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Abstract
While the recent literature has seen a surge in
the study of constrained bandit problems, all ex-
isting methods for these begin by assuming the
feasibility of the underlying problem. We initiate
the study of testing such feasibility assumptions,
and in particular address the problem in the lin-
ear bandit setting, thus characterising the costs
of feasibility testing for an unknown linear pro-
gram using bandit feedback. Concretely, we test
if ∃x : Ax ≥ 0 for an unknown A ∈ Rm×d, by
playing a sequence of actions xt ∈ Rd, and ob-
serving Axt + noise in response. By identifying
the hypothesis as determining the sign of the value
of a minimax game, we construct a novel test
based on low-regret algorithms and a nonasymp-
totic law of iterated logarithms. We prove that this
test is reliable, and adapts to the ‘signal level,’ Γ,
of any instance, with mean sample costs scaling
as Õ(d2/Γ2). We complement this by a minimax
lower bound of Ω(d/Γ2) for sample costs of re-
liable tests, dominating prior asymptotic lower
bounds by capturing the dependence on d, and
thus elucidating a basic insight missing in the
extant literature on such problems.

1. Introduction
While the theory of single-objective bandit programs is
well established, most practical situations of interest are
multiobjective in character, e.g., clinicians trialling new
treatments must balance the efficacy of the doses with the
extent of their side-effects, and crowdsourcers must balance
the speed of workers with the quality of their work. In
cognisance of this basic fact, the recent literature has turned
to the study of constrained bandit problems, wherein, along
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with rewards, one observes risk factors upon playing an
action. For instance, along with treatment efficacy, one may
measure kidney function scores using blood tests after a
treatment. The goal becomes to maximise mean reward
while ensuring that mean scores remain high (e.g. Nathan &
DCCT/EDIC Research Group, 2014).

Many methods have been proposed for such problems, both
in settings where constraints are enforced in aggregate, or in
each round (‘safe bandits’), see §1.1. However, every such
method begins by assuming that the underlying program is
feasible (or more; certain safe bandit methods require know-
ing a feasible ball). This is a significant assumption, since it
amounts to saying that despite the fact that the risk factors
are not well understood (hence the need for learning), it is
known that the action space is well founded, and contains
points that appropriately control the risk. This paper initi-
ates the study of testing this assumption. The result of such
a test bears a strong utility towards such constrained settings:
if negative, it would inform practitioners of the inadequacy
of their design space, and spur necessary improvements,
while if positive, it would yield a cheap certificate to jus-
tify searching for optimal solutions within the space. The
main challenge lies in ensuring that the tests are reliable and
sample-efficient (since if testing took as many samples as
finding optima, the latter question would be moot).

Concretely, we work in the linear bandit setting, i.e., in
response to an action x ∈ X ⊂ Rd, we observe scores
S ∈ Rm such that E[S|x] = Ax, where A is latent, and
with the constraint structured as Ax ≥ α for a given toler-
ance vector α. We study the binary composite hypothesis
testing problem of determining if there exists an x : Ax ≥ α
or not, with the goal of designing a sequential test that
ensures that the probability of error is smaller than some
given δ. Such a test is carried out for some random time
τ, corresponding directly to the sample costs, which we
aim to minimise. Effectively we are testing if an unknown
linear program (LP) is feasible, and we may equivalently
phrase the problem as testing the sign of the minimax value
Γ := maxx∈X mini(Ax− α)i. Also note that by incorpo-
rating the objective as a constraint vector, and a proposed
optimal value as a constraint level, this test also corresponds
to solving the recognition (or decision) version of the under-
lying LP (e.g., Papadimitriou & Steiglitz, 1998, Ch. 15).
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This problem falls within the broad purview of pure ex-
ploration bandit problems, and specifically the so-called
minimum threshold problem, which has been studied in the
multi-armed case for a single constraint (e.g. Kaufmann
et al., 2018, also see §1.1). Most of this literature focuses
on the asymptotic setting of δ ↘ 0, and the typical result
is of the form if the instance is feasible, then there exist
tests satisfying lim Γ2E[τ ]

2 log(1/δ) = 1. Prima facie this is good
news, in that there is a well-developed body of methods
with tight instance specific costs that do not depend on the
dimension of the action set, d! However, this lack of depen-
dence should give us pause, since it does not make sense:
if, e.g., X were a simplex, and only one corner of it were
feasible, then detecting this feasibility should require us to
search along each of the axes of X to locate some evidence,
and so cost at least Ω(d) samples. The catch here lies in
the limit, which implicitly enforces the regime δ = e−ω(d).
Of course, even for modest d, such small a δ is practically
irrelevant. Thus, even in the finite-armed case, the existing
theory of feasibility testing does not offer a pertinent char-
acterisation of the costs in scenarios of rich action spaces
with rare informative actions.

Our contributions address this, and more. Concretely, we

• Design novel and simple tests for feasibility based on
exploiting low-regret methods and laws of iterated logarithm
to certify the sign of the minimax value Γ.
• Analyse these tests, and show that they are reliable and
well-adapted to Γ, with stopping times scaling as Õ(d2/Γ2+
d log(m/δ)/Γ2), thus demonstrating that the cost due to the
number of constraints, m, is limited, and that testing is
possible far more quickly than finding near-optimal points.
• Demonstrate a minimax lower bound of Ω(d/Γ2) samples
on the stopping time of reliable tests over feasible instances,
thus showing that this uncaptured dependence is necessary.

We note that while the design approach of using low-regret
methods for feasibility testing has appeared previously, their
use arises either as subroutines in a complex method, or
through modified versions of Thompson Sampling that are
hard to even specify for the linear setting. Instead, our ap-
proach is directly motivated, and extremely simple, relying
only on the standard technical tools of online linear regres-
sion and laws of iterated logarithms (LILs), employed in a
new way to construct robust boundaries for our test statistics.
Our results thus provide a new perspective on this testing
problem, and more broadly on active hypothesis testing.

1.1. Related Work

Minimum Threshold testing. The single-objective finite-
armed bandit setup (Lattimore & Szepesvári, 2020) posits
K <∞ actions, or ‘arms,’ and in each round, a learner may
‘pull’ one arm k to obtain a signal with mean ak ∈ R. The
minimum threshold testing problem is typically formulated

in this setup, and demands testing if maxk∈[1:K] ak ≥ α or
< α (notice that this is our problem, but with X finite and
mutually orthogonal, and m = 1; see §D.1). The asymp-
totic behaviour of this problem has an asymmetric structure:
if the instance is feasible, then lower bounds of the form
lim infδ→0 log

E[τ ]
log(1/δ) ≥

2
Γ2 hold, while if the instance is

infeasible, then the lower bound instead is
∑

k
2

(µk)2
, since

each arm must be shown to have negative mean. Kaufmann
et al. (2018) proposed the problem, and a ‘hyper-optimistic’
version of Thompson Sampling (TS) for it, called Murphy
Sampling (MS), which is TS but with priors supported only
on the feasible instances, and rejection boundaries based on
the GLRT. We note that the resulting stopping times were
not analysed in this paper. Degenne & Koolen (2019) pro-
posed a version of track and stop for this problem, but only
showed asymptotic upper bounds on stopping behaviour;
subsequently with Ménard (Degenne et al., 2019), they pro-
posed a complex approach based on a two player game, with
one of the players taking actions over the set of probability
distributions on all infeasible or all feasible instances. The
resulting stopping time bounds are stated in terms of the
regret of the above player, and explicit forms of these for
moderate δ are not derived. Further work has continued to
study the single objective, finite-armed setting as δ ↘ 0:
Juneja & Krishnasamy (2019) extend the problem to testing
if the mean vector (ak)k∈[1:K] lies in a given convex set,
and propose a track-and-stop method; Tabata et al. (2020)
study index-based LUCB-type methods; Qiao & Tewari
(2023) study testing if 0 ∈ (min ak,max ak), and propose
a method that combines MS with two-arm sampling.1

Curiously, none of this work observes the simple fact that
if only one arm were feasible, then searching for this arm
must induce a Ω(K/Γ2) sampling cost. This cost is sig-
nificant when 1/δ = exp(o(K)), which is the practically
relevant scenario of moderate δ and large K. In §4, we
show the the Ω(K/Γ2) lower bound using the ‘simulator’
technique of Simchowitz et al. (2017). We note that while
this method was previously applied to minimum threshold
testing by Kaufmann et al. (2018), they focused on generic
bounds, and only recovered a (log(1/δ) + 1/K)Γ−2 lower
bound. Instead, we show a minimax lower bound, losing
this genericity, but capturing the linear dependence.

Along with demonstrating the above fact, the key distinc-
tion of our work is that we study a multiobjective feasibility
problem in the more challenging (§D.1) linear bandit set-
ting. We further note that many of the tests proposed for
the finite-armed case are challenging to even define for the
linear setting: MS requires sampling from the set of feasi-
ble instances {A ∈ Rm×d : maxX mini(Ax)i ≥ 0}, and
the approach of Degenne et al. (2019) needs a low-regret

1While Qiao & Tewari (2023) define a very pertinent multi-
objective problem, this is not analysed in their paper beyond an
asymptotic lower bound that again does not capture K.
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algorithm for distributions over this highly nonconvex set.
In sharp contrast, the tests we design are conceptually sim-
ple, and admit concrete bounds on sample costs. Thus, our
work both extends this literature, and provides important
basic insights for its nonasymptotic regime. It should be
noted that one also expects statistical advantages: since the
set of feasible instances is md dimensional, regret bounds
on the same would vary polynomially in md, and thus one
should expect stopping times to scale at best polynomially
in md using the approach of Degenne et al. (2019), while
our method admits bounds scaling only as poly(d, logm).

In passing, we mention the parallel problem of finding either
all feasible actions, called thresholding bandits (e.g. Lo-
catelli et al., 2016), and of finding one feasible arm, called
good-arm identification (e.g. Kano et al., 2017; Jourdan
& Réda, 2023), assuming that they exist. Lower bounds
in this line of work also focus on the asymptotic regime
for finite-armed single objective cases. Of course, these
problems are clearly harder than our testing problem, and
so our lower bound also have implications for them.

Constrained and Safe Bandits. Multiobjective problems
in linear bandit settings, amounting to bandit linear pro-
gramming, are formulated as either aggregate constraint
satisfaction (e.g. Badanidiyuru et al., 2013; Agrawal & De-
vanur, 2014; 2016) or roundwise satisfaction (called ‘safe
bandits’, e.g. Amani et al., 2019; Katz-Samuels & Scott,
2019; Moradipari et al., 2021; Pacchiano et al., 2021; Chen
et al., 2022; Wang et al., 2022; Camilleri et al., 2022). All
such work assumes the feasibility of the underlying linear
program to start with, and certain approaches further require
knowledge of a safe point in the interior of the feasible set.
Our study is directly pertinent to safe linear bandits, and to
aggregate constrained bandits if X is convex.

Sequential Testing. Finally, some of the technical motifs in
our work have previously appeared in the sequential testing
literature. Most pertinently, Balsubramani & Ramdas (2015)
define a test using the LIL, but without any actions (i.e.,
|X | = 1). In their work, as in ours, the LIL is used to
uniformly control the fluctuations of a noise process.

2. Definitions and Problem Statement
Notation. For a matrix M,M i denotes the ith row of M , and
for a vector z, zi is the ith component of z. For a positive
semidefinite matrix M, and a vector z, ∥z∥M :=

√
z⊤Mz

Standard Big-O and Big-Ω are used, and Õ further hides
polylogarithmic factors of the arguments: f(u) = Õ(g(u))

if ∃c : lim supu→∞
f(u)

g(u) logc g(u) <∞.

Setting. An instance of a linear bandit feasibility testing
problem is determined by a domain X , a latent constraint

Γ

−Γ

Figure 1. Illustration of the Signal Level. The ball is X , and lines
with arrows indicate the feasible half spaces for each constraint.
Left. A feasible case; Γ > 0 is the distance of the marked point
from the constraints, i.e., the length of the red dash-dotted line.
Right. An infeasible case with −Γ > 0 shown similarly.

matrix A ∈ Rm×d, and a error level δ ∈ (0, 1), to test2

HF : ∃x ∈ X : Ax ≥ 0 vs. HI : ∀x ∈ X∃i : (Ax)i < 0,

whereHF should be read as the ‘feasibility hypothesis’, and
HI as the ‘infeasibility hypothesis’. We shall also write
A ∈ HF or ∈ HI if the corresponding hypothesis is true.

