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Abstract

Neural networks hold great promise for advancing scientific discoveries, but their
opaque nature often makes it challenging to interpret the underlying logic behind
their findings. In this work, we employ an eXplainable-AI technique known as
inception or deep dreaming, originally developed in the context of computer vision,
to investigate what neural networks learn about quantum optics experiments. We
begin by training deep neural networks on the properties of quantum systems.
Once trained, we ‘invert’ the neural network – essentially asking it to imagine a
quantum system with specific properties and to continuously modify the system to
change those properties. We find that the network can shift the initial distribution
of properties in the quantum system, allowing us to conceptualize the strategies it
has learned. Interestingly, the network’s initial layers focus on identifying simple
properties, while the deeper layers uncover complex quantum structures. This
reflects well-known patterns observed in computer vision, which we now identify
within the context of a complex natural science task. Our approach paves the way
for more interpretable AI scientific discovery techniques in quantum physics.

1 Introduction

Neural networks have demonstrated significant promise in solving various tasks in quantum science [1,
2, 3]. However, a notable frustration with neural networks lies in their inscrutability: modern
architectures often contain millions of trainable parameters, making it difficult to discern the role each
plays in the network’s predictions. Understanding the concepts learned by the network to formulate
its predictions is crucial for achieving scientific insight [4]. This challenge has driven the development
of eXplainable-AI (XAI), which interprets how networks arrive at their solutions [5, 6, 7, 8]. These
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advancements have encouraged physicists to address interpretability, leading to the rediscovery of
long-standing physics concepts [9, 10], identification of phase transitions in quantum many-body
physics [11, 12, 13, 14], compression of many-body quantum systems [15], and studies on the
relationship between quantum systems and their entanglement properties [16, 17].

Our work focuses on applying neural networks to the design of quantum optical experiments. The
increasing complexity of quantum information tasks has motivated the development of computational
methods capable of navigating the vast combinatorial space of possible experimental designs, which
often involve unintuitive phenomena [18]. To this end, scientists have developed automated design
and machine learning routines [19], including those that leverage genetic algorithms [20, 21], active
learning approaches [22], and optimization of parameterized quantum circuits [23, 24, 25]. One may
ask whether new physics can be learned from the discoveries made by these algorithms. For instance,
the computer algorithm MELVIN [19], which topologically searches for arrangements of optical
elements, has led to discoveries such as the generation of entanglement by path identity [26] and the
creation of multipartite quantum gates [27]. However, the interpretability of these solutions is often
obscured by the stochasticity of the processes that create them and the unintuitive nature of their
representations. The recent invention of THESEUS [24] and its successor PYTHEUS [25] address
this by topologically optimizing highly interpretable, graph-based representations of quantum optical
experiments. This has already enabled new scientific discoveries, such as a new form of multi-photon
interference [28] and novel experimental schemes for high-dimensional quantum measurement [29].

To date, the extraction and generalization of new concepts have largely been confined to analyzing
the optimal solutions discovered by these algorithms. However, we can potentially learn more
physics by probing the rationale behind the computer’s discoveries. Little attention has been given to
applying XAI techniques to neural networks trained on quantum experiments, which could allow us
to conceptualize what our algorithm has learned. In doing so, we could guide the creation of AI-based
design techniques for quantum experiments that are more reliable and interpretable.

We introduce an interpretability tool based on the inceptionism technique from computer vision,
better known as Deep Dreaming [30]. This technique has been used to iteratively guide the automated
design of quantum circuits [31] and molecules [32] towards optimizing a target property; it has also
been used in [33] to verify the reliability of a network trained to classify the entanglement spectra of
many-body quantum systems. More importantly, it allows us to visualize the physical insights the
neural network has gained from the training data. This enables better discernment of the strategies
applied during automated design processes and verification of physical concepts rediscovered by
the network, such as the thermodynamic arrow of time [34]. We apply this approach to quantum
graphs by training a deep neural network to predict properties of quantum systems and then inverting
the network to optimize for specific target properties. This inverse training dramatically shifts the
initial distribution of properties. Visualizing the evolution of quantum graphs during this process
allows us to conceptualize the strategies the neural network has learned. Examining the network’s
intermediate layers reveals that it initially learns simple features and progressively constructs more
complex structures. This comprehensive understanding of the network’s perception aids in designing
more interpretable and reliable computer-assisted schemes for quantum optics experiments

