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Abstract

In the last decade, reinforcement learning has successfully solved complex control tasks
and decision-making problems, such as the Go board game. Yet, there have been few
success stories in deploying these algorithms to real-world scenarios. One of the reasons
is the lack of guarantees when dealing with and avoiding unsafe states, a fundamental
requirement in critical control engineering systems. In this paper, we introduce Guided
Safe Shooting (GuSS), a model-based reinforcement learning approach that can learn to
control systems with minimal violations of the safety constraints through a MAP-Elites based
planner. Experiments show that the new planner helps the agent avoid unsafe situations
while maximally exploring the state space, a necessary aspect when learning an accurate
model of the system.

1 Introduction

Initial state In-model planning phase Trajectory execution

Figure 1: An illustrative example of planning with a model on the Acrobot environment. The agent controls
the torque on the first joint with the goal of getting its end effector as high as possible, avoiding the unsafe
zone (red area). Starting in the rest position (left) the agent uses its model to find the best plan (middle)
that will maximize the reward while satisfying the safety constraint and execute it on the real system (right).

In recent years, deep Reinforcement Learning (RL) solved complex sequential decision-making problems in a
variety of domains, such as controlling robots, video and board games Mnih et al. (2013); Andrychowicz et al.
(2020); Silver et al. (2016). However, these achievements have largely been limited to simulated environments.
The practical application of RL solutions to real-world systems remains a challenge. The fundamental
principle of RL involves learning through trial and error to maximize a reward signal Sutton & Barto (2018).
This approach requires unrestricted access to the system for exploration and action execution, which can lead
to undesirable outcomes and safety risks. For instance, consider the task of optimizing the control strategy
for a data center cooling problem Lazic et al. (2018). During the learning process, an RL algorithm may
inadvertently cause high temperatures, thereby affecting and potentially damaging the system. Safety is also
crucial in robotics, where unsafe actions can pose risks to both the robot and humans. Addressing this issue,
known as safe exploration, is a central problem in Al safety Amodei et al. (2016).

With the long-term goal of deploying RL algorithms on real engineering systems, it is imperative to overcome
those limitations. A straightforward way to address this issue is to develop algorithms that can provide
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guarantees with respect to constraints, such as safety, to ensure the integrity of the system. Going towards
this goal, in this paper we introduce GuSS, a safe Model Based Reinforcement Learning (MBRL) algorithm
that learns a model of the system and uses it to plan for a safe course of actions through Model Predictive
Control (MPC) Garcia et al. (1989). GuSS learns the model of the system in an iterated batch fashion
Matsushima et al. (2021); Kégl et al. (2021), allowing for minimal real-system interactions. This is a desirable
property for safe RL approaches, as fewer interactions with the real-system mean less chance of entering
unsafe states, a condition difficult to attain with model-free safe RL methods Achiam et al. (2017); Ray et al.
(2019); Tessler et al. (2018). Moreover, by learning a model of the system, this allows flexibility and safety
guarantees as by using the model we can anticipate unsafe actions before they occur. Fig. 1 illustrates this
concept, where the agent uses the model’s dynamics to perform ’'mental simulation’ and select a plan that
achieves its goal while avoiding unsafe zones. This contrasts with many of the methods in the literature that
address the problem of finding a safe course of action through Lagrangian optimization or by penalizing
the reward function Webster & Flach (2021); Ma et al. (2021); Cowen-Rivers et al. (2022). GuSS avoids
unsafe situations by discarding trajectories that are deemed unsafe using the model predictions. Within this
framework, we propose a novel planner based on the Quality-Diversity (QD) algorithm MAP-Elites (ME)
Mouret & Clune (2015). The planner generates, evaluates, and selects the best action to apply on the system
with respect to their safety and reward. Planning with a QD-based method provides the agent with the
ability to explore a wide range of possible actions, which is crucial in safe RL where a trade-off between
reward and safety must be found. This approach leads to a safer and more efficient search, covering a larger
portion of the state space while discovering safer plans.