Information Acquisition proceeds over rounds indexed
by t ∈ N. For each t, the tester selects some action xt,
and observes scores St ∈ Rm such that St = Axt + ζt,
where ζt is assumed to be a subGaussian noise process.
The information set of the tester after acquiring feedback in
round t is Ht := {(xs, Ss)}s≤t, and the choice xt must be
adapted to the filtration generated by Ht−1. We let X1:t :=[
x1 x2 · · · xt

]⊤
, S1:t :=

[
S1 S2 · · · St

]
de-

note the matrices whose rows are the xs and Ss up to t.

A Test is comprised of three components: (i) a (possibly
stochastic) action selecting algorithm A : Ht−1 → X , (ii)
a stopping time τ adapted to Ht,and (iii) a decision rule
D : Hτ → {HF,HI}. In each round, these are executed
as follows: we begin by executing A to determine a new
action for the round, and update the history with the feed-
back gained. We then check if τ = t to verify if we have
accumulated enough information to reliably test, and if so,
we stop, and if not, we conclude the round. Upon stop-
ping, we evaluate the decision of D , and return its output
as the conclusion of the test. The design of (A , τ,D) can
of course depend on (X , δ,m), but not on A. The basic
reliability requirement for such a test is captured below.

Definition 1. A test (A , τ,D) is said to be reliable if for
any instance (X , A, δ), and ∗ ∈ {F, I} if A ∈ H∗, then it
holds that P(D(Hτ ) ̸= H∗) ≤ δ.

2notice that we have dropped the tolerance levels α in this defi-
nition. Since α is known a priori, this is without loss of generality:
we can augment the dimension by appending a 1 to each action,
and −αi to the ith row of the constraint matrix A.
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Signal level, and adaptive timescale. The hypotheses
HF,HI can equivalently be defined according to the sign
of maxx mini∈[1:m](Ax)i. We define the signal level of
an instance as Γ := maxx mini(Ax)i. This is illustrated in
Fig. 1. Notice that |Γ|must enter the costs of testing. Indeed,
even if we revealed to the tester the minimax (x∗, i∗), and
the value of Γ, since the KL divergence between N (Γ, 1)
and N (−Γ, 1) is Γ2, we would still Ω(Γ−2 log(1/δ)) sam-
ples to determine the sign (Ax∗)i∗ (see, e.g., Lattimore &
Szepesvári, 2020, Ch. 13,14). Thus, Γ−2 determines the
minimal timescale for reliable testing, motivating
Definition 2. We say that a test is valid if it is reliable, and
for any instance with signal level Γ > 0, the test eventually
stops, that is, P(τ <∞) = 1. We further say that the test is
well adapted to the signal level if it holds that for fixed d, δ,
E[τ ] = O(Γ−2polylog(Γ−2)).

Any well adapted and reliable test must be valid. Further, a
well adapted test is fast compared to finding near-optimal
actions for safe bandit problems in feasible instances, since
Γ is determined by the ‘most-feasible’ point in X . For
instance, consider a crowdsourcing scenario where we want
to maximise the net amount of work done in a given time
period, subject to meeting a quality score constraint of Q
units. Since the number of very high quality workers in the
pool may be limited, optimal solutions would need to use
relatively low quality workers. However, verifying that such
workers meet the constraint requires time proportional to
minw(Q

w−Q)−2, where Qw is the mean quality of worker
w. In contrast, Γ is determined by maxw(Q

w − Q), i.e.,
how good the best workers are, and so Γ−2 is much smaller
than the time scale required to find an optimal solution.

Standard Conditions. While briefly discussed above, we
explicitly impose the following conditions, standard in the
linear bandit literature (see, e.g., Abbasi-Yadkori et al.,
2011). All results in this paper assume the following.
Assumption 3. We assume that the instance is bounded,3

that is, X ⊂ {∥x∥ ≤ 1}, and {∀i, ∥Ai∥ ≤ 1}. We also
assume the noise ζt to be conditionally 1-subGaussian, i.e.,

E[ζt|Gt] = 0,∀λ ∈ Rm,E[exp(λ⊤ζt)|Gt] ≤ exp(∥λ∥2/2),

where Gt is the filtration generated by Ht−1, xt, and any
algorithmic randomness used by the test.

3. Feasibility Tests Based on Low-Regret
Methods

We begin by heuristically motivating our test, and discussing
the challenges arising in making this generic and formal.
This is followed by an explicit description of the tests, along
with main results analysing their performance.

3If we are augmenting the dimension to account for nonzero
α, these conditions apply only to the unaugmented A, x.

3.1. Motivation

For simplicity, let us consider the case of m = 1, so
that A = a⊤, for a vector a, and the signal level is
Γ = maxX a⊤x. Due to the duality between testing and
confidence sets (Lehmann & Romano, 2005, §3.5), a prin-
cipled approach to testing the sign of Γ is to build a confi-
dence sequence for it, i.e., processes ℓt ≤ ut such that with
high probability, ∀t,Γ ∈ (ℓt, ut). We naturally stop when
ℓtut > 0, and decide on a hypothesis using the sign of ℓt on
stopping. Any such confidence set in turn builds an estimate
of Γ itself, that is, some statistic that eventually converges to
Γ, at least if we did not stop. This raises the following basic
question: how can we estimate max a⊤x without knowing
where the maximum lies? A simple resolution to this comes
from using low-regret methods for linear bandits.

The linear bandit problem is parameterised by an objec-
tive θ, and a domain X , and a method for it picks ac-
tions xt sequentially with the aim to minimise the pseu-
doregret Rt :=

∑
maxx θ

⊤x − θ⊤xt, using feedback
of the form θ⊤xt + noise. For ‘good’ algorithms, Rt

scales as Õ(
√
d2t), at least in expectation (e.g. Lattimore

& Szepesvári, 2020, Ch.19). Now, notice that if we take
A to be such an algorithm executed with the feedback
St = a⊤xt+ ζt, then the statistic Tt/t, where Tt :=

∑
Ss,

should eventually converge to maxx a
⊤x = Γ. Indeed

Tt =
∑
s≤t

Ss =
∑
s≤t

a⊤xs +
∑
s≤t

ζs,

and so the error in this estimate behaves as

Γ−Tt/t =
(
tΓ−

∑
a⊤xs

)
/t−

∑
ζs/t = (Rt+Zt)/t,

where Zt is a random walk, and so is typically O(
√
t). If

Rt ∈ [0, Õ(
√
d2t)], we can recover the sign of Γ reliably if

tΓ≫ Rt + Zt = Õ(
√
d2t) ⇐⇒ t≫ d2/Γ2.

Formalising this heuristic approach, however, requires re-
solving two key issues. Firstly, we need to handle the mul-
tiobjective character of our testing problem: if A ∈ HI,
there may be actions with only one out of m constraints
violated, and detecting this may be nontrivial. Secondly, to
get a reliable test requires explicit statistics that can track
the fluctuations in the noise, and in the pseudoregret (which
is random due to the choice of xt) in a reliable anytime way.
These factors strongly influence the design of our tests.

3.2. Background on Online Linear Regression, and on
Laws of Iterated Logarithms

Before proceeding with describing our tests and results, we
include a brief discussion of necessary background.

Online Linear Regression. We take the standard ap-
proach (Abbasi-Yadkori et al., 2011). The 1-regularised
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least squares (RLS) estimate of A using Ht−1 is

Ât := S1:t−1X1:t−1(X
⊤
1:t−1X1:t−1 + I)−1. (1)

Let us define the signal strength as Vt :=
∑

s<t xsx
⊤
s + I,

and for δ ∈ (0, 1), the m-confidence radius as

ωt(δ) = 1 +

√
1

2
log

m
√
detVt

δ
.

The main results are based on the following two concepts,
which we explicitly delineate.

Definition 4. For any time t, the RLS confidence set is

Ct(δ) := {Ã : ∀ rows i, ∥Ãi − Âi
t∥Vt
≤ ωt(δ)},

and the local noise-scale is ρt(x; δ) := 2ωt(δ)∥x∥V −1
t

.

Evidently, the set Ct captures the Ã that are plausible values
of A given Ht−1, the information available at the start of
round t. We shall use the following standard results on the
consistency of Ct (Abbasi-Yadkori et al., 2011).

Lemma 5. For any instance and sequence of actions {xt},

P(∃t : A ̸∈ Ct(δ)) ≤ δ.

Further, if A ∈ Ct(δ), then

∀Ã ∈ Ct(δ), x ∈ X : |Ãx−Ax| ≤ ρt(x; δ)1,

where the inequality is interpreted row-wise. Finally, for
any sequence of actions {xt},∑

s≤t

ρt(xt; δ) ≤
√

6dtωt(δ) log(1 + t/d).

Nonasymptotic Law of Iterated Logarithms. To the con-
trol the fluctuations introduced by the feedback noise, we
use the following LIL due to Howard et al. (2021).

Lemma 6. For t ∈ N, δ ∈ (0, 1), let

LIL(t, δ) :=

√
4t log

11max(log t, 1)

δ
.

If ηt ∈ R is a conditionally centred and 1-subGaussian
sequence adapted to a filtration {Gt}, then for Ht :=

∑
ηt,

P(∃t : |Ht| > LIL(t, δ)) ≤ δ.

3.3. The Ellipsoidal Optimistic-Greedy Test

We are now ready to describe our first proposed test, EOGT
which is specified in Algorithm 1. The test is parametrised
by δ, and a constant N , and the algorithm proceeds by
constructing a confidence set Dt = Ct(δt/2) for A, which is
the standard confidence set, but with a decaying confidence

Algorithm 1 Ellipsoidal Optimistic-Greedy Test (EOGT)
1: Input: δ ∈ (0, 1), N ≥ 2,X ,m.
2: Initialise: H0 ← ∅,T0 ← 0,B0 ← 0.
3: for t = 1, 2, . . . do
4: δt ← δt−N ,Dt ← Ct(δt/2). (Action Selection)
5: (xt, it)← maxÃ∈Dt,x∈X mini(Ãx)i.
6: Play xt, and observe St.
7: Update Ht ← Ht−1 ∪ {(xt, St)}.
8: Update Tt ←

∑
s≤t S

is
s ,Bt(δ) as per (4)

9: if |Tt| > Bt(δ) then
10: STOP (Stopping Rule)

11: Output Tt

HF

≷
HI

0 (Deicision Rule)

parameter δt = δt−N . It then selects both an action xt, and
a measured constraint it by solving the program4

max
Ã∈Dt

max
x∈X

min
i∈[1:m]

(Ãx)i. (2)

The action xt is played, and the selected constraint it deter-
mines the main test statistic:

Tt :=
∑
s≤t

(Ss)
is . (3)

The test stops at τ := inf{t : |Tt| > Bt(δ)}, that is, when
the magnitude of Tt crosses the boundary

Bt(δ) :=
∑
s≤t

ρs(xs; δs/2) + LIL(t, δ/2). (4)

This test can be interpreted in a game theoretic sense. Recall
that Γ is the value of the zero-sum game maxx mini(Ax)

i.
We can interpret the max player as a ‘feasibility-biased
player’, that moves first to pick an x that makes Ax large,
and the min player as an ‘infeasibility-biased’ player that
counters with a constraint that x does not meet well.

In EOGT, action selection procedure is feasibility-biased:
given the lack of knowledge of A, the feasibility player
chooses a plausible Ã that makes the value as high as pos-
sible, and the infeasibility player must abide by this choice
of Ã. This is countered by the infeasibility-biased statis-
tic Tt, in which only the infeasibility player’s choice of
it is accounted for. This strikes a delicate balance: in the
feasible case, as long as xt converges to a feasible subset
of X , Tt eventually grows large and positive, while under
infeasibility, if it captures which constraints the xts con-
sistently violate, Tt eventually grows large and negative.
Notice that while the feasibility player hedges their lack of

4Note that the order of optimisation is important in (2): since
(x, Ã) 7→ Ãx is not quasiconvex, this value is in general not
the same as mini maxÃ,x(Ãx)i. Of course, it does hold that
maxÃ maxx mini(Ãx)i = maxÃ mini maxx(Ãx)i.
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information with optimism over the confidence ellipsoid,
the infeasibility player acts greedily in the above test (and
this structure inspires the name EOGT). This greediness is
natural if we view the infeasibility player as learner in a con-
textual stochastic full-feedback game, with context (Ãt, xt),
action it, and noisy feedback of the losses {(Axt)

i}.

The reliability of the test depends strongly on the form of
the boundary Bt(δ) above, which in turn arises from the
analysis of the approach, which we shall now sketch.