2 Methodology

2.1 The graph representation for quantum optics experiments

Recent studies have shown that many quantum optics experiments (involving nonlinear pair-sources,
single photon sources, linear optics, etc.) can be abstractly represented as colored, edge-weighted
graphs [35, 36, 37, 24, 25]. This representation can be extended to integrated photonics [38, 39, 40,
41] and entanglement by path identity [26, 42, 43]. In the graph, vertices represent photon paths to
detectors, and edges between any two vertices, a and b, indicate correlation between these paths. Edge
weights ωa,b denote amplitudes, while edge colors represent the photons’ internal mode numbers.
Each vertex inherits its color from the connected edges, defining the photon’s state. As an example
in Figure 1, we consider graph representations of four-qubit, two-dimensional experiments focused
on state creation. Specifically, we consider graphs with vertices V = {0, 1, 2, 3} and mode numbers
0 and 1, represented by blue and red edge colorings, respectively. Each graph, thus, consists of
24 possible edges with real-valued edge weights between 1 and -1. The quantum state |Φ(ω)⟩ is
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determined by the graph’s weight function according to Eq. (2) in [25], which is

Φ(ω) =
∑
m

1

m!

 ∑
e∈E(G)

ω(e)x†(e)y†(e) + h.c.

m

, (1)

where E(G) is the set of edges of the graph G, x†(e) and y†(e) are creation operators of photons,
which are represented as vertices x and y of edge e, and h.c. denotes the Hermitian conjugate,
including annihilation terms. The quantum state can then be physically realized by applying the
weight function to the vacuum state: |Φ(ω)⟩ = Φ(ω)|vac⟩. Overall, the neural network finds a way
to decompose the quantum state into perfect matchings of a graph, which is useful because arbitrary
graphs can be experimentally implemented in the laboratory, with the quantum state emerging as a
coherent superposition of these perfect matchings.

2.2 Training

Figure 2 illustrates the basic workflow of the dreaming process. A feed-forward neural network is
first trained on the edge weights ω of a complete, quadripartite, two-dimensional quantum graph
to predict certain properties of the corresponding quantum state |Φ(ω)⟩. The edge weights are
randomly initialized over a uniform distribution [−1, 1]. The neural network’s weights and biases
are optimized for this task using mini-batch gradient descent and the mean squared error (MSE) loss
function. We evaluate the state fidelity |⟨Φ(ω) |ψ⟩|2 with respect to two multipartite entangled states
|ψ⟩, such as including the Greenberger-Horne-Zeilinger (GHZ) state [44], where 4-qubit GHZ is
|GHZ⟩ = (|0000⟩+ |1111⟩)/

√
2.

We generated 20 million input-output pairs using PYTHEUS [25], where each input is a 24-
dimensional array of edge weights for a quantum graph, and the output is the property value of
the corresponding state, |Φ(ω)⟩. Networks were trained with a mini-batch size of 5000 and a 95:5
train-test split. Learning rates started at 1×10−3 (or 1×10−5 for the [3626] training architecture) and
decreased by 0.95 if the test MSE did not improve after 25 epochs, continuing until convergence was
stable for over 400 epochs. ReLU was used in all hidden layers except [3626], which used ELU with
α = 0.1. PyTorch [45] and Adam [46] were used for training. A hyperparameter search was carried
out on the number of neurons, N , in the generic neural network architecture [N4] towards predicting
the GHZ-State fidelity. The hyperparameter search stopped once satisfactory improvements in the
test MSE with respect to the simplest model considered were attained, which was achieved with
N = 400 neurons. For all cases considered, the network is trained on examples with a property value
below a threshold of 0.5 to ensure that the network is not memorizing the best solutions in each case.

Figure 1: Overview of quantum graphs. We show a complete, two-dimensional, quadripartite
quantum graph, where edge weights ωa,b connect vertices a and b. Edge transparency indicates
weight magnitude, and a diamond denotes negative weights. The quantum state |Φ(ω)⟩ is formed by
the coherent superposition of all perfect matchings, distinguished by direction.
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This threshold remains fixed for cases involving the GHZ state fidelities. During this generation of
the training data set, if examples are beyond the threshold, they are rejected.