We evaluate GuSS on three different environments, demonstrating its ability to find strategies that achieve
high rewards with minimal costs, even in scenarios where these metrics are conflicting, such as the Safe
Acrobot environment. Moreover, we evaluate the exploration performance of our agent in an environment in
which good exploration is fundamental to safely solve the problem, showing how, thanks to QD, GuSS can
generate better and safer plans compared to commonly used approaches.

In summary, the contributions of the paper are twofold:

e We propose the use of QD methods like ME as planning techniques in MBRL approaches;

e We introduce GuSS, an algorithm that, by safely planning through ME, can efficiently learn to avoid
unsafe states while quickly optimizing the reward.

2 Related Work

Some of the most common techniques for addressing safety in RL involve solving a Constrained Markov
Decision Process (CMDP) Altman (1999) through model-free RL methods Achiam et al. (2017); Ray et al.
(2019); Tessler et al. (2018); Hsu et al. (2021); Zhang et al. (2020). A popular approach to solve the
CMDP is through Lagrangian-based methods, which transform the constrained optimization problem into
an unconstrained form Ray et al. (2019). Another well-known method is Constrained Policy Optimization
(CPO) Achiam et al. (2017), which adds constraints to the policy optimization process in a way similar to
Trust Region Policy Optimization (TRPO) Schulman et al. (2015). A similar approach is taken by Projected
Constrained Policy Optimization (PCPO) Yang et al. (2020a) and its extension Yang et al. (2020b). The
algorithm works by first optimizing the policy with respect to the reward, then projecting it back onto the
constraint set in an iterated two-step process. A different strategy involves storing all the “recovery” actions
that the agent took to leave unsafe regions in a separate replay buffer Hsu et al. (2021). This buffer is then
used whenever the agent enters an unsafe state by selecting the most similar transition in the safe replay
buffer and performing the same action to escape the unsafe state.

Model-free RL methods need many interactions with the real-system in order to collect the necessary data for
training. This can be a significant limitation in situations where safety is critical, as increasing the number
of samples increases the probability of entering unsafe states. MBRL addresses this issue by learning a
model of the system that can then be used to learn a safe policy. This allows for increased flexibility in
dealing with unsafe situations, particularly when safety constraints change over time. There are several
works that use MBRL to tackle safety. A common approach is to rely on Gaussian Processes (GPs) to model
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the environment and use the dynamics model’s uncertainty to guarantee safe exploration Berkenkamp et al.
(2017); Cowen-Rivers et al. (2022). While GPs allow for good representation of the dynamics uncertainty, their
usability is limited to low-data, low-dimensional regimes with smooth dynamics Kuss & Rasmussen (2003). A
common alternative to GPs is the use of ensemble networks Webster & Flach (2021); Liu et al. (2020) which
scale better. The learned dynamics model can then be used to learn a safe policy. In SAMBA Cowen-Rivers
et al. (2022), the authors rely on a modified version of the soft-actor critic algorithm by including the safety
constraint with Lagrangian multipliers. Thomas2021 use an automatic reward shaping approach, which
eliminates the need for a separate cost function and falls back into a classical MDP formulation that is solved
with SAC trained on the model.

A different approach adopted in the control community is to rely on MPC to select the safest trajectories
with a learned or given model in closed-loop fashion Wen & Topcu (2018); Liu et al. (2020); Zanon & Gros
(2020). For example, the work of Koller2018 uses the propagation of uncertainty to recursively guarantee the
existence of a safe trajectory that satisfies the constraints of the system. The authors of Uncertainty Guided
Cross-Entropy Methods (CEM) Webster & Flach (2021) extend PETS Chua et al. (2018) by modifying the
objective function of the CEM-based planner to avoid unsafe areas. In this setting, an unsafe area is defined
as the set of states for which the ensemble of models has the highest uncertainty. Vlastelica2021 relies on
CEM to perform MPC zero-order trajectory optimization. The authors use a technique inspired by PETS
Chua et al. (2018) by using predictions particles sampled from the probabilistic models and randomly mixed
between ensemble members at each prediction step. In this way, the sampled trajectories are used to perform
a Monte Carlo estimate of the expected trajectory cost to estimate the uncertainty of the dynamics.

