et al. (2021) showed that a “Bayes teacher” providing true class probabilities can
reduce the variance of the student’s objective, leading to improved performance. Harutyunyan et al.
(2023) proposed a framework that highlighted a delicate interplay among the teacher’s accuracy, the
student’s margin with respect to the teacher predictions, and the complexity of the teacher predic-
tions. From an information-theoretic perspective, Dissanayake et al. (2025) quantified and explained
the transferred knowledge and knowledge left to distill for a downstream task.

Cross-domain KD and domain adaptation. Many studies have explored various methods to ad-
dress the domain shift problem in the field of KD. Empirical works include Su & Maji (2016);
Kundu et al. (2019); Asami et al. (2017); Li et al. (2023); Xu et al. (2024); Tang et al. (2025). Ye
et al. (2024) proposed the Maximum Conditional Mutual Information method, which enables the
teacher model to capture more contextual information to generate more accurate estimates of the
Bayes conditional probability distribution. The emergence of large language models (LLMs) has
brought new advancements, such as distillation across vastly different architectures and scalable
cross-domain transfer. For more details, readers may refer to Fedus et al. (2022); Ouyang et al.
(2022); Yang et al. (2024). From a theoretical perspective, Emrullah Ildiz et al. (2025) focused
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on the setting where the student is trained using only the teacher’s predictions, and analyzed the
conditions under which the student can outperform the teacher in cross-domain KD.

Weak-to-strong generalization. Weak-to-strong (W2S) generalization (Burns et al., 2024), which
concerns using predictions generated by a weaker teacher model to train a more powerful student
model, is closely connected to KD. Emrullah Ildiz et al. (2025) provided an analysis of ridgeless
regression and proved that when using a weak model as the surrogate (teacher), W2S training can
provably outperform training with true labels. Charikar et al. (2024) assumed that the models are
selected over a convex set, and quantified the gain of the weak-label trained strong model over
the weak model. Wu & Sahai (2025) explored W2S generalization for classification in a spiked
covariance model. Medvedev et al. (2025) explained how W2S generalization can arise in random
feature models described by two-layer networks. Theoretical research in this area has continued to
grow, see Dong et al. (2025); Shin et al. (2025); Moniri & Hassani (2025); Oh et al. (2025), for
example.

1.2 NOTATIONS

We use ∥ · ∥ to denote the spectral norm for matrices and the Euclidean norm for vectors, and ∥ · ∥F
for the Frobenius norm of a matrix. Standard big-O and small-o notations are employed. Moreover,
we denote xn = oa.s.(an), if xn/an → 0 almost surely. For any sequences an ≥ 0 and bn ≥ 0, we
write an ≲ bn if an = O(bn), and an ∼ bn if both an ≲ bn and bn ≲ an. We use δ(·) to denote the
indicator function, which takes the value 1 if the condition · holds, and 0 otherwise. Throughout the
paper, c and C denote constants that may vary from line to line. For a random variable x, we use
x ∼ D to indicate that x follows the distribution D.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose there are N1 covariates {x(1)
j }N1

j=1 drawn i.i.d. from an M -dimensional source distribution

D1 and N2 covariates {x(2)
j }N2

j=1 drawn i.i.d. from an M -dimensional target distribution D2. We
consider a linear regression task specified by an unknown parameter vector βi ∈ RM :

y
(i)
j = βT

i x
(i)
j + ε

(i)
j , i = 1, 2, 1 ≤ j ≤ Ni,

where ε
(i)
j ∈ R is a zero-mean random noise term with variance σ2. For i = 1, 2 and z ∈ C\R+,

define
Xi = (x

(i)
1 , ...,x

(i)
Ni

) ∈ RM×Ni , yi = (y
(i)
1 , ..., y

(i)
Ni

)T ∈ RNi ,

Qi(z) =

(
1

Ni
XiX

T
i − zIM

)−1

, εi = (ε
(i)
1 , ..., ε

(i)
Ni

)T ∈ RNi .

We refer to the case where D1 ̸= D2 as a covariate shift, and the case where β1 ̸= β2 as a model
shift.

Teacher Model: The teacher model is finetuned on
{
(x

(1)
j , y

(1)
j )
}N1

j=1
:

βt = argmin
β

(
1

N1
∥y1 −XT

1β∥2 + λt∥β∥2
)

=
1

N1
Q1(−λt)X1y1, (2)

where λt > 0 is the teacher regularization parameter. The risk of βt when M ∼ N1 in the high-
dimensional setting has been studied extensively in the literature such as Dobriban & Wager (2018);
Hastie et al. (2022).

Student Model Trained with Cross-Domain KD: We use the pre-trained teacher model together
with covariates {x(2)

j }N2
j=1 to generate predictions:

yt
2 = (yt1, ..., y

t
N2

)T =
(
x
(2)
1 , ...,x

(2)
N2

)T
βt.

3
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The student model is finetuned on the target domain data {(x(2)
j , y

(2)
j )}N2

j=1 and the teacher’s predic-

tions {(x(2)
j , ytj)}

N2
j=1, using the per-sample objective function defined in equation 1 with an imitation

parameter ξ, as follows:

βs = argmin
β

L(ξ) = argmin
β

ξ

(
1

N2
∥yt

2 −XT
2β∥2

)
+ (1− ξ)

(
1

N2
∥y2 −XT

2β∥2
)
+ λs∥β∥2

= (X2X
T
2 +N2λsIM )−1(ξX2y

t
2 + (1− ξ)X2y2),

(3)
where λs is the student regularization parameter. While it is common to restrict ξ ∈ [0, 1] (Lopez-
Paz et al., 2015), we do not impose this constraint, in line with Das & Sanghavi (2023); Pareek
et al. (2024). From equation 3, the parameter ξ is independent of Q2, making it possible to choose
a negative ξ that achieves better generalization performance. For the covariates x(i)

j and the noise

terms ε
(i)
j , i = 1, 2, 1 ≤ j ≤ Ni, we make the following assumptions, which are standard in the

random matrix theory literature (see, e.g., Bai & Silverstein (2010)).
Assumption 1. Suppose X1,X2, ε1, and ε2 are mutually independent. Moreover, we assume

(a) the covariates are generated according to

Xi = (Σi)
1/2Zi, for i = 1, 2,

where Zi = (z
(i)
jk ) is an M ×Ni random matrix with i.i.d. entries of zero mean and unit variance,

and Σi is a positive semi-definite matrix. Furthermore, we assume for all p ∈ N, there is a constant
Cp such that

max
i=1,2

E|z(i)11 |p ≤ Cp. (4)

(b) M ∼ N1 ∼ N2.

(c) εi ∈ RNi is a random vector consisting of i.i.d. entries of zero mean, variance σ2, and for all
p ∈ N, there is a constant cp such that

max
i=1,2

E|ε(i)1 |p ≤ cp.

While we allow z
(1)
11 and z

(2)
11 to follow different distributions – a form of covariate shift – our theo-

retical results do not depend on their specific distributions, provided that the moment conditions in
Assumption 1(a) are satisfied. The requirement that all moments of z(i)11 exist can be relaxed to the
existence of (8 + c)−th moment for any positive constant c, with minor modifications to our proof
and hence we do not pursue this generalization here. The following assumption on the structure of
the covariance matrices is imposed to facilitate theoretical analysis and rule out degenerate cases.
Assumption 2. Let τ be a small constant. Denote the eigenvalues of Σi by σi

1 ≥ σi
2 · · · ≥ σi

M ≥ 0.

(a) (Boundedness of Σi). We assume that maxi=1,2 ∥Σi∥ = σi
1 < τ−1.

(b) (Anti-concentration at 0). For i = 1, 2, the empirical spectral distribution of Σi satisfies

1

M

M∑
j=1

δ(σi
j ≤ τ) ≤ 1− τ.

Let (x, y) be an unseen sample of the target task, that is y = βT
2 x+ ε, where x ∼ D2 and ε follows

the same distribution with ε
(2)
1 . Under the mean squared loss, the generalization ability is quantified

by the risk of the estimator βs :

R(βs) = Ex,y|y − βT
s x|2 = Ex,y|(β2 − βs)

Tx+ ε|2 = ∥Σ1/2
2 (β2 − βs)∥2 + σ2,

where Ex,y denotes the expectation taken with respect to (w.r.t.) the pair (x, y). The excess test risk
is defined as follows:

ER(βs) = R(βs)− σ2 = ∥Σ1/2
2 (β2 − βs)∥2. (5)

4
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When ξ = 0, βs reduces to the ridge regression estimator for the student only model, and we denote
the corresponding excess risk by ER0. Note that ER(βs) can be decomposed into bias and variance
as ER(βs) = Bias+Var, where

Bias = ∥Σ1/2
2 (β2 − Ex,yβs)∥2,

Var = ∥Σ1/2
2 (βs − Ex,yβs)∥2.

One may easily check that ER = O(1) almost surely. In the remainder of this paper, we derive
asymptotic expressions for the bias and variance terms to analyze the generalization performance of
the student model using tools from random matrix theory.

2.2 RANDOM MATRIX THEORY

Before proceeding to the theoretical analysis, we introduce several key quantities from random ma-
trix theory that will appear in our main results. For any distribution G supported on R+ = [0,∞),
its Stieltjes transform is defined as

mG(z) =

∫
1

x− z
dG(x), z /∈ supp(G).

Next, we define the asymptotic eigenvalue density of random matrices via its Stieltjes transform.
This lemma is well-known in the random matrix theory literature (e.g., Bai & Silverstein (2010)).

Lemma 2. Let X = Σ1/2Z be a random matrix, where Z = (zjk) ∈ RM×N , M ∼ N satisfies
Assumption 1(a), and Σ satisfies Assumption 2. For each z ∈ C\R+, there exists a unique m ≡
mM (z) ∈ C satisfying the equation

z = − 1

m
+

1

N
Tr

Σ

1 +mΣ
= − 1

m
− z

N
TrΣΠ, with ℑzℑm(z) ≥ 0, (6)

where Π(z) = −(z + zmΣ)−1.

3 THEORETICAL ANALYSIS

In this section, we analyze the excess risk ER(βs) defined in 5 under three distinct settings. In
Section 3.1, we consider the case where β1 and β2 are deterministic, with their difference being
arbitrary. In Section 3.2, we study the scenario in which β1 = β2 and the common parameter vector
is drawn from a prior distribution. Finally, in Section 3.3, we analyze ridgeless regression under the
regime where M < N1, N2 and the covariance matrices Σ1,Σ2 are invertible.

Before presenting the main results, we first introduce some necessary notation. For M,Ni,Σi and
z < 0, the Stieltjes transform determined by Lemma 2 is denoted by mi(z).

Let Πi(z) = −(z + zmi(z)Σi)
−1, i = 1, 2. We write Q1 = Q1(−λt), Q2 = Q2(−λs),

Π1 = Π1(−λt) and Π2 = Π2(−λs) for notational simplicity. For any deterministic matrix A
with bounded spectral norm, we define

Si(A) = A+
1
Ni

TrΣiΠiAΠi

(1 + 1
Ni

TrΣiΠi)2 − 1
Ni

Tr(ΣiΠi)2
Σi, i = 1, 2.

Moreover, when A = IM , we denote

Π′
1 =

d

dz
Π1(z)

∣∣
z=−λt

= Π1S1(IM )Π1, Π′
2 =

d

dz
Π2(z)

∣∣
z=−λs

= Π2S2(IM )Π2,

The other quantities are summarized in Table 1.

3.1 DETERMINISTIC REGRESSION PARAMETERS

We now state our first main result.

