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ABSTRACT

Cross-domain knowledge distillation often suffers from domain shift. Although
domain adaptation methods have shown strong empirical success in addressing
this issue, their theoretical foundations remain underdeveloped. In this paper, we
study knowledge distillation in a teacher—student framework for regularized linear
regression and derive high-dimensional asymptotic excess risk for the student es-
timator, accounting for both covariate shift and model shift. This asymptotic anal-
ysis enables a precise characterization of the performance gain in cross-domain
knowledge distillation. Our results demonstrate that, even under substantial shifts
between the source and target domains, it remains feasible to identify an imita-
tion parameter for which the student model outperforms the student-only base-
line. Moreover, we show that the student’s generalization performance exhibits
the double descent phenomenon.

1 INTRODUCTION

The success of modern machine learning tasks typically requires the availability of large-scale la-
beled datasets. However, collecting labeled data for a new target task is often challenging and ex-
pensive. When data in the target domain is scarce, it is possible to leverage labeled data from related
source domains. Knowledge distillation (KD) (Hinton et al., 2015), originally proposed for model
compression, is a popular technique that transfers knowledge from a capable teacher model trained
on a source domain to a smaller student model. This is achieved by guiding the student model to
mimic the teacher model’s outputs. The extra information in the teacher’s predictions often improves
the student model’s performance when target domain data is limited. KD has recently achieved re-
markable success across several fields including image classification (Radford et al., 2021; Li et al.,
2024), speech recognition (Mingote et al., 2020), and language models (Gu et al., 2023; Agarwal
et al., 2024).

We denote the source domain data and target domain data as (X;,y1) and (X2, y2), respectively.
This work focuses on the following cross-domain KD process: a teacher model is first trained on the
source domain data, and its predicted labels for the target domain inputs are then used to supervise
the training of the student model by minimizing the per-sample objective function,

L(&) = &L(y5,y5) + (1 = &)Ly, 45), (1)

where ¢ denotes the loss function, y» is the ground-truth label, y5 is the teacher’s predicted label,
and y5 denotes the student’s prediction. The weight parameter &, known as the imitation parameter
(Lopez-Paz et al., 2015), balances the contributions of the teacher’s predictions and the observed
labels during training.

Cross-domain KD often suffers from a shift between the source and target domains. For instance,
the source domain may consist of standard American English speech, while a region-specific voice
assistant must handle local dialects. Another example is a face detection model trained on images
of light-skinned individuals (source domain) being applied to images of dark-skinned individuals
(target domain). Learning a discriminative predictor under such domain shifts between source and
target domains is known as domain adaptation (Ganin et al., 2016). While much of the literature on
domain adaptation has focused on improving the performance of KD, relatively little is understood
about when — and how effectively — the student model can learn from the teacher in the presence of
domain shift.
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Recently, Emrullah Ildiz et al. (2025) analyzed the weak-to-strong (W2S) generalization of linear
models in a cross-domain setting, and identified the form of the optimal surrogate model. However,
their analysis relies on the condition that the covariance matrices of the source and target domains are
jointly diagonalizable, which limits its ability to capture the influence of eigenvectors. Moreover,
their results are restricted to the setting & = 1 (i.e., pure teacher supervision), leaving the trade-
off between distillation and learning from observed student data unexplored. Motivated by these
limitations, we take a step toward a more complete understanding of the performance gains of cross-
domain KD for linear regression.

In this paper, we present a theoretical analysis of cross-domain KD in the context of linear mod-
els, leveraging tools from random matrix theory. For ridge regression, we study two cases: (i) a
deterministic-parameter setting, in which the teacher and student parameter vectors are non-random;
and (ii) a random-parameter setting, in which a shared parameter vector is drawn from a prior dis-
tribution. We also analyze ridgeless regression in the under-parameterized regime (see the first
inequality in equation 10). All proofs of the theoretical results are provided in the appendix. We
summarize our contributions as follows:

» High-dimensional risk characterization. We derive precise high-dimensional asymp-
totics for the risk of cross-domain KD via a bias—variance decomposition. Our results
reveal how the excess risk depends on the parameter vectors and the input distributions in
both domains, generalizing the student-only setting of Hastie et al. (2022).

« Utility of cross-domain KD. (“Stones from other mountains can polish jade ). Intuitively,
large domain shifts between the teacher’s and student’s training data might limit — or even
harm — the value of teacher supervision for the student’s generalization. Surprisingly, our
analysis shows that even under substantial domain discrepancies, it is still possible to find
an ¢ € R such that the student model can outperform the student-only baseline. The
existence of such ¢ depends on the geometry of the models and the covariance matrices of
both domains.

* Double descent phenomenon. We observe that the excess risk, as a function of
the dimension-to-sample-size ratio, exhibits the double-descent phenomenon in KD for
teacher-student model — previously documented by Hastie et al. (2022); Nakkiran et al.
(2021) in student-only models, and by Moniri & Hassani (2025) for £ = 1 under no do-
main shift with isotropic covariance.

1.1 RELATED WORKS

Theory of KD. In recent years, a growing body of work has sought to understand the effects of KD.
The theoretical understanding of distillation began with Phuong & Lampert (2019), who initially
investigated linear student networks. Wei et al. (2021); Borup & Andersen (2021); Das & Sanghavi
(2023); Pareek et al. (2024); Jeong & Chung (2025) theoretically studied self-distillation, a variant
of KD in which the student model has the same architecture as the teacher and is trained on the
same data. Menon et al. (2021) showed that a “Bayes teacher” providing true class probabilities can
reduce the variance of the student’s objective, leading to improved performance. Harutyunyan et al.
(2023) proposed a framework that highlighted a delicate interplay among the teacher’s accuracy, the
student’s margin with respect to the teacher predictions, and the complexity of the teacher predic-
tions. From an information-theoretic perspective, Dissanayake et al. (2025) quantified and explained
the transferred knowledge and knowledge left to distill for a downstream task.

Cross-domain KD and domain adaptation. Many studies have explored various methods to ad-
dress the domain shift problem in the field of KD. Empirical works include Su & Maji (2016);
Kundu et al. (2019); Asami et al. (2017); Li et al. (2023); Xu et al. (2024); Tang et al. (2025). The
emergence of large language models (LLMs) has brought new advancements, such as distillation
across vastly different architectures and scalable cross-domain transfer. For more details, readers
may refer to Fedus et al. (2022); Ouyang et al. (2022); Yang et al. (2024). From a theoretical per-
spective, Emrullah Ildiz et al. (2025) focused on the setting where the student is trained using only
the teacher’s predictions, and analyzed the conditions under which the student can outperform the
teacher in cross-domain KD.

Weak-to-strong generalization. Weak-to-strong (W2S) generalization (Burns et al., 2024), which
concerns using predictions generated by a weaker teacher model to train a more powerful student
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model, is closely connected to KD. Emrullah Ildiz et al. (2025) provided an analysis of ridgeless
regression and proved that when using a weak model as the surrogate (teacher), W2S training can
provably outperform training with true labels. Charikar et al. (2024) assumed that the models are
selected over a convex set, and quantified the gain of the weak-label trained strong model over
the weak model. Wu & Sahai (2025) explored W2S generalization for classification in a spiked
covariance model. Medvedeyv et al. (2025) explained how W2S generalization can arise in random
feature models described by two-layer networks. Theoretical research in this area has continued to
grow, see Dong et al. (2025); Shin et al. (2025); Moniri & Hassani (2025); Oh et al. (2025), for
example.

1.2 NOTATIONS

We use || - || to denote the spectral norm for matrices and the Euclidean norm for vectors, and || - ||
for the Frobenius norm of a matrix. Standard big-O and small-o notations are employed. Moreover,
we denote z,, = 0q4.5.(an), if 2,,/a, — 0 almost surely. For any sequences a,, > 0 and b,, > 0, we
write a,, < by, if a,, = O(by,), and a,, ~ b, if both a,, < b,, and b,, < a,,. We use §(-) to denote the
indicator function, which takes the value 1 if the condition - holds, and O otherwise. Throughout the
paper, ¢ and C' denote constants that may vary from line to line. For a random variable z, we use

x ~ D to indicate that x follows the distribution D.