3 Background

In this section, we introduce the concepts of safe RL and QD algorithms on which our method builds.

3.1 Reinforcement learning (RL) and safe RL

Episodic reinforcement learning problems are usually represented as a Markov decision process (MDP)
M = (S, A, preal, R, T), where S is the state space, A is the action space, preal : S x A~ S is the transition
dynamics, R:S x A - R is the reward function, and 7" € N* is the length of the episode. The state vector
st = (s},.. .,sfs) contains dg numerical or categorical variables, measured on the system at time ¢. The
action vector a; contains d, numerical or categorical action variables. Given a (deterministic or stochastic)
control policy 7 : § ~ A, we can roll out the policy 7 and the system dynamics p,ca to obtain a trace or
trajectory T = ((31, ai),...,(sr, aT)) by repeatedly applying a; «~7(s;) and observing s¢+1 «~ Preal (S, ).
The performance of the policy is measured by the mean reward MR(T) = % Zg;l R(s¢,a;). The goal of RL
is to find a policy which maximizes the expected mean reward:

7" =argmax Bz (x p...) IMR(T)} (1)

To incorporate constraints (for example representing safety requirements), we define a cost function C': Sx.A —
R which, in our case, is a simple indicator for whether the system entered into an unsafe state (C(s,a) =1 if
the state s is unsafe and C(s, a) = 0 otherwise). With this definition, the mean cost MC(T") = = YL, C (s, ay)
is an estimate of the probability of being in an unsafe state. The new goal is then to find a policy 7 in the
policy set IT with high expected reward E7.(x ...y IMR(T)} and low safety cost Bz (xp....) IMC(T)}.
One way to solve this new problem is to rely on constrained Markov decision processes (CMDPs) Altman
(1999) by adding constraints to the expectation La & Ghavamzadeh (2013) or to the variance of the return
Chow et al. (2017). CMDP is based on MDP, in which the additional constraint set C' = {(Cy,1;)}1?; is
considered, where each Cj is a cost value functions, and [; the associated safety constraint bound. The feasible

policy set II, that can satisfy the safety constraint bound is as follows:

I, = N2y {7 eI and C;(~7) <I;} (2)

We use ~» and «~ to denote both probabilistic and deterministic mapping.
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The new objective to the CMDP can be seen as finding the best policy 7 in the space of considered safe
policies II.:
7 = arg m%X{MR('T)} (3)
mell,

The hard constraint imposed with the safety constraint bound I; can be in some applications difficult to tune.
When safety is critical (integrity of the system) the safety constraint has to be strict (I; = 0) to ensure no
violation at all as it can break the system. For many others applications such critical safety constraint can be
relaxed. For example, in a robot navigation task, safety can be defined as the number of collisions. While
ideally we would like to have zero collisions, in practice we can accept some violations. One requirement
for this setting is to ensure that all environment are ergodic MDPs Hutter (2002) which guarantee that any
state is reachable from any other state by following a suitable policy. In this setup, safety violations can be
accepted as at any time-step t it is possible to recover a safe policy.

Algorithm 1: Iterated Batch Model Based RL

INPUT: real-system p,ea1, number of episodes IV, number of plans for planning step n, planning horizon
length h, episode length T, initial random policy 7°

RESULT: learned model p(-) and planner

Tr=92 // Initialize empty trace collection
80 « Preal // Sample initial state from real system
for ¢t in [0, ..., T] do
a; “WO(St) // Generate random action
St+1  Dreal(St, Q) // Apply action on real system
Tr=TrU(s,a) // Store transition in trace collection
for 7 €[1,...,N] do
P« TRAIN(ﬁ(T‘1)7Tr) // Train model on collected traces
for tin [0, ..., T] do
ag'r) «PLAN(ﬁ(T),ng),th) // Use planner to generate next action
352 «preal(siﬂ,a,f”) // Apply action on real system
TT=TTU(S§T),G,§T)) // Store transition in trace collection

