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ABSTRACT

Training modern neural networks is an inherently noisy process that can lead to
high prediction churn– disagreements between re-trainings of the same model due
to factors such as randomization in the parameter initialization and mini-batches–
even when the trained models all attain high accuracies. Such prediction churn
can be very undesirable in practice. In this paper, we present several baselines
for reducing churn and show that utilizing the k-NN predictions to smooth the
labels results in a new and principled method that often outperforms the baselines
on churn while improving accuracy on a variety of benchmark classification tasks
and model architectures.

1 INTRODUCTION

Deep neural networks (DNNs) have proved to be immensely successful at solving complex classifi-
cation tasks across a range of problems. Much of the effort has been spent towards improving their
predictive performance (i.e. accuracy), while comparatively little has been done towards improving
the stability of training these models. Modern DNN training is inherently noisy due to factors such
as the random initialization of network parameters, the mini-batch ordering, and effects of various
data augmentation or pre-processing tricks, all of which are exacerbated by the non-convexity of the
loss surface. This results in local optima corresponding to models that have very different predic-
tions on the same data points. This may seem counter-intuitive, but even when the different runs
all produce very high accuracies for the classification task, their predictions can still differ quite
drastically as we will show later in the experiments. Thus, even an optimized training procedure can
lead to high prediction churn, which refers to the proportion of sample-level disagreements between
classifiers caused by different runs of the same training procedure1.

In practice, reducing such predictive churn can be critical. For example, in a production system,
models are often continuously improved on by being trained or retrained with new data or better
model architectures and training procedures. In such scenarios, a candidate model for release must
be compared to the current model serving in production. Oftentimes, this decision is conditioned on
more than just overall offline test accuracy– in fact, oftentimes the offline metrics are not completely
aligned with actual goal, especially if these models are used as part of a larger system (e.g. max-
imizing offline click-through rate vs. maximizing revenue or user satisfaction). As a result, these
comparisons oftentimes require extensive and costly live experiments, requiring human evaluation
in situations where the candidate and the production model disagree (i.e. in many situations, the true
labels are not available without a manual labeler). In these cases, it can be highly desirable to lower
prediction churn.

Despite the practical relevance of lowering predictive churn, there has been surprisingly little work
done in this area, which we highlight in the related work section. In this work, we focus on predictive
churn reduction under retraining the same model architecture on an identical train and test set. Our
main contributions are as follows:

• We provide one of the first comprehensive analyses of baselines to lower prediction churn,
showing that popular approaches designed for other goals are effective baselines for churn
reduction, even compared to methods designed for this goal.

1Concretely, given two classifiers applied to the same test samples, the prediction churn between them is
the fraction of test samples with different predicted labels.
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• We improve label smoothing, a global smoothing method popular for improving model
confidence scores, by utilizing the local information leveraged by the k-NN labels thus
introducing k-NN label smoothing which we show to often outperform the baselines on a
wide range of benchmark datasets and model architectures.

• We show new theoretical results for the k-NN labels suggesting the usefulness of the k-NN
label. We show under mild nonparametric assumptions that for a wide range of k, the k-
NN labels uniformly approximates the Bayes-optimal label and when k is tuned optimally,
achieves the minimax optimal rate. We also show that when k is linear in n, the distri-
bution implied by the k-NN label approximates the original distribution smoothed with an
adaptive kernel.

2 RELATED WORKS

Our work spans multiple sub-areas of machine learning. The main problem this paper tackles is
reducing prediction churn. In the process, we show that label smoothing is an effective baseline and
we improve upon it in a principled manner using deep k-NN label smoothing.

Prediction Churn. There are only a few works which explicitly address prediction churn. Fard
et al. (2016) proposed training a model so that it has small prediction instability with future versions
of the model by modifying the data that the future versions are trained on. They furthermore propose
turning the classification problem into a regression towards corrected predictions of an older model
as well as regularizing the new model towards the older model using example weights. Cotter et al.
(2019); Goh et al. (2016) use constrained optimization to directly lower prediction churn across
model versions. Simultaneously training multiple identical models (apart from initialization) while
tethering their predictions together via regularization has been proposed in the context of distilla-
tion (Anil et al., 2018; Zhang et al., 2018; Zhu et al., 2018; Song & Chai, 2018) and robustness to
label noise (Malach & Shalev-Shwartz, 2017; Han et al., 2018). This family of methods was termed
“co-distillation” by Anil et al. (2018), who also noted that it can be used to reduce churn in addition
to improving accuracy. In this paper, we show much more extensively that co-distillation is indeed
a reasonable baseline for churn reduction.

Label smoothing. Label smoothing (Szegedy et al., 2016) is a simple technique that proposes to
train a model the model on the soft labels obtained by a convex combination of the hard true label
and the soft uniform distribution across all the labels. It has been shown that it prevents the network
from being over-confident and leads to better confidence calibration (Müller et al., 2019). Here we
show that label smoothing is a reasonable baseline for reducing prediction churn, and we moreover
enhance it for this task by smoothing the labels locally via k-NN rather than a the pure global
approach mixing with the uniform distribution.

k-NN Theory. The theory of k-NN classification has a long history (e.g. Fix & Hodges Jr (1951);
Cover (1968); Stone (1977); Devroye et al. (1994); Chaudhuri & Dasgupta (2014)). To our knowl-
edge, the most relevant k-NN classification result is by Chaudhuri & Dasgupta (2014), who show
statistical risk bounds under similar assumptions as used in our work. Our analysis shows finite-
sample L∞ bounds on the k-NN labels, which is a stronger notion of consistency as it provides a
uniform guarantee, rather than an average guarantee as is shown in previous works under standard
risk measures such asL2 error. We do this by leveraging recent techniques developed in Jiang (2019)
for k-NN regression, which assumes an additive noise model instead of classification. Moreover, we
provide to our knowledge the first consistency guarantee for the case where k grows linearly with n.