5
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Table 1: Some notations used in the theoretical results

E1 = Π1S1(Σ2)Π1, E2 = Π1S1(Π2S2(Σ2)Π2)Π1

E3 = Π1S1(Σ2Π2)Π1, E4 = Π2S2(Σ2)Π2, E5 = Σ2Π2

Theorem 1. Let γ = β1 − β2. For the deterministic vectors ∥β1∥ and ∥β2∥, assume that
∥β1∥, ∥β2∥ ≤ c for some constant c. Under Assumptions 1-2, the following results hold:

Bias = B̂ias+ oa.s.(1), Var = V̂ar+ oa.s.(1),

where

B̂ias = ξ2βT
1

[
λ2
tE1 + λ2

sλ
2
tE2 − 2λ2

t λsE3

]
β1 + 2ξβT

2

[
λ2
sE4 − λsE5

]
γ

+ λ2
sβ

T
2E4β2 + 2ξβT

1

[
λtλsΠ1E5 − λtλ

2
sΠ1E4

]
β2 + ξ2γT

[
− 2λsE5 + λ2

sE4

]
γ

+ 2ξ2γT
[
λsλtE5Π1 − λtλ

2
sE4Π1 − λtΣ2Π1 + λtλsE5Π1

]
β1,

(7)

and

V̂ar =
ξ2σ2

N1
Tr
[(
Σ2 − 2λsE5 + λ2

sE4

)(
Π1 − λtΠ

′
1

)]
+

(1− ξ)2σ2

N2
Tr[E5 − λsΣ2Π

′
2]. (8)

This theorem characterizes the dependence of ER(βs) on the geometry of Σ1,β1,Σ2, and β2.
We provide an illustrative example here. Suppose that Σi admits the spectral decomposition Σi =
UiΛiU

T
i , for i = 1, 2. Consider the term βT

1Π1E5β2, which can be expressed as

βT
1 (λt + λtm1Σ1)

−1(λs + λsm2Σ2)
−1Σ2β2 = (λsλt)

−1β̃T
1 (1 +m1Λ1)

−1UT
1U2Λ̃2β̃2, (9)

where Λ̃2 is a diagonal matrix with entries Λ̃2,jj =
Λ2,jj

1+m2Λ2,jj
. The vector β̃i = Uiβi captures

the alignment between βi and the eigenvectors of Σi. The right-hand side of equation 9 explicitly
reveals how the term βT

1Π1E5β2 depends on β̃i, the eigenvalues of Σ1 and Σ2, and the eigenvector
overlap UT

1U2 between the two covariance matrices. In the special case where each βi is aligned
with an eigenvector of Σi – for simplicity, suppose it corresponds to the first eigenvector – the
expression equation 9 further simplifies to βT

1β2(λsλt)
−1 Λ2,jj

(1+m1Λ1,11)(1+m2Λ2,11)
,which depends on

the eigenvalues of Σi and the inner product βT
1β2 . This observation extends the results of Hastie

et al. (2022), which considers high-dimensional least squares regression within a single domain
(corresponding to ξ = 0 in equation 3).

3.2 RANDOM REGRESSION PARAMETERS

In this section, we assume that the vector β1 = β2 = β is random, and consider the excess risk
under two population covariance matrices, Σ1 and Σ2, which may be equal or distinct. Before
presenting the main result, we introduce the following assumption, commonly used in the literature
(Dobriban & Wager, 2018; Moniri & Hassani, 2025).
Assumption 3. The regression parameter vector β = (β1, ..., βM )T ∈ RM is random, with each
entry i.i.d., and β1 satisfies

Eβ1 = 0, Eβ2
1 =

σ̃2

M
, and E|

√
Mβ1|p ≤ Cp,

for any p ∈ N, where Cp is a constant depending only on p.
Theorem 2. Suppose Assumptions 1-3 hold. Then the following asymptotic expressions hold:

B̂ias =
σ̃2

M

[
ξ2λ2

tTrΣ2Π
′
1 + 2ξλtλsTrΠ1Π2Σ2 + λ2

sTrΣ2Π
′
2

− 2ξ2λ2
t λsTrΣ2Π2Π

′
1 + ξλtλ

2
sTr
[
E4(−2Π1 + ξλtΠ

′
1)
]]

= Bias+ oa.s.(1),

and V̂ar = Var+ oa.s., which coincides with the expression in Theorem 1.
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This theorem extends the result of Moniri & Hassani (2025), which considers the case of no covari-
ate shift, with inputs drawn i.i.d. from N (0, IM ) in the context of W2S generalization (i.e., when
ξ = 1). Our framework generalizes this analysis by allowing ξ ∈ R, thereby providing a more com-
prehensive understanding of the trade-off between learning from the teacher and from the observed
labels.

Let m1(z),m2(z) be the Stieltjes transforms of the standard Marchenko-Pastur law with parameters
M/N1,M/N2, respectively; their explicit forms are given in equation 28. The following corollary
follows immediately from Theorem 2 and the fact that Π1 = m1IM ,Π2 = m2IM (see, e.g., Alex
et al. (2014)).
Corollary 1. Suppose Σ1 = Σ2 = IM . Write m1 = m1(−λt),m2 = m2(−λs). Under Assumption
1 and Assumption 3, we have the following expressions:

Bias = σ̃2[ξ2λ2
tm

′
1 + 2ξλtλsm1m2 + λ2

sm
′
2 − 2ξ2λ2

t λsm2m
′
1

− 2ξλtλ
2
sm

′
2m1 + ξ2λ2

t λ
2
sm

′
1m

′
2] + oa.s.(1),

and

Var = ξ2σ2 M

N1

[
m1 − 2λsm1m2 + λ2

sm1m
′
2 − λtm

′
1 + 2λtλsm2m

′
1 − λtλ

2
sm

′
1m

′
2

]
+ (1− ξ)2σ2 M

N2

[
m2 − λsm

′
2

]
+ oa.s.(1),

where m′
1,m

′
2 denote the derivatives evaluated at z = −λt and z = −λs, respectively:

m′
1 =

d

dz
m1(z)

∣∣
z=−λt

,m′
2 =

d

dz
m2(z)

∣∣
z=−λs

.

As previously noted, we do not restrict ξ to the interval [0, 1]. It has been shown in Das & Sanghavi
(2023) that the optimal value of ξ may exceed 1. In Corollary 2 below, we present a toy example
demonstrating that even when the input data across domains are i.i.d. and in the absence of model
shift – i.e., with no domain shift – the limiting optimal value of ξ can be negative.
Corollary 2. Suppose the conditions in Corollary 1 hold. The limiting optimal value of ξ < 0 if

λsλtm1SNR− M

N2
> 0, (10)

where SNR = σ̃2

σ2 = ∥β∥2

σ2 + oa.s.(1).

Remark 1. We call the case ξ < 0 anti-learning against the teacher’s supervision, in contrast to
ξ > 1, which Das & Sanghavi (2023) termed anti-learning the observed (possibly noisy) labels.
This corollary provides insight into the selection of ξ: the sign of the limiting optimal value of ξ
depends not only on parameters (λt, λs) but also on data-related factors (SNR, data dimension, and
sample sizes of both domains).

3.3 RIDGELESS REGRESSION

In this section, we consider the minimum ℓ2 norm least squares (ridgeless) regression estimator.
Specifically, the teacher model is defined by

βt = (X1X
T
1 )

+X1y1,

where (X1X
T
1 )

+ denotes the Moore-Penrose inverse of X1X
T
1 . Similarly, the ridgeless estimator of

βs takes the form
βs(X2X

T
2 )

+[ξX2X
T
2βt + (1− ξ)X2y2].

Theorem 3. (1) Suppose β1,β2 are deterministic, and Assumptions 1-2 hold. We further assume∣∣∣∣MNi
− 1

∣∣∣∣ ≥ τ, τ ≤ σmin(Σi) ≤ · · · ≤ σmax(Σi) ≤ τ−1, for i = 1, 2.

Define f(λ) = B̂ias and g(λ) = V̂ar, with λ = λs = λt, where the expressions for B̂ias and V̂ar
are provided in equation 7 and equation 8, respectively. We have

Bias = f(0+) + oa.s.(1), Var = g(0+) + oa.s.(1). (11)
(2) Suppose β = β1 = β2 are random and Assumptions 1-3 hold. Then, the estimated expressions
in equation 11 still holds with f(λ) = B̂ias replaced by the B̂ias defined in Theorem 2.

7
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If a matrix A is nonsingular, A+ = A−1. The following corollary gives the characterization of
ER(βs) in the under-parameterized setting.

Corollary 3. Suppose the conditions in Theorem 3 hold and M
N1

, M
N2

≤ 1 − τ . The estimator for
student model obtained by equation 1 is the averaging estimator:

βs = ξβOLS
1 + (1− ξ)βOLS

2 , where βOLS
i = (XiX

T
i )

−1Xiyi, i = 1, 2. (12)

Adopting the notation γ = β1 − β2 in Theorem 1, we have

B̂ias = ξ2γTΣ2γ, V̂ar = (1− ξ)2σ2 M

N2 −M
+ ξ2σ2 1

N1 −M
TrΣ2Σ

−1
1 .

Based on the conclusions of Theorems 1-3, the high-dimensional asymptotic excess risk, regarded as
a function of ξ, is a quadratic function. Given that the excess risk is non-negative, the quadratic func-
tion opens upwards. This observation is consistent with Pareek et al. (2024), where self-distillation
is considered. Given a ξ ∈ R, the gain of cross-domain KD is characterized by the reduction in
excess risk, ER0 −ER(βs).

Proposition 1. Under the conditions of Theorem 1 and Assumption A.1 for the deterministic case
in Appendix B.7, there exists a value of ξ ∈ R such that

min
ξ∈R

(
ER(βs)−ER0

)
< 0. a.s. (13)

Moreover, under the conditions of Theorem 1 and Assumption A.2 for the random case in Appendix
B.7, the inequality 13 also holds.
Remark 2. This proposition shows that, even in the presence of a significant domain discrepancy, it
is possible to find a value of ξ ∈ R such that the student model outperforms the student-only baseline
(i.e., training on the observed labels only). We provide further details in Appendix B.7, where we
provide closed-form expressions for the optimal ξ∗ under several common settings and demonstrate
that covariate shift can, in some cases, be beneficial for KD .

3.4 NUMERICAL SIMULATIONS

(a) Model shift (b) Covariate shift

Figure 1: Student’s excess risk in the presence of domain shift. Solid lines represent theoretical
values, while scattered points denote simulation results (averaged over 100 trials). The dashed green
line indicates the theoretical performance for student-only baseline, corresponding to ridge regres-
sion trained solely on the target domain data. (a) Settings: (λt, λs) = (0.1, 0.5), (M,N1, N2) =

(400, 600, 200),Σ1 = Σ2 = IM . The vectors β2 = (1, ..., 1)T/
√
M , σ2 = 1. We label the case

∥γ∥ = 0.63 as γ = −(2, . . . , 2, 0, . . . , 0)T/
√
M with the first M/10 entries equal to −2/

√
M , and

the case ∥γ∥ = 0.89 with the first M/5 entries equal to −2/
√
M . (b) Settings: (λt, λs) = (0.1, 0.5),

β1 = β2 ∼ N (0,M−1IM ), (M,N1, N2) = (600, 200, 300), Σ1 = 4IM , Σ̃1 = diag(d1, . . . , dM )
with di = 0.64δ(i ≤ M/2) + 0.25δ(M/2 < i ≤ M), σ2 = 1.
We plot the excess risk of the student model: (a) under model shift with identical covariate distri-
butions, and (b) under covariate shift with identical parameter vectors, in Figure 1. All theoretical
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(a) Excess risk as a function of M
N1

for varying λt (b) Excess risk as a function of M
N2

for varying ξ

Figure 2: Non-monotone student excess risk curves. We set Σ2 = IM ,Σ1 = diag(d1, · · · , dM )
where di = 0.64δ(i ≤ M

2 ) + 0.25δ(M2 < i ≤ M). (a) Results are shown for fixed M = 600 and
λs = 0.05 with different N1. (b) Results are shown for fixed N2 and (λt, λs) = (0.05, 0.001), with
varying M.

values of the Stieltjes transform presented in this paper are obtained by solving equation 6. Due to
space limitations, the numerical validation of Corollary 3 is provided in Appendix C.2. Simulation
results, averaged over 100 independent trials, show good agreement with the theoretical predictions.