3.3.1. ANALYSIS OF RELIABILITY

Naturally, the analysis differs if the problem is feasible or
infeasible. Let us assume that A ∈ Dt for all t. Since
Dt ⊂ Ct(δ/2), this occurs with probability at least 1− δ/2.

Signal growth in the feasible case relies on the optimism
of the feasibility player. Let (Ãt, xt, it) denote a solution
to (2). Since A was feasible for this program, it must hold
that (Ãtxt)

it ≥ maxx mini(Ax)i = Γ. Further, since
Ã ∈ Dt, using Lemma 5, it holds that (Ãtxt)

it ≤ (Axt)
it +

ρt(xt; δt/2), and so (Axt)
it ≥ Γ− ρt(xt; δt/2). Defining

the noise process Zt =
∑

s≤t ζ
is
s lets us conclude that

Tt ≥ tΓ−
∑
s≤t

ρs(xs; δs/2) + Zt.

Signal growth in the infeasible case instead relies on the
extremisation in it given xt. Let imin(x) := argmini(Ax)i.
Since i is the innermost optimised variable, and since
imin(xt) is feasible for the program (2), it must hold that
(Ãtxt)

it ≤ (Ãtxt)
imin(xt). But, again, using Lemma 5,

(Ãtxt)
imin(xt) ≤ (Axt)

imin(xt) + ρt(xt; δt/2), and further,
(Axt)

imin(xt) = mini(Axt)
i ≤ maxx mini(Ax)i = Γ <

0. Therefore, in the infeasible case,

Tt ≤ tΓ +
∑

ρs(xs; δs/2) + Zt.

Boundary design and reliability. Finally, the boundary de-
sign follows from control on the term Zt above. Notice that
since it is a predictable process, and ζt is conditionally 1-
subGaussian, it follows that ηt := ζitt constitutes a centred,
conditionally 1-subGaussian process, and thus invoking the
LIL (Lemma 6) immediately yields

Lemma 7. EOGT ensures that, with probability at least
1− δ, simultaneously for all t ≥ 1,

feasible case: Tt ≥ tΓ−Bt(δ) ≥ −Bt(δ),

infeasible case: Tt ≤ −t|Γ|+ Bt(δ) ≤ Bt(δ).

Since we stop when |Tt| > Bt(δ), under the above event,
upon stopping, TτΓ > 0, making the test reliable.

This leaves the question of the validity of the test, and the
behaviour of E[τ ], which we now address.

3.3.2. CONTROL ON STOPPING TIME

Next, we describe our main result on the validity EOGT, and
the behaviour of E[τ ]. To succinctly state this, we define

T (Γ; δ,N) := inf
{
t ≥ 2d : t|Γ| > 2LIL(t, δ/2)

+ 4dt1/2 log(2t/d) + 2(dt log(2t/d) log
2m

δt−N
)
1/2
}

Our main result, shown in §B, is

Theorem 8. For any δ and N > 1, the EOGT is valid and
well adapted. In particular,

E[τ ] = O(T (Γ/2; δ,N) + δ/|Γ|).

To interpret this result, in §B.1, we employ worst-case
bounds on

∑
s≤t ρs(xs; δs) to control T (Γ; δ,N).

Lemma 9. For any fixed N , T (Γ; δ,N) is bounded as

O

(
d2 log2(d2/Γ2)

Γ2
+

d log(m/δ) log(d log(m/Γ2δ))

Γ2

)
.

Implications. The main point that the above results make
is that in the moderate δ regime of log 1/δ = o(d), the
typical stopping time of EOGT is bounded as d2/Γ2 up to
logarithmic factors. The factor of d2 in this bound is deeply
related to the analysis of online linear regression, and also
commonly appears in the regret bounds (both in the worst
case,

√
d2t, as well as in gapped instance-wise cases (Dani

et al., 2008; Abbasi-Yadkori et al., 2011)).

Next, we note that the d2/Γ2 time-scale is typically much
faster than that needed to approximately solve a feasible
safe bandit instance: the best known method for finding a
ε-optimal action for safe bandits requires Ω(d2/ε2) samples
(Camilleri et al., 2022). However, as discussed after Defini-
tion 2, Γ is driven by the ‘safest’ feasible action, while, since
the optima lie at a constraint boundary, obtaining reasonably
safe solutions requires setting ε ≪ Γ, making d2/Γ2 sig-
nificantly smaller than d2/ε2. We also note that the above
bound may be considerably outperformed by any run of
the test: because Bt adapts to the trajectory, its growth can
be much slower than the worst case bound that enters the
definition of T (Γ; δ,N), allowing for fast stopping.

Finally, observe that the dependence of this time scale on
the number of constraints, m, is very mild, demonstrating
that from a statistical point of view, many constraints are
almost as easy to handle as one constraint.

3.4. Tail Behaviour, and the Tempered EOGT

While the expected stopping time of EOGT is well behaved,
its tail behaviour may be much poorer. Indeed, the best tail
bound we could show, as detailed in §B.3, is

6
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Theorem 10. For every (X , A, δ), and η ∈ (0, δ), EOGT
executed with parameters (δ,N) satisfies

P(τ > T (Γ; δ,N)) ≤ δ, and further,

P
(
τ > (2 + 1/|Γ|)

⌈
(δ/η)1/N

⌉
+ T (Γ/2; η,N)

)
≤ η.

Notice that the tail bound above is heavy, and the η-th quan-
tile is only bounded as O(1/|Γ|η−1/N ). It is likely that
such behaviour is unavoidable due to (2), due to which,
if m = 1, EOGT directly exploits the OFUL algorithm of
Abbasi-Yadkori et al. (2011), and the pseudoregret for this
method is also heavy-tailed (Simchi-Levi et al., 2023).

One way to avoid this poor behaviour is to instead select
actions using variants of OFUL-type methods that achieve
light-tailed pseudoregret. As summarised in Algorithm 2,
we use the recently proposed approach of Simchi-Levi et al.
(2023) to construct such a test. The main difference is in
selecting (xt, it) according to the program

max
x∈X

min
i∈[1:m]

(Âtx)
i +Radt(x), (5)

where Radt(x) := (t/d)1/2∥x∥2
V −1
t

+
√

d∥x∥2
V −1
t

.

As a point of comparison, the selection rule (2) can roughly
be understood as (5), but with Rad′t =

√
d log t∥x∥2

V −1
t

.
Thus, the effect of Radt is to make the method more prone
to exploration than (2) if t is large and ∥x∥V −1

t
≫ d/

√
t.

So, the rule (5) has the effect of tempering the tendency to
exploitation of (2), leading to the name ‘tempered EOGT’
(T-EOGT). Importantly, observe that the selection rule (5)
makes no explicit reference to δ.

The remaining algorithmic challenge is to define a boundary
that can lead to a reliable test based on the above approach.
In order to do this, we refine the techniques of Simchi-Levi
et al. (2023) to construct the following anytime tail bound,
shown in §C.1, for T̃t. We note that this also yields an
anytime tail bound for the regret of (5) for linear bandits.

Lemma 11. For δ ∈ (0, 1/2), let

QF
t (δ) := 45

√
dt log4 t(d+ log(8m/δ)) + LIL(t, δ/2),

QI
t(δ) := 27

√
dt log3 t(

√
d+ log(8m/δ)) + LIL(t, δ/2).

Then, for T̃t :=
∑

s≤t S
is
s with actions picked via (5),

P(∀t, T̃t ≥ tΓ−QF
t (δ)) ≥ 1− δ (feasible case)

P(∀t, T̃t ≤ tΓ + QI
t(δ)) ≥ 1− δ (infeasible case)

Naturally, we can reliably test via the stopping times

τ̃ = inf{t : T̃t < −QF
t (δ) or T̃t > QI

t(δ)},

Algorithm 2 Tempered EOGT (T-EOGT)
1: Input: δ ∈ (0, 1/2),X ,m.

2: Initialise: H0 ← ∅, T̃0 ← 0
3: for t = 1, 2, . . . do
4: Compute Ât. (Arm Selection)
5: (xt, it)← maxx∈X mini(Âtx)

i +Radt(x).
6: Play xt, and observe St.
7: Update Ht ← Ht−1 ∪ {(xt, St)}.
8: Update T̃t ←

∑
s≤t S

is
s , and QF,QI.

9: if T̃t > QF
t (δ) or T̃t < −QI

t(δ) then
10: STOP (Stopping Rule)

11: Output T̃t

HF

≷
HI

0. (Decision Rule)

deciding forHF if T̃τ > 0. Using this, in §C, we show the
following bounds along the lines of §3.3.1.

Theorem 12. T-EOGT is valid and well adapted, with

E[τ̃ ] = Õ(d3/Γ2 + d/Γ2 log(8m/δ))

where the Õ hides logarithmic dependence on d/Γ2, and
log(m/δ). Further, there exists a C scaling polylogarithmi-
cally in d/Γ2 and log(m/η) such that for all η ≤ δ,

P(τ̃ ≥ Cd3/Γ2 + Cd/Γ2 log(1/η)) ≤ η.

To contextualise the result, as well as this tempered test, let
us consider the tradeoffs expressed in the above result. Com-
pared to EOGT, the procedure of T-EOGT suffers two main
drawbacks: firstly, we see that the bound on the stopping
time is significantly weaker, scaling as d3/Γ2 instead of
d2/Γ2, indicating a loss of performance. While this result
may just be an artefact of the analysis, a more important
drawback is that the test boundaries QF,QI do not adapt
to the sequence of actions actually played by the method,
unlike Bt, and instead are just deterministic processes that
can be seen to essentially dominate

∑
ρs(xs; δs). Even

if these bounds had tight constants (which they do not),
such a nonadaptive stopping criterion cannot benefit from
possible discovery of good actions early in the trajectory
(accumulating on which would lead to contraction of ρt,
and thus decelaration of Bt), and so cannot benefit from
early termination that EOGT may exploit in practice.

However, this weakness is balanced by considerably
stronger tail behaviour: indeed, instead of the polynomial
decay in tail probabilities for EOGT, the above demonstrates
exponential decay in the tails, with the decay scale further
behaving as d/Γ2 ≪ d2/Γ2, meaning that typical fluctua-
tions in the stopping time must be considerably smaller than
the typical stopping time. The choice of test must depend
the setting, and T-EOGT should be preferred over EOGT if
rare but extreme testing delays yield strong penalties.
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Finally, we would be remiss not to mention the curious
difference in the boundaries QF and QI, and in particular
the weakness in QF which is inherited in the bounds on
E[τ ] in Theorem 12. This difference arises because when
controlling T̃t from below in the feasible case, we need the
means (Axt)

it to not be too far below the minimax value Γ,
which is attained at some x∗ ̸= xt. Ensuring this requires
us to have control on both the noise scale at xt and that at
x∗. The latter is hard to accommodate in the analysis, which
instead uses a lossy application of the AM-GM inequality
to avoid it, but at the cost of the extra factor of d1/2 in QF.
On the other hand, when controlling T̃t from above in the
infeasible case, we only need to ensure that it cannot do too
poor a job of locating constraints that xt violates, which can
be achieved by just considering the noise scale at xt itself.
It may be possible to improve the analysis to reduce QF

down to QI, which we leave as a direction for future work.

4. Minimax Lower Bounds
We conclude the paper by discussing minimax lower bounds
that capture the necessity of the dependence on Γ−2, as well
as at least a linear dependence on d in generic bounds on
stopping times for reliable tests. As we previously discussed
in §1 and §1.1, the main point of comparison for these
results are the corresponding instance-wise lower bounds
in the literature on the minimum threshold problem, which
take essentially5 the following form (Kaufmann et al., 2018)

E[τ̃ ] ≥ 2 log(1/δ)/Γ2 + 1/KΓ2 (feasible case),

E[τ̃ ] ≥ 2 log(1/δ)
∑
k

(µk)−2 + 1/KΓ2 (infeasible case).

Notice that in the feasible case, the lower bound decays with
K. While the instance specific nature of the above bounds
is desirable, we focus on minimax bounds capturing a linear
dependence on K (or, in our case, d) in specific instances.

Our lower bound is based on a reduction to a finite action
case, through the use of a simplex. The argument underlying
this bound relies on the ‘simulator’ technique of Simchowitz
et al. (2017) for best arm identification (BAI). In fact, our
main point, that the extant bounds for feasibility testing do
not capture the dependence on d, is much the same as the
observation of Simchowitz et al. (2017) that the analyses
of ‘track-and-stop’ BAI methods do not capture the right
dependence on K in BAI, again due to a focus on δ → 0.