Deep k-NN. k-NN is a classical method in machine learning which has recently been shown to
be useful when applied to the intermediate embeddings of a deep neural network (Papernot & Mc-
Daniel, 2018) to obtain more calibrated and adversarially robust networks. This is because standard
distance measures are often better behaved in these representations leading to better performance of
k-NN on these embeddings than on the raw inputs. Jiang et al. (2018) uses nearest neighbors on
the intermediate representations to obtain better uncertainty scores than softmax probabilities and
Bahri et al. (2020) uses the k-NN label disagreement to filter noisy labels for better training. Like
these works, we also leverage k-NN on the intermediate representations but we show that utilizing
the k-NN labels leads to lower prediction churn.
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3 ALGORITHM

Suppose that the task is multi-class classification with L classes and the training datapoints are
(x1, y1), ..., (xn, yn), where xi ∈ X , and X is a compact subset of RD and yi ∈ RL, where repre-
sents the one-hot vector encoding of the label– that is, if the i-th example has label j, then yi has 1
in the j-th entry and 0 everywhere else. Then we give the formal definition of the smoothed labels:

Definition 1 (Label Smoothing). Given label smoothing parameter 0 ≤ a ≤ 1, then the smoothed
label y is (where 1L denotes the vector of all 1’s in RL).

yLSa := (1− a) · y +
a

L
· 1L.

We next formally define the k-NN label, which is the average label of the example’s k-nearest
neighbors in the training set. Let us use shorthand X := {x1, ..., xn} and yi ∈ RL.

Definition 2 (k-NN label). Let the k-NN radius of x ∈ X be rk(x) := inf{r : |B(x, r) ∩X| ≥ k}
whereB(x, r) := {x′ ∈ X : |x−x′| ≤ r} and the k-NN set of x ∈ X beNk(x) := B(x, rk(x))∩X .
Then for all x ∈ X , the k-NN label is defined as

ηk(x) :=
1

|Nk(x)|

n∑
i=1

yi · 1 [xi ∈ Nk(x)] .

The label smoothing method can be seen as performing a global smoothing. That is, every label
is equally transformed towards the uniform distribution over all labels. While it seems almost de-
ceptively simple, it has only recently been shown to be effective in practice, specifically for better
calibrated networks. However, since this smoothing technique is applied equally to all datapoints, it
fails to incorporate local information about the datapoint. To this end, we propose using the k-NN
label, which smooths the label across its nearest neighbors. We show theoretically that the k-NN
label can be a strong proxy for the Bayes-optimal label, that is, the best possible prediction one can
make given the uncertainty. In other words, compared to the true label (or even the label smoothing),
the k-NN label is robust to variability in the data distribution and provides a more stable estimate
of the label than the original hard label which may be noisy. Training on such noisy labels have
been shown to hurt model performance (Bahri et al., 2020) and using the smoothed labels can help
mitigate these effects. To this end, we define k-NN label smoothing as follows:

Definition 3 (k-NN label smoothing). Let 0 ≤ a, b ≤ 1 be k-NN label smoothing parameters. Then
the k-NN smoothed label of datapoint (x, y) is defined as:

ykNN
a,b = (1− a) · y + a ·

(
b · 1

L
· 1L + (1− b) · ηk(x)

)
.

We see that a is used to weight between using the true labels vs. using smoothing, and b is used to
weight between the global vs. local smoothing. Algorithm 1 shows how k-NN label smoothing is
applied to deep learning models. Like Bahri et al. (2020), we perform k-NN on the network’s logits
layer.

Algorithm 1 Deep k-NN label smoothing
Inputs: 0 ≤ a, b ≤ 1, Training data (x1, y1), ..., (xn, yn), model training procedureM.
Train model M0 on (x1, y1), ..., (xn, yn) withM.
Let z1, ..., zn ∈ RL be the logits of x1, ..., xn, respectively, w.r.t. M0

Let ỹi be the k-NN smoothed label of (zi, yi) computed w.r.t. dataset (z1, y1), ..., (zn, yn).
Train model M on (x1, ỹ1), ..., (xn, ỹn) withM.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical justification for why the k-NN labels may be useful. In
particular, we show results for two settings, where n is the number of datapoints.

3



Under review as a conference paper at ICLR 2021

• When k � n, we show that with appropriate setting of k, the k-NN smoothed labels
approximates the predictions of Bayes-optimal classifier at a minimax-optimal rate.

• When k = O(n), we show that the distribution implied by the k-NN smoothed labels is
equivalent to the original distribution convolved with an adaptive smoothing kernel.

Our results may also reveal insights into why distillation methods (the procedure of training a model
on another model’s predictions instead of the true labels) can work. Another way of considering
the result is that the k-NN smoothed label is equivalent to the soft prediction of the k-NN classifier.
Thus, if one were to train on the k-NN labels, it would be essentially distillation on the k-NN classi-
fier and our theoretical results show that the labels implied by k-NN approximate the predictions of
the optimal classifier (in the k � n setting). Learning the optimal classifier may indeed be a better
goal than learning from the true labels, because the latter may lead to overfitting to the sampling
noise rather than just the true signal implied by the optimal classifer. While distillation is not the
topic of this work, our results in this section may be of independent interest to that area.