2 PRELIMINARIES

2.1 PROBLEM SETUP

Suppose there are N; covariates {x§1) };V:ll drawn i.i.d. from an M-dimensional source distribution

Dy and N5 covariates {xf)};y:"’l drawn i.i.d. from an M-dimensional target distribution Ds. We

consider a linear regression task specified by an unknown parameter vector 3; € RM:
y) =pTx) 4 =12, 1< < N,
where 5§.i) € R is a zero-mean random noise term with variance o2. Fori = 1,2 and z € C\R™,
define 4 . . .
X; = (xgl)7 7){%)) e RM*Ni -y, = (ygl), ,y%i)T e RV,

-1
1 i i :
Qi(z) = (NXZ-X;F — ZIM) , €= (55 ), ...,55\,2)1- e RY:,

We refer to the case where D1 # D- as a covariate shift, and the case where 31 # (32 as a model
shift.

Teacher Model: The teacher model is finetuned on {(xgl), y§1) ) }j.v:llz

. 1
e = arguuin (-lIva — XTBIP + X1
oA @
_ 1
= (XuX] + NiAd) Xy = EQl(_/\t)le1v

where A; > 0 is the teacher regularization parameter. The risk of B; when M ~ N in the high-
dimensional setting has been studied extensively in the literature such as Dobriban & Wager (2018);
Hastie et al. (2022).

Student Model Trained with Cross-Domain KD: We use the pre-trained teacher model together
with covariates {x§2) } ?21 to generate predictions:

2 2N\ T
¥h = (s whe) T = (67, 0x ) B
The student model is finetuned on the target domain data {(X;-Q), y](-z))} ;VZQ , and the teacher’s predic-

tions {(x§2) S Y5)} ;le, using the per-sample objective function defined in equation 1 with an imitation
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parameter &, as follows:
. . 1 1
e = argmin £(6) = argmgn (515~ XIBI ) + (1 - 9 5 lv2 - XIBI ) + Al

= (XoX5 + NoAdny) ™ (EXayh + (1 — €)Xay2),

(3)
where ) is the student regularization parameter. While it is common to restrict £ € [0, 1] (Lopez-
Paz et al., 2015), we do not impose this constraint, in line with Das & Sanghavi (2023); Pareek
et al. (2024). For the covariates x'? and the noise terms E;l),i =1,2, 1 <j < N;, we make the
following assumptions, which are standard in the random matrix theory literature (see, e.g., Bai &
Silverstein (2010)).

Assumption 1. Suppose X1, Xo, €1, and €4 are mutually independent. Moreover, we assume

(a) the covariates are generated according to
Xi = (2)°2;, fori=12,
(@)

where Z; = (z;3,) is an M x N; random matrix with i.i.d. entries of zero mean and unit variance,

and X; is a positive semi-definite matrix. Furthermore, we assume for all p € N, there is a constant
Cp such that

nax E|z7 [P < Cp. @)

(b) M ~ Ny ~ Na.

(c) €; € RNi is a random vector consisting of i.i.d. entries of zero mean, variance o2, and for all
p € N, there is a constant cy, such that

ElePP <e,.
P:l?}é ler’ 1P < ¢

While we allow zﬁ) and zg) to follow different distributions — a form of covariate shift — our theo-

retical results do not depend on their specific distributions, provided that the moment conditions in
Assumption 1(a) are satisfied. The requirement that all moments of zﬁ) exist can be relaxed to the
existence of finitely many moments, with minor modifications to our proof; however, we do not pur-
sue this generalization here. The following assumption on the structure of the covariance matrices

is imposed to facilitate theoretical analysis and rule out degenerate cases.
Assumption 2. Let T be a small constant. Denote the eigenvalues of ¥; by ot > o%--- > i, > 0.

(a) (Boundedness of ;). We assume that max;—1 2 | Z;|| = o < 771,

(b) (Anti-concentration at 0). For i = 1,2, the empirical spectral distribution of 3; satisfies
M
1 i
MZé(Jj <7)<1-7

j=1

Let (x,y) be an unseen sample of the target task, that is y = 34 x + €, where x ~ D5 and ¢ follows
the same distribution with 552). Under the mean squared loss, the generalization ability is quantified

by the risk of the estimator 3 :

R(B5) = Exyly — BIx|* = Bx, (B2 — B)Tx + ¢ = | £5/%(82 - B)|* + 0,
where E , denotes the expectation taken with respect to (w.r.t.) the pair (x,y). The excess test risk
is defined as follows:

ER(G:) = R(8) — 0 = | 2,*(8: - B.)[* 5)
When £ = 0, 3¢ reduces to the ridge regression estimator for the student only model, and we denote
the corresponding excess risk by ER . Note that ER(3s) can be decomposed into bias and variance
as ER(8;) = Bias + Var, where

Bias = ||2§/2(52 - Ex,yﬁS)”Qa

1/2 2

Var = [ 2,(8; — Ex,8)[*
In the remainder of this paper, we derive asymptotic expressions for the bias and variance terms to
analyze the generalization performance of the student model using tools from random matrix theory.
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2.2 RANDOM MATRIX THEORY

Before proceeding to the theoretical analysis, we introduce several key quantities from random ma-
trix theory that will appear in our main results. For any distribution G supported on R™ = [0, c0),
its Stieltjes transform is defined as

mea(z) :/ 1 dG(z), z ¢ supp(G).

r—z

Next, we define the asymptotic eigenvalue density of random matrices via its Stieltjes transform.

Lemma 1. Let X = 3Y/2Z be a random matrix, where 7. = (zjk) € RMXN M ~ N satisfies

Assumption 1(a), and X satisfies Assumption 2. For each = € C\R™, there exists a unique m =

ma(2) € C satisfying the equation
1

1 b 1
z=——+ =Tr
m

o~ s z S Cvn O >
NS - NTrZ)H7 with Sz8m(z) > 0, (6)

where
(z) = —(z + 2mXZ) "L

This lemma is a well-known result in the random matrix theory literature (see, e.g., Bai & Silverstein
(2010)).

3 THEORETICAL ANALYSIS

In this section, we analyze the excess risk ER(3;) defined in 5 under three distinct settings. In
Section 3.1, we consider the case where 3; and 3, are deterministic, with their difference being
arbitrary. In Section 3.2, we study the scenario in which 8; = 35 and the common parameter vector
is drawn from a prior distribution. Finally, in Section 3.3, we analyze ridgeless regression under the
regime where M < N, Ns and the covariance matrices 31, 35 are invertible.

Before presenting the main results, we first introduce some necessary notation. For M, N;,3; and
z < 0, the Stieltjes transform determined by Lemma 1 is denoted by m;(z). Let

I(2) = — (2 + 2my(2)2) 1, i =1,2.
For notational simplicity, we write
Q1 =Qi(—\), Q2=Qa(—)X), II; =II;(=A;), and IIy = TIx(—\s).
For any deterministic matrix A with bounded spectral norm, we define

Si(A) = A+ ¥, i=1,2
i(A) (I+ A TEIL)? - L Tr(Sa)?
Moreover, when A = I,,, we denote
d d
I} = anl(z)t}h =ILS (Iy)I, II, = &HQ(Z)L;AS = TS5 (In ).

3.1 DETERMINISTIC REGRESSION PARAMETERS

‘We now state our first main result.

Theorem 1. Let v = (31 — Ba. For the deterministic vectors ||31|| and ||Bz|, assume that
1811, |82l < ¢ for some constant c. Under Assumptions 1-2, the following results hold:

Bias = £?8] [A\TLS1 (Z2)TL; + A2 S (TToSs (0) o) IT; — 207 AL S (Z.115)1T | 34
+ A28 TS5 (22) Lo Bs + 2687 [AATI ZoTTy — AT ITL S0 (32115 B2
+ 28T [AATT Z0IT; — A8, (82)TLIT; — ASoIT 4+ AN LTI B
+ 2605 [ANT1285(32) My — AT D]y + £ [ = 2A 00535 + A T1585(32) o |y
+ 04.5.(1),

(7
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and
2.2
Var = 5]\([7 TI‘[(EQ — 2)\522]:[2 + )\521_[281 (22)]._[2) (H1 — At]-_[/l)]
1
1— 2 2
+ U s, (- ) 0, (1),
2

This theorem characterizes the dependence of ER((3;) on the geometry of X1, 31, 3o, and 35. For
instance, in the absence of model shift, i.e., v = 0, the excess risk depends on how the common
vector 31 = (5 aligns with the eigenvectors of 31 and 35, as well as on the alignment between
the eigenvectors of 331 and 3. This observation extends the results of Hastie et al. (2022), which
considers high-dimensional least squares regression within a single domain (corresponding to & = 0
in equation 3).