Furthermore, we present numerical simulations of ER(βs) as a function of λs and λt for various
values of ξ; these results are included in Appendix C.3.

4 DOUBLE DESCENT OF THE EXCESS RISK

In this section, fixing ξ, λt and λs, we examine the excess risk as a function of the dimension M
and the sample sizes N1 and N2. We find that the student model exhibits the double descent phe-
nomenon, characterized by a non-monotonic behavior of the excess risk as a function of the ratio of
dimension-to-sample-size. This phenomenon is consistent with findings in various linear regression
settings (Hastie et al., 2022; Nakkiran et al., 2021; Belkin et al., 2020; Moniri & Hassani, 2024),
and has been previously observed by Moniri & Hassani (2025) in the special case of pure teacher
supervision without domain shift, where the risk was studied as a function of M

N1
.

Using our theoretical predictions from Theorem 2, we plot the excess risk of the student model,
ER = ER( M

N1
), as a function of M

N1
in Figure 2(a). The double descent phenomenon is evident

for all three values of λt. As λt decreases, the peak of the risk curve shifts towards M
N1

= 1. In
Figure 2(b), we plot ER = ER( M

N2
) against M

N2
, while allowing M

N1
to vary simultaneously. We

consider different values of ξ and observe that the double descent phenomenon is most pronounced
in the regime of anti-learning against the teacher’s supervision (ξ < 0). In contrast, when ξ = 1.1,
no double descent occurs within the ratio range [0.5, 1.5].

5 EXTENSION

5.1 NONLINEAR CASE

Our theoretical results are initially established for linear models; however, we anticipate that they can
be extended to more general settings. To explore this extension, we conduct numerical simulations
specifically for nonlinear models here. We assume the source data {(x(1)

j , y
(1)
j )}N1

j=1 are generated

i.i.d. according to y
(1)
j = f(x

(1)
j ) + ε

(1)
j , for 1 ≤ j ≤ N1. The target data {(x(2)

j , y
(2)
j )}N2

j=1 are

generated according to y
(2)
j = f̃(x

(2)
j ) + ε

(2)
j , for 1 ≤ j ≤ N2. Suppose x

(1)
j ∼ D1, 1 ≤ j ≤ N1

9
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and x
(2)
j ∼ D2, 1 ≤ j ≤ N2. We refer to the case D1 ̸= D2 as a covariate shift, and the case where

f ̸= f̃ as a model shift.

We consider learning the unknown function using a fully connected two-layer neural network with
n hidden neurons: fNN(x) = aTσ(Wx), where W ∈ Rn×M is the weight matrix, and σ(·) is
an activation function applied entrywise. When the random weight matrix W is fixed and only
the second-layer weight a is optimized, the model reduces to a kernel regression model, where the
kernel defined by x → σ(Wx) is referred to as the conjugate kernel (Neal, 2012). The teacher
model is given by f t

NN(x) = aTt σ(W̃1x), with

at = argmin
a

{
1

N1
∥y1 − σ(XT

1W̃
T
1 )a∥2 + λt∥a∥2

}
.

We use f t
NN(x

(2)
j ) together with the covariates {x(2)

j }N2
j=1 to generate predictions yt

2. Then the
student model is finetuned on the target domain data and yt

2. The student model takes the form
f s
NN(x) = aTs σ(W1x) with

as = argmin
a

ξ

(
1

N2
∥yt

2 − σ(XT
2W

T
1 )a∥2

)
+ (1− ξ)

(
1

N2
∥y2 − σ(XT

2W
T
1 )a∥2

)
+ λs∥a∥2.

We also examine a setting where the teacher model is a deeper neural network. Specifically, while
keeping the student model fixed, we let the teacher be a Four-layer fully connected network:

f t
NN = aTt σ(W̃3σ(W̃2σ(W̃1x))),

where
at = argmin

a

1

N1
∥y1 − [σ(W̃3σ(W̃2σ(W̃1X1))]

Ta∥2 + λt∥a∥2.

We set D1 = N (0, 4IM ) and D2 = N (0, IM ). Let f(x) = (βTx)2 + 1, f̃(x) = (βTx)2.

Because D1 ̸= D2 and f ̸= f̃ , both covariate shift and model shift are present in this setting. More
details and the numerical results are provided in Appendix C.1.

5.2 DEPENDENCE BETWEEN DOMAINS

In this section, we consider two cases in which X1 and X2 are not fully independent. Case 1:
Assume X1 exhibits weak dependence on X2 in the following sense: X1 = αX2 + X̃1, where
α → 0 as M → ∞, and X̃1 is independent of X2 and takes the form Σ

1/2
1 Z1. It is easy to

see Cov(x
(1)
j ,x

(2)
j ) = Cov(x

(2)
j , αx

(2)
j ) = αΣ2. Case 2: Suppose X1 is a signal-plus-noise data

matrix: X1 = X2 + A, where A is a deterministic signal matrix with ∥A∥ = o(
√
M). This

model captures realistic scenarios in domain adaptation where the source and target domains share
a common underlying data matrix, but differ by a small deterministic shift—such as a faint shared
signal across features in source domain. In Case 1, our theoretical analysis remains valid. For Case
2, we obtain a new limiting behavior; the theoretical results and technical details are provided in
Section B.9.

6 CONCLUSION

In this paper, we present a theoretical analysis of cross-domain KD for linear models using random
matrix theory. Through the bias-variance decomposition, we precisely characterize the asymptotic
expressions of excess risk for the student model in the high-dimensional setting. A surprising finding
is that when the imitation parameter ξ is allowed to take any real value, cross-domain KD may
outperform training solely on the target domain – even in the presence of significant discrepancies
between source and target domains. This highlights the potential of distillation to effectively transfer
knowledge across highly heterogeneous domains.

Our work also points to several promising directions for future research. Our theoretical analysis is
currently limited to linear models; extending it to more complex architectures, particularly nonlinear
models, would significantly broaden its applicability. Furthermore, while we observe the double
descent phenomenon using the established theoretical limits; a rigorous theoretical characterization
of this behavior in nonlinear models remains an important avenue for future investigation.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Qwen3 is used to polish the writing.

B PROOFS

B.1 BASIC TOOLS

Preliminary definitions and auxiliary lemmas used in the proofs of the main results are provided in
this section.

Lemma 3. (Lemma B.26 in Bai & Silverstein (2010)) Let C be an M × M deterministic matrix
and z ∈ RM be a random vector of independent entries. Assume that Exi = 0,E|xi|2 = 1, and
E|xi|ℓ ≤ Cℓ. Then for any ℓ ≥ 1,

E|zTCz− TrC|ℓ ≤ cℓ
(
(C4TrCC∗)ℓ/2 + C2ℓTr(CC∗)ℓ/2

)
,

where cℓ is a constant depending on ℓ only.

Before stating the subsequent results, it is convenient to introduce the notion of stochastic domina-
tion.

Definition 1. Let χ = χ(p), ζ = ζ(p) be two families of p-dependent random variables. We say that
χ is stochastically dominated by ζ if for all small c > 0 and large constant ℓ > 0,

P
(
|χ(p)| > pc|ζ(p)|

)
≤ p−ℓ

for all large p. If χ is stochastically dominated by ζ, we use the notation χ ≺ ζ or χ = O≺(ζ). We
say an event Ep holds with high probability if

P(EC
p ) ≤ p−ℓ for any fixed ℓ > 0.

Lemma 4. (Lemma 22 in Yang et al. (2025)) Let Z satisfies Assumption 1(a)-(b). Suppose M
N ≤

1− τ . Then we have

(
√
M −

√
N)2 +O≺(

√
N) ≤ λmin(ZZ)

T ≤ λmax(ZZ
T) ≤ (

√
M +

√
N)2 +O≺(

√
N).

The upper bound on λmax(ZZ
T) still holds without the assumption M/N ≤ 1− τ.

Lemma 5. (Corollary 25 in Yang et al. (2025)) Suppose ε1, ..., εt are independent random vectors
satisfying Assumption 1(c). Then, we have that for any deterministic vector v ∈ RN ,

|vTεi| ≺ σ∥v∥, i = 1, ..., t,

and for any deterministic matrix B ∈ RN×N ,

|εTi Bεj − δ(i = j)σ2TrB| ≺ σ2∥B∥F, for i, j ∈ [t].

Moreover, for any deterministic vector v, we have

|vTεi| ≺ σ∥v∥, i ∈ [t].

Definition 2. Let Ap,Bp ∈ Rp×p be sequences of random or deterministic symmetric real matrices.
We say Ap,Bp are equivalent, denoted by Ap ≍ Bp, if

1

p
TrDp(Ap −Bp) = oa.s.(1) and uT(Ap −Bp)v = oa.s.(1)

for any sequence of deterministic matrices Dp and all deterministic vectors u,v such that

lim sup
p

∥Dp∥ < ∞, lim sup
p

max{∥u∥, ∥v∥} < ∞.

Lemma 6. (1) (Theorem 2.6 in Couillet & Liao (2022)) We denote by ϱ the probability measure
associated with m determined in Lemma 2. Let X = Σ1/2Z ∈ RM×N , where the entries of Z
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are i.i.d. centered random variables with unit variance and finite 8 + c-th moment, for any positive
constant c. Suppose Assumption 1(b) and Assumption 2 hold. Then for z ∈ C\R+, we have

Q(z) ≍ Π(z), Q(z) ≍ m(z)IM , (14)

where

Q(z) =

(
XXT

N
− zIM

)−1

, Q(z) =

(
XTX

N
− zIM

)−1

, Π(z) = −(zIM + zmΣ)−1.

(2) When M
N < 1− τ , equation 14 still holds at z = 0.

Proof: Let u,v be two deterministic unit vectors and fN (λ) = uTQ(−λ)v for λ < 0. Since
λmin(

XXT

N ) > 1
2 (1 −

√
M/N)2 with high probability, we have |fN (λ)| ≤ ∥Q(−λ)∥ ≲ 1,

|f ′
N (λ)| ≤ ∥ d

dλQ(−λ)∥ ≲ 1 with high probability. Therefore, {fN (λ)} is equicontinuous with
high probability. By applying the Arzela-Ascol theorem, fN converges uniformly to its limit
f(λ) = uTΠ(−λ)v. By the Moore-Osgood theorem, we can exchange limits and get

lim
N→∞

fN (0) = lim
N→∞

lim
λ→0−

fN (λ) = lim
λ→0−

lim
N→∞

fN (λ) = lim
λ→0−

uTΠ(−λ)v = uTΠ(0)v, a.s.,

where we use the fact that both Q and Π are analytic in an open neighborhood of 0 with high
probability. Similarly, we can derive 1

MTrAQ(0) = 1
MTrAΠ(0) + oa.s.(1), which completes the

proof.

Lemma 6 shows that Π(z) is a deterministic equivalent of Q(z). For technical reasons, we further
require the following result.