For the analysis, we assume the binary classification setting, but it is understood that our results
can be straightforwardly generalized to the multi-class setting. The feature vectors are defined on
compact support X ⊆ RD and datapoints are drawn as follows: the features vector is drawn from
density pX on X and the labels are drawn according to the label function η : X → [0, 1], i.e.
η(x) = P(Y = 1|X = x).

4.1 k � n

We make a few mild regularity assumptions for our analysis to hold, which are standard in works
analyzing non-parametric methods e.g. Singh et al. (2009); Chaudhuri & Dasgupta (2014); Reeve
& Kaban (2019); Jiang (2019); Bahri et al. (2020). The first part ensures that the support X does not
become arbitrarily thin anywhere, the second ensures that the density does not vanish anywhere in
the support, and the third ensures that the label function η is smooth w.r.t. to its input.

Assumption 1. The following three conditions hold:

• Support Regularity: There exists ω > 0 and r0 > 0 such that Vol(X ∩ B(x, r)) ≥ ω ·
Vol(B(x, r)) for all x ∈ X and 0 < r < r0, where B(x, r) := {x′ ∈ X : |x− x′| ≤ r}.

• Non-vanishing density: pX,0 := infx∈X pX(x) > 0.

• Smoothness of η: There exists 0 < α ≤ 1 and Cα > 0 such that |η(x) − η(x′)| ≤
Cα|x− x′|α for all x, x′ ∈ X .

We have the following result which provides a uniform bound between the smoothed k-NN label ηk
and the Bayes-optimal label η.

Theorem 1. Let 0 < δ < 1 and suppose that Assumption 1 holds and that k satisfies the following:

28 ·D log2(4/δ) · log n ≤ k ≤ 1

2
· ω · pX,0 · vD · rD0 · n,

where vD := πD/2

Γ(d/2+1) is the volume of a D-dimensional unit ball. Then with probability at least
1− δ, we have

sup
x∈X
|ηk(x)− η(x)| ≤ Cα

(
2k

ω · vD · n · pX,0

)α/D
+

√
2 log(4D/δ) + 2D log(n)

k
.

In other words, there exists constants C1, C2, C depending on η and δ such that if k satisfies

C1 log n ≤ k ≤ C2 · n,

then with probability at least 1− δ, ignoring logarithmic factors in n and 1/δ:

sup
x∈X
|ηk(x)− η(x)| ≤ C ·

((
k

n

)α/D
+

1√
k

)
.
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Choosing k ≈ n2α/(2α+D), gives us a bound of supx∈X |ηk(x) − η(x)| ≤ Õ(n−1/(2α+D)), which
is the minimax optimal rate as established by Tsybakov et al. (1997).

Therefore, the advantage of using the smoothed labels ηk(x1), ..., ηk(xn) instead of the true labels
y1, ..., yn, is that the smoothed labels approximate the Bayes-optimal classifier. Moreover, as shown
above, with appropriate setting of k, the smoothed labels are a minimax-optimal estimator of the
true label function η. Thus, the smoothed labels provide as good of a proxy for η as any estimator
possibly can.

As suggested earlier, another way of considering this result is that the original labels may contain
considerable noise and thus no single label can be guaranteed reliable. Using the smoothed label
instead mitigates this effect and allows us to train the model to match the label function η.

4.2 k LINEAR IN n

In the previous subsection, we showed the utility of k-NN label smoothing as a theoretically sound
proxy for the Bayes-optimal labels, which attains statistical consistency guarantees as long as k
grows faster than log n and k/n → 0. Now, we analyze the case where k grows linearly with n.
In this case, the k-NN smoothed labels no longer recover the Bayes-optimal label function η, but
instead an adaptive kernel smoothed version of η. We make this relationship precise here.

Suppose that k = bβ · nc for some 0 < β < 1. We define the β-smoothed label function:
Definition 4 (β-smoothed label function). Let rβ(x) := inf{r > 0 : P(B(x, r)) ≥ β}, that is the
radii of the smallest ball centered at x with probability mass β w.r.t. PX . Then, let η̃β(x) be the
expectation of η on B(x, rβ(x)) w.r.t. PX :

η̃β(x) :=
1

β

∫
B(x,rβ(x))

η(x) · PX(x)dx.

We can view η̃β as an adaptively kernel smoothed version of η, where adaptivity arises from the
density of the point (the more dense, the smaller the bandwidth we smooth it across) and the kernel
is based on the density.

We now prove the following result which shows that in this setting ηk estimates η̃β(x). It is worth
noting that we need very little assumption on η as compared to the previous result because the β-
smoothing of η provides a more regular label function; moreover, the rates are fast i.e. Õ(

√
D/n).

Theorem 2. Let 0 < δ < 1 and k = bβ · nc. Then with probability at least 1 − δ, we have for n
sufficiently large depending on β, δ:

sup
x∈X
|ηk(x)− η̃β(x)| ≤ 3

√
2 log(4D/δ) + 2D log(n)

β · n
.

5 EXPERIMENTS

We now describe the experimental methodology and results for validating our proposed method.

5.1 BASELINES

We next detail the suite of baselines we compare against. We tune baseline hyper-parameters exten-
sively, with the precise sweeps and setups available in the Appendix.

• Control: Baseline where we train for accuracy without regards to lower churn.

• `p Regularization: We control the stability of a model’s predictions by simply regularizing
them (independently of the ground truth label) using classical `p regularization. The loss
function is given by:

L`p(xi, yi) = L(xi, yi) + a||f(xi)||pp.