Once training convergence is achieved, we execute the deep dreaming protocol to extract insights
from the neural network. For an arbitrary input graph, we select a neuron and maximize its activation
by updating the input graph via gradient ascent, while keeping the network’s weights and biases
frozen. The loss, defined as the negative of the neuron’s activation, is calculated by evaluating the
network’s prediction with the intermediate input graph. Through this process, the graph evolves
into a configuration that most excites the neuron. However, since neurons can recognize multiple
features [47], we repeat the procedure with different input graphs to uncover all features the neuron
detects. Inverse training was performed on 1 million input graphs over 100,000 iterations with a
learning rate of 1×10−4. This took approximately 5 minutes per graph for fidelity tasks and 4 minutes
for concurrence minimization, with 15,000 iterations used for dreaming. Training was conducted
on an AMD Ryzen 5 4500U @ 2.38 GHz CPU. Faster training can be achieved by increasing the
learning rate and applying early stopping, as seen with GHZ fidelity maximization in 5000 iterations
at a learning rate of 1× 10−3.

3 Results

3.1 Dreaming on the output layer

To gain insight into what the neural network has learned about the quantum state |Φ(ω)⟩, we first
apply the deep dreaming approach to the output layer. Figure 3(a) shows how an input graph mutates
when deep dreaming is applied to a [4003,10] (three hidden layers of 400 neurons, one hidden layer
of 10 neurons) neural network trained to predict GHZ-state fidelity. During dreaming, the network
searches for configurations that maximize the property value. Notably, the optimal configuration that
maximizes the GHZ-state fidelity.

We obtain |Φ(ω)⟩ from the reconstructed, mutated graph and recompute its true property value in
each step. In all cases, the graph steadily evolves toward the maximum property value. We repeat this
procedure for 1000 different quantum graphs and plot the distribution of each graph’s initial versus
dreamed fidelities in Figure 3(b). The network consistently discovers distinct examples with property
values exceeding the initial distribution’s upper bounds, demonstrating the potential of our approach
to uncover novel quantum graphs that optimize specific quantum state properties.

The intermediate steps of the dreaming process reveal the strategies the neural networks employ for a
given optimization task. Figure 3(c) shows the evolution of different initial graphs during inverse
training for various targets. We see that the neural network tries to activate the |0000⟩ and |1111⟩
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Figure 2: Quantum Graph Deep Dreaming. (a). During training, the weights and biases of a feed-
forward neural network are continually updated to predict properties, such as the fidelity of a random
quantum experiment represented by a graph. (b). In the deep dreaming process, the network’s weights
and biases are frozen, and an initial input graph is iteratively adjusted to maximize the activation of
the output neuron, which predicts the specified property. The final "dreamed" graph is expected to
maximize the network’s output activation when fed back into the neural network.
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states either by creating perfect matchings (PM) of these terms in unused directions – the input graph
had no PM in that direction previously – or by completing them with the assistance of an existing
PM in some direction, as is seen in particular with the |Φ(ω)⟩ = |0011⟩+ |0101⟩ initialization. The
dreaming process adjusts these PMs so their weights sum to 1. If the initial graph contains unwanted
terms or if the network inadvertently creates them during dreaming, the network attempts to eliminate
them by reducing the edge weights’ magnitudes or introducing negative-weight PMs in different
directions.

Our deep dreaming approach demonstrates that the network learns how to create states through graph
representations to consistently achieve optimal values for specific quantum state properties. Notably,
the network identified configurations that maximize these properties despite being trained only on
configurations with values below 0.50. This suggests that the network is relying on physical insights
rather than merely memorizing the best examples.

3.2 Interpretability of neural network structure

We apply the deep dreaming approach to the neurons in the hidden layers to gain insight into the neural
network’s internal model, which generalizes well beyond the training data. Figure 4 summarizes the
insights obtained through this process. To demonstrate the universality of our approach, we consider
several neural network architectures – [4004], [4910] and [3626] – each trained to predict GHZ-state
fidelity. For each network, we dream on the ith neuron in the jth hidden layer using 20 input graphs
to capture all possible structures that excite the neuron.