3.2 RANDOM REGRESSION PARAMETERS

In this section, we assume that the vector 3; = B2 = (3 is random, and consider the excess risk
under two population covariance matrices, 31 and X5, which may be equal or distinct. Before
presenting the main result, we introduce the following assumption, commonly used in the literature
(Dobriban & Wager, 2018; Moniri & Hassani, 2025).

Assumption 3. The regression parameter vector 3 = (B, ..., Bar)T € RM is random, with each
entry i.i.d., and [, satisfies
~2
Ef; =0, Ef2 = UM and B[V MB,|P < C,,
forany p € N, where C,, is a constant depending only on p.
Theorem 2. Suppose Assumptions 1-3 hold. Then the following asymptotic expressions hold:

~2
Bias = JM EN2TYSLIT, + 2NN I ) + A2 T, I,

— 2N ASTY ST IT) + AN Tr [(TL2 8o (32) Iy ) (— 200y + EAJTY)] | + 04.6.(1),
and Var is the same as that in Theorem 1.

This theorem extends the result of Moniri & Hassani (2025), which considers the case of no covari-
ate shift, with inputs drawn i.i.d. from N(0,1,/) in the context of W2S generalization (i.e., when
& = 1). Our framework generalizes this analysis by allowing £ € R, thereby providing a more com-
prehensive understanding of the trade-off between learning from the teacher and from the observed
labels.

Let m, (z), my(z) be the Stieltjes transforms of the standard Marchenko-Pastur law with parameters
M/Ny, M/Ns, respectively:

= : ®)

— M
Tr—z QNiZ

mi(z):/dgMPﬂ'(x) (-3 =2 y/(e—1- )" —at

The following corollary follows immediately from Theorem 2 and the fact that IT; = m I/, IIs =
moIas (see, e.g., Alex et al. (2014)).

Corollary 1. Suppose 1 = 2o = Ipy. Write my = mq(—At), My = mo(—Xs). Under Assumption
1 and Assumption 3, we have the following expressions:

Bias = 52[€2\2m| + 26 A my + N2ml — 262 N2\ amym)
— 26NN mbmy + EN NI mb] + 0q.5.(1),

and

M
Var = 6202ﬁ1 [my — 2Asmymy + A2mymib — Am 4 2MAsmom) — AAZm)m)]

M
+(1- f)QUQE [my — Asm] + 04.5.(1),
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where m/, m/, denote the derivatives evaluated at z = —\; and z = — ), respectively:
d d
r_ r 9
m) = fdzml(Z)]Z:_At,mQ = dzmg(Z)\z:_As-

As previously noted, we do not restrict £ to the interval [0, 1]. It has been shown in Das & Sanghavi
(2023) that the optimal value of £ may exceed 1. In Corollary 2 below, we present a toy example
demonstrating that even when the input data across domains are i.i.d. and in the absence of model
shift — i.e., with no domain shift — the limiting optimal value of £ can be negative.

Corollary 2. Suppose the conditions in Corollary 1 hold. The limiting optimal value of € is negative
if

M
Ashem; SNR — — > 0, 9)
N

where SNR = Z—z — ls)* + 04.5.(1).

0-2
Remark 1. We call the case £ < 0 anti-learning against the teacher’s supervision, in contrast to
& > 1, which Das & Sanghavi (2023) termed anti-learning the observed (possibly noisy) labels.
This corollary provides insight into the selection of &: the sign of the limiting optimal value of &
depends not only on parameters (A, As) but also on data-related factors (SNR, data dimension, and
sample sizes of both domains).

3.3 RIDGELESS REGRESSION

In this section, we consider the ridgeless regression for cross-domain KD in the under-parameterized
setting, i.e.,

M M -

E,E<(1+7) Land Ay = A = 0. (10)
Adopting the notation v = (3; — 32 in Theorem 1, the high-dimensional asymptotic excess risk is
given by the following result.

Theorem 3. Suppose equation 10 holds and assume that 7 < oppin(X;) < -+ < oax (X)) < 771
for v =1, 2. The estimator for student model obtained by equation 1 is the averaging estimator:

Bs = £8P + (1 - €)B9S, (11)

where
B = (X, X)Xy, i =1,2.

Under Assumptions 1-2, we have

ER(8;) = [Bias + Var|(1 + 04« (1)),
where .
Bias = ¢24 %07,
and

—— 1
Var = (1 — ¢£)?%¢? + &0 ————TrE, 2

Ny — M Ny — M

Solving a%(ﬁi-a\s + \//';;‘) = 0, we obtain

M 2 oM
g:(»ﬂzw+az + -7 Tr22211> 7T c(0,1).

No—M Ny —M Ny — M
The following corollary follows immediately from this result and Theorem 3.

Corollary 3. Suppose Assumption 3 and the conditions in Theorem 3 hold. If there is no model
shift, i.e., v = 0, we have

ER(3:) = Var(1 + 04...(1)). (12)

Moreover; the limiting optimal value of € lies in (0,1).
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Based on the conclusions of Theorems 1-3, the high-dimensional asymptotic excess risk, regarded as
a function of ¢, is a quadratic function. Given that the excess risk is non-negative, the quadratic func-
tion opens upwards. This observation is consistent with Pareek et al. (2024), where self-distillation
is considered. Given a £ € R, the gain of cross-domain KD is characterized by the reduction in
excess risk, ERg — ER(3;).

Proposition 1. Under the conditions of Theorem 1 and Assumption A.l for the deterministic case
in Appendix B.6, there exists a value of & € R such that

min (ER(8B;) — ERyg) < 0. a.s. (13)

Moreover, under the conditions of Theorem 1 and Assumption A.2 for the random case in Appendix

B.6, the inequality 13 also holds.

Remark 2. This proposition shows that, even in the presence of a significant domain discrepancy, it
is possible to find a value of £ € R such that the student model outperforms the student-only baseline
(i.e., training on the observed labels only). We provide further details in Appendix B.6, where we
demonstrate that covariate shift can, in some cases, be beneficial for KD.

3.4 NUMERICAL SIMULATIONS

— lvl=0.63, Theory - 1.2 — 33, Theory e
Iyl =0.89, Theory 31, Theory
114 ° llyll = 0.63, Simulation. e I, Simulation.
= [lyl=0.89, Simulation. ® I, Simulation.
—— Ridge o 119 -~ Ridge 4

g
=}

Excess Risk
Excess Risk

o
©

0.8

-02-0.1 00 01 02 03 04 05 06 07 08 09 10 11 -02-0.1 00 01 02 03 04 05 06 07 08 09 1.0 1.1
13 13

(a) Model shift (b) Covariate shift

Figure 1: Student’s excess risk in the presence of domain shift. Solid lines represent theoretical
values, while scattered points denote simulation results (averaged over 100 trials). The dashed green
line indicates the theoretical performance for student-only baseline, corresponding to ridge regres-
sion trained solely on the target domain data. (a) Settings: (A, As) = (0.1,0.5), (M, Ny, N3) =
(400,600,200),%; = Xy = I,s. The vectors By = ﬁ(l,...,l)T, 02 = 1. We label the case

vl = 0.63 as v = —\/%(1, ...,1,0,...,0)T with the first 22 entries equal to _\/LM’ and the

case ||| = 0.89 with the first & entries equal to —\/Lﬁ. (b) Settings: (A, As) = (0.1,0.5),

B1 = Bo ~ N(0, M~'Ty), (M, Ny, N3) = (600,200,300), £1 = 4L, 31 = diag(dy, ..., das)
with d; = 0.640(i < M/2) + 0.256(M/2 < i < M), 0% = 1.