The construction underlying the bound is natural: we takeX
to be the simplex {x ≥ 0 :

∑
xi = 1}, and consider a sin-

gle constraint matrix a⊤ for a vector a ∈ [−1/2, 1/2]d.
The noise process is as follows: upon playing an ac-

5the terms containing log(1/δ) are always valid. The sec-
ondary terms behaving as 1/(KΓ2) are upper bounds on the aux-
iliary terms appearing in the results of Kaufmann et al. (2018).

tion xt, we sample Kt ∼ xt, and supply the tester with
aKt +N (0, 1/2). The vector a is selected as a uniform
permutation of the entries of (Γ,−ε,−ε, · · · ,−ε), the in-
tuition being that in order to detect the feasibility of such
an instance, the test must sample the single ‘informative’
extreme direction of the simplex at least 1/(Γ + ε)2 times.
However, since this is selected uniformly at random, no
method can generically identify this direction faster that just
sampling uniformly, and so on average across the instances,
τ = Ω(d/Γ2). Concretely, in §D we show the bound in a
finite-armed case, and argue that the instance above must
face the same costs. This yields the following result.
Theorem 13. For any Γ, δ ∈ (0, 1/2) and any reliable
(A , τ,D), there exists a feasible instance (X , A, δ) with
m = 1 and signal level Γ on which E[τ ] ≥ (1−2δ)3

79 · d
Γ2 .

Note that utilising the existing results of Kaufmann et al.
(2018) for the infeasible case, we can also recover a lower
bound of d/Γ2 log(1/δ) if |Γ| ≤ 1/

√
d, by taking the in-

stance (−|Γ|,−|Γ|, · · · ,−|Γ|). Thus the linear dependence
on d is necessary over both feasible and infeasible cases.

We comment that the lower bound of Ω(d/Γ2) remains far
from the upper bounds of O(d2/Γ2) in Theorem 8. This
linear in d gap in the lower bound is a persistent occurrence
in the theory of linear bandits, and shows up in any instance-
specific control on the same, including in known regret
lower bounds. As a result, resolving this is a task beyond
the scope of the present paper. Nevertheless, our main point
that the costs of testing depend strongly on d, unlike prior
analysis suggsets, is well made by the above result.

5. Simulations
We conclude the paper by describing a heuristic implementa-
tion of EOGT, and its behaviour on the simple case of testing
the feasibility of two linear constraints over the unit ball.

L1 Confidence set. Implementing EOGT is challenging
task, since the maximin program (2) is difficult to solve
quickly. Indeed, even if m = 1, i.e., there were only a
single constraint, (2) requires us to implement the OFUL
iteration, which is well known to be NP-hard due to the
nonconvex objective A1x (Dani et al., 2008).

To handle this, we begin with the standard relaxation used to
implement OFUL, specifically by replacing the confidence
ellipsoid Ct(δ) by the L1-confidence set

C̃t(δ) := {Ã : for all rows i, ∥(Ãi− Âi
t)V

1/2
t ∥1 ≤

√
dω}.

Since ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
d∥ · ∥2, C̃t ⊃ Ct, and thus C̃t

is consistent w.h.p. Further, C̃t is in turn contained in a
scaling of Ct by a

√
d-factor, and thus the noise-scales over

Ct carries over, up to a loss of a
√
d factor. This suggests

that tests based on C̃t should use Õ(d3/Γ2) samples.
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The main advantage, however, is that due to the L1 struc-
ture, the set C̃t(δ) only has (2d)m extreme points. This
enables optimisation by a simple search over these extreme
points, which at least for small m, leads to an implementable
algorithm. In the following, we will only work with m = 2.

Solving the Maximin Program. Of course, even for a
given A, maxx mini A

ix is nonobvious to solve since i is
discrete. We take the natural approach via convexifying:

max
Ã∈C̃t(δ),x∈X

min
i

Ãix = max
Ã∈C̃t(δ)

max
x∈X

min
π∈∆

π⊤Ãx,

where ∆ is the simplex in Rm. Now, for a fixed Ã, the
maximin program over (x, π) can be solved efficiently. The
resulting x, Ã can be used to directly minimise (Ãx)i.

Procedure. Throughout the following, we will restrict at-
tention to X = {∥x∥2 ≤ 1}. This enables a further simplifi-
cation by using the minimax theorem for a fixed Ã:

max
x∈X

min
π∈∆

π⊤Ãx = min
π∈∆

max
x∈X

π⊤Ãx = min
π∈∆
∥π⊤Ã∥2.

Overall, this yields the following procedure: we enumerate
the extreme points of C̃t, and for each, we solve for the
minimising π above, while keeping track of the maximum
such value as we move over the extreme points. Upon
conclusion, this yields a πt and a Ãt that solve the above. xt

is then computed directly as π⊤
∗ Ã∗/∥π⊤

∗ Ã∗∥. Given xt, Ãt,
we finally direclty solve for it by minimising (Ãtxt)

i.6

Early Stopping for Feasible Instances. Notice that in
the feasible case, if we can ever argue that for some x,
minC̃t(δ)

mini(Ãx)
i > 0, then the test can already con-

clude. A natural candidate for such an x is simply the
running mean over the choices of xt played by EOGT. The
potential advantage of such a procedure is that it bypasses
the possibly slow growth of Tt when initial exploration
chooses infeasible actions (which lead to a direct decrease
in Tt, but do not affect the quality of the noise estimate at
xt much). We also implement this early stopping procedure,
and we will call the resulting stopping time τearly.

Settings We study two scenarios: varying d for a fixed Γ,
and varying Γ for a fixed d. In each case we study both
feasible and infeasible instances.

In the varying d scenario, we pick the feasible instance x1 ≥
0, x2 ≥ 0, and the infeasible instance x1 ≥ 1/

√
2, x1 ≤

−1/
√
2. Notice that in either case, Γ = 1/

√
2. With these

constraints, the simulation is run for d ∈ [2 : 10]. In the
varying Γ scenario, we fix d = 4, and impose the constraints
x1 ≥ 1/

√
2 − Γ, x2 ≥ 1/

√
2 − Γ for the feasible setting,

and the constraints x1 ≥ Γ, x1 ≤ −Γ in the infeasible case.
The range Γ ∈ [0.2, 1] is studied at a grid of scale 0.1.

6For nonzero α, the objective is modified to ∥π⊤Ã∥2 − π⊤α,
and the final minimisation to discover it then studies (Ãtxt −α)i.

Figure 2. Behaviour of the stopping time as d is varied for fixed
Γ = 1/

√
2 (left) and Γ is varied for fixed d = 4 (right) over the

unit ball with m = 2. Averages and one-sigma error bars over 50
runs are reported. The test never returned an incorrect hypothesis.
Notice the sharp advantage of τearly in feasible cases, in that it is
about a factor of 10 smaller than τ . (best viewed zoomed-in)

Throughout, the feedback noise is independent Gaussian
with standard deviation σ = 0.1 (the value of σ is used in the
confidence radii, and in general, τ should be proportional
to σ2). The parameter δ is set to 0.1, N = 1, and all results
are averaged over 50 runs. The code was implemented in
MATLAB, and executed on a consumer grade Ryzen 5 CPU,
with no multithreading, and took about 4 hours to run.

Observations As a basic observation, we find that in all
runs, the test returns the correct hypothesis. Notice that this
suggests that the testing boundary is overly conservative,
and a finer analysis of the same is thus of interest. The main
observation of Figure 2 is that for feasible instances τearly is
typically < τ/10, across all dimensions d and signal level Γ
studied, indicating that this early stopping is very powerful.
While the validity of stopping at time τearly is easy to see
from the consistency of confidence sets, nothing in our
analysis indicates the sample advantage of this procedure,
and the resolving this is a natural open question.

6. Discussion
The feasibility testing problem is a natural first step prior
to executing constrained bandit methods, and by initiating
the study of the same, our work extends the applicability
of this emerging field. We presented simple tests based on
existing technology of online linear regression and LILs
that are effective for such problems, and further pointed out
key deficiencies in the extant work on the single-constraint
finite-armed theory of this problem. Naturally, this is only a
first step: the real power of the finite-armed theory, and in
particular the tests proposed therein, is its strong adaptation
to the explicit structure of the instance at hand. A parallel
theory, both in the small and moderate δ regimes, in the
linear setting is critical to develop efficient tests. Naturally,
the computational question of how one can implement such
tests efficiently is also critical. We hope that our work will
spur study on these interesting and important issues.
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A. Tools from the Theory of Online Linear Regression and Linear Bandits
As is standard in the setting of linear bandits, we shall exploit tools from the theory of online linear regression to enable
learning and exploration. The main tool we use is Lemma 5, stated previously in the main text, which asserts that
the confidence sets Ct are consistent with high probability, and control the deviations of Ãx − Ax for Ã ∈ Ct to the
level ρt(x; δ) if A ∈ Ct(δ). The latter result is almost trivial: by the triangle and Cauchy-Schwarz inequalities, for any
Ã ∈ Ct(δ), i ∈ [1 : m],

|(Ã−A)x)i| ≤ |(((Ã− Ât)x)
i| ≤ 2 sup

Ã∈Ct(δ)

|(Ãi − Ât)
⊤x| ≤ sup

Ã∈Ct(δ)

|Ãi − Âi
t∥Vt
∥x∥V −1

t
≤ ωt(δ)∥x∥V −1

t
= ρt(x; δ),

where the final inequality is by definition of the confidence set Ct(δ).

The principal way to use this bound is through the following generic control on the behaviour of detVt and on∑
s≤t ρs(xs; δ). We again refer to Abbasi-Yadkori et al. (2011), although the result is older. See their paper for a historical

discussion.

Lemma 14. For any sequence of actions {xt} ⊂ {∥x∥ ≤ 1}, and any t ≥ 0, it holds that

log detVt+1 ≤
t∑

s=1

∥xs∥2Vs
−1 ≤ 2 log detVt+1 ≤ 2d log(1 + (t+ 1)/d).

As a consequence,∑
s≤t

ρs(xs; δ)
2 ≤ 2ωt(δ)

2d log(1 + (t+ 1)/d) ≤ 3d2 log2(1 + (t+ 1)/d) + 6d log(1 + (t+ 1)/d)(1 + log(m/δ)),

and ∑
s≤t

ρs(xs; δ) ≤
√

t
∑

ρs(xs; δ)2 ≤
√

2dt log(1 + (t+ 1)/d)ωt(δ)2.

We will also find it useful to state the consistency of the confidence set in the following dual way

Lemma 15. For any sequence of actions {xt}, and any v > 0, it holds that

P

(
∃t, i : ∥Âi

t −Ai∥Vt ≥ 1 +

√
d

4
log

(
1 +

t

d

)
+

1

2
logm+

v

2

)
≤ exp(−v).

Proof. Since, by the first statement of Lemma 14, log detVt = log detV(t−1)+1 ≤ d log(1 + t/d), it follows that

ωt(δ) = 1 +

√
1

2
log

m

δ
+

1

4
log detVt ≤ 1 +

√
d

4
log(1 + t/d) +

1

2
logm+

1

2
log(1/δ) =: ω̃t(δ).

Now the claim follows by just noting that

P(∃t, i : ∥Ai − Âi
t∥Vt
≥ ω̃t(δ)) ≤ P(∃t, i : ∥Ai − Âi

t∥ ≥ ωt(δ)) ≤ δ,

and inverting the form of the upper bound obtained after expressing ω̃t(δ) as we have above.

B. Analysis of EOGT.
We will proceed to flesh out the analysis sketched in §3.3.1, and show the relevant results.

B.1. Adpting the LIL to the Noise Process of EOGT, and Control on the Rejection Timescale Bound.

We begin arguing the following simple observation that extends the LIL to our situation.

Lemma 16. For it as chosen in EOGT or T-EOGT, it holds that {ηitt } forms a conditionally centred and 1-subGaussian
process with respect to the filtration generated by {(is, xs, Ss)}s≤t ∪ {(xt, it)}. Therefore, for Zt :=

∑
s≤t ζ

is
s , and any

δ ∈ (0, 1), it holds that P(∃t : |Zt| > LIL(t, δ)) ≤ δ.

12
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Proof. We simply observe that (xt, it) are predictable given Ht−1 = ({(xs, Ss)}s≤t−1). Thus, the sigma algebra generated
by {(xs, is, Ss)s≤t ∪ {(xt, it)} is the same as that generated by Ht−1, and ζt is assumed to be conditionally centred and
1-subGaussian with respect to this filtration, and thus its predictable projection ζitt inherits this property. The second claim
is then immediate from Lemma 6.