Lemma 7. Suppose the conditions in Lemma 6 hold. A denotes a deterministic M × M matrix
with bounded spectral norm. For any fixed complex numbers z̃1, z̃2 ∈ C\R+, we have for all
deterministic vectors u,v,

uT
(
Q(z̃1)AQ(z̃2)−Π(z̃1)S(A)Π(z̃2)

)
v = oa.s.(∥u∥∥v∥), (15)

where

S(A) = A+
1
NTrΣΠ(z̃1)AΠ(z̃2)(

1 + 1
NTrΣΠ(z̃2)

)(
1 + 1

NTrΣΠ(z̃1)
)
− 1

NTrΣΠ(z̃1)ΣΠ(z̃2)
Σ. (16)

Moreover, for any deterministic matrix C ∈ RM×M satisfying ∥C∥ ≤ C for some constant C, we
have

1

M
TrC[Q(z̃1)AQ(z̃2)−Π1(z̃1)S(A)Π2(z̃2)] = oa.s.(1). (17)

The proof of this lemma is deferred to Appendix B.8.

Remark 3. Lemma 7 provides the deterministic equivalent of Q(z̃1)AQ(z̃2). Lin & Pan (2024)
established the local laws for the Q(z̃1)AQ(z̃2). However, their results require ℜz̃1,ℜz̃2 to be
sufficiently close to supp(ϱ) and ℑz̃1,ℑz̃2 to be bounded below by N−1+c, where c is any fixed
constant. Lemma 7 extends the result to other regions.

Remark 4. To relax the moment assumption, we apply a standard truncation argument commonly
used in random matrix theory (e.g., Yang et al. (2025)). This approach allows us to employ Lemma 4
under the weaker finite (8 + c)-th moment condition, introducing only a negligible additional error
term that depends on M but does not affect the leading-order asymptotics of our results. Moreover,
a careful examination of the proofs shows that the same moment condition is also sufficient to es-
tablish Lemma 7. Consequently, all of our theoretical conclusions remain valid under this relaxed
assumption.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 PROOF OF THEOREM 1

To simplify notation, we set z1 = −λt, z2 = −λs. Recalling equation 2 and equation 3, we get

βs − β2 =
1

N2
Q2

[
ξX2X

T
2βt + (1− ξ)X2(X

T
2β2 + ε2)

]
− β2

=
1

N2
Q2

[
1

N1
ξX2X

T
2Q1X1(X

T
1β1 + ε1) + (1− ξ)X2(X

T
2β2 + ε2)

]
− β2

= ξ
[
(IM + z2Q2)(IM + z1Q1)β1 − β2

]
+ ξ

1

N1
(IM + z2Q2)Q1X1ε1︸ ︷︷ ︸

a5

+ (1− ξ)
[
(IM + z2Q2)β2 − β2

]
+ (1− ξ)

1

N2
Q2X2ε2︸ ︷︷ ︸

a6

= ξγ + ξz2Q2γ︸ ︷︷ ︸
a1

+ ξz1Q1β1︸ ︷︷ ︸
a2

+ z2Q2β2︸ ︷︷ ︸
a3

+ ξz1z2Q2Q1β1︸ ︷︷ ︸
a4

+a5 + a6.

(18)

By this, we decompose ER(βs) as follows:

ER(βs) = (βs − β2)
TΣ2(βs − β2)

= ξ2γTΣ2γ + 2

6∑
i=1

bi +

6∑
i=1

hii +
∑

1≤i ̸=j≤6

hij ,
(19)

where
bi = ξγTΣ2ai, hii =

∥∥Σ1/2
2 ai

∥∥2, hij = aT
i Σ2aj .

Next, we compute the limit of each term above.

Let n ∈ N+. According to the Definition 1 and the Borel–Cantelli lemma, we have

χ(n) = oa.s.(1) if χ(n) ≺ n−c

for any constant c > 0. By this, the limits of b1, b2, b3, b4 can be readily obtained using Lemma 6:

b1 = ξ2z2γ
TQ2Σ2γ = ξ2z2γ

TΠ2Σ2γ + oa.s.(1),

b2 = ξ2z1γ
TΣ2Q1β1 = ξ2z1γ

TΣ2Π1β1 + oa.s.(1),

b3 = ξz2β
T
2Q2Σ2γ = ξz2β

T
2Π2Σ2γ + oa.s.(1),

b4 = ξ2z1z2γ
TΣ2Q2Q1β1 = ξ2z1z2γ

TΣ2Π2Π1β1 + oa.s.(1),

where the last identity is due to

γTΣ2[Q2Q1 −Π2Π1]β1 = γTΣ2

[
(Q2 −Π2)Q1 +Π2(Q1 −Π1)

]
β1 = oa.s.(1).

We now consider the terms contributing to Var. By Lemma 5 and the identity

1

Ni
QiXiX

T
i = IM + z1Qi, i = 1, 2. (20)

we find that ∣∣h55 −
ξ2σ2

N2
1

Tr(IM + z2Q2)Σ2(IM + z2Q2)Q1X1X
T
1Q1

∣∣
≺ 1

M2
∥(IM + z2Q2)Σ2(IM + z2Q2)(Q1 + z1Q

2
1)∥F ≲

1√
M

.

(21)

For any deterministic matrix C ∈ RM×M satisfying ∥C∥ is bounded, and having the spectral de-
composition

C =

M∑
i=1

λiuiv
T
i ,
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we have by Lemma 6 that

1

M
TrCQ1Q2 =

1

M

M∑
i=1

λiTruiv
T
i Q1Q2

=
1

M

M∑
i=1

λiv
T
i Q1Q2ui

=
1

M

M∑
i=1

λiv
T
i Π1Π2ui + oa.s.(1)

=
1

M
TrCΠ1Π2 + oa.s.(1).

(22)

Similarly, by recalling the notation ΠiSi(IM )Πi = Π′
i for i = 1, 2, one may check by Lemma 7

that
1

M
TrCQ2Q

2
1 =

1

M
TrCΠ2Π

′
1 + oa.s.(1),

1

M
TrCQ1Q

2
2 =

1

M
TrCΠ1Π

′
2,

1

M
TrQ2CQ2Q

2
1 =

1

M
TrΠ2S2(C)Π2Π

′
1 + oa.s.(1),

1

M
TrQ1CQ1Q

2
2 =

1

M
TrΠ1S1(C)Π1Π

′
2 + oa.s.(1).

(23)

Then by Lemma 6, Lemma 7, equation 20 and equation 21, for ξ ̸= 0, we have

h55

ξ2σ2
=

1

N1
Tr(IM + z2Q2)Σ2(IM + z2Q2)(Q1 + z1Q

2
1)

=
1

N1
Tr
[
Σ2 + z2Σ2Q2 + z2Q2Σ2 + z22Q2Σ2Q2

][
Π1 + z1Π

′
1

]
+ oa.s.(1)

=
1

N1
Tr
[
Σ2 + 2z2Σ2Π2 + z22Π2S2(Σ2)Π2

]
[Π1 + z1Π

′
1]

+ oa.s.(1).

Likewise, we have by Lemma 6 that

h66 = (1− ξ)2σ2 1

N2
TrΣ2(IM + z2Q2)Q2

= (1− ξ)2σ2 1

N2
TrΣ2(Π2 + z2Π

′
2) + oa.s.(1).

(24)

Let d = min
{
dist

(
z1,R+

)
,dist

(
z2,R+)

}
. According to Lemma 5 and the fact following from

equation 20 that

1√
Ni

∥QiXi∥ =
√
∥Qi + ziQ2

i ∥ ≤
√

d−1 + d−2|zi| ≲ 1,

one has for j = 1, 2, 3, 4,

|h5j | = |hj5| ≺
σ

M
∥XT

1Q1(IM + z1Q2)Σ2aj∥ ≲
1√
M

,

|h6j | = |hj6| ≺
σ

M
∥XT

2Q2Σ2aj∥ ≲
1√
M

,

and

|b5 + b6| ≺
1√
M

.
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Using Lemma 5 again, it can be shown that

|h65| = |h56| ≺
σ2

M2
∥XT

2Q2Σ2(IM + z2Q2)Q1X1∥F

≲
σ2

M

√
N2∥XT

2Q2Σ2(IM + z2Q2)Q1X1∥2
M2

≲
1√
M

.

Therefore, we get

b5 + b6 + h65 + h56 +

4∑
j=1

(h5j + hj5 + h6j + hj6) = oa.s.(1).

We now turn to the terms hii, i = 1, 2, 3, 4. By Lemma 7, we have

h11 = ξ2z22γ
TQ2Σ2Q2γ

= ξ2z22γ
TΠ2S2(Σ2)Π2γ + oa.s.(1),

h22 = ξ2z21β
T
1Q1Σ2Q1β1

= ξ2z21β
T
1Π1S1(Σ2)Π1β1 + oa.s.(1),

h33 = z22β
T
2Q2Σ2Q2β2

= z22β
T
2Π2S2(Σ2)Π2β2 + oa.s.(1),

h44 = ξ2z21z
2
2β

T
1Q1Q2Σ2Q2Q1β1

= ξ2z21z
2
2EβT

1Q1Π2S2(Σ2)Π2Q1β1 + oa.s.(1)

= ξ2z21z
2
2β

T
1Π1S1(Π2S2(Σ2)Π2)Π1β1 + oa.s.(1).

Similarly, one can obtain the limits of the remaining terms in hij , 1 ≤ i, j ≤ 6:

h12 = h21 = ξ2z1z2γ
TQ2Σ2Q1β1

= ξ2z1z2γ
TΠ2Σ2Π1β1 + oa.s.(1),

h13 = h31 = ξz22β
T
2Q2Σ2Q2γ

= ξz22β
T
2Π2S2(Σ2)Π2γ + oa.s.(1),

h14 = h41 = ξ2z1z
2
2γ

TQ2Σ2Q2Q1β1

= ξ2z1z
2
2γ

TΠ2S2(Σ2)Π2Π1β1 + oa.s.(1),

h23 = h32 = ξz1z2β
T
1Q1Σ2Q2β2

= ξz1z2β
T
1Π1Σ2Π2β2 + oa.s.(1),

h24 = h42 = ξ2z21z2β
T
1Q1Σ2Q2Q1β1

= ξ2z21z2β
T
1Q1Σ2Π2Q1β1 + oa.s.(1)

= ξ2z21z2β
T
1Π1S1(Σ2Π2)Π1β1 + oa.s.(1),

h34 = h43 = ξz1z
2
2β

T
2Q2Σ2Q2Q1β1

= ξz1z
2
2β

T
2Π2S2(Σ2)Π2Π1β1 + oa.s.(1).

Combining the above estimates, we conclude the proof of Theorem 1.

B.3 PROOF OF THEOREM 2

We use the same notation as in Appendix B.2. Note that γ = β1 − β2 = 0. Denoting

H = ξz1Q1 + z2Q2 + ξz1z2Q2Q1, (25)

by equation 18, we have
βs − β = Hβ + a5 + a6.
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Hence, the excess risk becomes

ER(βs) = ∥Σ1/2
2 (βs − β)∥2

= βTHTΣ2Hβ + 2
∑
i=5,6

βTHTΣ2ai +
∑
i=5,6

hii.

Using Lemma 5, by Assumption 3 we have

βTHTΣ2Hβ − σ̃2

M
TrHTΣ2H ≺ σ̃2

M
∥HTΣ2H∥F ≲

1√
M

.

By equation 25, we have

1

M
TrΣ2HHT =

1

M

[
ξ2z21TrΣ2Q

2
1 + ξz1z2TrΣ2[Q1Q2 +Q2Q1]

+ z22TrΣ2Q
2
2 + ξ2z21z2TrΣ2[Q2Q

2
1 +Q2

1Q2]

+ 2ξz1z
2
2TrQ2Σ2Q2Q1 + ξ2z21z

2
2TrQ2Σ2Q2Q

2
1

]
=

6∑
i=1

ti,

(26)

where

t1 =
1

M
ξ2z21TrΣ2Q

2
1, t2 =

2

M
ξz1z2TrQ1Q2, t3 =

z22
M

TrΣ2Q
2
2,

t4 = 2
ξ2

M
z21z2TrΣ2Q2Q

2
1, t5 =

2ξz1z
2
2

M
TrQ2Σ2Q2Q1, t6 =

ξ2z21z
2
2

M
TrQ2Σ2Q2Q

2
1.