We plot the excess risk of the student model: (a) under model shift with identical covariate distri-
butions, and (b) under covariate shift with identical parameter vectors, in Figure 1. All theoretical
values of the Stieltjes transform presented in this paper are obtained by solving equation 6. Due to
space limitations, the numerical validation of Theorem 3 is provided in Appendix C.1. Simulation
results, averaged over 100 independent trials, show good agreement with the theoretical predictions.

Furthermore, we present numerical simulations of ER(/3;) as a function of A\ and ) for various
values of &; these results are included in Appendix C.2.
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— Ac=05
Ar=0.01
— A¢=0.002

Excess Risk
Excess Risk

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4

MINy MIN2
(a) Excess risk as a function of %11 for varying ¢ (b) Excess risk as a function of Nﬂz for varying &
Figure 2: Non-monotone student excess risk curves. We set Xy = I, ¥ = diag(dy,- -+ ,dn)

where d; = 0.646(i < &)+ 0.256(% < i < M). (a) Results are shown for fixed M = 600 and
s = 0.05 with different N;. (b) Results are shown for fixed Na and (A, As) = (0.05,0.001), with
varying M.

4 DOUBLE DESCENT OF THE EXCESS RISK

In this section, fixing &, A\; and A\, we examine the excess risk as a function of the dimension M
and the sample sizes N1 and No. We find that the student model exhibits the double descent phe-
nomenon, characterized by a non-monotonic behavior of the excess risk as a function of the ratio of
dimension-to-sample-size. This phenomenon is consistent with findings in various linear regression
settings (Hastie et al., 2022; Nakkiran et al., 2021; Belkin et al., 2020; Moniri & Hassani, 2024),
and has been previously observed by Moniri & Hassani (2025) in the special case of pure teacher
supervision without domain shift, where the risk was studied as a function of %

Using our theoretical predictions from Theorem 2, we plot the excess risk of the student model,
ER = ER(%), as a function of NM1 in Figure 2(a). The double descent phenomenon is evident

for all three values of ;. As A decreases, the peak of the risk curve shifts towards Nﬂl =1.In

Figure 2(b), we plot ER = ER(%) against Mz, while allowing NMI to vary simultaneously. We
consider different values of £ and observe that the double descent phenomenon is most pronounced
in the regime of anti-learning against the teacher’s supervision (¢ < 0). In contrast, when £ = 1.1,
no double descent occurs within the ratio range [0.5, 1.5].

5 CONCLUSION

In this paper, we present a theoretical analysis of cross-domain KD for linear models using random
matrix theory. Through the bias-variance decomposition, we precisely characterize the asymptotic
expressions of excess risk for the student model in the high-dimensional setting. A surprising finding
is that when the imitation parameter & is allowed to take any real value, cross-domain KD may
outperform training solely on the target domain — even in the presence of significant discrepancies
between source and target domains. This highlights the potential of distillation to effectively transfer
knowledge across highly heterogeneous domains.

Our work also points to several promising directions for future research. Our theoretical analysis is
currently limited to linear models; extending it to more complex architectures, particularly nonlinear
models, would significantly broaden its applicability. Furthermore, while we observe the double
descent phenomenon using the established theoretical limits; a rigorous theoretical characterization
of this behavior in nonlinear models remains an important avenue for future investigation.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Qwen3 is used to polish the writing.

B PROOFS

B.1 BaAsic TooLs

Preliminary definitions and auxiliary lemmas used in the proofs of the main results are provided in
this section.

Lemma 2. (Lemma B.26 in Bai & Silverstein (2010)) Let C be an M x M deterministic matrix
and z € RM be a random vector of independent entries. Assume that Ex; = 0,E|x;|?> = 1, and
E\xi\e < Cy. Then for any £ > 1,

Elz"Cz — TrC|* < ¢ ((C4TrCC*)*/? + CoTr(CC*)*/?),
where ¢y is a constant depending on £ only.

Before stating the subsequent results, it is convenient to introduce the notion of stochastic domina-
tion.

Definition 1. Let y = xP), ¢ = () be two families of p-dependent random variables. We say that
X Is stochastically dominated by ( if for all small ¢ > 0 and large constant { > 0,

P([x®| > p|cP)) <p~*

Sor all large p. If x is stochastically dominated by ¢, we use the notation x < ¢ or x = O~(¢). We
say an event £y, holds with high probability if

IP’(SZ?) < p~¢ for any fixed ¢ > 0.

Lemma 3. (Lemma 22 in Yang et al. 2025) Let Z satisfies Assumption 1(a). We further suppose that
7 < M/N < (1+7)7L. Denote the eigenvalues of ZZ" by )\min(ZZT) <... < )\max(ZZT). Then
we have

(VM = VN)? = O (VN) < Amin(ZZ7) < Amax(ZZ7) < (VM + VN)? + O<(VN)

with high probability.

Lemma 4. (Corollary 25 in Yang et al. (2025)) Suppose €1, ..., € are independent random vectors
satisfying Assumption 1(c). Then, we have that for any deterministic vector v € RY,

viei| < a|v]], i=1,..t,
and for any deterministic matrix B € RNV*N,
le/Be; — 6(i = j)o*TrB| < o®||Bl|¢, fori,j € [t].
Moreover, for any deterministic vector v, we have
\vTei| < a|v|, i € [¢].

Definition 2. Ler A, B, € RP*P be sequences of random or deterministic symmetric real matrices.
We say A, B, are equivalent, if

1
ETer(Ap —B,) =04.5.(1) and uT(Ap —B,)v=045(1)

for any sequence of deterministic matrices D,, and all deterministic vectors u, v such that

limsup || D, || < oo, limsup max{|u|], [|[v]]} < co.
P P

13
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Lemma 5. (Theorem 3.7 in Knowles & Yin (2017)) We denote by o the probability measure associ-
ated with m determined in Lemma 1. Let X = XY/27 € RM*N _Suppose Assumption 1(a)(c) and
Assumption 2 hold. Then for any fixed z € C such that

dist (Rz, supp(0)) > ¢ (14)
for some small constant ¢ > 0, we have
_ Sm(z) _
u"(Q() — [(2)v < N2\ S ullvi] £ N2 v (15)

uniformly for all deterministic vectors u,v € RM  where

-1
1
Q(z) = (NXXT — zIM> , I(2) = — (21 + 2mX) L.
Remark 3. When Sz = 0 and equation 14 holds, since there exists an open set containing z on
which both Q(z) and I1(z) are analytic, equation 15 still holds. This property will be frequently
used in the subsequent proofs.

Lemma 5 shows that II(z) is a deterministic equivalent of Q(z). For technical reasons, we further
require the following result.

Lemma 6. Suppose the conditions in Lemma 5 hold. A denotes a deterministic M x M matrix
with bounded spectral norm. For any fixed complex numbers Z1,%s € C\R™T, we have for all
deterministic vectors u, v,

u' (Q(21)AQ(Z%2) — II(2)S(A)II(22))v = oa.s. (ullIv]), (16)
where
S(A)=A+ (14 +Tr=II(z,)) (1N+ +TrEII(2)) — & TrEIL(Z,) S1(Z) > a7

Moreover, for any deterministic matrix C € RM*M

have

satisfying ||C|| < C for some constant C, we
1
MTTC[Q(51)AQ(52) — IL1 (21)S(A)II3(22)] = 0a.s.(1). (18)

The proof of this lemma is deferred to Appendix B.7.

Remark 4. Lemma 6 provides the deterministic equivalent of Q(Z1)AQ(Z2). Lin & Pan (2024)
established the local laws for the Q(Z1)AQ(Z2). However, their results require RZ,, RZ5 to be
sufficiently close to supp(o) and Iz1, 2 to be bounded below by N~1T¢ where c is any fixed
constant. Lemma 6 extends the result to other regions.