We experiment with both `1 and `2 regularization.

5



Under review as a conference paper at ICLR 2021

• Bi-tempered: This is a baseline by Amid et al. (2019), originally designed for robustness
to label noise. It modifies the standard logistic loss function by introducing two tempera-
ture scaling parameters t1 and t2. We apply their “bi-tempered” loss here, suspecting that
methods which make model training more robust to noisy labels may also be effective at
reducing prediction churn.
• Anchor: This is based on a method proposed by Fard et al. (2016) specifically for churn re-

duction. It uses the predicted probabilities from a preliminary model to smooth the training
labels of the second model. We first train a preliminary model fprelim using regular cross-
entropy loss. We then retrain the model using smoothed labels (1 − a)yi + afprelim(xi),
thus “anchoring” on a preliminary model’s predictions. In our experiments, we train one
preliminary model and fix it across the runs for this baseline to reduce prediction churn.
• Co-distillation: We use the co-distillation approach presented by Anil et al. (2018), who

touched upon its utility for churn reduction. We train two identical modelsM1 andM2 (but
subject to different random initialization) in tandem while penalizing divergence between
their predictions. The overall loss is

Lcodistill(xi, yi) = L(f1(xi), yi) + L(f2(xi), yi) + aΨ(f1(xi), f2(xi)).

In their paper, the authors set Ψ to be cross-entropy:

Ψ(p(1), p(2)) =
∑
i∈[K]

p
(1)
i log(p

(2)
i ),

but they note KL divergence can be used. We experiment with both cross-entropy and KL
divergence. We also tune wcodistill, the number of burn-in steps of training before turning on
the regularizer.
• Label Smoothing: This is the method of Szegedy et al. (2016) defined earlier in the paper.

Our proposed method augments global label smoothing by leveraging the local k-NN esti-
mates. Naturally, we compare against doing global smoothing only and this serves as a key
ablation model to see the added benefits of leveraging the k-NN labels.
• Mixup: This method proposed by Zhang et al. (2017) generates synthetic training examples

on the fly by convex combining random training inputs and their associated labels, where
the combination weights are random draws from a Beta(a, a) distribution. Mixup improves
generalization, increases robustness to adversarial examples as well as label noise, and also
improves model calibration (Thulasidasan et al., 2019).

• Ensemble: Ensembling deep neural networks can improve the quality of their uncertainty
estimation (Lakshminarayanan et al., 2017; Fort et al., 2019). We consider the simple case
where m identical deep neural networks are trained independently on the same training
data, and at inference time, their predictions are uniformly averaged together.

5.2 DATASETS AND MODELS.

For all datasets, we do not use any data augmentation in order to guarantee that the training data
used to across different trainings is held fixed. For all datasets we use the Adam optimizer with
default learning rate 0.001. We use a minibatch size of 128 throughout.

• MNIST: We train a two-layer MLP with 256 hidden units per layer and ReLU activations
for 20 epochs.

• Fashion MNIST: We use the same architecture as the one used for MNIST.
• SVHN: We use LeNet5 CNN(LeCun et al., 1998) for 30 epochs on the Google Street View

Housing Numbers (SVHN) dataset, where each image is cropped to be 32× 32 pixels.
• CelebA: CelebA (Liu et al., 2018) is a large-scale face attributes dataset with more than

200k celebrity images, each with 40 attribute annotations. We use the standard train and
test splits, which consist of 162770 and 19962 images respectively. Images were resized
to be 28 × 28 × 3. We select the “smiling” and “high cheekbone” attributes and perform
binary classification, training LeNet5 for 20 epochs.

• Phishing: To validate our method beyond the image classification setting, we train a two-
layer MLP with 256 hidden units per layer on UCI Phishing dataset (Dua & Graff, 2017),
which consists of 7406 train and 3649 test examples on a 30-dimensional input feature.
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Dataset Method Accuracy % Churn % Churn Correct Churn Incorrect
k-NN LS (k=10, a=1, b=0.9) 88.98 (0.33) 10.98 (0.28) 4.64 (0.29) 62.23 (1.22)
Label Smoothing (a=0.9) 87.26 (0.73) 13.46 (0.62) 5.31 (0.57) 67.2 (1.44)
Anchor (a=1.0) 87.17 (0.16) 12.48 (0.39) 5.19 (0.2) 61.66 (1.85)

SVHN `2 Reg (a=0.5) 88.16 (0.35) 11.85 (0.35) 5.07 (0.16) 62.73 (2.1)
`1 Reg (a=0.2) 74.18 (3.41) 22.89 (3.74) 9.58 (4.04) 59.36 (5.7)
Co-distill (CE, a=0.5) 87.64 (0.64) 12.46 (0.48) 5.16 (0.51) 63.82 (1.67)
Co-distill (KL, a=0.5) 87.52 (0.45) 13.01 (0.3) 5.54 (0.33) 65.44 (1.46)
Bi-tempered (t1=0.5, t2=1) 88.04 (0.5) 12.03 (0.3) 5.26 (0.3) 62.48 (1.83)
Mixup (a=0.5) 89.08 (0.18) 9.56 (0.16) 4.07 (0.15) 54.75 (0.95)
Control 86.64 (0.54) 14.64 (0.51) 6.03 (0.5) 69.59 (1.32)
k-NN LS (k=5, a=0.9, b=0.9) 98.23 (0.11) 1.52 (0.12) 0.7 (0.1) 47.16 (3.39)
Label Smoothing (a=0.9) 98.15 (0.07) 1.65 (0.05) 0.71 (0.07) 50.73 (2.62)
Anchor (a=1.0) 97.72 (0.11) 2.66 (0.2) 1.21 (0.14) 64.51 (4.13)