We next consider the terms ti, i = 1, ..., 6. In the subsequent proof, we shall make use of Lemma 6,
Lemma 7 and the property that Σ2Π2 = Π2Σ2.

By equation 22, we have

t2 =
2ξz1z2
M

TrΠ1Π2Σ2 + oa.s.(1).

t1 = ξ2z21
1

M
TrΣ2Π

′
1 + oa.s.(1).

The limits of t3, t4, t5, t6 can be derived by equation 23:

t3 =
z22
M

TrΣ2Π
′
2 + oa.s.(1),

t4 = 2
ξ2z21z2
M

TrΣ2Π2Π
′
1 + oa.s.(1),

t5 =
2ξz1z

2
2

M
TrΠ2S2(Σ2)Π2Π1 + oa.s.(1),

and

t6 =
ξ2z21z

2
2

M
TrΠ2S2(Σ2)Π2Π

′
1 + oa.s.(1).

Using Lemma 5, we find

|βTHTΣ2a5| ≺
1

M3/2
∥HTΣ2(IM + z2Q2)Q1X1∥F ≲

1√
M

,

|βTHTΣ2a6| ≺
1

M3/2
∥Q2X2∥F ≲

1√
M

.

Therefore, the terms βTHTΣ2ai, i = 5, 6 are ignorable. The proof is now complete.
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B.4 PROOF OF COROLLARY 3

Letting λt = λs = 0, by equation 3, we obtain

βs = ξβOLS
1 + (1− ξ)βOLS

2

= ξ(X1X
T
1 )

−1X1(X
T
1β1 + ε1) + (1− ξ)(X2X

T
2 )

−1X2(X
T
2β2 + ε2)

= ξβ1 + (1− ξ)β2 + ξ(X1X
T
1 )

−1X1ε1 + (1− ξ)(X2X
T
2 )

−1X2ε2.

Plugging this into ER(βs), one may obtain that

ER(βs) = ∥Σ1/2
2 (β2 − βs)∥2

=
∥∥Σ1/2

2 [ξγ + ξ(X1X
T
1 )

−1X1ε1 + (1− ξ)(X2X
T
2 )

−1X2ε2]
∥∥2

= B̂ias+ h1 + h2 + 2h3 + 2h4 + 2h5,

where
h1 = ξ2εT1X

T
1 (X1X

T
1 )

−1Σ2(X1X
T
1 )

−1X1ε1,

h2 = (1− ξ)2εT2X
T
2 (X2X

T
2 )

−1Σ2(X2X
T
2 )

−1X2ε2,

h3 = ξ2γTΣ2(X1X
T
1 )

−1X1ε1,

h4 = ξ(1− ξ)γTΣ2(X2X
T
2 )

−1X2ε2,

h5 = ξ(1− ξ)εT1X
T
1 (X1X

T
1 )

−1Σ2(X2X
T
2 )

−1X2ε2.

By Lemmas 4-5, we have with high probability,∣∣h2 − (1− ξ)2σ2Tr(X2X
T
2 )

−1Σ2

∣∣ = ∣∣h2 − (1− ξ)2σ2Tr(Z2Z2)
T
∣∣

≺ (1− ξ)2σ2∥(Z2Z
T
2 )

−1∥F

= (1− ξ)2σ2

√√√√ M∑
i=1

λ−2
i

(
Z2ZT

2

)
≲ (1− ξ)2σ2 1√

M
Tr(Z2Z

T
2 )

−1

≲
1√
M

.

(27)

Lemma 6 implies that with high probability,

Tr(Z2Z
T
2 )

−1 =
M

N2 −M
+ oa.s.(1).

Combining this with equation 27, we obtain with high probability,

h2 = (1− ξ)2σ2 M

N2 −M

(
1 + oa.s.(1)

)
.

Similarly, one may derive with high probability,

|h5| ≺ σ2∥XT
1 (X1X

T
1 )

−1Σ2(X2X
T
2 )

−1X2∥F

= σ2
√
Tr(X1XT

1 )
−1Σ2(X1XT

1 )
−1 ≲

1√
M

V̂ar.

Using Lemmas 4-5, the following estimate holds with high probability,∣∣h1 − ξ2σ2Tr(X1X
T
1 )

−1Σ2

∣∣ ≺ ∥Σ2(X1X
T
1 )

−1∥F

≲
√

M∥Σ2∥2∥Σ1∥−2∥(Z1ZT
1 )

−1∥2 ≲
1√
M

.

Then by Lemma 4 and Lemma 6, one has with high probability,

Tr(X1X
T
1 )

−1Σ2 =
1

N1
Tr

(
1

N1
Z1Z

T
1

)−1

Σ
−1/2
1 Σ2Σ

−1/2
1

=
1

N1

N1

N1 −M
TrΣ2Σ

−1
1 + oa.s.(1).
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Therefore, for ξ ̸= 0, we get with high probability,
1

ξ2σ2
h1 = Tr(X1X

T
1 )

−1Σ2 + oa.s.(1) =
1

N1 −M
TrΣ2Σ

−1
1 + oa.s.(1).

We note that
∥γ∥2 ≳ B̂ias = ξ2∥Σ1/2

2 γ∥2 ≳ λmin(Σ2)∥γ∥2 ≳ ∥γ∥2.
Since σM (Σ1) ≲ 1, σ1(Σ2) ≲ 1, it is easy to see V̂ar ∼ 1. Using Lemmas 4-5, we get with high
probability

|h3| ≺ ξ2σ∥γTΣ2(X1X
T
1 )

−1X1∥

≤ ξ2σ

√
B̂ias∥Σ1/2

2 ∥∥(X1X
T
1 )

−1X1∥

≲

√
B̂ias

M1/4

1

M1/4
≤ B̂ias√

M
+

1√
M

≲
1√
M

(B̂ias+ V̂ar).

Similarly, we can estimate with high probability

|h4| ≺
1√
M

(B̂ias+ V̂ar).

Combining the above estimates on hi, i = 1, 2, 3, 4, 5, the proof of Corollary 3 is completed.

B.5 PROOF OF THEOREM 3

For simplicity, we present the proof only for deterministic β1 and β2; the extension to the random
case follows by similar reasoning and is therefore omitted. Denote PX1

and PX2
by

PX1 = (X1X
T
1 )

+X1X
T
1 , PX2 = (X2X

T
2 )

+X2X
T
2 .

Note that for any rectangular matrix A and compatible B,

(AAT)+B = lim
λ→0+

(AAT + λIM )−1B.

We can apply this to A1 = 1√
Ni

Xi for i = 1, 2 and rewrite the bias as

Bias = lim
λ→0+

fM (λ),

where

fM (λ) = ξ2γTΣ2γ + 2

6∑
i=1

bi +

4∑
i=1

hii + 2
∑

1≤i̸=j≤4

hij ,

and all terms on the right-hand side are given in Section B.2, under the setting λt = λs = λ. It is
straightforward to see that |fM (λ)| ≲ 1. Now we consider f ′

M (λ). Let λ+
min(·) denote the smallest

positive eigenvalue. Lemma 4 implies that for i = 1, 2,

1

Ni
λmax(XiX

T
i ) ≤ 2σi

1

(
1 +

√
M

Ni

)2

,
1

Ni
λ+
min(XiX

T
i ) ≥

1

2
σi
M

(
1−

√
M

Ni

)2

, a.s.

Recall that ∥β1∥, ∥β2∥ ≤ c. Then, by equation 18, we have with high probability∣∣∣∣ ddλh22

∣∣∣∣ = ∣∣∣∣ ddλξ2λ2βT
1Q1Σ2Q1β1

∣∣∣∣
= 2ξ2

∣∣∣∣λβT
1Q

2
1

1

N1
X1X

T
1Σ2Q1β1

∣∣∣∣
≤ 2ξ2∥β1∥2∥λQ1∥∥Σ2∥

∥∥∥∥Q2
1

1

N1
X1X

T
1

∥∥∥∥
≤ Cξ

λmax(X1X
T
1 /N1)

(λmin(X1XT
1 /N1) + λ)2

≲ 1.
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Figure 3: Theoretical excess risk for different λt. Settings: (M,N1, N2) = (200, 200, 600),Σ1 =
Σ2 = IM , λs = 0.5, SNR=4, β1 = β2 ∼ N (0, 4

M ), σ2 = 1.

The remaining terms in f ′
M (λ) can be bounded in a similar manner, and hence |f ′

M (λ)| ≲ 1 almost
surely. Therefore, {fM (x)} is equicontinuous almost surely. By the Arzela-Ascoli theorem, fM
converges uniformly to its limit f , almost surely. By the Moore-Osgood theorem, we can exchange
limits and get,

lim
M→∞

lim
λ→0+

fM (λ) = lim
λ→0+

lim
M→∞

fM (λ) = f(0+), a.s.

Similarly, letting gM (λ) = h55 + h66 with h55 and h66 as defined in Section B.2 under the setting
λt = λs = λ, we get gM converges uniformly to its limit, g, and

lim
M→∞

lim
λ→0+

gM (λ) = lim
λ→0+

lim
M→∞

gM (λ) = g(0+), a.s.

By Theorem 1, f = B̂ias and g = V̂ar under the setting λ = λt = λs. It is easy to verify that the
remaining terms appearing in 19 are asymptotically negligible, and that f, g are right-continuous.
The proof is completed.

B.6 PROOF OF COROLLARY 2

The Stieltjes transform of the Marchenko-Pastur distribution is given by

mi(z) =

∫
dϱMP,i(x)

x− z
=

(
1− M

Ni

)
− z −

√(
z − 1− M

Ni

)2 − 4M
Ni

2M
Ni

z
. (28)

We take the derivative of ER(βs) with respect to ξ, and evaluate it at ξ = 0 :

∂

∂ξ
ER(βs)

∣∣∣∣
ξ=0

= σ2

(
λtλsm1SNR− M

N2

)
d

dz

(
zm2(z)

)∣∣∣∣
z=−λs

+ oa.s.(1).

Since

zm2(z) =

∫
z

x− z
dϱMP,2(x) = −1 +

∫
x

x− z
dϱMP,2(x),

we hence get that
d

dz
(zm2(z)) > 0

∣∣
z=−λs

. (29)

Therefore, ∂
∂ξER(βs)|ξ=0 and λtλsSNR − M

N2
share the same sign almost surely. That is, the

limiting optimal value of ξ is negative when equation 10 holds, which establishes Corollary 2.

We provide an example in Figure 3 to illustrate this corollary. Specifically, when λt = 0.5, the
limiting optimal value of ξ is positive, whereas when λt = 0.01, it becomes negative.
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B.7 DETAILS FOR PROPOSITION 1 AND REMARK 2

Recall that ER0 denotes the excess risk of the ridge regression model trained solely on the target
domain data.
Assumption A.1. When β1,β2 are deterministic, we assume that :∣∣∣βT

1 λtλs

[
Π1Σ2Π2 − λsΠ1Π2S2(Σ2)Π2

]
β2 −

σ2

N2
Tr[Σ2(Π2 − λsΠ

′
2)]

+βT
2 [λ

2
sΠ2S2(Σ2)Π2 − λsΠ2Σ2]γ

∣∣∣ > c,

where c is a positive constant.
Assumption A.2. If β = β1 = β2 is random, we assume that∣∣ σ̃2

M

[
λtλsTrΠ1Π2Σ2 − λtλ

2
sTrΠ2S2(Σ2)Π2Π1

]
− σ2

N2
Tr[Σ2(Π2 − λsΠ

′
2)]
∣∣ > c,

where c is a positive constant.