3.2 Model-based reinforcement learning with MPC

In this work, we address safety using an MBRL approach Moerland et al. (2021) based on MPC. This
approach approximates the problem in Eq.(3) by repeatedly solving a simplified version of the problem
initialized at the currently measured state s; over a shorter horizon h in a receding horizon fashion. The
MPC scheme relies on a sufficiently descriptive transition dynamics of the system to optimize performance
and ensure constraint satisfaction. In this setting, the transition dynamics p,ea) is estimated using the data
collected when interacting with the real system. The objective is to learn a model p(s;,a;) ~» 841 to predict
S¢41 given s; and ay and use it to plan in order to optimize a given performance metric. In this work, we
consider iterated batch MBRL (also known as growing batch Lange et al. (2012) or semi-batch Singh et al.
(1995)). In this setting (Alg. 1), the algorithm starts with an initial random policy 7(®). Then, in an iteration
over 7 =1,..., N, it updates the model p(™) in a two-step process of (i) performing MPC on the real system
Preal for a whole episode to obtain the trace 7(7) = ((ng),agT)), ey (s(TT),a(TT))), (ii) training the model
(™) on the growing transition data 77 = UT,_, T collected up to iteration 7 2. The process is repeated
until a given number of evaluations N or until a performance is reached. While the system model is a core
element of MPC, learning a good controller (i.e policy) also has a major influence on the resulting closed-loop
performance. One way to see the MPC controller is as a search problem where at each time-step ¢t we produce
a set of possible policies II,,, and evaluate them according to our performance criteria ( in our case reward and
safety). This is possible because it is cheap to evaluate each policy with R and C' and rank them according to

2In order to keep notation light, we will omit the superscript (7) when it is clear to which episode the tuple (ng),aY—))
belongs.
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Algorithm 2: Safe QD planning

INPUT: model p, current real-system state s, planning horizon h, evaluated action sequences M,
discretized behavior space B, number of initial policies n, number of policies per iteration ne.,, policy
parameter space ®

RESULT: action to perform a;

AvME = @ // Initialize empty collection of policies
'® « SAMPLE(®,n) // Sample initial m policies from ¢
for ¢; e (9 do
Ri,C’i,'ﬁ:ROLLOUT(ﬁ, St, di, h) // Evaluate policy on the model
bi = f(¢:,T5) // Calculate policy behavior descriptors
AuE < STORE(Ayg, ¢4, bi, Ri, Cs, B) // Update collection
while M not depleted do
N2 <« SELECT(AME, "new, P) // Select nye, policies
for ¢; e ') do
@' =¢;+e€, with e~ N(0,0.05) // Add noise to policy parameters
R'.C", T = ROLLOUT(p, s;,¢', h) // Evaluate policy on the model
b =f(¢'\T) // Calculate policy behavior descriptors
Aume < STORE(Ayg, ¢/, 0, R, C", B) // Update collection
I < Ayg[min C] // Get policies with lowest cost
®best < e[max R] // Get policy with highest reward
at « Ppest (S¢) // Get next action

our criterion. With a good planner that spans the search space we can expect to have II, € II,,,. The optimal
policy 7 € II,, is the one such that there is no other policy #’ with a lower MC(7") and higher MR(7") Ray
et al. (2019).

3.3 Quality diversity and MAP-Elites

QD methods belong to the family of Evolution Algorithms (EAs) and are designed to achieve two goals
simultaneously: generating policies that exhibit diverse behaviors and achieving high performance Pugh et al.
(2016); Cully & Demiris (2017). Each policy is parametrized by ¢; € ® and is executed on the system, resulting
in a trajectory 7;. The trajectory is then mapped to a behavior descriptor b; € B through an associated
behavior function: f(7;) =b; € B. The space B is a hand-designed space in which the behavior of each policy
is represented. By maximizing the distance of the policies in this space, QD methods can generate a collection
of highly diverse policies that is then returned as output of the algorithm. We select the ME algorithm
Mouret & Clune (2015) from the range of QD methods Lehman & Stanley (2011); Mouret & Clune (2015);
Paolo et al. (2021) due to its simplicity and effectiveness. ME operates by discretizing the behavior space B
into a grid B and searching for the best policies whose discretized behaviors fill up the cells of the grid.