We further add the proof of the upper bound on T (Γ; δ,N), which bounds the timescale of rejection for EOGT.

Proof of Lemma 9. We note that we shall make no efforts to optimise the constants in the following argument. Recall that

T (Γ; δ,N) = inf

{
t ≥ 2d : t|Γ| > 2LIL(t, δ/2) + 4d log(2t/d)

√
t+ 2

√
dt log(2t/d) log

2m

δt−N

}
.

Now, if t ≥ max(50, 2d), then

2LIL(t, δ/2)√
t

= 4

√
log(11 log t) + log

2

δ
< 4

√
log t+ log

2

δ

≤ 4
√
N log t+ log(2m/δ)

≤ 4
√
d log(2t/d) log(2m/δt−N ),

where we have used N ≥ 1, that log(11 log(u)) < log(u) for u ≥ 50, and that d log(2t/d) > 1 when 2t/d > 4 > e. Thus
absorbing the LIL term into the last term defining T , we conclude that

T (Γ; δ,N) ≤ inf
{
t ≥ max(50, 2d) : t|Γ| > 4d

√
t log t+ 6

√
dt log(2t/d)(log(2m/δ) +N log t)

}
≤ inf

{
t ≥ max(50, 2d) : t|Γ| > max

(
12d
√
t log t, 18

√
dt log(2t/d) log(2m/δ), 18

√
dtN log t

)}
≤ inf

{
t ≥ max(50, 2d) :

t

log2 t
>

122 max(d2, 9/4Nd)

Γ2
and

2t/d

log(2t/d)
>

2 · 182 log(2m/Γ)

Γ2

}
,

where in the second step we used the facts that for u, v, w ≥ 0,
√
u+ v ≤

√
u+
√
v and (u+ v + w) ≤ 3max(u, v, w).

Now, we observe the following elementary properties.

1. The map u 7→ u/ log(u) is increasing for u ≥ 3. Thus, if t > 2z log 2z for some z ≥ 1.5 (which implies 2z log 2z ≥ 3),
then

t

log t
>

2z log(2z)

log 2z + log log(2z)
≥ z,

where we have used that 2z > 1 for z ≥ 1.5. Since 2·122 log(2m/δ)
Γ2 > 2 · 122 · log(2) > 1.5,

2t/d >
4 · 182 log(2m/δ)

Γ2
log

4 · 182 log(2m/δ)

Γ2
=⇒ 2t/d

log(2t/d)
>

2 · 182 log(2m/δ)

Γ2
.

2. For u > 1, v > 0,

u

log2 u
≥ v ⇐⇒

( √
u

2 log
√
u

)2

≥ v ⇐⇒
√
u

log
√
u
≥
√
4v.

But, as detailed above, if
√
4v > 3/2 ⇐⇒ v > 9/16, then it holds for any u such that
√
u > 2 ·

√
4v log(2 ·

√
4v) ⇐⇒ u > 4v log2(16v).

Setting u = t, v = 122 max(d2,9/4Nd)
Γ2 > 9/16, we conclude that

t >
4 · 122 max(d2, 9/4Nd)

Γ2
log2

16 · 122 max(d2, 9/4Nd)

Γ2
=⇒ t

log2 t
>

122 max(d2, 9/4Nd)

Γ2
.
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Incorporating the above analysis into the bound on T (Γ; δ,N), we conclude that

T (Γ; δ,N) ≤ max

(
50, 2d,

576max(d2, 9/4Nd)

Γ2
log2

2304max(d2, 9/4Nd)

Γ2
,
648d log(2m/δ)

Γ2
log

1296 log(2m/δ)

Γ2

)
.

B.2. Signal growth under consistency of confidence sets, and reliability

The growth of Tt was detailed in the main text in §3.3.1, the only informal aspect of this section being the treatment of Zt,
which can be accounted for immediately using Lemma 16. Thus, we have already shown Lemma 7. As briefly mentioned in
the main text, this immediately yields reliability.

Proposition 17. EOGT is reliable.

Proof. Suppose that HF is true, and the event of Lemma 7 holds. Then since τ = inf{t : |Tt| > Bt(δ)}, and since
Tt ≥ −Bt(δ), it follows that upon stopping, Tτ > Bt(δ). Since D(Hτ ) = HF if Tτ > 0, it follows that this decision is
correct. Hence, the only way for the decision to be incorrect is if ∃t : Tt < tΓ−Bt(δ), which can occur with probability at
most δ. The same argument can be repeated mutatis mutandis forHI.

B.3. Control on the Stopping Time of EOGT in Mean and Tails

We shall prove the stronger result, Theorem 10. Note that expectation result follows from this directly.

Proof of Theorem 8 assuming Theorem 10. The reliability has already been shown in Proposition 17. To control the expec-
tation, let us define, for naturals k ≥ 2, Tk = T (Γ/2; δ/2k

3−1;N) + ⌈2(k3−1)/N⌉(2 + 1/|Γ|), and define T1 = T (Γ; δ,N).
Then by Theorem 10, P(τ > Tk) ≤ 2−(k3−1)δ. As a consequence,

E[τ ] =
∑
t≥0

P(τ > t)

≤
∑
t≤T1

P (τ > t) +

∞∑
k=2

∑
t∈[Tk−1+1:Tk]

P(τ > t)

≤ T1 + 1 +

∞∑
k=2

δ21−(k−1)3(Tk − Tk−1) ≤ T1 + 1 + δ

∞∑
k=2

Tk2
1−(k−1)3 .

To control the above, we shall show that T (Γ; δk
3

, N) is bounded from above by k6T (Γ; δ,N) for k ≥ 2. To this end, recall
that

T (Γ; η,N) = inf

{
t ≥ 2d : t|Γ| > 4

√
t log log t+ t log

22m

δ
+ 4d

√
t log(2t/d) +

√
2dt log(2t/d) log(2m/δt−N )

}
.

Now, first observe that if t ≥ 16, and k ≥ 2, then log log(k6t) ≤ k6 log log t. Indeed, if k ≥ t, then7 log log(k6t) ≤
log log(k7) ≤ k < k6. If instead k ≤ t, then log(7) < 2 < (k6 − 1) =⇒ log log t7 = log 7 + log log t <
k6 − 1 + log log t < k6 log log t, which exploits that log log t > 1 for t ≥ 16 > ee.

Next, if t ≥ 2d, and k ≥ 2, then log(2k6t/d) ≤ k3 log(2t/d). Again, if 2t/d < k, then8 log(k7) < 7(k − 1) <
k3 log(4) < k3 log(2t/d), and if 2t/d ≥ k, then 7 log(2t/d) < k3 log(2t/d) since k3 ≥ 8. Similarly, if k ≥ 2, t ≥ 16 then
log(k6t) ≤ k3 log t.

It follows from the above that if t ≥ max(2d, 16), and t ≥ T (Γ; δ,N), then k6t ≥ T (Γ; δ/2k
2−1, N). Indeed, since

t > T (Γ; δ,N), we have

t|Γ| > 4
√
t log log t+ log(22m/δ) + 4d

√
t log(2t/d) +

√
(2d log(2t/d)(log(2m/δ) +N log t).

7log log k7 = log 7 + log log k ≤ log 7 + log k − 1 ≤ log 7− 2 + k, and e2 > 7.3.
8k3 − 7k + 7 is growing for k ≥

√
7/3 ≈ 1.52, and 23 − 14 + 7 = 1 > 0. Of course, log(4) > 1.
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Multiplying through by k6, and using t ≥ max(2d, 16), we observe that

k6t|Γ| > 4

√
k6t(k6 log log t+ k6 log

22m

δ
) + 4d

√
k6t · k3 log(2t/d)

+
√
2d(k6t) · k3 log(2t/d)(k3 log(2m/δ) + 2Ndk3 log t)

≥ 4

√
(k6t) log log(k6t) + log

22m

δk6 + 4d
√
k6t log(2k6t/d)

+
√

2d(k6t) log(2k6t/d)(log(2m/δk3) + 2Nd log(k6t)),

where we have used that m ≥ 1. Since δ ≤ 1/2,

δk
6

≤ δk
3

= δ · δk
3−1 ≤ δ · 2−(k3−1).

Thus, we conclude that for k ≥ 2,

Tk − ⌈2(k
3−1)/N⌉(2 + 1/|Γ|) = T (Γ/2; δ/2k

3−1, N) ≤ max(2d, 16, k6T (Γ/2; δ;N)).

Plugging this into the bound on E[τ ], we conclude using numerical estimates of the quickly converging series∑
k≥2 2

1−(k−1)3 ≤ 1.01 and
∑

k≥2 k
621−(k−1)3 ≤ 70 that

E[τ ] ≤ T1 + 1 + δ
∑
k≥2

21−(k−1)3Tk

≤ T1 + 1 + δ
∑
k≥2

21−(k−1)3(2d+ 16) + δT (Γ/2; δ,N)
∑
k≥2

k621−(k−1)3

+ δ(2 + 1/|Γ|)

∑
k≥2

2−((k−1)3−1−(1−1/N)k3) + 21−(k−1)3


≤ T (Γ; δ,N) + 1 + 70δT (Γ/2; δ,N) + (20 + 3d)δ +O(1)δ(3 + 1/|Γ|),

where the O(1) term is ≤ 1.01 +
∑

k≥2 2
1−(k−1)3+(k3(1−1/N)), which is summable since N > 1.

Let us now proceed with the

Proof of Theorem 10. First notice by Lemma 14, if t ≥ 2d, then∑
s≤t

ρs(xs; δs/2) ≤
∑
s≤t

ρs(xs; δt/2) ≤ ωt(δt/2)
√

2dt log(1 + (t+ 1)/d) ≤ ωt(δt/2)
√
2dt log(2t/d).

Consequently, we have that for t ≥ 2d,

Bt(δ) ≤ ωt(δt/2)
√

2dt log(1 + (t+ 1)/d) ≤ ωt(δt/2)
√

2dt log(2t/d).

IfHF is true, then we know by Lemma 7 that with probability at least 1− δ,

∀t,Tt ≥ tΓ−Bt(δ),

and so we conclude that under this event,
τ = inf{t : tΓ > 2Bt(δ)}.

But due to the deterministic upper bound on Bt(δ) under the same event,

τ ≤ inf{t : tΓ > 2ωt(δt/2)
√

2dt log(2t/d) + 2LIL(t; δ/2)}.
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But, for t ≥ 2d,N > 1, ωt(δt/2) ≤ 1 +
√

1
2 log(2m/δt−N ) + d

4 log(2t/d), and so,

2ωt(δt/2)
√
2dt log 2t/d ≤ 2

√
2dt log(2t/d) + 2

√
d2

2
t log2(2t/d) + 2

√
(dt log(2t/d))(log(2m/δt−N ))

≤ (
√
8/ log(4)d+

√
2d)
√
t log(2t/d) + 2

√
(d log(2t/d))(log(2m/δt−N ))

< 4d
√
t log(2t/d) + 2

√
(d log(2t/d))(log(2m/δt−N )),

where the first line uses
√
u+ v ≤

√
u +
√
v, and the final line uses the fact that t ≥ 2d =⇒ log(2t/d) ≥ log(4), and

that for u ≥ 1,
√
8u/ log 4 +

√
2u < 4u. But this implies that

τ ≤ inf

{
t : t|Γ| > 2LIL(t, δ/2) + 4d

√
t log(2t/d) + 2

√
d log(2t/d) log

2m

δt−N

}
= T (Γ; δ,N).

In fact, this is precisely why T (Γ; δ,N) was so defined. Thus, in the feasible case, with probability at least 1− δ,P(τ >
T (Γ; δ,N)) ≤ δ. The argument is identical in the infeasible case, barring sign flips.

Control on the tail can be obtained by essentially bootstrapping the above result along with our choice of Dt = Ct(δt),
the key idea being that since δt → 0, for large enough t, A ∈ Dt must actually occur with near-certainty. Formally, let
us define Tη = inf{t : δt < η} = ⌈(δ/η)1/N⌉. Then notice that for every t ≥ Tη, it holds that Dt ⊂ Ct(η), and so
P(∀t ≥ Tη, A ∈ Dt) ≥ 1 − η. Therefore, repeating the proof of Lemma 7, we conclude that in the feasible case, for all
t ≥ Tη,

Tt ≥ −Tη + (t− Tη)Γ−
∑

Tη≤s≤t

ρs(xs; δs)− LIL(t, η/2),

where we have used the fact that ∥x∥ ≤ 1, ∥Ai∥ ≤ 1 to conclude that |(Ax)it | ≤ 1 in order to handle the times
t ∈ [1 : Tη − 1]. In particular, if t > 2Tη + Tη/Γ, then Tt ≥ tΓ2 −Bt(η).