MNIST `2 Reg (a=0.5) 98.08 (0.1) 1.67 (0.12) 0.8 (0.08) 46.65 (3.2)
`1 Reg (a=0.01) 97.67 (0.29) 2.51 (0.31) 1.3 (0.27) 56.8 (2.84)
Co-distill (CE, a=0.2, nwarm=2k) 98.08 (0.06) 2.08 (0.11) 0.98 (0.07) 58.6 (3.91)
Co-distill (KL, a=0.05, nwarm=1k) 97.98 (0.14) 2.16 (0.16) 0.97 (0.13) 59.56 (3.64)
Bi-tempered (t1=0.9, t2=1.0) 98.09 (0.2) 2.04 (0.15) 1.07 (0.14) 55.82 (4.32)
Mixup (a=0.2) 98.17 (0.04) 1.59 (0.07) 0.74 (0.04) 47.8 (2.53)
Control 97.98 (0.13) 2.28 (0.13) 0.96 (0.07) 63.36 (2.55)
k-NN LS (k=10, a=1, b=0.5) 88.89 (0.14) 6.94 (0.18) 3.27 (0.15) 36.26 (1.09)
Label Smoothing (a=0.8) 88.46 (0.17) 7.2 (0.46) 3.32 (0.28) 36.63 (2.02)
Anchor (a=0.9) 88.55 (0.14) 7.53 (0.45) 3.6 (0.23) 37.78 (2.29)

Fashion `2 Reg (a=0.5) 88.52 (0.19) 7.86 (0.36) 3.59 (0.18) 40.38 (1.81)
MNIST `1 Reg (a=0.1) 86.88 (0.35) 8.24 (0.55) 3.88 (0.41) 36.81 (2.63)

Co-distill (CE, a=0.5, nwarm=2k ) 88.76 (0.21) 7.51 (0.39) 3.67 (0.3) 37.98 (1.71)
Co-distill (KL, 0.5, nwarm=2k) 88.85 (0.35) 7.83 (0.43) 3.68 (0.29) 40.59 (2.4)
Bi-tempered (t1=0.7, t2=2) 88.7 (0.29) 7.36 (0.47) 3.5 (0.19) 37.24 (3.04)
Mixup (a=0.4) 89.17 (0.10) 6.77 (0.29) 3.23 (0.15) 35.97 (1.43)
Control 88.95 (0.26) 9.13 (0.51) 4.42 (0.4) 46.99 (2.49)
k-NN LS (k=100, b=0.1, a=0.9) 90.02 (0.11) 5.46 (0.32) 2.97 (0.18) 27.71 (1.74)
Label Smoothing (a=0.05) 89.39 (0.29) 6.77 (0.41) 3.81 (0.26) 31.67 (2.34)
Anchor (a=0.8) 89.87 (0.14) 5.57 (0.28) 3.07 (0.21) 27.66 (1.38)

CelebA `2 Reg (a=0.01) 89.35 (0.16) 6.85 (0.34) 3.92 (0.27) 31.62 (1.21)
Smiling `1 Reg (a=0.5) 89.39 (0.26) 6.71 (0.26) 3.61 (0.22) 32.48 (1.35)

Co-distill (CE, 0.5, nwarm=1k) 89.59 (0.29) 6.31 (0.23) 3.66 (0.3) 29.47 (1.47)
Co-distill (KL, 0.5, nwarm=2k) 89.57 (0.22) 6.1 (0.23) 3.34 (0.26) 29.66 (1.47)
Bi-tempered (t1=0.9, t2=2.) 89.88 (0.18) 6.44 (0.31) 3.56 (0.19) 31.96 (1.96)
Mixup (a=0.2) 89.71 (0.14) 6.15 (0.12) 3.51 (0.12) 29.37 (0.66)
Control 89.67 (0.19) 7.3 (0.45) 4.06 (0.27) 35.34 (2.35)
k-NN LS (k=100, b=0.1, a=0.9) 84.48 (0.21) 7.7 (0.29) 4.64 (0.27) 24.44 (0.98)
Label Smoothing (a=0.005) 83.73 (0.17) 8.68 (0.46) 5.2 (0.35) 26.61 (1.28)
Anchor (a=0.9) 84.48 (0.2) 7.97 (0.39) 4.77 (0.22) 25.44 (1.58)

CelebA `2 Reg (a=0.001) 83.6 (0.14) 9.06 (0.32) 5.41 (0.24) 27.66 (1.03)
High `1 Reg (a=0.01) 83.59 (0.26) 8.43 (0.23) 4.93 (0.23) 26.14 (1.16)
Cheekbone Co-distill (CE, a=0.5, nwarm=1k) 84.08 (0.21) 8.96 (0.37) 5.33 (0.36) 28.11 (0.88)

Co-distill (KL, a=0.5, nwarm=1k) 84.31 (0.08) 8.57 (0.16) 5.06 (0.13) 27.39 (0.47)
Bi-tempered (t1=0.5, t2=4) 83.92 (0.13) 7.84 (0.32) 4.75 (0.21) 24.01 (1)
Mixup (a=0.4) 84.53 (0.14) 7.92 (0.47) 4.69 (0.31) 25.53 (1.54)
Control 83.93 (0.56) 10.18 (0.93) 6.2 (0.89) 31.1 (2.22)
k-NN LS (k=500, a=0.8, b=0.9) 96.69 (0.09) 1.04 (0.21) 0.54 (0.14) 15.81 (3.52)
Label Smoothing (a=0.8) 96.63 (0.09) 1.26 (0.26) 0.64 (0.17) 18.8 (3.42)
Anchor (a=0.9) 96.02 (0.25) 2.33 (0.25) 1.08 (0.15) 31.58 (5.11)