B.2 PROOF OF THEOREM 1

To simplify notation, we set 21 = — A, 2o = —\s. Recalling equation 2 and equation 3, we get
1
Bs — B2 = EQQ [§X2X;—/Bt + (1 - O)Xo(X] B2 + &2)] — B2
1 1
= EQQ E§X2X;Q1X1(X1ﬂ1 +e1) + (1-9)Xa(X582 +€2)| — B2

= E[(Tar + 22Q2) (I + 21Q1)B1 — Ba] + ENil(IM +20Q2)Q1 X161

(19)

as

+ (1 =&)Xy + 22Q2)B2 — Ba] + (1 — §)NL2Q2X2€2

ag
=7+ {2Qey+£21Q181 + 22Q282 + £21220Q2Q1 81 +as + as.
N e M N——
al a2 as ay

14
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By this, we decompose ER((3;) as follows:

ER(B;s) = (Bs — B2) "22(8s — B2)
6 6
=y Sy +2) b+ hit Y i,
i=1 i=1 1<i#5<6
where

I

bi = §v Zaa, hi = Hzé/zai ; hij = 0322%%

Next, we compute the limit of each term above.

Let n € N*. According to the Definition 1 and the Borel-Cantelli lemma, we have
X(n) = 04.5.(1) if x(n) < n™°
for any constant ¢ > 0. By this, the limits of by, ba, b3, b4 can be readily obtained using Lemma 5:
by = 27 QaBay = 2207 T Boy + 04,5 (1),
by = §2217 T 20QuB1 = §2217 " Bl B1 + 045, (1),

by = €2083 Qo oy = E2083 IaBoy + 045, (1),
by = 21207 22Q2Q1 81 = E221 207 ToIL I By + 04.5.(1),

where the last identity is due to
YT22[Q2Q1 — TLIL B = v"22[(Q2 — T2) Q1 + I2(Q) — IT)| 81 = 04.s.(1).

We now consider the terms contributing to Var. By Lemma 4 and the identity

1
ﬁQixixj =TIy +21Q; i=1,2. (20)
we find that
5202 T
|hss — WTT(IM + 22Q2) B (I + 22Q2) Qi X1 X[ Q|
1
(21)

=< #”(IIVI + 20Q2) a2 (Ins + 22Q2)(Q1 + 21Q7) [IF <

5-

For any deterministic matrix C € RM*M

composition

satisfying ||C|| is bounded, and having the spectral de-

M

T

C = E )\iuivi,
i=1

we have by Lemma 5 that
1 1 Y
17 CQiQ:2 = o ; AiTruv] Q1 Qo

| M
= — Z)\iViTQlQﬂli
M=

| M
Z Aivi IL TTou; + 04 5. (1)
i=1

(22)

:H,

1
= MTI‘CHlﬂz + Oa.s.(1)~
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Similarly, by recalling the notation IT;S;(I5,)II; = II} for ¢ = 1,2, one may check by Lemma 6
that

1 1
fTI“CQQQ% = 7TI'CH2H/1 + Oa.s.(l)v

—TrCQ Q2 - TrCH I,
(23)
MTI"QQCQQQI = MTI‘HQSQ(C)HQH& + Oa.s‘(1)7

1 1
MTrQlchQg = Mﬁnlsl((:)nlng + 04.5.(1).

Then by Lemma 5, Lemma 6, equation 20 and equation 21, for £ # 0, we have

h55 1

202 ETr(IM + 20Q2) B (Ins + 22Q2)(Q1 + 21Q3)

1
= ETT (22 + 2232Q2 + 20Q2 s + 25Qo %2 Qa] [TIy + 21IT)] + 04.5.(1)
1
=5 (25 + 2203005 + 25T1585(32) I [TT; + 21T}
1

+ 04.5.(1).
Likewise, we have by Lemma 5 that
1
hes = (1 — £)2U2FT1“22(IM + 2Q2) Q2
2

1
=(1- g)QUQETmz(Hg + 29115 + 04.5.(1).

Let d = min {dist (zl,RJr),dist (zQ, R*)}. According to Lemma 4 and the fact following from
equation 20 that

1
\/JVHQiXiII =\/1Qi + Q¢ < vVd~' +d|z| S 1,

one has for j = 1,2, 3,4,

g~

g
|hsjl = |hys| < MHXIQl(IM +21Q2)X2a;|| £ —,
o 1
|hej| = |hje| < M”XgQﬁba]‘H S Wik
and
1
|b5 +b6‘ < —.

VM

Using Lemma 4 again, it can be shown that

2
g
|hes| = |hse| < W”X;QQEE(IM + 22Q2) Q1 Xy ||F

\/N2|XTQ222 (I + 22Q2)Q1X1||2 1
S M M? ~ VM

Therefore, we get

4
bs + b + hgs + hse + Z(h5j + h]’5 + hej + hje) = Ou.s.(l)-
=1

16
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We now turn to the terms h;;, ¢ = 1,2, 3,4. By Lemma 6, we have

hi1 = €257 Qo X2Qoy
= 257 TS (o) Ty + 04.4.(1),
hay = €227 8] Q1X2Q1 81
= 218111181 (82)I11 81 + 04.5.(1),
has = 2385 Q222 Q282
= 2383 TaSy(2)IIaB2 + 04.5.(1),
haa = 522’%2%,31TQ1Q222Q2Q1,31
= 213 EB] QuILaS2(52) 2 Q11 + 0a.s. (1)
= 22723 BT I, 81 (T1So (X2) o) IL; By + 0.5, (1).

Similarly, one can obtain the limits of the remaining terms in h;;,1 < i,5 < 6:

hia = ho1 = 522122’7TQ222Q1/61

= 21297 T 50011 81 + 04.5.(1),
his = hg1 = £258; Q232Qay

= 258, M2 82(X2) oy + 04.6.(1),
his = hy = £21257" Q2 32Q2Qu1 B

= 21257 T S2 (o) IILIL1 By + 04.6.(1),
has = hgz = £21228] Q1322Q2/3:

= £21228{ 11 25T 85 + 04.5.(1),
hos = hay = €227 28] Q132Q2Q1 81

= £2728] Q1 22T15Q1 81 + 04.5.(1)

= 22720 B II1 S1 (ZoI15) L1 By + 04.5.(1),
has = hag = £21238; Q2 X2Q2Q1 81

= 212385 Ts S5 (Zo)TLIL B1 + 04.5.(1).

Combining the above estimates, we conclude the proof of Theorem 1.

B.3 PROOF OF THEOREM 2

We use the same notation as in Appendix B.2. Note that v = 31 — B2 = 0. Denoting
H=£z1Q1 4+ 22Q2 + £2122Q2Q0, (24)

by equation 19, we have
Bs —B=HB + a5 + ag.
Hence, the excess risk becomes
ER(8,) = I|I=5°(8; - B)I

=B"H'S,HB+2 > BTH Sga;+ Y hi
i=5,6 i=5,6

Using Lemma 4, by Assumption 3 we have
BTH'=,HA3 &QT H'Z,H < o |IH"Z.H|f < L
— —1r — —.
2 M oM HE~ UM
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By equation 24, we have
1 T L[, 2
MTI‘EQHH = — E ZlTI‘EQQl —|—52122TI‘22[Q1Q2 —|— QQQl]
+ zQTrEQQQ + 2272 TrEs[Q2Q7 + QIQ2]

+ 262125 TrQe22QoQ + €227 25 TrQe X2 Qo Q3

6
= Ztia
i=1

where

1 2 2
tl = MgzszrEQQitQ = MgzlngI‘Qng,tg = ZMZTI'EQQ§’

s

2 262122
ty = 2%2%22%22(22(3%%5 = %TPszzQthtG = TrQ232Q2 Q3.

We next consider the terms ¢;,¢7 = 1, ..., 6. In the subsequent proof, we shall make use of Lemma 5,
Lemma 6 and the property that 31T = TT535.