But we know that we must stop before time t if Tt ≥ Bt(δ), and since Bt(δ) ≤ Bt(η) uniformly, we conclude that under
the event that A ∈ Dt for all t ≥ Tη, then it must hold that

τ ≤ max ((2 + 1/Γ)Tη, T (Γ/2, η,N)) .

Since this occurs with probability at least 1− η, the conclusion follows for the feasible case. Again, the argument is identical
for the infeasible case, barring sign flips.

C. Analysis of T-EOGT

The main result follows simply from the key control offered in Lemma 11, and showing the latter will form the bulk of this
section. We proceed by first showing the stopping time bounds.

Proof of Theorem 12. Let us consider the feasible case; the infeasible case follows similarly. For reliability, observe that via
Lemma 11, it holds with probability at least 1− δ that for all t,

T̃t ≥ tΓ−QF
t (δ) > −QF

t (δ).

Since the stopping time is
τ̃ = inf{t : T̃t < −QF

t (δ) or T̃t > QI
t(δ)},

it follows that if the preceding event occurs, then if the test stops, it must be correct. But, since QI + QF grows sublinearly
in t, under the same event the test must eventually stop. Therefore, the probability that we stop and make an error is bounded
by δ, making the test reliable.

It remains to control the behaviour of τ̃ . To this end, again observe that for any η ∈ (0, 1), with probability at least 1− η, it
holds for all time that

T̃t ≥ tΓ−QF
t (η).
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Thus, we conclude that with probability at least 1− η,

τ ≤ inf{t : tΓ ≥ QF
t (η) + QI

t(δ)} ≤ Tη := inf{t : tΓ ≥ QF
t (η) + QI

t(η)}.

But notice that
QF

t (η) + QI
t(η) ≤ 50t

1/2 log2(t)
(
d3/2 + d1/2 log(8m/η)

)
+ 2LIL(t, η/2).

Following the approach in the proof of Lemma 9 as presented in §B.1,9 we immediately get that there exists a constant C
such that with probability at least 1− η,

τ ≤ C log(C log(Γ−2)/δ)

Γ2
+

Cd3

Γ2
log4

Cd3

Γ2
+

Cd log(8m/η)

Γ2
log4

d log(8m/η)

Γ2
.

The expectation bound is immediate upon integrating the tail.

It remains then to show Lemma 11, which is the subject of the next section.

C.1. Proof of Anytime Behaviour of T̃t

We begin with setting up some notation, and then proceed by explicitly describing key observations underlying the argument,
encapsulated as lemmata. The key aspects of this argument follow the analysis of Simchi-Levi et al. (2023).

C.1.1. NOTATION

Let (x∗, i∗) denote any solution to the program maxx mini(Ax)i, which we shall fix for the remainder of this section. Of
course, (Ax∗)i

∗
= Γ. Recall that imin(x) = argmini(Ax)i. We further define

it(x) = argmin
i

(Âtx)
i, and i∗t = it(x

∗).

We denote the estimation error in Ât as
Bt = Ât −A.

Next, we define the random quantity

∆t = (Γ− (Axt)
it)sign(Γ) =

{
Γ− (Axt)

it if Γ > 0, i.e., under feasibility
(Axt)

it − Γ if Γ < 0, i.e., under infeasibility.
,

and the cumulative pseduoregret-like object
Rt =

∑
s≤t

∆s.

The point here is that we may decompose

T̃t =
∑
s≤t

(Axs)
is + Zt = tΓ−Rt + Zt, (feasible case)

T̃t =
∑
s≤t

(Axs)
is + Zt = tΓ + Rt + Zt, (infeasible case)

and thus in either case, if we show that Rt is not too large, then T̃t has favourable behaviour. Observe that if we were
working in a single objective setting, m = 1, then in the feasible case Rt would be the pseudoregret of a linear bandit
instance.

Since these quantities will appear often in the argument, we further define

Nt = ∥xt∥2V −1
t

and N∗
t = ∥x∗∥2

V −1
t

,

9the only new information needed being that 4 log log z ≤ log z for all z ≥ 2
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and for v ≥ 0,

Wt(v) := 1 +

√
d

4
log(1 + t/d) +

1

2
logm+

v

2

Finally, notice that with the above notation, Lemma 15 can be expressed as

∀v > 0,P
(
∃t, i : ∥Bi

t∥Vt ≥ Wt(v)
)
≤ e−v.

Further,
Radt(xt) = (t/d)

1/2Nt +
√

dNt, and Radt(x
∗) = (t/d)

1/2N∗
t +

√
dN∗

t .

C.1.2. STRUCTURAL OBSERVATIONS

The following two results constitute basic structural observations due to Simchi-Levi et al. (2023) that enable the subsequent
analysis. The first argues that in each round, some quantity of the form (Btx)

i for some (x, i) is large in absolute value.

Lemma 18. For the sequence of actions {xt} selected by T-EOGT, the following hold.

• In the feasible case, at each time, either the first or the second of the following hold:

(Btxt)
it ≥ ∆t/2− (t/d)

1/2Nt −
√

dNt

or − (Btx
∗)i

∗
t ≥ ∆t/2 + (t/d)

1/2N∗
t +

√
dN∗

t

• In the infesible case, at each time t, either the first or the second of the following hold:

−(Btxt)
it ≥ ∆t/2

or (Btxt)
imin(xt) ≥ ∆t/2.

Proof. In the feasible case, due to the optimistic selection, it must hold that

(Âtxt)
it +Radt(xt) ≥ (Âtx

∗)i
∗
t +Rad∗t .

Now, we may write Ât = A+Bt, and so get

(Btxt)
it +Rad(xt) ≥

(
(Ax∗)i

∗
t − (Axt)

it
)
+Radt(x

∗).

But note that (Ax∗)i
∗
t ≥ mini(Ax∗)i = Γ, and so (Ax∗)i

∗
t − (Axt)

it ≥ ∆t in the feasible case. Thus, we have

(Btxt)
it +Rad(xt) ≥ ∆t + (Btx

∗)i
∗
t +Radt(x

∗).

But, since if A ≥ B + C, then either A ≥ B/2 or −C ≥ B/2, it follows that at least one of the following must hold:

(Btxt)
it ≥ ∆t/2− Radt(xt) or − (Btx

∗)i
∗
t ≥ ∆t/2 + Radt(x

∗).

The conclusion follows upon incorporating the form of Radt(xt) and Radt(x
∗) indicated before the statement of the lemma.

In the infesible case, we note that it must hold that

(Âtxt)
it ≤ (Âtxt)

imin(xt) ⇐⇒ (Btxt)
it − (Btxt)

imin(xt) ≥ (Axt)
it) − (Axt)

imin(xt).

But, (Axt)
imin(xt) = mini(Axt)

i ≤ maxx mini(Ax)
i = Γ, and so noting that ∆t = (Axt)

it − Γ in the infeasible case,
we have

(Btxt)
it − (Btxt)

imin(xt) ≥ ∆t,

which again yields the conclusion.

The next observation essentially yields a condition for low Rt in terms of (∆t, Nt), and forms a refinement of the key
observation of Simchi-Levi et al. (2023) that allows us to extend their results to yield anytime bounds.
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Lemma 19. For any nondecreasing sequence of positive reals ut, it holds that

{∃t : Rt > ut(1 + log(t+ 1))} ⊂ {∃t : ∆t ≥ ut/3t,Nt < d/t} ∪ {∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t}.

Proof. Suppose that for all t,Nt < d/t =⇒ ∆t < ut/3t and Nt ≥ d/t =⇒ ∆t/Nt < ut/3d. Then

Rt =
∑
s≤t

∆s =
∑
s≤t

∆s1{Ns < d/t}+
∑
s≤t

∆s

Ns
·Ns1{Ns ≥ d/t}

<
∑
s≤t

us/3s+
∑
s≤t

us

3d
Ns

≤ ut

3

∑
s≤t

1/s+
ut

3d

∑
s≤t

Ns

≤ ut(log(t) + 1)

3
+

ut

3d
· 2d log(1 + t/d)

≤ ut(1 + log(t+ 1)),

where the second inequality is because us ≤ ut for all s ≤ t, and the third uses the bound on
∑

s≤t Ns =
∑

s≤t ∥xs∥2V −1
s

from Lemma 14, and the standard bound on harmonic numbers
∑

s≤t 1/s ≤ log(t) + 1.

This sets up the basic approach: the two events in Lemma 18 along with the two events in Lemma 19 set up four potential
ways that high Rt can arise in either the feasible or the infeasible case. We will separately bound the probabilities of these
events by repeated reduction to the key result of Lemma 15.

C.1.3. CONTROLLING THE CHANCE OF POOR EVENTS

We now proceed to execute the strategy we described at the end of the previous section. We will separate the arguments for
the feasilbe and the infeasible cases.

Feasible Case We shall further separate the analysis into two cases, depending on if we control the event with |(Btxt)
it |

being large, or |(Btx
∗)i

∗
t | being large.

Lemma 20. For any v ≥ 0, define
UF,A
t (v) := 6

√
dt+ 6d

√
t+ 6

√
dtWt(v).

Then both of the following inequalities hold true:

P(∃t : ∆t ≥ UF,A
t (v)/3t,Nt < d/t, (Btxt)

it ≥ ∆t/2− (t/d)
1/2Nt −

√
dNt) ≤ e−v,

P(∃t : ∆t/Nt ≥ UF,A
t (v)/3d,Nt ≥ d/t, (Btxt)

it ≥ ∆t/2− (t/d)
1/2Nt −

√
dNt) ≤ e−v.

Proof. We argue the two inequalities using slightly different, but ultimatly similar approaches. The key observation we
will need is that by the Cauchy-Schwarz inequality, and since Nt = ∥xt∥2V −1

t

, |(Btxt)
it | = |(Bit

t V
1/2
t V

−1/2
t xt)| ≤

∥Bit
t ∥Vt

√
Nt. Throughout, we will let ut denote an arbitrary nondecreasing sequence, and derive the form of UF,A

t at the
end.

Case (i). Suppose ∆t ≥ ut/3t and Nt < d/t. Then

(Btxt)
it ≥ ∆t

2
−
√

t

d
Nt −

√
dNt

≥ ut

6t
−
√

d

t
− d√

t

=⇒
√

Nt∥Bit
t ∥Vt

≥ ut − 6
√
dt− d

√
t

6t

=⇒ ∥Bit
t ∥Vt ≥

ut − 6
√
dt− 6d

√
t

6
√
dt

.
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Case (ii). If instead, ∆t/Nt ≥ ut/3d and Nt ≥ d/t, then

(Btxt)
it ≥ ∆t

2
−
√

t

d
Nt −

√
dNt

⇐⇒ (Btxt)
it/Nt ≥

∆t

2Nt
−
√

t

d
−
√

d/Nt

=⇒ ∥Bit
t ∥Vt

/
√
Nt ≥

∆t

2Nt
−
√

t

d
−
√

d/Nt

=⇒ ∥Bit
t ∥Vt ≥

ut

6d
·
√

d/t− 1−
√
t

=
ut − 6

√
dt− 6d

√
t

6
√
dt

.

Now observe that due to the form of UF,A
t , it holds that

UF,A
t (v)− 6

√
dt− 6d

√
t

6
√
dt

= Wt(v),

and so we have

P

(
∃t : ∥Bit

t ∥Vt
≥ UF,A

t (v)− 6
√
dt− 6d

√
t

6
√
dt

)
≤ P

(
∃t, i : ∥Bi

t∥Vt
≥ Wt(v)

)
,

and the claim follows by Lemma 15.

Lemma 21. For any v ≥ 0, define

UF,B
t (v) :=

3
√
dt

2
(Wt(v)−

√
d)2+,

where (z)2+ = (max(z, 0))2. Then it holds that

P(∃t : ∆t ≥ UF,B
t (v)/3t,Nt < d/t,−(Btx

∗)i
∗
t ≥ ∆t/2 +

√
t/dN∗

t +
√
dN∗

t ) ≤ e−v

P(∃t : ∆t/Nt ≥ UF,B
t (v)/3d,Nt ≥ d/t,−(Btx

∗)i
∗
t ≥ ∆t/2 +

√
t/dN∗

t +
√
dN∗

t ) ≤ e−v

Proof. As in the proof of Lemma 20, let ut ≥ 0 be any sequence. Then observe that ∆t/Nt ≥ ut/3d,Nt ≥ d/t =⇒
∆t ≥ ut/3t. Further, by the AM-GM inequality,

ut

6t
+

√
t

d
N∗

t ≥ 2

√
ut

6
√
dt

N∗
t .