Proof of Proposition 1: (i) Suppose the conditions in Theorem 1 hold. Note that

∂

∂ξ
ER(βs)

∣∣
ξ=0

= 2βT
1

[
λtλsΠ1Σ2Π2 − λtλ

2
sΠ1Π2S2(Σ2)Π2

]
β2

+ 2βT
2 [λ

2
sΠ2S2(Σ2)Π2 − λsΠ2Σ2]γ − 2σ2

N2
Tr[Σ2(Π2 − λsΠ

′
2)] + oa.s.(1).

Under the conditions in Theorem 1 and Assumption A.1, the asymptotic excess risk is a quadratic
function whose minimizer is bounded away from 0. Therefore, minξ ER(βs) is strictly less than
ER0 almost surely.

(ii) Similarly, suppose Assumption A.2, under the conditions of Theorem 2, the inequality equa-
tion 13 holds by noticing that

∂

∂ξ
ER(βs)

∣∣
ξ=0

=
2σ̃2

M

[
λtλsTrΠ1Π2Σ2 − λtλ

2
sTrΠ2S2(Σ2)Π2Π1

]
− 2σ2

N2
Tr[Σ2(Π2 − λsΠ

′
2)]

+ oa.s.(1).

Further discussion on Remark 2: To clarify the dependence of Assumption A.1 on the geometry
of Σ1,Σ2,β1,β2 and the noise strength σ2, we consider a simple example in which Σ2 = IM .
Then we have

∂

∂ξ
ER(βs)

∣∣
ξ=0

= λsλt(m2 − λsm
′
2)β

T
1Π1β2 −

σ2M

N2
(m2 − λsm

′
2)− λs(m2 − λsm

′
2)β

T
2 γ

+ oa.s.(1)

=
(
λsλtβ

T
1Π1β2 −

σ2M

N2
− λsβ

T
2 γ︸ ︷︷ ︸

e

) d

dz
(zm2(z))

∣∣
z=−λs

+ oa.s.(1),

(30)
where m2(z) is defined in equation 28. Recalling equation 29, we have | ∂

∂ξER(βs)|ξ=0| > c if
|e| > C for some constant C. Below, we discuss two cases, when Σ1 = IM and when Σ1 ̸= IM :

• Σ1 = IM . The term e becomes

e = λsλtm1β
T
1β2 −

σ2M

N2
− λsβ

T
2 (β1 − β2).

Recall that the limiting ridge risk is minimized at λ∗
s = σ2M

N2∥β2∥2 , with asymptotic excess
risk σ2 M

N2
m2(−λ∗

s ) (Hastie et al., 2022). Taking λs = λ∗
s , we have

e = λ∗
s (λtm1 − 1)βT

1β2.
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Note that
λtm1 − 1 = −

∫
x

x+ λt
dϱMP,1(x) < 0.

Therefore, in a small neighborhood containing 0, ER(βs) is monotonic in ξ, indicating
that the teacher’s supervision is helpful – even outperforming the optimal ridge regression
– provided that β1 and β2 are not asymptotically orthogonal.

• Σ1 ̸= IM . By taking λs = λ∗
s , e becomes

e = λ∗
s (λtβ

T
1Π1β2 − βT

2β1) = −λ∗
s

M∑
i=1

m1σi

1 +m1σi
βT
1 uiu

T
i β2, (31)

where m1 is determined by Lemma 2 and Σ1 =
∑M

i=1 σiuiu
T
i represents the spectral

decomposition of Σ1. By equation 31, the alignment of βi (i = 1, 2) with the eigenvectors
of Σ1 determines whether Assumption A.1 is satisfied. Therefore, given λs = λ∗

s , under
the “help” of covariate shift, even if βT

1β2 = 0, it may still be possible to find a ξ such
that ER(βs) < ER0, a.s. By comparing with the case where Σ1 = IM , we find that the
presence of covariate shift can, in some cases, be beneficial.

Note that, up to asymptotically negligible terms, ER can be expressed as a quadratic function of
ξ : ER(βs, ξ) = Aξ2 + Bξ + C. Below we provide closed-form expressions for the asymptotic
optimal ξ∗ = − B

2A under several common settings.

(1) When γ = β1 − β2,
M
N1

, M
N2

< (1 + τ)−1,

ξ∗ =

(
γTΣ2γ + σ2 M

N2 −M
+

σ2

N1 −M
TrΣ2Σ

−1
1

)−1
σ2M

N2 −M
∈ (0, 1).

(2) When β = β1 = β2 is random, and Σ1 = Σ2 = IM ,

ξ∗ =

M

N2
(m2 − λsm

′
2)−

σ̃2

σ2
λtλs (m1m2 − λsm

′
2m1)

A1 +A2 +A3
,

where

A1 =
σ̃2

σ2

(
λ2
tm

′
1 − 2λ2

tλsm2m
′
1 + λ2

tλ
2
sm

′
1m

′
2

)
,

A2 =
M

N1

(
m1 − 2λsm1m2 + λ2

sm1m
′
2 − λtm

′
1 + 2λtλsm2m

′
1 − λtλ

2
sm

′
1m

′
2

)
,

A3 =
M

N2
(m2 − λsm

′
2) .

(3) When β = β1 = β2,Σ2 = IM ,

ξ∗ =
βT[λtλ

2
sm

′
2Π1 − λtλsm2Π1]β + σ2M

N2
(m′

2 − λsm
′
2)

βTλ2
t [1 + λ2

sm
′
2 − 2λsm2]Π

′
1β +

σ2(1−2λsm2+λ2
s m

′
2)

N1
Tr[Π1 − λtΠ′

1] +
σ2M
N2

(m2 − λsm′
2)
.

B.8 PROOF OF LEMMA 7

The following result, which is an immediate consequence of Lemma 2, will be used in the proof
below:

−zm =

(
1 +

1

N
TrΣΠ(z)

)−1

. (32)

We abuse notation by writing z1 and z2 for z̃1 and z̃2, respectively, whenever there is no risk of
ambiguity. Without loss of generality, we assume ∥u∥ = ∥v∥ = 1 and z1, z2 lie on the negative real
axis, as the other cases follow by analogous arguments.
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Using standard techniques of martingale decomposition (see, e.g., Bai & Silverstein (2010)), we can
prove the almost sure convergence of the random part:

uTQ(z1)AQ(z2)v = uTEQ(z1)AQ(z2)v + oa.s.(1). (33)

Therefore, it suffices to consider the term uTEQ(z1)AQ(z2)v. Let σ1 ≥ · · · ≥ σM denote the
eigenvalues of Σ. For the sequence of deterministic matrices, we denote AM = o(1) if ∥AM∥ → 0.
Since

Q(z1)AQ(z2) = Q(z1)AΠ(z2) +Q(z1)A
(
Q(z2)−Π(z2)

)
, (34)

we obtain by Lemma 6 that

uTEQ(z1)AQ(z2)v = uTEQ(z1)AΠ(z2)v + uTEQ(z1)A(Q(z2)−Π(z2))v

= uTΠ(z1)AΠ(z2)v + uTEQ(z1)A(Q(z2)−Π(z2))v + o(1),
(35)

where the second identity follows from Lemma 6, the Dominated Convergence Theorem and the
fact that

∥Π(z1)∥ = max
i

∣∣z1 + z1m(z1)σi

∣∣−1 ≤ |z1|−1, ∥AΠ(z2)v∥ ≤ ∥A∥∥Π(z2)∥ ≤ |z2|−1∥A∥.

Therefore, our task reduces to finding the deterministic equivalent of

EQ(z1)A
(
Q(z2)−Π(z2)

)
.

Denote

X−k = X− xke
T
k , Q−k(z) =

(
X−kX

T
−k

N
− zIM

)−1

.

By Sherman-Morrison formula, one may easily check that

Q(z) = Q−k(z)−
1
NQ−k(z)xkx

T
kQ−k(z)

1 + 1
N xT

kQ−k(z)xk

,

Q(z)xk =
Q−k(z)xk

1 + 1
N xT

kQ−k(z)xk

.

(36)

We show here the following result for future use:

1

N
ETrCQ−1(z1)AQ−1(z2) =

1

N
ETrCQ(z1)AQ(z2) + o(1), (37)

where C ∈ RM×M is a deterministic matrix with ∥C∥ ≤ C for some constant C. We decompose

Q(z1)AQ(z2)−Q−1(z1)AQ−1(z2)

=[Q(z1)−Q−1(z1)]AQ(z2) +Q−1(z1)A[Q−1(z2)−Q−1(z2)].

Applying the identity
A−1 −B−1 = B−1(B−A)A−1, (38)

we have for i = 1, 2, and C̃ ∈ RM×M with finite spectral norm (where C̃ may be a deterministic
matrix, or a random matrix that is either dependent on or independent of X),

1

N
|Tr[Q(zi)−Q−1(zi)]C̃| = 1

N2
|xT

1Q(zi)C̃Q−1(z1)x1| ≤
C

N2
∥x1∥2 = oa.s.(1).

We denote d = min{dist(z1,R+),dist(z2,R+)}. One may easily check that d ∼ 1. Then by

1

N
|Tr[Q(zi)−Q−1(zi)]C̃| ≤ M

N
(∥Q(zi)C̃∥+ ∥Q−1(zi)C̃∥) ≤ 2M

dN
, for i = 1, 2,

and the Dominated Convergence Theorem, we obtain equation 37. By similar arguments, we get for
any deterministic unit vectors u,v,

uTEC̃Q(zi)Cv = uTEC̃Q−k(zi)Cv + o(1)

= uTC̃Π(zi)Cv + o(1), i = 1, 2,

uTEC̃Q(z1)AQ(z2)Cv = uTEC̃Q−k(z1)AQ−k(z2)Cv + o(1),

(39)
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where C̃ and C are deterministic M ×M matrices with finite spectral norms.

We denote
bk =

1

N
xT
kQ−k(z2)xk, b̃ =

1

N
ExT

kQ−k(z2)xk,

bk =
1

N
xT
kQ−k(z1)xk, b̃ =

1

N
ExT

kQ−k(z1)xk.

It follows directly from the proof of equation 37 that

b̃ =
1

N
ETrΣQ−1(z2) =

1

N
TrΣΠ(z2) + o(1),

b̃ =
1

N
ETrΣQ−1(z2) =

1

N
TrΣΠ(z2) + o(1).

(40)

Recalling equation 32, we rewrite EQ(z1)A
(
Q(z2)−Π(z2)

)
as

EQ(z1)A
(
Q(z2)−Π(z2)

)
= EQ(z1)AQ(z2)

(
IM −Q−1(z2)Π(z2)

)
= EQ(z1)AQ(z2)

(
Π−1(z2)−Q−1(z2)

)
Π(z2)

= EQ(z1)AQ(z2)

(
− 1

N
XXT − z2mΣ

)
Π(z2)

= EQ(z1)AQ(z2)
ΣΠ(z2)

1 + 1
NTrΣΠ(z2)

− 1

N
EQ(z1)AQ(z2)XXTΠ(z2).