By equation 22, we have

28212
, Xz

Tr].-IlHQEQ —+ Oq.s. (1)

t, = €22 ’ITEgH’—l—oas()

The limits of ¢3, ¢4, t5, tg can be derived by equation 23:

2
V4
ts = Mﬁyzgng + 04.5.(1),

5 212’2

t4 =2—— T‘I‘EQHQHI + 0g.s. ( )

282,72
b = %Trmgz(zg)nznl + 04.5.(1),

and )
to = TS, (50 ILIY, + 0, (1),
Using Lemma 4, we find
IBTH Zsas5| < [HTSo(Tar + 22Q2) Qi Xy |IF S L
M3/2 ~ M’
1
IB"TH a4 < M3/2HQ2 2llF S i

Therefore, the terms 3TH"X5a;,i = 5, 6 are ignorable. The proof is now complete.

B.4 PROOF OF THEOREM 3
Letting A\ = As = 0, by equation 3, we obtain

Be = €B9% + (1 - 9B
= (X X)X (X Br 4 €1) + (1= &) (XoX]) ' Xo(X] B + €2)
=61+ (1 - 9B + E(XiX]) ' Xer + (1 — §)(XoXJ) ' Xoes.

18
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Plugging this into ER(/3;), one may obtain that

ER(B:) = [25/%(82 - Bo)|I”
= ||=52[ey + €(XuXT) 1 Xper + (1 - €)(XoXT) ' Xaes] ||
= Bias + h1 + ho + 2hs + 2ha + 2hs,

where
hy = 2] XT (X1 X]) 12 (X X)X e,

hy = (1 - €)% XJ (XoX]) ' 85 (XoX]) ' Xoeo,
hy = 29755 (X1X]) 1 Xy e,

hy = E(1— &)y 2o (XoX]) ' Xoe,

hs = £(1 — Oef X] (X1 X]) 7' 85(X2X]) ™ Xoes.

By Lemmas 3-4, we have with high probability,
|ho — (1 — €)?0*Tr(XoX]) 7' 8o| = |he — (1 — £)0°Tr(Z2Z2) |
< (1-8)%0°|(2223) I

(25)

Lemma 5 implies that with high probability,

_ M
Tr(ZoZ3) ' = N + 04.5.(1).

Combining this with equation 25, we obtain with high probability,

hy = (1 —¢)*0? (14 04..(1)).

Ny — M
Similarly, one may derive with high probability,
[hs| < o | X (X1 X]) ™' B2(XoX5) ™ Xo|r

1 —
= o\ /T (X, X]) 1 Ze(X, XT) ! S A

Using Lemmas 3-4, the following estimate holds with high probability,
|7 = 207 Te(Xy XT) 1B < [ Za(XaXT) Ir

1
S VMIZRI 22 2] R S

Then by Lemma 5, one has with high probability,

-1
1 1 _ _
(X, X]) 'S, = Tr<lelzI> IS 8 Sl

Ny
1 Ny 1
= ———Tr3,¥% s.(1).
NINI_Mr21+Oa..()
Therefore, for £ # 0, we get with high probability,
hy Ty\—1 1 -1
@hl = TI'(Xlxl) 22 + Oa.s.(l) = m’I‘I‘EQZl —|— Oa.s.(l).
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Excess Risk

g In = = I
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Figure 3: Theoretical excess risk for different A.. Settings: (M, N1, N2) = (200,200, 600),3; =
35 = Iy, As = 0.5, SNR=4, 81 = B2 ~ N (0, 17), 0% = 1.

We note that
=, 1/2
7)1 = Bias = €225 2 Auin (Z2) 7[> 2 (1]

Since 0/ (31) S 1,01(X2) < 1, it is easy to see Var ~ 1. Using Lemmas 3-4, we get with high
probability

|hs| < €|y Zo(XaXT) ' Xy |
< €20/ Bias|| Sy ||| (X, XT) 71X, |
VBias 1 Bias 1
< < +
~ M4 pL/A — \/M \/M

1 — —
< ——(Bias + Var).
NiTh )

~

Similarly, we can estimate with high probability
1
vM

Combining the above estimates on h;,7 = 1,2, 3,4, 5, the proof of Theorem 3 is completed.

|hs| < —— (Bias + Var).

B.5 PROOF OF COROLLARY 2

We take the derivative of ER(/3;) with respect to £, and evaluate itat { = 0 :

0

aigER(,@s)

M\ d
- = 0'2 ()\t)\smlsNR — ]\72) &(ZMQ(Z)) + Oa.s.(l).

z2=—NXs

Since

z X
2my(2) = / domp2(7) = =1+ / mdQMP,z(xh

T —z
we hence get that

d
—(emy(2)) > 0

Therefore, %ER(,@S)\gzo and A\ ASNR — NMQ share the same sign almost surely. That is, the
limiting optimal value of £ is negative when equation 9 holds, which establishes Corollary 2.

(26)

z=—Xs "

We provide an example in Figure 3 to illustrate this corollary. Specifically, when A\; = 0.5, the
limiting optimal value of £ is positive, whereas when Ay = 0.01, it becomes negative.
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B.6 DETAILS FOR PROPOSITION 1 AND REMARK 2

Recall that ER denotes the excess risk of the ridge regression model trained solely on the target
domain data.

Assumption A.1. When (31, B2 are deterministic, we assume that :

2
g
‘BI)\t)\S [TT, 25115 — AJT, T8, (22) 5] 35 — 3, T (T — AT

BT N2TL,S8, ()1, — Asnzzm‘ >

where c is a positive constant.
Assumption A.2. If 3 = 31 = B3 is random, we assume that
~2

o :
M

|:)\t)\STI‘H1H222 — AtAgTYHQSQ(EQ)H2H1:| — %TI‘[EQ(HQ — ASH/Q)H > c,
2

where c is a positive constant.

Proof of Proposition 1: (i) Suppose the conditions in Theorem 1 hold. Note that
0

78 ER(B:) e = 267 AIL BTl — AXTL 165 (521 ] B

202
+ 207 [AN2T1585(39) Iy — AT 35y — MTr[zg(Hg — AIIY)] + 04.6.(1).

Under the conditions in Theorem 1 and Assumption A.1, the asymptotic excess risk is a quadratic
function whose minimizer is bounded away from 0. Therefore, ming ER(/3;) is strictly less than
ERj almost surely.

(i1) Similarly, suppose Assumption A.2, under the conditions of Theorem 2, the inequality equa-
tion 13 holds by noticing that
0 252 20

2
8—§ER(65)|§:O = S [ MATILIL S, — AN TS, (S)TILIL | - Emm(m — AJI)]

+ 04.5.(1).
Further discussion on Remark 2: To clarify the dependence of Assumption A.l on the geometry

of 31, X9, 31, 32 and the noise strength o2, we consider a simple example in which 3o = I,;.
Then we have

0 o2 M
aER(ﬁs)k:O = A (1my — Ay B 1 B — N, (e~ Asmny) — As(my — M) 85
+ 04.5.(1)
oM d
= (>\s)\t5-1rnlﬁ2 - Tz - /\sﬁ;—')’ ) &(ZMQ(Z))’Z:,)\S + 04.5.(1),

' @7)
where m,(z) is defined in equation 8. Recalling equation 26, we have |6%ER(BS)|5:0\ > cif

le] > C for some constant C. Below, we discuss two cases, when 31 = I, and when 3 # Iy

e 3, = I,,. The term e becomes
oM

N, BB - )

e = Ashm, B3] B —

Recall that the limiting ridge risk is minimized at A} = %, with asymptotic excess
risk o2 N%QQ(—)\;‘) (Hastie et al., 2022). Taking As = A\X, we have

e =\ (\my —1)8] Ba.
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Note that

xT
)\tml —1=- / mdQMP,l(fL’) < 0.

Therefore, in a small neighborhood containing 0, ER(3;) is monotonic in £, indicating
that the teacher’s supervision is helpful — even outperforming the optimal ridge regression
— provided that 31 and 35 are not asymptotically orthogonal.

* 3 # I, By taking A\; = A, e becomes
M

* * mi0;
e=MNABI B2 — B B1) = —A ; T+ myo, {usu] Bs, (28)
where m is determined by Lemma 1 and 3; = Z£1 o;u;u] represents the spectral

decomposition of 33;. By equation 28, the alignment of 3; (i = 1, 2) with the eigenvectors
of 3; determines whether Assumption A.1 is satisfied. Therefore, given A = A}, under
the “help” of covariate shift, even if 3] B> = 0, it may still be possible to find a & such
that ER(83s) < ERy, a.s. By comparing with the case where 3; = I,;, we find that the
presence of covariate shift can, in some cases, be beneficial.