But, if ∆t ≥ ut/3t, then

−(Btx
∗)i

∗
t ≥ ut

6t
+

t

d
N∗

t +
√
dN∗

t ≥ 2

√
ut

6
√
dt

N∗
t +

√
dN∗

t

=⇒ ∥Bi∗t
t ∥Vt ≥

√
2ut

3
√
dt

+
√
d.

Now, UF,B
t is chosen so that √

2UF,B
t (v)

3
√
dt

+
√
d = Wt(v),

therefore, both of the probabilities in the claim are bounded from above by P(∃t, i : ∥Bi
t∥Vt ≥ Wt(v)), and we may

conclude using Lemma 15.
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Infeasible Case Turning now to the infeasible case, we have the somewhat simpler bound below.
Lemma 22. For v ≥ 0, let

U I
t(v) := 6

√
dtWt(v).

It holds that

P(∃t, i : ∆t ≥ U I
t(v)/3t,Nt < d/t, |(Btxt)

i| ≥ ∆t/2) ≤ e−v

P(∃t, i : ∆t/Nt ≥ U I
t(v)/3d,Nt ≥ d/t, |(Btxt)

i| ≥ ∆t/2) ≤ e−v

Proof. The argument is similar to that underlying Lemma 20. Let ut be any positive real. Then

Case (i) If ∆t ≥ ut/3t,Nt < d/t, then for any i,

|(Btxt)
i| ≥ ∆t/2

=⇒ ∥Bi
t∥Vt

√
Nt ≥

ut

6t

=⇒
√
d/t∥Bi

t∥Vt
≥ ut

6t
⇐⇒ ∥Bi

t∥Vt
≥ ut

6
√
dt

.

Case (ii) If instead ∆t ≥ ut/3d,Nt ≥ d/t, then note that

∆t/
√
Nt = ∆t/Nt ·

√
Nt ≥

ut

3d
·
√
d/t =

ut

3
√
dt

,

and thus
|(Btxt)

i| ≥ ∆t

2
=⇒ ∥Bi

t∥Vt ≥
ut

6
√
dt

.

Since U I
t(v) = 6

√
dtWt(v), it again follows that either of the probaiblities in the claim are bounded by P(∃t, i : ∥Bi

t∥Vt
≥

Wt(v)), and we are done upon applying Lemma 15.

C.2. Proof of Tail Bounds

We are now ready to prove the claim. We begin by summarising the previous section through the lemma below. Note that
setting m = 1, the bound for the feasible instance yields an anytime regret bound for the tempered action selection rule (5)
over linear bandit instances.
Lemma 23. For any δ ∈ (0, 1), the following hold for the actions of T-EOGT

• For any feasible instance,

P(∀t,Rt ≤ log(t+ t) ·max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ))) ≥ 1− δ/2.

• For any infeasible instance,

P(∀t,Rt ≤ U I
t(log(8/δ))(1 + log(t+ 1))) ≥ 1− δ/2.

Proof. In the feasible case, let ut := max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ)). Since Wt is nondecreasing, and the UF,·
t are

defined as nondecreasing functions of Wt, it follows that ut is nondecreasing. By Lemma 19, it follows that

P(∃t : Rt > UF
t · (1 + log(t+ 1))) ≤ P(∃t : ∆t ≥ ut/3t,Nt < d/t) + P(∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t).

But since the events in Lemma 18 must occur with certainty, we have

P(∃t : ∆t ≥ ut/3t,Nt < d/t) ≤ P(∃t : ∆t ≥ ut/3t,Nt < d/t, (Btxt)
it ≥ ∆t/2− (t/d)

1/2Nt −
√

dNt)

+ P(∃t : ∆t ≥ ut/3t,Nt < d/t, (Btx
∗)i

∗
t ≥ ∆t/2 + (t/d)

1/2N∗
t +

√
dN∗

t ).

But, since ut ≥ UF,A
t (log(8/δ)), by Lemma 20, the first term is at most δ/8, and similarly since ut ≥ UF,B

t (log(8/δ0)), by
Lemma 21, the second term is at most δ/8, controlling the above to δ/4. Of course, the same argument may be repeated to
bound P(∃t : ∆t/Nt ≥ ut/3d,Nt ≥ d/t), giving the first bound. The infeasible case follows the same template, but uses
the alternate result in Lemma 18, and Lemma 22 to control probabilities instead. We omit the details.
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To concretise the bounds above, we next show an auxiliary lemma controlling the sizes of UF,A
t , UF,B

t and U I
t.

Lemma 24. Suppose δ ≤ 1/2. Then

UF,A
t (log(8/δ)) ≤ 12d

√
t log(t+ 1) + 15

√
dt log(8m/δ)

UF,B
t (log(8/δ)) ≤ 2d3/2

√
t log2(t+ 1) + 3

√
dt log(8m/δ)

U I
t(log(8/δ)) ≤ 6

√
d2t(1 + log(t+ 1)) + 2dt log(8m/δ)

Proof. First, we note that if δ ≤ 1/2, then 1
2 log(8/δ) ≥ 3 log(2) > 1. Thus, we have

Wt(log(4/δ)) = 1 +

√
d

4
log(1 + t/d) +

1

2
(logm+ log(8/δ))

≤ 2

√
d

4
log(1 + t) +

1

2
log

8m

δ

≤
√
d log(t+ 1) + 2 log(8m/δ)

≤
√
d log(t+ 1) +

3

2

√
log(8m/δ).

Thus,
UF,A
t (log(8/δ)) ≤ 6

√
dt+ 6d

√
t+ 6d

√
t(1 + log(t+ 1)) + 9

√
dt log(8m/δ),

and further,

UF,B
t (log(8/δ)) ≤ 3

√
dt

2
·
√

d log(t+ 1) + 2 log(8m/δ),

and finally,
U I
t(log(4/δ)) ≤ 6

√
dt ·

√
d log(t+ 1) + 2 log(8m/δ),

yielding the claimed bounds.

With these in hand, we can conclude.

Proof of Lemma 11. We shall only show the feasible case; the infeasible is identical, and thus the details are omitted. Recall
from §C.1.1 that in the feasible case,

T̃t ≥ tΓ−Rt + Zt.

By Lemma 16, with probability at least 1− δ/2, Zt ≥ LIL(t, δ/2) for all t. Further, by Lemma 23, with probability at least
1− δ/2, at all times

Rt ≤ (1 + log(t+ 1)) ·max(UF,A
t (log(8/δ)), UF,B

t (log(8/δ)).

Finally, opening up the form of the same via , we have

(1 + log(t+ 1)) ·max

(
12d
√
t log(t+ 1) + 15

√
dt log(8m/δ), 2d3/2

√
t log2(t+ 1) + 3

√
dt log(8m/δ)

)
,

and 1+log(t+1) ≤ 3 log(t+1) for t ≥ 1 But note that d3/2
√
t log2(t+ 1) ≥ d

√
t(1 + log(t+ 1)), and

√
dt log(8m/δ) ≥√

dt log(8m/δ) since δ ≤ 1/2. So, we may simply adjust the constants, and conclude that with probability at least 1− δ/2,

Rt ≤ 36d3/2
√
t log2(t+ 1) + 45

√
dt log2(t+ 1) log(8m/δ) ≤ QF

t (δ)− LIL(t, δ/2).

But now the result is obvious.
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D. Proof of the Lower Bound
We conclude the appendix by presenting the proof of the lower bound of Theorem 13. We will first show that it suffices to
show a Ω(K/Γ2) lower bound for the minimum threshold problem (which we shall also formally specify) in order to show
the claimed result. We then give a brief summary of the ‘simulator’ technique of Simchowitz et al. (2017), and proceed to
show the aforementioned bound.

D.1. The Finite-Armed Single Objective Feasibility Testing Problem, and a Reduction to Feasibility Testing of LPs
over a Simplex

We start by explicitly defining the finite-armed single objective feasibility testing problem, also known as the minimum
threshold testing problem as discussed in §1

Problem Definition An instance of this problem is defined by a natural K <∞, and a set of K probability distributions,
{Pk}k∈[1:K], each supported over R, and a real δ ∈ (0, 1). Let ak := ES∼Pk

[S], and let a denote the K-dimensional vector
collecting these means. We will assume that a ∈ [−1/2, 1/2]K . The aim of the test is to distinguish the hypotheses

HK
F : max

k
ak > 0 versus HK

I : max
k

ak < 0.

The tester chooses an arm Kt in round t, and if Kt = k, then it observes in response a score S ∼ Pk, independently of the
history. We shall assume that each Pk is σ2-subGaussian about its mean, with σ2 ≤ 1. As in the linear setting considered in
the main text, a test for this finite-armed single objective setting consists of an arm selection policy, a stopping time, and a
decision rule, which we summarise as (A , τ,D) in line with §2. The goal is reliability in the sense of Definition 1, and a
good test should be valid and well adapted in the sense of Definition 2.

We now specify reductions of the above problem to the linear feasibility testing problem that is the subject of our paper. The
key observation is that the finite-armed problem can either be directly interpreted as a LP feasibility testing problem over a
discrete action set, or can, with a small loss in the noise strength, be expressed as a LP feasibility testing problem over a
continuous X , the critical implication being that lower bounds for the finite-armed setting extend to our problem of testing
feasibility of linear programs. This enables us to only concentrate on showing a lower bound for the finite-armed single
objective problem in the subsequent.

Reduction to General LP Feasibility Testing Note that in effect, the problem above reduces to feasibility testing for
the linear case if we set d = K, A = a⊤ ∈ R1×d and set X = {ei}di=1, where the ei are the standard basis elements for
Rd: ei =

(
0 · · · 0 1 0 · · · 0

)⊤
, where the 1 occurs in the ith position. Indeed, in this case, upon playing x = ei,

we observe feedback S ∼ Pk. But we can write S = E[S] + (S − E[S]) = ak + ζ = Ax + ζ, where ζ = S − E[S] is
conditionally σ2-subGaussian due to our assumption that each Pk is σ2-subGaussian, so the reduction is valid if σ2 ≤ 1.

Reduction to LP Feasiblity Testing Over the Simplex We further observe that if σ2 ≤ 1/2, then the finite case also
reduces to single constraint feasibility testing over the simplex. Indeed, suppose that we set d,A as above, and take
X = {x ∈ [0, 1]d :

∑
xi = 1}, and let (A , τ,D) be a reliable test for this instance over 1-subGaussian noise. Then we can

get a corresponding reliable test for the d-armed setting as follows:

• At each t, we first execute A to obtain a putative action xt.

• Next, we draw a random index Kt ∼ xt, which is meaningful since xt lies in the simplex, and so is a distribution over
[1 : d].

• Then, we pull arm Kt in the finite-armed instance and we supply the feedback St to the linear algorithm to enable
testing.

To argue that the ensuing test is reliable, we need to verify that the feedback obeys the structure we demand, in particular,
that St = Axt + ζt for 1-subGaussian ζt. But notice that

St = aKt + ηt
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for ηt σ2-subGaussian, and further,

E[St] = E[aKt ] =
∑

xk
t ak = a⊤xt = Axt,

as required. Further, since each Pk is supported on [−1/2, 1/2], the random variable aKt is also supported on [−1/2, 1/2],
and so is 1/2-subGaussian by Hoeffding’s inequality. Due to the independence of Kt and ηt, it follows that the feedback
noise is (1/2 + σ2)-subGaussian, and so the reduction holds if σ2 ≤ 1/2.

Improved Costs for Finite Arms. Prima facie the above reduction implies an Õ(K2/Γ2) stopping cost for our test
employed on finite-armed settings. However, if K < d2, then this may be improved to Õ(K/Γ2), either by coupling the
EOGT approach with direct UCB-based constructions as commonly employed for finite arm bandits, or by directly analysing
EOGT whilst exploiting standard analyses that enable proofs of improved costs for the OFUL scheme over finite-armed
settings (Lattimore & Szepesvári, 2020).