(41)

An application of equation 36 yields that

1

N

N∑
k=1

EQ(z1)AQ(z2)xkx
T
k =

1

N

N∑
k=1

EQ(z1)A
Q−k(z2)xkx

T
k

1 + bk

=
1

N(1 + b̃)

N∑
k=1

EQ(z1)AQ−k(z2)xkx
T
k

[
1 +

b̃− bk
(1 + bk)

]

=
1

N(1 + b̃)

[ N∑
k=1

EQ(z1)AQ−k(z2)xkx
T
k + EQ(z1)AQ(z2)XBXT

]
=

1

1 + b̃

(
EF1 + EF2

)
,

(42)
where B = diag

(
b̃− b1, ..., b̃− bN

)
, and

F1 =
1

N

N∑
k=1

Q(z1)AQ−k(z2)xkx
T
k , F2 =

1

N
Q(z1)AQ(z2)XBXT.

We now bound the spectral norm of F2. Define the event

E =

{
1

N
∥ZZT∥ ≤ 2

(
1 +

√
M

N

)2}
.

We then have

∥EF2∥ ≤ E∥F2∥ ≤ 1

N

∥A∥
d2

E∥XBXT∥

≤ ∥A∥∥Σ∥
d2

[
4(1 +

√
ϕ)2E∥B∥δ(E) + 1

N
E∥B∥∥ZZT∥δ(EC)

]
≤ CEmax

k
|b̃− bk|+

1

N

√
Emax

k
|b̃− bk|2E∥ZZT∥2δ(EC).

By using the inequality that (see e.g. Bai & Silverstein (2010))

P(EC) ≤ N−ℓ for any ℓ > 0,
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we have
E∥ZZT∥2δ(EC) ≤ E∥ZZT∥2Fδ(EC) ≤

√
E∥ZZT∥4FP(EC)

≤ N100o(N−101) = o(N−1).
(43)

It can be shown by Lemma 3 that for ℓ ≥ 1,

P(|b̃− bk| > t) ≤ E|zTkΣ1/2Q−kΣ
1/2zk − TrΣQ−k(z)|ℓ

(Nt)ℓ

= t−ℓE[E−k|zTkΣ1/2Q−kΣ
1/2zk − TrΣQ−k(z)|ℓ]
N ℓ

≤ t−ℓC
E[(TrQ2

−k)
ℓ/2 +Tr(Q−k)

ℓ]

N ℓ

≤ Ct−ℓN−ℓ/2,

where we use the fact that

Tr
(
Q−k(z2)

)ℓ ≤ M∥Q−k(z2)∥ℓ ≤
M

dℓ
.

By taking a large enough ℓ, we have

Emax
k

|b̃− bk| =
(∫

t≤N−1/4

+

∫
t>N−1/4

)
P(max

k
|b̃− bk| > t)dt

≤ N−1/4 +

∫
t>N−1/4

N∑
k=1

P(|b̃− bk| > t)dt

≤ 2N−1/4.

(44)

Similarly, one may obtain
Emax

k
|b̃− bk|2 = o(1). (45)

This, along with equation 43 and equation 44, implies that

∥EF2∥ = o(1).

By using equation 36, we rewrite

EF1 =
1

N

N∑
k=1

EQ(z1)AQ−k(z2)xkx
T
k

=
1

N

N∑
k=1

E
[
Q−k(z1)−

1

N

Q−k(z1)xkx
T
kQ−k(z1)

1 + bk

]
AQ−k(z2)xkx

T
k

=
1

N

N∑
k=1

EQ−k(z1)AQ−k(z2)xkx
T
k − 1

N

N∑
k=1

E
1
NQ−k(z1)xkx

T
kQ−k(z1)

1 + bk
AQ−k(z2)xkx

T
k

= EQ−1(z1)AQ−1(z2)Σ− 1

(1 + b̃)N

N∑
k=1

E
1

N
Q−k(z1)xkx

T
kQ−k(z1)AQ−k(z2)xkx

T
k

− 1

(1 + b̃)N2

N∑
k=1

EQ−k(z1)xkx
T
kQ−k(z1)AQ−k(z2)xkx

T
k

(bk − b̃)

1 + bk

= EQ−1(z1)AQ−1(z2)Σ− 1

1 + b̃

(
EF1 + EF2

)
,

(46)
where

F1 =
1

N
Q−1(z1)x1x

T
1Q−1(z2)AQ−1(z2)x1x

T
1 ,

F2 =
1

N
Q−1(z1)x1x

T
1Q−1(z2)AQ−1(z2)x1x

T
1

(b1 − b̃)

1 + b1
.
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We first consider EF2. Let ũ, ṽ denote a pair of unit vectors satisfying

ũ, ṽ = arg max
∥ũ∥=∥ṽ∥=1

|ũTEF2ṽ|,

and let y = Q−1(z1)ũ = (y1, ..., yM )T. Using the Burkholder’s inequality (Burkholder, 1973), we
have

E|yTx1|4 = E
∣∣∣∣ M∑
i=1

yixi1

∣∣∣∣4 ≤ cE
∣∣∣∣ M∑
i=1

y2i

∣∣∣∣2 + cE
M∑
i=1

|yixi1|4

≤ CE∥y∥4 + CE
M∑
i=1

y4i ≲ 1,

where we use the inequality
M∑
i=1

y4i ≤
( M∑

i=1

y2i

)2

≤ ∥y∥4.

Likewise, we have E|xT
1 ṽ|4 ≲ 1. It follows from Lemma 3 that

E|b1 − b̃|ℓ ≤ c

N ℓ
[(TrQ2

−1(z1))
ℓ/2 +TrQℓ

−1(z1)] ≤
C

N ℓ/2
,

and

E|xT
1Q−1(z1)x1|ℓ ≤ CE|xT

1Q−1(z1)x1 − ETrΣQ−1(z1)|ℓ + C|ETrΣQ−1(z1)|ℓ ≲ N ℓ.

Since bk > 1, we can bound the spectral norm of EF2 as

∥EF2∥ = |ũTEF2ṽ| ≤ E|ũTF2ṽ|

≤ 1

N
E|ũTQ−1(z1)x1x

T
1Q−1(z1)AQ−1(z2)x1x

T
1 ṽ||b1 − b̃|

≤ 1

N

√
E|yTx1xT

1 ṽ|2E|xT
1Q−1(z1)AQ−1(z2)x1(b1 − b̃)|2

≤ 1

N

√√
E|yTx1|4E|xT

1 ṽ|4
√

E|xT
1Q−1(z1)AQ−1(z2)x1|4E|b1 − b̃|4

≤ C
1

N
o(N) = o(1).

Therefore, it suffices to find the deterministic equivalent of EF1. We recall the definition above
equation 34 that AM = o(1) if ∥AM∥ = o(1). Let E−1(·) = E[·|x2, ...,xN ]. We have

EF1 =
1

N
EQ−1(z1)x1x

T
1Q−1(z1)AQ−1(z2)x1x

T
1

=
1

N
EQ−1(z1)

[
E−1x1x

T
1Q−1(z1)AQ−1(z2)x1x

T
1

]
=

1

N
EQ−1(z1)Σ

1/2E−1[z1z
T
1Σ

1/2Q−1(z1)AQ−1(z2)Σ
1/2z1z

T
1 ]Σ

1/2

=
1

N
EQ−1(z1)

[
TrΣQ−1(z1)AQ−1(z2)

]
Σ

+
1

N
EQ−1(z1)Σ

[
Q−1(z1)AQ−1(z2) +Q−1(z2)AQ−1(z1)

]
Σ

+
1

N
(Ez411 − 3)EQ−1(z1)Σ

1/2diag(Σ1/2Q−1(z1)AQ−1(z2)Σ
1/2)Σ1/2

=
1

N
E
[
TrΣQ−1(z1)AQ−1(z2)

]
Q−1(z1)Σ+ o(1)

=
1

N

[
ETrΣQ(z1)AQ(z2)

]
Π(z1)Σ+ o(1),

(47)
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where the last identity is due to equation 37, equation 39 and

1

N
E
[
TrΣQ−1(z1)AQ−1(z2)

]
Q−1(z1)Σ

=
1

N
E
[
TrΣQ−1(z1)AQ−1(z2)− ETrΣQ−1(z1)AQ−1(z2)

]
Q−1(z1)Σ

+
1

N
[ETrΣQ−1(z1)AQ−1(z2)]Q−1(z1)Σ

=
1

N
E[TrΣQ(z1)AQ(z2)]Π(z1)Σ+ o(1).

By equation 40, equation 42, equation 46 and equation 47 and the fact that ∥Π(z2)∥ is bounded, we
have

1

N
EQ(z1)AQ(z2)XXTΠ(z2)

=
1

(1 + b̃)
EF1Π(z2) + o(1)

=
1

1 + b̃

[
EQ−1(z1)AQ−1(z2)ΣΠ(z2)−

1

1 + b̃
EF1Π(z2)

]
+ o(1)

=
EQ(z1)AQ(z2)ΣΠ(z2)

1 + 1
NTrΣΠ(z2)

−
1
N [ETrΣQ(z1)AQ(z2)]Π(z1)ΣΠ(z2)

(1 + 1
NTrΣΠ(z2))(1 +

1
NTrΣΠ(z1))

+ o(1).

This, along with equation 34, equation 41, leads to

EQ(z1)AQ(z2)

=Π(z1)AΠ(z2) +
1
N [ETrΣQ(z1)AQ(z2)]Π(z1)ΣΠ(z2)

(1 + 1
NTrΣΠ(z2))(1 +

1
NTrΣΠ(z1))

+ o(1).
(48)

Multiplying both sides of the above equation on the left by Σ, and taking the trace, we obtain

1

N
ETrΣQ(z1)AQ(z2)

=
1

N
TrΣΠ(z1)AΠ(z2) +

1
N [ETrΣQ(z1)AQ(z2)]

1
NTrΣΠ(z1)ΣΠ(z2)

(1 + 1
NTrΣΠ(z2))(1 +

1
NTrΣΠ(z1))

+ o(1).

It follows that

1

N
ETrΣQ(z1)AQ(z2)

=

(
1−

1
NTrΣΠ(z1)ΣΠ(z2)

(1 + 1
NTrΣΠ(z2))(1 +

1
NTrΣΠ(z1))

)−1
1

N
TrΣΠ(z1)AΠ(z2) + o(1).

(49)

Plugging equation 49 into equation 48, we get

EQ(z1)AQ(z2) = Π(z1)AΠ(z2)

+
1
NTrΣΠ(z1)AΠ(z2)(

1 + 1
NTrΣΠ(z2)

)(
1 + 1

NTrΣΠ(z1)
)
− 1

NTrΣΠ(z1)ΣΠ(z2)
Π(z1)ΣΠ(z2) + o(1).

(50)

The result equation 15 follows by combining the equation 50 with equation 33. Now we prove
equation 17. Using a proof analogous to that of equation 33, we can obtain that

1

M
TrC

[
Q(z1)AQ2(z2)− EQ(z1)AQ(z2)

]
= oa.s.(1). (51)

We denote the spectral decomposition of C by

C =

M∑
i=1

λiuiv
T
i .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

By equation 50, we have

1

M
TrCEQ(z1)AQ(z2) =

1

M
Tr

M∑
i=1

λiuiv
T
i EQ(z1)AQ(z2)

=
1

M

M∑
i=1

λiv
T
i EQ(z1)AQ(z2)ui

=
1

M

M∑
i=1

λiv
T
i Π(z1)S(A)Π(z2)ui + o(1)

=
1

M
TrCΠ(z1)S(A)Π(z2) + o(1).

This, along with equation 51, establishes equation 17.

B.9 DETAILS OF SECTION 5.2

In Case 1 of Section 5.2, where X1 = αX2 + X̃1, the following result holds.

Proposition 2. Suppose that X̃1,X2, ε1 and ε2 satisfy Assumptions 1-2. Then Theorem 1 continues
to hold. Moreover, if we additionally impose Assumption 3, then Theorem 2 remains valid.