Phishing `2 Reg (a=0.5) 96.51 (0.12) 1.35 (0.3) 0.7 (0.21) 19.37 (4)
`1 Reg (a=0.5) 95.38 (0.18) 1.48 (0.34) 0.83 (0.24) 14.95 (4.08)
Co-distill (CE, a=0.2, nwarm=2) 96.02 (0.19) 1.45 (0.26) 0.83 (0.21) 16.72 (4.13)
Co-distill (KL, a=0.001, nwarm=1k) 95.94 (0.33) 1.51 (0.2) 0.65 (0.18) 20.95 (6.14)
Bi-tempered (t1=0.9, t2=1.0) 96.26 (0.37) 2.32 (0.69) 1.23 (0.53) 30.19 (8.51)
Mixup (a=0.1) 96.22 (0.23) 1.80 (0.33) 1.05 (0.28) 21.53 (4.25)
Control 96.3 (0.32) 2.25 (0.59) 1.21 (0.38) 29.05 (7.93)

Table 1: Results across all datasets and baselines under optimal hyperparameter tuning (settings
shown). Note that we report the standard deviation of the runs instead of standard deviation of the
mean (i.e. standard error) which is often reported instead. The former is higher than the latter by a
factor of the square root of the number of trials (10).
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5.3 EVALUATION METRICS AND HYPERPARAMETER TUNING

For each dataset, baseline and hyper-parameter setting, we run each method on the same train and
test split exactly 5 times. We then report the average test accuracy as well as the test set churn
averaged across every possible pair (i, j) of runs (10 total pairs). To give a more complete picture of
the sources of churn, we also slice the churn by the whether or not the test predictions of the first run
in the pair were correct. Then, lowering the churn on the correct predictions is desirable (i.e. if the
base model is correct, we clearly don’t want the predictions to be changing), while churn reduction
on incorrect predictions is less relevant (i.e. if the base model was incorrect, then it may be better
for there to be higher churn– however at the same time, some examples may be inherently difficult
to classify or the label is such an outlier that we don’t expect an optimal model to correctly classify
in which case lower churn may be desirable). This is why in the results for Table 1, we bold the best
performing baseline for churn on correct examples, but not for churn on incorrect examples.

In the results (Table 1), for each dataset and baseline, we chose the optimal hyperparameter setting
by first sorting by accuracy and choosing the setting with the highest accuracy, and if there were
multiple settings with very close to the top accuracy (defined as within less than 0.1% difference in
test accuracy), then we chose the setting with the lowest churn among those settings with accuracy
close to the top accuracy. There is often no principled way to trade-off the two sometimes competing
objectives of accuracy and churn (e.g. Cotter et al. (2019) offer a heuristic to trade off the two
objectives in a more balanced manner on the Pareto frontier). However in this case, biasing towards
higher accuracy is most realistic because in practice, when given a choice between two models, it’s
usually best to go with the more accurate model. Fortunately, we will see that accuracy and churn
are not necessarily competing objectives and our proposed method usually gives the best result for
both simultaneously.

5.4 RESULTS

We see from Table 1 that mixup and our method, k-NN label smoothing, are consistently the most
competitive; mixup outperforms on SVHN and Fashion MNIST while k-NN label smoothing outper-
forms on all the remaining datasets. Notably, both methods do well on accuracy and churn metrics
simultaneously, suggesting that there is no inherent trade-off between predictive performance and
churn reduction. Due to space constraints, ablations on SVHN for our method’s hyperparameters
(a, b, and k), along with results for the ensemble baseline can be found in the Appendix. While we
found ensembling to be remarkably effective, it does come with higher cost (more trainable param-
eters and higher inference cost), and so we discourage a direct comparison with other methods.

6 CONCLUSION

Modern DNN training is a noisy process: randomization arising from stochastic minibatches, weight
initialization, and data preprocessing techniques can lead to models with drastically different predic-
tions on the same datapoints when using the same training procedure– and this phenomenon happens
even when all the models attain similarly high accuracies.

Reducing such prediction churn is important in practical problems as production ML models are
constantly updated and improved on. Since offline metrics usually can only serve as proxies to
the live metrics, comparing the models in A/B tests and live experiments oftentimes must involve
manual labeling of the disagreements between the models making it a costly procedure. Thus,
controlling the amount of predictive churn can be crucial for more efficiently iterating and improving
models in a production setting.

Despite the practical importance of this problem, there has been little work done in the literature on
this topic. We provide one of the first comprehensive analyses of reducing predictive churn arising
from retraining the model on the same dataset and model architecture. We show that numerous meth-
ods used for other goals such as learning with noisy labels and improving model calibration serve as
reasonable baselines for lowering prediction churn. Moreover, we propose a new technique, k-NN
label smoothing, which is shown to be a principled approach leveraging a local smoothing from the
deep k-NN labels to enhance the global smoothing from the vanilla label smoothing procedure. We
further show that it often outperforms the baselines across a range of datasets and model architec-
tures.
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A PROOFS

For the proofs, we make use of the following result from Jiang (2019) which bounds the number of
distinct k-NN sets on the sample across all k:

Lemma 1 (Lemma 3 of Jiang (2019)). Let M be the number of distinct k-NN sets over X , that is,
M := |{Nk(x) : x ∈ X}|. Then M ≤ D · nD.