4 Guided safe shooting

This section explains in detail how GuSS works by first describing the training of the learned model and then
how the safe-planning process is carried by the QD planner. The code of all the algorithms and experiments
is available at <URL hidden for review>.

4.1 The learned system model

The goal of model learning in MBRL is, in each iteration 7, to learn p{™) : (8¢,a¢) ~> 8¢41 from the collected
traces Tr =U%_, T(7) (Alg. 1). As model class we use autoregressive (DARMDN) and non-autoregressive
mixture density nets (DMDN) Bishop (1994), that have recently been used in multiple works Kégl et al.
(2021); Chua et al. (2018); Wang et al. (2019). Both are neural nets, outputting parameters of Gaussian
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Algorithm 3: STORE function of safe planner

INPUT: collection of policies Ay, policy parameters ¢, discretized policy behavior descriptor b, policy
reward R, policy cost C, discretized behavior space B

RESULT: updated policy collection Ayg

if B[b] = @ then

/* If no policy with similar behavior descriptor has been found */

Ak = Ave U(6,b,C, R) ; // Add policy to collection
else

(¢',b,C",R") « Ayg[b] ; // Get policy with similar behavior from A

if (C<C") or(C=C"& R>R') then

| Aug = (Aue - (¢/,0,C", R"))U($,b,C, R) ; // Replace ¢’ with ¢ in Aug

distributions, conditioned on the previous state and action. In DARMDN, we learn d° autoregressive deep
neural nets pg(st,|stiy,. .., 5551, 8¢, a¢), £ =1,...,d°, outputting a scalar mean and standard deviation for
each dimension of the state vector. DMDN learns a single spherical d°-dimensional Gaussian, outputting a
mean vector and a standard deviation vector. Both models are trained to maximize the likelihood on the
training data UZ,_, 7(7). We choose DARMDN for smaller dimensional systems and DMDN for SafeCar-Goal.
The models are trained by optimizing the negative log likelihood loss:

L= Es,a,s’~7’ {_ZOQN(S,; s+ /19(3’ a’)7 Z(Sv a))}’ (4)

where (s,a) = (st,a;¢) and s’ = s;11. All hyperparameters were tuned on static data generated from a random
policy and kept unchanged for all episodes.

Algorithm 4: SELECT function of safe planner

INPUT: collection of policies Ayg, number of selected policies n,¢., policy parameter space ®
RESULT: set of selected policies T’

I = Aug[nnew, C = 0] // Select ngew policies with C'=0 from collection
if |T| < Npew then
| T'=TUSAMPLE(®, || - npew) // Sample missing policies from @

4.2 Model-based safe quality-diversity

One of the main contributions of this paper is the application of QD in a learned model, enabling the use of this
powerful technique in scenarios where system access is costly in terms of resources and safety. In our approach,
the QD planner (Alg. 2) is invoked by GuSS at each time step ¢ to generate the action a; for the system.
The planner begins by initializing a pool of n planning policies, denoted as ro = [¢i];. In our case, these
policies are represented by neural networks with random weights. These policies are evaluated on the learned
model p for a duration of h timesteps, starting from the current state of the real system s;. The evaluation
process produces a reward R;, a cost C;, and a trace of simulated states T = ((s¢,a0), ..., (st +h,ap)) for
each policy ¢;. To map the trace to the policy’s discretized behavior descriptor, we employ a hand-designed,
environment-specific behavior function f(-), resulting in b; € B. Finally, the evaluated policies are stored in
the collection Apg through the STORE function (Alg. 3). This is a fundamental part of the planner as it
is here that the policies’ safety comes into play in the evaluation. When a policy ¢; with a unique discrete
behavior descriptor is encountered, the tuple (qbi,l;i, C;, R;) is directly added to the collection. However, if
another policy ¢; with Bj = b; already exists in the collection, only the better of the two policies is retained.
Note that in this context the "better policy" refers to the one with the lowest cost. In the case of the two
policies having the same cost, the one with the highest reward is stored. This strategy allows the generation
of a low-cost and high-reward collection of policies that can then be used to generate the next action at the
end of the planning episode.