Proof: We recall that z1 = −λt, z2 = −λs. We only consider h55 in equation 19 here and the
remaining terms can be handled analogously. By equation 21, it suffices to estimate

1

N
Tr(IM + z2Q2)Σ2(IM + z2Q2)(Q1 + z1Q

2
1).

Since

Q1 =

(
1

N
X1X

T
1−z1IM

)−1

=

(
1

N
X̃1X̃

T
1−z1IM+∆

)−1

, ∆ =
α

N
(X̃1X

T
2+X2X̃

T
1+αX2X

T
2 ).

We denote Q̃1 =
(

1
N X̃1X̃

T
1 − z1IM

)−1
. Applying equation 38 and Lemma 4, we have with high

probability,

∥E∥ = ∥Q̃1 −Q1∥ = ∥Q̃1∆Q1∥ ≤ 1

|z1|2
∥∆∥ ≲ α = o(1). (52)

Then we obtain
z2
N

TrQ2Σ2Q
2
1 =

z2
N

TrQ2Σ2(Q̃
2
1 +E2 +EQ̃1 + Q̃1E︸ ︷︷ ︸

Ê

)

=
z2
N

TrQ2Σ2Q̃
2
1 + oa.s.(1),

where we use the fact that

1

N
TrQ2Σ2Ê ≤ M

N
∥Q2Σ2Ê∥ ≲ ∥Ê∥ = oa.s.(1).

By similar argument, we have

h55 =
ξ2σ2

N2
Tr(IM + z2Q2)Σ2(IM + z2Q2)(Q̃1 + z1Q̃

2
1) + oa.s.(1).

The proof is completed.

For Case 2 in Section 5.2, we have the following proposition, which also covers the setting of self-
distillation.

Proposition 3. Suppose X1 = X2 + A is a signal-plus-noise data matrix, with ∥A∥ = o(
√
M).

The regression parameter vector β = β1 = β2 satisfies Assumption 3. When λs ̸= λt, we have

B̂ias =
a

M
TrΣ2[Π2(−λt)−Π2(−λs)] +

b

M
TrΣ2Π

′
2(−λt) +

c

M
TrΣ2Π

′
2(−λs),
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and

V̂ar =
ξ2σ2

N1

(
dTrΣ2[Π2(−λt)−Π2(−λs)] + eTrΣ2Π

′
2(−λt) + fTrΣ2Π

′
2(−λs)

)
+ (1− ξ)2σ2 1

N2
TrΣ2[Π2(−λs)− λsΠ

′
2(−λs)],

where

a =
2ξλ1λ2

λs − λt
+

2ξλtλs(ξλt − λs)

(λs − λt)2
− 2ξλ2

sλ
2
t

(λs − λs)3
, b = ξ2λ2

t −
2ξ2λ2

t λs

λt − λs
,

c = λ2
s −

2ξλtλ
2
s

λt − λs
, d =

2λs

λt − λs
+

λ2
s

(λt − λs)2
+

λtλ
2
s

(λs − λt)3
+

2λsλt

(λt − λs)2
,

e = −λt +
2λsλt

(λt − λs)2
− λtλ

2
s

(λs − λt)2
, f =

λ2
s

λs − λt
− λtλ

2
s

(λs − λt)2
.

When λ = λs = λt, B̂ias is given in equation 54 and

V̂ar = (1− ξ)2σ2 1

N2
TrΣ2(Π2 + λΠ′

2) +
ξ2σ2

N1
TrΣ2[Π2 − 3λΠ′

2 + 3λ2Π
(2)
2 − λ3Π

(3)
2 ],

with Π
(k)
2 = dkΠ2(z)

dzk

∣∣
z=−λ

.

Proof: By an argument analogous to that used for equation 52, one may readily verify that

∥Q1(z)−Q2(z)∥ = o(1).

Then equation 26 becomes

1

M
TrΣ2HHT =

1

M

[
ξ2z21TrΣ2Q

2
2(z1) + 2ξz1z2 TrΣ2Q2(z1)Q2(z2)︸ ︷︷ ︸

t1

+2ξ2z21z2 TrΣ2Q2(z2)Q
2
2(z1)︸ ︷︷ ︸

t2

+ z22TrΣ2Q
2
2(z2) + 2ξz1z

2
2 Tr[Q2(z2)Σ2Q2(z2)Q2(z1)]︸ ︷︷ ︸

t3

+ ξ2z21z
2
2 Tr[Q2(z2)Σ2Q2(z2)Q

2
2(z1)]︸ ︷︷ ︸

t4

]
+ o(1).

We note that when z1 ̸= z2,

Q2(z1)−Q2(z2) = (z1 − z2)Q2(z1)Q(z2), Q2(z1)Q2(z2) = Q2(z2)Q2(z1).

Then we have
1

M
t1 =

2ξz1z2
M

TrΣ2
Q2(z1)−Q2(z2)

z1 − z2
=

2ξz1z2
M(z1 − z2)

TrΣ2[Π2(z1)−Π2(z2)] + oa.s.(1),

1

M
t2 =

2ξ2z21z2
M(z1 − z2)

TrΣ2[Q2(z1)−Q2(z2)]Q2(z1)

= − 2ξ2z21z2
M(z1 − z2)

TrΣ2Π
′
2(z1)−

2ξ2z21z2
M(z1 − z2)2

TrΣ2[Π2(z1)−Π2(z2)] + oa.s.(1),

1

M
t3 =

2ξz1z
2
2

M(z1 − z2)
TrΣ2[Q2(z1)−Q2(z2)]Q2(z2)

= − 2ξz1z
2
2

M(z1 − z2)
TrΣ2Π

′
2(z2) +

2ξz1z
2
2

M(z1 − z2)2
TrΣ2[Π2(z1)−Π2(z2)] + oa.s.(1),

1

M
t4 =

ξ2z21z
2
2

M(z1 − z2)2
TrΣ2[Q2(z1)−Q2(z2)]

2

=
ξz21z

2
2

M(z1 − z2)2
TrΣ2

[
Q2

2(z2) +Q2
2(z1)− 2

Q2(z1)−Q2(z2)

z1 − z2

]
=

ξ2z21z
2
2

M(z1 − z2)2
TrΣ2[Π

′
2(z1) +Π′

2(z2)]−
2ξz21z

2
2

M(z1 − z2)3
TrΣ2[Π2(z1)−Π2(z2)] + oa.s.(1).
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Based on above results, we have 1
MTrΣ2HHT = B̂ias + oa.s.(1). As for the variance, one may

check that

h55 =
ξ2σ2

N1
Tr

[
Σ2[Π2(z1) + z1Π

′
2(z1)] + 2z2(z2 − z1)

−1Σ2[Π2(z2)−Π2(z1)]

+ z22(z2 − z1)
−1Σ2Π

′
2(z2) + z22(z1 − z2)

−2Σ2[Π2(z1)−Π2(z2)]− 2z1z2(z2 − z1)
−2TrΣ2Π

′
2(z1)

+ 2z1z2(z1 − z2)
−2TrΣ2[Π2(z2)−Π2(z1)]

+ z1z
2
2(z1 − z2)

−2TrΣ2[Π
′
2(z1) +Π′(z2)]− z1z

2
2(z1 − z2)

3Tr[Π2(z1)−Π2(z2)]

]
+ oa.s.(1),

(53)
and the limit of h66 is the same as that in equation 24, where h55, h66 are given in Appendix B.2.

When λ = λt = λs, denoting Q2 = Q2(−λ), we have

1

M
TrΣ2HHT =

1

M

[
(1 + ξ)2λ2TrΣ2Q

2
2 − (2ξ + ξ2)λ3TrΣ2Q

3
2 + ξ2λ4TrΣ2Q

4
2

]
=

1

M

[
(1 + ξ)2λ2TrΣ2Π

′
2 − (2ξ + ξ2)λ3TrΣ2Π

(2)
2 + ξ4λ4TrΣ2Π

(3)
2

]
︸ ︷︷ ︸

B̂ias

+oa.s.(1),

(54)
where we use Vitali’s convergence theorem. Similarly, we have

h55 =
ξ2σ2

N1
TrΣ2[Π2 + 3zΠ′

2 + 3z2Π
(2)
2 + z3Π

(3)
2 ] + oa.s.(1),

and the limit of h66 coincides with the one given in equation 24. The proof is completed.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 NONLINEAR MODELS

When considering more complex models, we fix the student model and let the teacher model be a
deeper fully connected neural network:

f t
NN = aTt σ(W̃3σ(W̃2σ(W̃1x))),

where

at = argmin
a

1

N1
∥y1 − [σ(W̃3σ(W̃2σ(W̃1X1))]

Ta∥2 + λt∥a∥2.
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(a) Two layer NN (b) Four layer NN

Figure 4: Excess risk estimated over 30 trials. We set (M,N1, N2) = (50, 200, 100). (a) Settings:
(λt, λs) = (0.5, 0.2), σ(x) = x3. The weight matrices W̃ ∈ Rn1×M and W ∈ Rn×M have
i.i.d. centered Gaussian entries with variance M−1, where (n, n1) = (100, 200). (b) Settings:
λt = λs = 0.2, (n0, n1, n2, n3) = (M, 600, 400, 200). The weight matrices W̃i ∈ Rni×ni−1 have
i.i.d. centered Gaussian random variables with variance ni−1

−1. We use the Leaky ReLU activation:
σ(x) = 0.01xδ(x ≤ 0) + xδ(x > 0).

C.2 DEMONSTRATION OF COROLLARY 3

Figure 5: Theoretical predictions (solid curves) versus simulation results (scatter points, averaged
over 100 independent trials) for ridgeless regression. We set (M,N1, N2) = (400, 600, 600), β2 =
4√
M
(1, ..., 1)T, σ2 = 1 and Σ2 = IM . We label the case ∥γ∥ = 3.58 as γ = −8√

M
(1, ..., 1, 0, ..., 0)T

with the first M/5 entries equal to 1. The orange and green curves correspond to the setting where
Σ1 = diag(4, ..., 4, 1

4 , ...,
1
4 ), with the first half of the diagonal entries equal to 4 and the second half

equal to 1
4 . The dark blue curve corresponds to the setting where Σ1 = 4IM .

Figure 5 presents empirical results that support 3. The gap between the orange and green curves
quantifies the impact of model shift on the excess risk. Furthermore, the gap between the dark blue
and orange curves reflects the role of the term TrΣ−1

1 Σ2 as characterized in Corollary 3.

C.3 IMPACT OF REGULARIZATION PARAMETERS

To examine the impact of the regularization parameters λt, λs, we plot the empirical excess risk of
the student model for (λt, λs) ∈ [0.01, 0.5]2 in Figures 6-8 (averaged over 5 trials), correspond-
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ing to ξ = 0.5,−0.5 and 1.5, respectively. We set β1 = β2 ∼ N (0, 1
M IM ), (M,N1, N2) =

(400, 300, 200), σ2 = 1. We set Σ2 = IM in the absence of covariate shift. Under covariate shift,
we set Σ1 = diag(d1, ..., dM ), where

di = 0.64δ(i ≤ M/2) + 0.25δ(M/2 < i ≤ M).

From these figures, we observe that when ξ > 1, the influence of λt becomes large. In contrast, in
the case ξ = −0.5, λs almost dominates the variation of the excess risk, reflecting a weaker impact
of the teacher’s guidance (anti-learning against the teacher’s supervision).

(a) With covariate shift (b) Without covariate shift

Figure 6: Excess risk when ξ = 0.5.

(a) With covariate shift (b) Without covariate shift

Figure 7: Excess risk when ξ = −0.5.
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(a) With covariate shift (b) Without covariate shift

Figure 8: Excess risk when ξ = 1.5.
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