Proof of Theorem 1. We have by triangle inequality and the smoothness condition in Assumption 1
that:

|ηk(x)− η(x)| ≤

∣∣∣∣∣
n∑
i=1

(η(xi)− η(x)) · 1 [xi ∈ Nk(x)]

|Nk(x)|

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(yi − η(xi)) ·
1 [xi ∈ Nk(x)]

|Nk(x)|

∣∣∣∣∣
≤ Cα · rk(x)α +

∣∣∣∣∣
n∑
i=1

(yi − η(xi)) ·
1 [xi ∈ Nk(x)]

|Nk(x)|

∣∣∣∣∣ .
We now bound each of the two terms separately.

To bound rk(x), let r =
(

2k
ω·vD·n·pX,0

)1/D

. We have P(B(x, r)) ≥ ω infx′∈B(x,r)∩X pX(x′) ·
vDr

D ≥ ωpX,0vDr
D = 2k

n , where P is the distribution function w.r.t. pX . By Lemma 7 of
Chaudhuri & Dasgupta (2010) and the condition on k, it follows that with probability 1 − δ/2,
uniformly in x ∈ X , |B(x, r)∩X| ≥ k, whereX is the sample of feature vectors. Hence, rk(x) < r
for all x ∈ X uniformly with probability at least 1− δ/2.

Define ξi := yi − η(xi). Then, we have that −1 ≤ ξi ≤ 1 and thus by Hoeffding’s inequality, we
have that Ax :=

∑n
i=1(yi− η(xi)) · 1[xi∈Nk(x)]

|Nk(x)| =
∑n
i=1 ξi ·

1[xi∈Nk(x)]
|Nk(x)| satisfies P (|Ax| > t/k) ≤

2 exp
(
−t2/2k

)
. Then setting t =

√
2k ·

√
log(4D/δ) +D log(n) gives

P

(
|Ax| ≥

√
2 log(4D/δ) + 2D log(n)

k

)
≤ δ

2D · nD
.

By Lemma 3 of Jiang (2019), the number of unique random variables Ax across all x ∈ X is
bounded by D · nD. Thus, by union bound,

P

(
sup
x∈X
|Ax| ≥

√
2 log(4D/δ) + 2D log(n)

k

)
≤ δ/2.

The result follows.

Proof of Theorem 2. Let X be the n sampled feature vectors and let x ∈ X . Define k′(x) :=
|X ∩B(x, rβ(x))|. We have:

|ηk(x)− η̃β(x)| ≤ |ηk′(x)(x)− ηk(x)|+ |ηk′(x)(x)− η̃β(x)|.

We bound each of the two terms separately. We have

|k′(x)− k| =

∣∣∣∣∣∑
x∈X

1[x ∈ B(x, r(x))]− β · n

∣∣∣∣∣
By Hoeffding’s inequality we have

P(|k′(x)− k| ≥ t · n) ≤ 2 exp(−2t2n).

Choosing t =
√

log(4D/δ)+D log(n)
2n gives us

P
(
|k′(x)− k| ≥

√
n

2
· (log(4D/δ) +D log(n))

)
≤ δ

2D · nD
.
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Dataset (m=5) Accuracy (%) Churn (%) Churn Correct Churn Incorrect
SVHN 90.34 (0.31) 6.61 (0.19) 2.75 (0.28) 43.12 (1.49)
MNIST 98.5 (0.07) 0.94 (0.14) 0.44 (0.09) 33.74 (4.39)
Fashion MNIST 89.71 (0.12) 4.05 (0.14) 1.85 (0.05) 23.16 (1.29)
CelebA Smiling 90.56 (0.09) 3.35 (0.16) 1.82 (0.11) 17.95 (0.99)
CelebA High Cheekbone 85.12 (0.16) 4.95 (0.2) 2.87 (0.1) 16.81 (1.24)
Phishing 96.11 (0.06) 0.54 (0.08) 0.29 (0.08) 6.77 (1.31)

Table 2: Ensemble results for all datasets. In all settings, the optimal m (number of subnetworks)
is 5. We see that compared to the other methods presented, ensembling does well in both predictive
performance and in reducing churn. It does come at a cost, however: the model is effectively 5 times
larger, making both training and inference more expensive.

By Lemma 3 of Jiang (2019), the number of unique sets of points consisting of balls intersected
with the sample is bounded by D · nD and thus by union bound, we have with probability at least
1− δ/2:

sup
x∈X
|k′(x)− k| ≤

√
n

2
· (log(4D/δ) +D log(n)).

We now have

|ηk′(x)(x)− ηk(x)| ≤
∣∣∣∣1k − 1

k′(x)

∣∣∣∣min {k, k′(x)}+ min

{
1

k
,

1

k′(x)

}
|k − k′(x)|

≤ 2

k
· |k − k′(x)| ≤

√
2 log(4D/δ) + 2D log(n)

β · n
.

where the first inequality follows by comparing the difference contributed by the shared neighbors
among the k-NN and k′(x)-NN (first term on RHS) and contributed by the neighbors that are not
shared (second term on RHS).

For the second term, define Ax := X ∩ B(x, rβ(x)). For any x′ sampled from B(x, rβ(x)), we
have that the expected label is η̃β(x). Since ηk′(x)(x) is the mean label among datapoints in Ax,
then we have by Hoeffding’s inequality that

P(|ηk′(x)− η̃β(x)| ≥ k′(x) · t) ≤ 2 exp
(
−t2/2k′

)
.