B.7 PROOF OF LEMMA 6

The following result, which is an immediate consequence of Lemma 1, will be used in the proof
below:

-1
—zm = <1 + ZtTrEH(z)) . (29)

We abuse notation by writing z; and z; for z; and Z,, respectively, whenever there is no risk of
ambiguity. Without loss of generality, we assume ||u|| = ||v|| = 1 and 21, 22 lie on the negative real
axis, as the other cases follow by analogous arguments.

Using standard techniques of martingale decomposition (see, e.g., Bai & Silverstein (2010)), we can
prove the almost sure convergence of the random part:

u'Q(21)AQ(22)v = u"EQ(21) AQ(22)V + 04.5.(1). (30)

Therefore, it suffices to consider the term u'EQ(z;)AQ(z2)v. Let 0y > --- > o3, denote the
eigenvalues of . For the sequence of deterministic matrices, we denote A py = o(1) if ||A || — 0.

Since
Q(21)AQ(22) = Q(21)AIL(2) + Q(21)A(Q(22) — (7)), (31)
we obtain by Lemma 5 that
u'EQ(21)AQ(22)v = u"EQ(21) ATl (22)v + u'EQ(21)A(Q(22) — M(22))v
— uTTI(z1)ATI(22)v + u"EQ(21) A(Q(22) — II(22))v + (1),

where the second identity follows from Lemma 5, the Dominated Convergence Theorem and the
fact that

—1 _ —
ITE(20)[| = max |21 + zom(21)oi| < |z 7 [|ATE(z2)v]| < [AJITI(22)]| < [22| (| A

(32)

Therefore, our task reduces to finding the deterministic equivalent of

EQ(21)A(Q(z2) — I(22)).

Denote

—1
X vl o (XXTL
k= xrey, Q_i(z) = N 2Lar .

By Sherman-Morrison formula, one may easily check that

1 T

_ - wQ-k(2)xkx; Qi (2)

Q(2) = Q_k(2) 1+ %XZQ_k(z)Xk
Q_r(2)xx

14+ +x7Q_p(z)x)

(33)

Q(2)xk =

22
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We show here the following result for future use:
1 1
NETrCQ,l(zl)AQfl(zg) = NETrCQ(zl)AQ(zg) +o(1), 34)

where C € RM*M jg a deterministic matrix with ||C|| < C for some constant C. We decompose

Q(21)AQ(22) — Q-1(21)AQ_;(22)
=[Q(x1) - Q- 1(21)]AQ(22)+Q 1(21)A[Q-1(22) — Q-1(22)].

Applying the identity
A'-B'=B'(B-A)A"!,

we have for ¢ = 1,2, and C € RM*M yith finite spectral norm (where C may be a deterministic
matrix, or a random matrix that is either dependent on or independent of X),

1 ~ 1 ~ C
N|TT[Q(Zi) - Q_1(%)|C| = m|XIQ(Zi)CQ—1(Zl)X1| < WHX1H2 = 0q.5.(1).

We denote d = min{dist(z1, R™), dist(z2, R™)}. One may easily check that d ~ 1. Then by

SITQ() ~ Q1018 < 5 (1Q()EI +1Q 1 (:)8l) < 2 fori = 1,2,

and the Dominated Convergence Theorem, we obtain equation 34. By similar arguments, we get for
any deterministic unit vectors u, v,

u"ECQ(2;)Cv = u'ECQ_(z)Cv + o(1)
= u"CI(z)Cv +o(1), i = 1,2, (35)
u"ECQ(21)AQ(22)Cv = u"ECQ_1(21)AQ_,(22)Cv + o(1),
where C and C are deterministic M x M matrices with finite spectral norms.

‘We denote

1 ~ 1
by, = NXZQ—k(Zz)Xk, b= NEX;Q—k(@)Xka

1 ~ 1
b, = NXZQ,k(zl)x;C7 b= NEXZQ,k(zl)xk.

It follows directly from the proof of equation 34 that

b= ilETer_l(zz) = iTrzn(ZQ) + o(1),
b N (36)
b= N]ETI‘EQ_l(ZQ) = NTI‘EH(ZQ) + o(1).

Recalling equation 29, we rewrite EQ(21)A (Q(z2) — II(22)) as

EQ(z1)A(Q(22) — (22)) = EQ(21)AQ(22) (T — Q' (22)T1(22))
=EQ(21)AQ(22) (TT " (22) — Q™" (22) ) II(22)

EQ(z1)AQ(%) (— %XXT - sz2> TI(z5)

YII(z0) _ iEQ(zl)AQ(ZQ)XXTH(ZQ)~

- EQ(zl)AQ(Z2)1+T2H(z2) N
T 37)
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An application of equation 33 yields that

ZEQ 21)AQ(22)xkX], = ZEQ 21)A A Qok(z2)xix,

1+ by
= T b — by
- N(l 3 ZEQ (21)AQ_ 1 (22)xkx, {1 + (1—|—bk)}
— W {Z EQ(21)AQ_j(22)xx; + EQ(Zl)AQ(ZQ)XBXT]
1

= — (EF, + EF,),
1+b( 1 2)

} ~ (38)
where B = diag(b — b1y, b— bN), and

N
1 1
Fi==5 kilQ(zl)AQ_k(Z’z)Xng, F, = NQ(Zl)AQ(@)XBXT-
We now bound the spectral norm of F5. Define the event

£= {;]HZZT <2(1+ \/gf}.

We then have
N LV
< < —
EFs| < B | < 12 gxBxT)
All|Z 1
<IAUBL 01 voeRiBlsE) + CEIBIIZZT|6)]

- 1 -
< CE max |b— bi| + N\/Emgx b — b |2E||ZZT||26(£€).

By using the inequality that (see e.g. Bai & Silverstein (2010))
P(EY) < N~*forany £ > 0,

B 22T |°5(€7) < B|Z27|R5(E) < /B 22T | B(EC) (39

< NlOOO(Nflol) _ O(Nil).
It can be shown by Lemma 2 that for £ > 1,
Elzf312Q_ 5%z, — TiZQ_4(2)/*
(Nt)*
L EE_|z[Z2Q_ B2z, - TTEQ_4(2)|Y]
=t 7
E[(TrQ? )2 + Tr(Q_1)"]
N¢

we have

P(|b— by > t) <

<t tC

< Ct*fN*e/27

where we use the fact that

TH(Q k(=) < MIQ ()]’ < o7

By taking a large enough ¢, we have
E max |b — by| = </ Jr/ >P(max|l~)bk|>t)dt
k t<N-1/4 t>N—1/4

< N~V / ZIP’ b — by| > t)dt (40)
t>N— 1/4

< oN~V4,
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Similarly, one may obtain
Emkax b — by|? = o(1).