The planner then starts an iteration of multiple evolutionary generations until a total of M planning policies
have been evaluated. In each generation g, a pool I'9) of n,,.,, policies with cost C' = 0 are uniformly sampled
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from Ayg through the SELECT function (Alg. 4). If not enough policies with zero cost are present in the
collection, additional policies with random weights are included in (9 until its size matches ng,e,. This
facilitates increased exploration, aiding in the discovery of safer planning policies. The parameters of the
policies in T'¥) are then perturbed by adding Gaussian noise € ~ N (0,0.05) to generate new policy parameters,
denoted as ¢’ = ¢; + e. The new policies are evaluated on the model and stored in the collection using the
STORE function. Once a total of M policies have been generated, a pool I'j. consisting of policies with the
lowest cost is selected from Ayg. Among these policies, the one with the highest reward is chosen as the
final policy to generate the next action for application on the real system, i.e., a; = Ppest (St)-
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Figure 2: (a) Toy environment. The agent has to navigate from Start to Goal without traversing the unsafe
areas in gray. (b) Percentage of safe plans at each step. (¢) Total amount of the safe space explored through
safe plans. (d) Average performance of the algorithms. The results show the mean over 10 seeds, shaded
areas represent one standard deviation.

5 Experiments

5.1 Exploration

In this section, we test our safe planner on a toy environment (Fig. 2.(a)) to highlight the importance of safe
exploration in safety-critical tasks and analyze the performance of our algorithm. The environment is designed
to require a significant amount of safe exploration to reach the goal. The agent must move from Start to
the Goal by observing its current position, s = (x,y), and performing actions, a@ = (65, ,) € {-1,0,1}, which
control the (z,y) movement at the next time step. At each time step, the reward is given by the negative
distance between the agent and the goal, r(s,a) = —||s — 84041]|?, While the cost is equal to c(s,a) = 1 if the
agent is in the unsafe areas and to ¢(s,a) = 0 otherwise. Each algorithm has an evaluation budget of N =500
plans with a planning horizon H = 50. The behavior space used by GuSS is the plans’ final (z,y) position.
We compare our method against three other planners: CEM Chua et al. (2018), RCEM Liu et al. (2020) and
Safe Random Shooting (S-RS). The first one does not take into account the safety constraints while the other
two do, with S-RS being a random-shooting planner that rejects all plans with safety violations.

To decouple the performance of the planners from the performance of the model, we perform no model
learning and instead use a perfect model to evaluate the plans. The evaluation is performed for a single
episode of length 7" =100 over 10 random seeds. The exploration is evaluated as the percentage of safe plans
generated at each step (Fig. 2.(b)) and the amount of safe space covered by the generated safe plans (Fig.
2.(c)). This last metric is calculated by dividing the space into a 50 x 50 grid and counting the percentage of
cells in the safe space visited by safe plans. We can see that GuSS performs better than the other approaches
in both metrics (p < 1.8e —4), generating a high percentage of safe plans while exploring a large portion of
the safe state-space. This advantage is also reflected in the high reward with zero cost that GuSS can obtain
(Fig. 2.(d)). At the same time, the two other safe planners (RCEM and S-RS) explore a very low percentage
of the safe space, never discovering the narrow path that leads to the goal. The only other planner obtaining
high rewards is the unsafe CEM. This is achieved by directly traversing the unsafe areas, as can be seen by
the percentage of safe plans dropping to 0% in Fig. 2.(b) before going up again once the agent leaves the
unsafe zone.
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Table 1: Summary of the different methods on the three different environments. All the metrics are average
over all epochs and seeds and | and 1 mean lower and higher the better, respectively. The best safe methods
with respect to each metric are highlighted in bold. All + values are 90% Gaussian confidence interval.