D.2. The Simulator Argument

For an execution of a feasibility test over a finite-armed setting, let Nk
t denote the number of times arm k has been pulled

up to time t, and correspondingly let Nk
τ be the number of times the arm k has been pulled at stopping. Notice that in

a distributional sense, we can view the behaviour of the tester over a fixed transcript, defined as a set of K sequences
{Sk

i }∞i=1, one for each k, each comprising of values drawn independently and identically from Pk, the idea being that for
each t such that Kt = k, we can just supply the learner with Sk

Nk
t

in response. This maintains the feedback distributions, and
thus the probability of any event in the filtration induced by {Ht}t≥1. The main utility of the transcript view is that it allows
manipulation of the distributions underlying an instance after some number of arm pulls, and exploiting such distribution
shifts is the key insight of the simulator argument of Simchowitz et al. (2017).

Let us succinctly denote a transcript as {Sk
i }k∈[1:K],i∈[1:∞). Further, let us write P = (P1, · · · ,Pk) to compactly denote

an instance, and write P(·) to denote the probability of an event when the instance is P. Throughout, we work with the
natural filtration of the tester Ft, which is the sigma algebra over Ht and any algorithmic randomness used by the tester.
A simulator S is a randomised map from transcripts to transcripts. Notice that this induces a new distribution over the
behaviour of the algorithm, which we denote by PS. Let us say that an event W ∈ Fτ is truthful for an instance P under a
simulator S if it holds that for every E ∈ Fτ ,

P(W ∩ E) = PS(W ∩ E).

In words, given any truthful event, the simulator does not modify the behaviour of the test up to the time it stops. We
shall succinctly specify the simulator and distribution with respect to which an event is truthful by saying that ‘W is
(P,S)-truthful.’

The simulator approach to lower bounds, presented in Proposition 2 of Simchowitz et al. (2017), is summarised through the
following bound. Fix an algorithm, and consider a pair of instances P1 and P2. Then, if W1 is (P1,S)-truthful, and W2 is
(P2,S)-truthful, it holds that

P1(W c
1 ) +P2(W c

2 ) ≥ sup
E∈Fτ

|P1(E)−P2(E)| − TV(P1
S,P2

S), (6)

where TV is the total variation distance TV(µ∥ν) := supE µ(E)− ν(E). The idea thus is that if we construct a simulator
that makes the algorithm behave similarly in either instance, i.e., such that TV(P1

S∥P2
S) ≈ 0, but the instances themselves

are fundamentally quite different, so that supE∈Fτ
|P1(E) − P2(E)| is large, then we can show lower bounds on how

likely truthful events are to not occur.

The bound itself is easy to show: for any E ∈ Fτ , we have

|P1(E)−P2(E)| ≤ |P1
S(E)−P2

S(E)|+ |P1
S(E)−P1(E)|+ |P2

S(E)−P2(E)|.

Since W1 is (P1,S)-truthful, the second term may be refined as

|P1
S(E)−P1(E)| = |P1

S(E ∩W1)−P1(E ∩W1) +P1
S(E ∩W c

1 )−P1(E ∩W c
1 )| = |P1

S(E ∩W c
1 )−P1(E ∩W c

1 )|,
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and we may similarly bound |P2
S(E)−P2(E)|. The difference |P1

S(E)−P2
S(E)| can in turn be bounded by the total

variation distance. We conclude that

2∑
i=1

sup
E∈Fτ

|Pi
S(E ∩W c

i )−Pi(E ∩W c
i )|+TV(P1

S,P2
S) ≥ sup

E∈Fτ

|P1(E)−P2(E)|,

and the left hand side can be resolved by just taking E = W c
i ∈ Fτ .

We will utilise the above twice in our argument below, with the main trick being that if we only modify the transcript to
affect arm k after T pulls, that is, we only change Sk

i for i > T , then the event {Nk
τ ≤ T} is truthful under this simulator,

letting us lower bound the probability that Nk
τ is small in some instance. We shall succinctly call such simulators post-T

simulators.

D.3. A Lower Bound for Finite-Armed Single Constraint Feasibility Testing

We shall show the following

Theorem 25. For any Γ ∈ (0, 1/2], δ ≤ 1/4, and K < ∞, and for any reliable test, there exists a finite-armed single
objective feasibility testing instance that is feasible, with signal level at least Γ, σ2 = 1/2-subGaussian noise, and∑

a2k ≤ 1, on which the algorithm must admit

E[τ ] ≥ (1− 2δ)3K

79Γ2
.

Theorem 13 is immediate from the above.

Proof of Theorem 13. Setting K = d, and constructing either of the reductions from the finite-armed case to the linear
program feasibility testing problem detailed in §D.1, which is possible because σ2 = 1/2 and since ∥a∥2 ≤ 1. But then the
lower bound of Theorem 25 must apply.

Without further ado, let us launch into proving the finite-armed lower bound.

Proof of Theorem 25. Fix Γ ∈ (0, 1/2], and for k ∈ [0 : K], and an ε ∈ (0,
√
1− Γ2/4K), define the following instance

Pk = (Pk
1 , · · · ,Pk

K),

where

Pk
ℓ =

{
N (−ε, 1/2) ℓ ̸= k

N (Γ, 1/2) ℓ = k
.

Observe that for k > 0, in instance Pk, the kth arm is the only feasible action, while the rest are infeasible, while in
instance P0, all arms are infeasible, with the tiny signal level −ε. Of course, each Pk defines an instance for us. We
implicitly reveal to the test that the instance must lie in one of the Pk as the argument does not change even if the test is
allowed to use this fact. Notice that the mean vector for Pk is some permutation of (Γ,−ε, · · · ,−ε), and so has 2-norm
Γ2 + (K − 1)ε2 ≤ Γ2 + (1− Γ2)/4 ≤ 1, since Γ ∈ (0, 1/2]. We shall, at the end of the proof, send ε→ 0, so the precise
size of it is not important to the argument.

Now, the first key observation is that since Pk is feasible for each k > 0, but P0 is infeasible, it must be the case that under
Pk for arm k > 0, the test verifies the feasibility of the instance by pulling arm k at least Ω(Γ−2) times. We will need a
slightly refined form of this statement, as seen below.

Lemma 26. Under the above instance structure, for every k ∈ [1 : K] and any T ∈ N, it holds that

Pk(Nk
τ > T ) ≥ 1− 2δ −

√
T (Γ + ε)2/2.
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Proof. Consider a post-T simulator Sk such that {Ŝk
i } = Sk({Sk

i }), has the form

Ŝk′

i =

{
Sk′

i k′ ̸= k or i ≤ T
i.i.d.∼ N (−ε, 1/2) k′ = k and i > T

.

First notice that for the KL divergence10 KL(Pk
Sk∥P0

Sk), using the data processing inequality, this is bounded by the
KL-divergence between the laws of the transcript under the two distrubtions, which in turn is only driven by the the first T
entries of the transcript for T. Since, by a standard calculation,11

KL(N (µ, 1/2)∥N (ν, 1/2)) = (µ− ν)2,

we conclude that
KL(Pk

Sk∥P0
Sk) ≤ T (Γ + ε)2,

and in turn by an application of Pinsker’s inequality12 (see, e.g., Lattimore & Szepesvári, 2020, Chs.13, 14),

TV(Pk
Sk ,P

0
Sk) ≤

√
T (Γ + ε)2/2.

Next, observe that the event Wk := {Nk
τ ≤ T} is (Pk,Sk)-truthful since the transcript for arm i is only modified after T

pulls, and further, every event is (P0,Sk)-truthful since the simulator does not modify the arm distributions for P0, and so
in particular W0 = {Nk

τ ≤ ∞} is truthful (and of course P0(Nk
τ >∞) = 0 trivially).

Finally, observe that since the instance Pk is feasible, and since the test is reliable, it holds that Pk(D(Hτ ) = HK
F ) ≥ 1− δ.

But by the same coin, since P0 is infeasible, P0(D(Hτ ) = HK
I ) ≤ δ. Of course, {D(Hτ ) = HK

F } is an Fτ -event.

So, we may proceed to populate the inequality (6) with the above selections to conclude that

Pk(NK
τ > T ) + 0 ≥ |1− δ − δ| −

√
T (Γ + ε)2/2.

With the above in hand, observe that since τ =
∑K

k=1 N
k
τ , the above already shows that EPk [τ ] = Ω(Γ−2). To extend this,

we employ the following result.

Lemma 27. Under the same setting as Lemma 26, for any k, k′ ∈ [1 : K],

Pk(Nk′

τ > T ) +Pk′
(Nk

τ > T ) ≥ 1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2.

Proof. If k = k′, the claim is true due to Lemma 26. Without loss of generality, let us set k = 1, k′ = 2. Define the
simulator S1→2 so that {Ŝk

i } = S1→2({Sk
i }) has the form

Ŝk
i =

{
Sk
i k ̸∈ {1, 2} or i ≤ T

i.i.d.∼ N (Γ, 1/2) k ∈ {1, 2} and i > T
.

As in the proof of Lemma 26, the only difference between P1
S1→2 and P2

S1→2 is induced by the first T entries of the k = 1
and k = 2 rows, and thus

KL(P1
S1→2∥P2

S1→2) ≤ 2 · T (Γ + ε)2.

Further, again, W1 := {N2
τ ≤ T} is (P1,S1→2)-truthful, since for P1, the simulator S1→2 only modifies the the law

of arm 2, and does this only after T pulls of the same. Similarly, W2 := {N1
τ ≤ T} is (P2,S1→2)-truthful. Now set

E = {N2
τ > T}. Then by (6), we have

P1(N2
τ > T ) +P2(N1

τ > T ) ≥ |P1(N2
τ > T )−P2(N2

τ > T )| −
√

T (Γ + ε)2.

10which we measure in nats, i.e., KL(P∥Q) =
∫

dP
dQ

log dP
dQ

dQ, where the logarithm is natural
11∫ e−(x−µ)2

√
π

((x− ν)2 − (x− µ)2)dx =
∫

e−(x−µ)2

√
π

(µ− ν)(2x− µ− ν)dx = (µ− ν) · (2µ− µ− ν)
12which says TV(P,Q) ≤

√
KL(P∥Q)/2.
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Now observe that if P1(N2
τ > T ) ≥ P2(N2

τ > T ), then we are already done since by Lemma 26,

P2(N2
τ > T ) ≥ 1− 2δ −

√
T (Γ + ε)2/2 >

1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2.

So, we may assume that P1(N2
τ > T ) ≤ P2(N2

τ > T ). But then we conclude that

2P1(N2
τ > T ) +P2(N1

τ > T ) ≥ P2(N2
τ > T )−

√
T (Γ + ε)2 ≥ 1− 2δ − (1 + 1/

√
2)
√
T (Γ + ε)2,

and the conclusion follows since 2P1(N2
τ > T ) +P2(N1

τ > T ) ≤ 2P1(N2
τ > T ) + 2P2(N1

τ > T ).

With the above in hand, observe that since an arm is pulled at each t, τ =
∑

k N
k
τ . Thus, for any T > 0,

1

K

∑
k

EPk [τ ] =
1

K

∑
k

∑
k′

EPk [Nk′

τ ]

≥ 1

K

∑
k

∑
k′

TPk′
(Nk

τ > T )

=
T

K

∑
k

Pk(Nk
τ > T ) +

1

2

∑
k,k′ ̸=k

Pk(Nk′

τ > T ) +Pk′
(Nk

τ > T )

 .

Now employing Lemma 26 and Lemma 27, we have

1

K

∑
k

EPk [τ ] ≥ T

K

(
1− 2δ −

√
T (Γ + ε)2/4

)
+

TK(K − 1)

2K

(
1− 2δ

2
− 1 + 1/

√
2

2

√
T (Γ + ε)2

)

≥ TK

4

(
(1− 2δ)− (1 + 1/

√
2)
√

(T (Γ + ε)2).
)

Since the bound holds for every T , we can optimise the same13 to conclude that

max
k

EPk [τ ] ≥ 1

K

∑
k

EPk [τ ] ≥ (1− 2δ)3

27(1 + 1/2 +
√
2)
· (1− 2δ)3K

(Γ + ε)2
≥ (1− 2δ)3K

79(Γ + ε)2
.

If δ ≤ 1
4 , this can be further lower bounded by K

632(Γ+ε)2 . Since the above inequality holds true for every ε > 0 small
enough, the claimed result follows upon sending ε→ 0.

13For f(x) = ux− vx3/2, the derivative is u− 3v
2

√
x, while the second derivative is negative over [0,∞), yielding the global maxima

at (2u/3v)2, with the maximum evaluating to 4u3/9v2 − 8u3/27v2 = 4u3

27v2 . Setting u = (1 − 2δ), v = (1 + 1/
√
2)(Γ + ε), this

evaluates to 4
27

· (1−2δ)3

(1+1/
√
2)2(Γ+ε)2

.
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