This, along with equation 39 and equation 40, implies that

(41)

[EF2[| = o(1).
By using equation 33, we rewrite
LN
EE:N%FWﬁMQMde
al T
) ;I;E[Qk(h) - %Q_k(ZI)lxinka_k(Zl)]AQ—k(Z2)XkXZ
=1
1 & 1 N 1o To.
=% ;EQ—k(ZE)AQ_k(Zz)XkXZ % ;E ~NQ k(le)j_k;(:Q k(zl)AQ_k(@)xkxl
1 N 1
=EQ_1(21)AQ_;(22)% — TN ZENQik(Zl)ka-k[Q*k(zl)Aka(Zz)XkX;—
k=1
Ly (bi — b)
- Ao kz::lEQ_k-(zl)xkng_k(zl)AQ_k(zQ)xkxglkjLibk

=EQ_1(21)AQ_;(2)T — : Jlr B(IEJFl + EF5),

where

Fir= = Qfl(21)X1X1Q71(22)AQ71(22)X1X11—7

N

1 (b1 —b)
Fy = NQ,l(Zl)XlX—lrQ,I(Z2)AQ71(22)X1XIW.
We first consider EF5. Let i1, v denote a pair of unit vectors satisfying

@,V =arg max [@ EFyv|,
lall=]v]=1

andlety = Q_1(z1)0 = (y1, ...,y )" . Using the Burkholder’s inequality (Burkholder, 1973)

have
M M
2
Z YiZi1 Z Yi
i=1 i=1
M

< CElly|*+CEY y! S 1,

~
i=1

4
Ely'x;|* =E <cE

2 M
+ CEZ lyizal*
i=1

where we use the inequality
M M 2
Zﬁs(Zﬁ)gwm
i=1 i=1

Likewise, we have E|x]v|* < 1. It follows from Lemma 2 that

C

~ C
Elby bl < 5 [(TrQ% 1 (21))”* + Q%4 (21)] < 775

and

]E‘XIQ_l(Zl)Xﬂe S CE|XIQ_1(21)X1 — IETI‘EQ_l(Zl)‘Z + CUETI‘EQ_l(Zl)‘Z 5 NZ.
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Since by > 1, we can bound the spectral norm of EF, as
|EF;|| = [a"EFy¥| < E|aFyv|

1 ~ -
< NE|uTQ_1(zl)xlxIQ_l(zl)AQfl(ZQ)xlxIW|b1 —bj

IN

1 N -
N VE BT Q1 (1) AQ_y (z2)xa (b1 — b)

A

1 ~ -
< ]M VEIY T PExT ¥ ] /ExT Q-1 (:1)AQ_, ()1 'Elby — bJ*
1

Therefore, it suffices to find the deterministic equivalent of EF;. We recall the definition above
equation 31 that Ay = o(1) if |A || = o(1). Let E_ () = E[-|x2, ..., xn]. We have

1
]EFl = NEQ,l(zl)xlxI ,1(21)AQ71(2’2)X1X-{

= %EQfl(Zl) [E71X1XIQ—1(2’1)AQ71(22)X1X-1r]
= %EQ,l(zl)sz,l[zlzjzl/QQ,l(zl)AQ,l(zQ)zl/%lzI]z:l/?
= %EQA(«%) [TrEQ-1(21)AQ_(22)] =
(43)
+ %EQA(ZH)E[Qf1(z1)AQ_1(22) +Q-1(22)AQ_1(n)]|T
+ %(Ez‘fl —3)EQ_1(21)X2diag(Y2Q_1(21)AQ_, (z2)XZV/?)x1/?

_ %E[TrEQ_l(zl)AQ_l(zQ)] Q_1(21)% + o(1)

1
=N ETr¥Q(21)AQ(z22) | II(21)% + o(1),
where the last identity is due to equation 34, equation 35 and

%E[Terfl(zl)AQ—l(ZQ)]Qfl('zl)E

= CE[TSQ 1(2)AQ_; (22) ~ ETEQ 1 (2)AQ_4(22)] Q 1(21)5
1
N
= CE[Tr2Q(=1)AQ(=)T(=1)S + (1)

+ L ETrEQ-1(21)AQ_(22)]Q-1(21)E

By equation 36, equation 38, equation 42 and equation 43 and the fact that ||II(z2)]| is bounded, we
have

1
NEQ(Zl)AQ(ZQ)XXTH(ZQ)

21 _1|_B EQ_l(Zl)AQ_l(ZQ)EH(Zg) — 1 j_ BEFln(ZQ) + 0(1)
_]EQ(Z])AQ(ZQ)EH(ZQ) B %[ETI'ZQ(Zl)AQ(ZQ)]H(Zl)EH(ZQ) +o1)
1+ L TrET(z0) (14 +TrETI(20))(1 + £ TrETI(2)) ‘
This, along with equation 31, equation 37, leads to
EQ(21)AQ(22)
1
TT(2))ATI(2) + v ETrEQ(21)AQ(22)]TI(21 ) XT1(22) (1), (44)

(1+ L TrE(z))(1 + L TS(z))

26



Under review as a conference paper at ICLR 2026

Multiplying both sides of the above equation on the left by 32, and taking the trace, we obtain

%ETrEQ(zl)AQ(zg)

~ ETrEQ(21)AQ(22)] y TrEI(21) BT1(22)
(14 +TrEII(22))(1 4+ +TrXII(z))

1
:NTrZH(zl)AH(Zz) + + o(1).

It follows that
%]ETI‘EQ(Zl)AQ(ZQ)
LTI (2,) 11 (2,) -1 (45)
_ _ N _
_<1 (1+ LTSI (22)) (1 + }VTrzH(zl))> D) ATL(z2) + ofL).

Plugging equation 45 into equation 44, we get

EQ(z1)AQ(z2) = I1(21)ATI(22)
%TrEH(Zl)AH(ZQ) (46)

- (1+ L TrsT(2)) (1 + L+ Tr2II(2)) — %TrEH(Zl)EH(ZQ)H(Zl)EH(zg) +o(1).

The result equation 16 follows by combining the equation 46 with equation 30. Now we prove
equation 18. Using a proof analogous to that of equation 30, we can obtain that

%Trc [Q(21)AQy (22) — EQ(21)AQ(22)] = 00 (1). @7)

We denote the spectral decomposition of C by
M
C= Z )\iuiviT.
i=1
By equation 46, we have

M
S TICEQ(1)AQ(=2) = 1-Tr Y Amiv]EQ(21)AQ(=2)

1 Mi:l
= Z A\iv] EQ(21)AQ(22)u;
1 ’L]\:/[l
= > AV TI(21)S(A)TI(22)u; + o(1)
i=1

_ %TrCH(zl)S(A)H(ZQ) +o(1).

This, along with equation 47, establishes equation 18. The proof is completed.
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DEMONSTRATION OF THEOREM 3

— |lvl =3.58, Theory
llvl =3.58, Theory
: — |yl =0, Theory
[lyll = 3.58, Simulation.
= |yl =3.58, Simulation.
= |y| =0, Simulation.

4.0

Figure 4: Theoretical predictions (solid curves) versus simulation results (scatter points, averaged
over 100 independent trials) for ridgeless regression. We set (M, N1, No) = (400, 600, 600), B2 =
ﬁ(l, ., DT 02 = 1 and By = I);. We label the case ||v|| = 3.58 as v = \;—%(1, e 1,0,..,0)T
with the first M /5 entries equal to 1. The orange and green curves correspond to the setting where
3, = diag(4, ..., 4, i, s i), with the first half of the diagonal entries equal to 4 and the second half
equal to i. The dark blue curve corresponds to the setting where 337 = 41,,.

Figure 4 presents empirical results that support 3. The gap between the orange and green curves
quantifies the impact of model shift on the excess risk. Furthermore, the gap between the dark blue
and orange curves reflects the role of the term Ter_l 39 as characterized in Theorem 3.

C.2 IMPACT OF REGULARIZATION PARAMETERS

To examine the impact of the regularization parameters A, \s, we plot the empirical excess risk of
the student model for (\;, As) € [0.01,0.5)% in Figures 5-7 (averaged over 5 trials), correspond-
ing to £ = 0.5,—0.5 and 1.5, respectively. We set 31 = B2 ~ N(0, ﬁIM),(M7 Ny, No) =
(400, 300, 200), 02 = 1. We set 35 = I in the absence of covariate shift. Under covariate shift,
we set 31 = diag(dy, ..., das), where

d; =0.646(: < M/2) 4+ 0.256(M/2 < i < M).
From these figures, we observe that when & > 1, the influence of \; becomes large. In contrast, in

the case £ = —0.5, A almost dominates the variation of the excess risk, reflecting a weaker impact
of the teacher’s guidance (anti-learning against the teacher’s supervision).
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Excess Risk

==1.05

Ay

(a) With covariate shift

Excess Risk

—0.95

Ay

— 0.9

(b) Without covariate shift

Figure 5: Excess risk when £ = 0.5.
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Excess Risk

Ay

(a) With covariate shift
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(b) Without covariate shift

Figure 6: Excess risk when £ = —0.5.
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Excess Risk

4.5

Ay

(a) With covariate shift

Excess Risk

Ay

(b) Without covariate shift

Figure 7: Excess risk when £ = 1.5.
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