Method MAR 1t MRCPx10% | p(unsafe)[%] | p(unsafe)irans[%] |
Safe Pendulum 7, = —2.5
S-RS -2.09 £+ 0.09 207 +1.21 0.31 +0.55 1.11 £ 1.12
GuSS -2.2 +£0.16 1.7 +0.88 0.68 +0.59 0.68 + 0.65
Safe-MBPO -3.38 +0.38 7.1 +0.61 0.61 +0.79 1.56 + 0.83
RCEM -6.12 +£0.10 - + - 0.73 +0.63 0.94 + 0.52
RS 2.7 +£0.14 243 +£1.03 1.49 +0.96 1.26 + 0.49
CEM -2.99 £0.15 157 +0.36 1.57 +0.80 1.67 £ 0.43
CPO -6.31 +£0.03 22 + 0.0 1.72 +0.80 1.61 + 0.72
PPO lag -5.47 +£0.04 138 +34 3.36 +1.25 2.63 + 0.85
Safe Acrobot rip, = 1.6
S-RS 1.4 +0.05 1.6 + 0.21 1.23 +1.24 0.85+ 1.09
GuSS 1.64 +0.01 1.36 + 0.25 1.56 +1.45 3.24 + 2.51
RCEM 1.67 +0.01 1.6 + 0.37 221 +£1.53 2.03+1.73
RS 2.06 +0.01 1.33 +0.25 20.94 + 8.86 4.08 + 3.61
CEM 2.09 +0.02 1.40 +0.43 20.07 +9.11 3.00 + 2.90
CPO 0.87 +0.01 &7 + 59 5.09 + 1.66 3.83 +2.20
PPO lag 0.93 +0.01 26 +4 3.82 +1.87 4.37 £ 2.19
SafeCar-Goal 15, = 10
S-RS -0.29 +£0.22 - + - 0.69 +1.04 0.49 + 0.83
GuSS 11.96 + 0.71 48.17 +13.69 2. + 1.96 217+ 2.44
Safe-MBPO -17.92 +1.13 - + - 1.54 + 3.50 2.93 + 3.29
RCEM -1.38 +£0.15 - + - 0.40 + 0.52 0.60 £ 0.58
RS -0.43 +0.18 - + - 0.63 +1.09 0.51 + 0.65
CEM 3.87 +£0.72 60 + 6.41 1.49 +1.89 1.11 + 1.49
CPO 3.95 +£0.09 246 +£136.4 045 =+0.81 0.37 £ 0.52
PPO lag 536 +0.1 256 £ 87 0.56 +1.05 0.35+ 0.43
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Figure 3: Mean reward and probability percentage of unsafe for the three test environments. Dashed curves
indicate Model-free baselines and plain one Model-based approaches. The red dashed line indicates the
random unsafe probability. All curves represent the mean over 6 random seed.

5.2 Environments

We evaluated the performance of GuSS on three different OpenAl gym environments with safety constraints:
pendulum swing-up, Acrobot with discrete actions and SafeCar-Goal from the safety-gym environment Ray
et al. (2019). In designing the environments, we followed previous work Cowen-Rivers et al. (2022); Ray
et al. (2019) with the exception of SafeCar-Goal, for which we used the original version by Ray2019 with the
position of the unsafe areas randomly resampled at the beginning of each episode. Moreover, we use lidar
observations rather than the robot position. Each environment can be seen as an ergodic MDP so at each
safe time-step it is possible to recover a safe policy.