Then setting t =
√

2k′ ·
√

log(4D/δ) +D log(n) gives

P

(
|ηk′(x)(x)− η̃β(x)| ≥

√
2 log(4D/δ) + 2D log(n)

k′(x)

)
≤ δ

2D · nD
.

By Lemma 3 of Jiang (2019), the number of unique sets Ax across all x ∈ X is bounded by D ·nD.
Thus, by union bound, with probability at least 1− δ/2L

|ηk′(x)(x)− η̃β(x)| ≤

√
2 log(4D/δ) + 2D log(n)

k′(x)
.

The result follows immediately for n sufficiently large.

B ENSEMBLE RESULTS

In Table 2 we present the experimental results for the ensemble baseline. The method performs
remarkably well, beating the proposed method and the other baselines on both accuracy and churn
reduction across datasets. We do note, however, that ensembling does come at a cost which may
prove prohibitive in many practical applications. Firstly, having m times the number of trainable
parameters, training time (if done sequentially) takes m times as long, as does inference, since each
subnetwork must be evaluated before aggregation.
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Fixed Ablated Accuracy (%) Churn (%) Churn Correct
k = 10, a = 1 b = 0 86.54 (0.67) 13.43 (0.58) 5.86 (0.57)

b = 0.05 87.37 (0.38) 12.22 (0.31) 5.34 (0.31)
b = 0.1 86.94 (0.65) 13.41 (0.39) 5.69 (0.57)
b = 0.5 88.48 (0.52) 11.12 (0.5) 4.37 (0.35)
b = 0.9 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)

k = 10, a = 0.5 b = 0 84.44 (2.43) 15.85 (2.39) 6.73 (2.47)
b = 0.05 79.64 (3.1) 22.02 (5.15) 10.28 (4.06)
b = 0.1 79.88 (2.63) 21.09 (3.59) 10.25 (1.85)
b = 0.5 84.44 (2.54) 14.33 (1.78) 6.52 (2.83)
b = 0.9 81.06 (2.35) 20.53 (4.52) 8.68 (3.36)

k = 10, b = 0.9 a = 0.005 73.91 (3.01) 28.02 (5.66) 13.85 (4.82)
a = 0.01 72.41 (4.86) 25.57 (5.78) 13.66 (7.01)
a = 0.02 72.03 (1.79) 31.25 (7.25) 17.26 (6.56)
a = 0.05 73.2 (3.33) 30.41 (6.2) 17.96 (6.04)
a = 0.1 75.28 (1.98) 23.96 (4.76) 10.13 (4.25)
a = 0.5 81.06 (2.35) 20.53 (4.52) 8.68 (3.36)
a = 0.8 85.99 (0.73) 13.76 (0.75) 6 (0.83)
a = 0.9 87.27 (0.41) 13.72 (0.41) 5.68 (0.32)
a = 1.0 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)

k = 10, b = 0.5 a = 0.005 71.45 (3.81) 21.14 (4.37) 11.5 (5.46)
a = 0.01 74.73 (6.24) 25.24 (3.84) 8.28 (4.35)
a = 0.02 73.59 (3.72) 29.47 (6.89) 17.52 (6.13)
a = 0.05 74.17 (3.88) 20.26 (4.15) 5.79 (3.7)
a = 0.1 72.43 (2.75) 25.77 (5.41) 13.42 (4.89)
a = 0.5 84.44 (2.54) 14.33 (1.78) 6.52 (2.83)
a = 0.8 87.26 (0.41) 11.76 (0.24) 4.62 (0.21)
a = 0.9 86.85 (0.54) 12.54 (0.44) 5.25 (0.48)
a = 1.0 88.48 (0.52) 11.12 (0.5) 4.37 (0.35)

a = 1, b = 0.9 k = 10 88.98 (0.33) 10.98 (0.28) 4.64 (0.29)
k = 100 88.19 (0.19) 11.15 (0.23) 4.67 (0.17)
k = 500 87.98 (0.62) 11.33 (0.35) 4.72 (0.55)

Table 3: Ablation on k-NN label smoothing’s hyperparameters: a, b, and k for the SVHN dataset.

C ABLATION STUDY

In Table 3, we report SVHN results ablating k-NN label smoothing’s hyperparameters: k, a, and b.
We observe the following trends: with a fixed to 1, both accuracy and churn improve with increasing
b, and a similar relationship holds as a increases with b fixed to 0.9. Lastly, both key metrics are
stable with respect to k.

D HYPERPARAMETER SEARCH

Our experiments involved performing a grid search over hyperparameters. We detail the search
ranges per method below.

k-NN label smoothing.

• k ∈ [5, 10, 100, 500]

• a ∈ [0.005, 0.01, 0.2, 0.05, 0.1, 0.5, 0.8, 0.9, 1.0]

• b ∈ [0, 0.05, 0.1, 0.5, 0.9]

Anchor.

• a ∈ [0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 0.8, 0.9, 1.0]
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`1, `2 Regularization.

• a ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.5]

Co-distill

• a ∈ [0.001, 0.01, 0.05, 0.1, 0.2, 0.5]

• nwarm ∈ [1000, 2000]

Bi-tempered

• t1 ∈ [0.3, 0.5, 0.7, 0.9]

• t2 ∈ [1., 2., 3., 4.]

• niters always set to 5.

Mixup

• a ∈ [0.2, 0.3, 0.4, 0.5]

Ensemble

• m ∈ [3, 5]
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