We focus on how the complexity of dreamed graphs evolves with network depth. The greatest insight
into our quantum graphs is gained by analyzing the different ways a ket is realized through the
graphs’ PMs. To each dreamed graph, we assign 3× 16 array, pi,j , representing the probabilities of
all possible PMs, which provides insight into the state created by the graph and the PM directions
utilized. As we move deeper into the neural network, the dreamed graphs activate more PM directions
and kets, reflecting the increasing complexity of structures the network recognizes. We also observe
the multifaceted nature of the neurons: different input graphs result in dreamed graphs that recreate
different input states. For example, as shown in the third inset of Figure 4(a), a neuron may focus on
parts of the graph that best create the |0000⟩ term or may interpret different PM directions for |0000⟩
or parts of the graph that realize the |1111⟩ term.

We may quantify the complexity of structures recognized throughout the network with the information
entropy Hi,j . By averaging pi,j across all dreamed graphs, we compute Hi,j for each neuron and

(a) (b) (c)

Figure 3: Results. (a), We show the evolution of an input graph’s fidelity respect to the GHZ state,
during the dreaming on the neural network ([4003, 10]). Intermediate steps of a random graph’s
evolution to its dreamed counterpart are displayed. For each case, we show the intermediate steps
of the input graphs’ evolution to its dreamed counterpart and only show edges whose weights are
above a threshold of 0.3. (b), Distribution of initial vs. dreamed fidelity respect to GHZ state. No
trained initial graph has fidelity above 0.5. (c), Strategies from the inverse training are explored, using
specified inputs to optimize GHZ state fidelity. Disjoint yellow-cycle graphs are generated for input
|0000⟩, and, edge weights are modified for the diagonal perfect matching, and new perfect matchings
are created with specific weight contributions.
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then determine the average entropy for the jth layer, providing a general metric of the complexity of
recognized structures. Figure 4(b) shows the trend ofHi,j across all three neural network architectures.
As expected, the deep neural network initially learns to recognize simple structures, with entropy
dropping to its lowest values in the early layers, then gradually increasing as more abstract features
are recognized in deeper layers. This pattern confirms that the network first identifies simple features,
such as edges forming one or two PMs, before forming more complex graphical structures in deeper
layers that involve a greater set of PMs.

4 Outlook

We present preliminary results on adapting the deep dreaming approach to quantum optical graphs
using deep neural networks for various target quantities. Our routine reveals the strategies used by
the neural network by dreaming on both the output layer and hidden layers. Notably, we demonstrate
that the trained neural network constructs a non-trivial model of quantum state properties and
that deep dreaming effectively identifies novel examples beyond the initial dataset. Additionally,

Figure 4: Information Entropy Across Neural Network Architectures. (a), Workflow behind com-
puting the mean information entropy for each layer of a trained neural network. We perform deep
dreaming on multiple input graphs for each neuron, calculating the mean probability amplitudes
for all perfect matchings corresponding to each ket. This reveals the overall graph structure that a
neuron most strongly recognizes. We then compute the information entropy for each neuron, Hi,j(p)

and the mean entropy for the layer Hi,j(p) to measure the complexity of structures identified by
the network. The variety in pi,j for each dreamed graph highlights the multifaceted nature of the
neurons. (b), Mean information entropy plots for the (i) [4004] (ii) [4910] and (iii) [3626] neural
network architectures. A common trend across all cases shows that mean entropy is minimal in
the lower layers and gradually increases in deeper layers, reflecting the network’s progression from
recognizing simpler structures to more complex ones.
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applying this approach to the network’s hidden layers shows that the network progressively learns
to recognize increasingly complex structures, with individual neurons being multifaceted in the
structures that excite them. Future work could enhance the transparency of learned representations by
using regularization techniques such as α-norm [48], jitter [30], or dreaming on the mean of multiple
input graphs [47]. Further insights might also be gained by directly modifying the network’s weights
and biases. Moreover, applying these tools to larger graphs and exploring applications beyond state
creation, such as quantum measurements and quantum communication, will be valuable.

Quadripartite graphs have served as an effective test case for our approach, and the knowledge gained
can be applied to other systems. Larger graphs and new targets will offer deeper insights into quantum
optics experiments and inspire further research. We anticipate that this approach could extend
frameworks for automated setup design [25, 19, 4] and generative molecular algorithms [32, 49],
helping to decode the underlying science and strategies toward target configurations.
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