5.3 Results

We compared GuSS against various baselines to determine how much different the performances of safe
MPC methods are in comparison to unsafe ones. We compared against RS Nagabandi et al. (2018) , and
CEM Chua et al. (2018). We also choose two recent safe MBRL approaches: Safe-MBPO Thomas et al.
(2021), and RCEM Liu et al. (2020), together with the simple S-RS planner. Additionally, to demonstrate
the sample efficiency of model-based approaches, we compared against two safe model-free baselines: CPO
Achiam et al. (2017), PPO Lagrangian; all of which come from the Safety-Gym benchmark Ray et al.
(2019).

The algorithms were compared according to four metrics: Mean Asymptotic Reward (MIAR), Mean Reward
Convergence Pace (MRCP), Probability percentage of unsafety (p(unsafe)[%]) and transient probability
percentage of unsafety (p(unsafe)[%]:rans).- The details on how these metrics are calculated are defined
in the Appendix. The MAR scores and the p(unsafe)[%] for the pendulum system, Acrobot system and
SafeCar-Goal environment are shown in Fig. 3 and in Table 1. The results on the three environments show
that the increased exploration provided by GuSS allows it to solve the task without incurring in high costs.
On the pendulum system, while Safe-MBPO (p < 5e — 7) reaches the highest reward, it needs many more
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episodes than GuSS. At the same time, GuSS and S-RS reach similar high MAR (p = 7.43e - 2) and low
cost (p=1.64e —1). The other approaches (RCEM, CPO and PPO langrangian) have instead much lower
rewards than GuSS (p < 5.5e¢ — 17), and fail at solving this simple environment. As expected, on the Acrobot
system, safe methods cannot reach the highest MAR scores possible due to the safety constraints blocking
the high-rewarding states. GuSS outperforms the simple S-RS method in terms of MAR (p < 3e - 6) but
has a slightly lower MAR than RCEM (p < le —4). At the same time, the three algorithms have similar low
cost (p>0.5). On this environment as well, the two model-free approaches reach lower MAR scores than the
model-based ones (p < Te — 14) with higher costs (p < 8¢ —3) and a much higher number of system access
steps. Note that Safe-MBPO has not been tested on this environment as Safe-MBPO’s SAC only works on
continuous action spaces. The advantage of using a QD-based planner compared to simpler ones as S-RS and
RCEM is clear from the results on the hardest of the three environment: SafeCar-Goal. GuSS is the only
safe-MBRL method to solve the environment and even outperform model-free and unconstrained approaches
in terms of MAR, (p < 1.75¢ — 8), with Safe-MBPO fails completely in reaching any of the goals. At the same
time, all the tested algorithms have shown no statistically significant differences from the point of view of the
cost.

6 Conclusion and Future work

In this study, we proposed GuSS, the first model based planning method using QD methods for safe
reinforcement learning. QD algorithms are methods explicitly designed to provide good exploration. We
leverage this property to design a safe planner for GuSS. We demonstrated the necessity of safe exploration
in safety-critical settings by comparing our planner to three other (safe and unsafe) planners in a simple toy
environment. Only the QD-based safe planner consistently solved the toy environment, achieving high rewards
and no cost thanks to maximally exploring the safe space. We further demonstrated on three benchmark
environments with safety constraints how GuSS compares favorably with state-of-the-art model-free and
model-based safe algorithms in terms of the trade off between performance and safety, while requiring minimal
computational complexity. Especially on SafeCar-Goal, GuSS is the only method that manage to solve the
environment.

In conclusion, Guided Safe Shooting (GuSS), demonstrates promising results in balancing performance and
cost in safety-critical reinforcement learning environments. However, the performance of GuSS is dependent
on the accuracy of the model used. If the model is wrong, it could easily lead the agent to unsafe states.
In future work, we will work on incorporating model uncertainty with QD to inform the agent about the
risk of its actions to reduce unsafe behavior during the model learning phase. Additionally, the need to
hand-design the behavior space in QD-based algorithms limits the range of applicability. While some works
have been proposed to address this issue Cully (2019); Paolo et al. (2020), how to autonomously build such
space still remains an open question. Having an algorithm that could learn both a model of the system and a
good representation for the behavior space of its planner would likely greatly improve the performance and
efficiency of such methods.
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