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ABSTRACT

The deep Q-learning architecture is a neural network composed of non-linear hid-
den layers that learn features of states and actions and a final linear layer that learns
the Q-values of the features. The parameters of both components can possibly di-
verge. Regularization of the updates is known to solve the divergence problem of
fully linear architectures, where features are stationary and known a priori. We
propose a deep Q-learning scheme that uses regularization of the final linear layer
of architecture, updating it along a faster time-scale, and stochastic full-gradient
descent updates for the non-linear features at a slower time-scale. We prove the
proposed scheme converges with probability 1. Finally, we provide a bound on
the error introduced by regularization of the final linear layer of the architecture.

1 INTRODUCTION

TheQ-learning algorithm, introduced in the seminal paper of Watkins & Dayan (1992), is a stochas-
tic semi-gradient descent algorithm that allows agents to learn to make sequential decisions towards
long term goals by learning the optimal state-action value function of a given problem. The rele-
vance of Q-learning in reinforcement learning (RL) cannot be overstated, as Q-learning with deep
neural networks sustains the biggest breakthrough the field has seen (Mnih et al., 2015).

We can cast a deep Q-learning architecture as a neural network that combines a non-linear com-
ponent of hidden layers, learning features of the input, and a final linear component that learns the
Q-values of the learned features, as depicted in Figure 1. Despite its merits, there is no guarantee
that Q-learning with function approximation architectures, even linear ones, converges to the de-
sired solution. In fact, divergence happens in well known examples where the parameters of the
approximator do not approach any solution, either oscillating within a window (Boyan & Moore,
1995; Gordon, 2001) or growing without bound (Tsitsiklis & Van Roy, 1996; Baird, 1995). There is
also evidence for convergence to incompetent solutions (van Hasselt et al., 2018).

Recently, the works of Carvalho et al. (2020), Zhang et al. (2021) and Lim et al. (2022) provided
insights on the role of regularization of the parameters and of theQ-values for stabilizingQ-learning
with linear function approximation and obtaining a provably convergent scheme. Under the light of
the architecture in Figure 1, their setting is one in which the features are stationary and known a priori
and only the final component is learned. In this work, we investigate whether a regularized version
Q-learning with linear function approximation schemes converge while features are non-stationary.

In Section 3, as a first result, we assume that the features are updated along a slower time-scale than
the final layer and that they converge, and prove that the final layer converges. Our setting and proof
are based on two time-scale stochastic approximation ideas. We also bound the distance between
the optimal Q-function, generally outside the span of the features, and the regularized solution.

Then, in Section 4, we investigate how we can learn the non-linear features along the slow time-scale
with provable convergence guarantees, thus verifying the assumption of the first result. We propose
three learning schemes that perform stochastic full-gradient descent on well defined loss functions
and are able to use a recent result from Mertikopoulos et al. (2020) to establish their convergence.

Putting our two results together, we obtain the first convergence result for stochastic semi-gradient
Q-learning schemes with non-linear function approximation. Our scheme is two time-scale, where
the final layer of a neural network is updated faster and learns regularized Q-values of non-linear
features that are updated slower and with stochastic full-gradient descent updates.
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Figure 1: A general deep Q-learning neural network architecture. The state-action pair inputs (x, a)
are fed to non-linear hidden layers that output features of the input ϕu(x, a). Then a linear activation
layer parameterized by v outputs the Q-values of (x, a) using the features. Usually, the architecture
is learned through performing stochastic semi-gradient descent updates on the Bellman error.

2 BACKGROUND

A Markov decision process M is a tuple (X ,A,P,R), where X is a finite set of states, A is a finite
set of actions, P is a set of transition probability distributions P (x, a) ∈ ∆(X )1 and R is a set of
bounded real-valued random variables, R(x, a) ∈ [−rmax, rmax], called the reward.

An agent interacts, discretely, with an environment described as a Markov decision process by ob-
serving the random state of the process Xt, performing a random action At and receiving a random
reward Rt ∼ R(Xt, At). The state of the process changes to Xt+1 and the interaction repeats. The
way the agent selects actions once it observes a state is prescribed by a policy π that, for each state,
is a probability distribution π(x) ∈ ∆(A).

For a given policy π, we measure the value of performing some action at some state through the
function Qπ : X × A → R. The Q-function, given a state-action pair (x, a), gives the expected
sum of rewards the agent receives throughout its interaction with the environment, after performing
action a in state x, then continuing choosing actions according to π, and considering a discount
factor γ ∈ [0, 1).

The Markov decision problem is the one of finding a policy π∗ such that, for every state, maximizes
the value of the best action. Such policy is known to exist (Puterman, 2005, Section 6.2). It may,
however, not be unique. While an optimal policy π∗ is not necessarily unique, the optimal value Q∗

is and verifies the fixed-point equation of the Bellman operator

Q∗(x, a) = E
[
R(x, a) + γmax

a′∈A
Q∗(X ′, a′)

]
, (1)

where X ′ ∼ P (x, a) and the expectation is taken with respect to X ′ and R(x, a). Additionally,
from Q∗ we can obtain an optimal policy π∗ by greedily choosing, for each state, the action with
highest Q-value. Consequently, we can solve the Markov decision problem by solving the fixed-
point equation above.

To solve equation 1, we can define a loss function h : RL → R such that

h(w) =
1

2
E
[(
R(X,A) + γmax

a′∈A
Qw(X

′, a′)−Qw(X,A)
)2]

, (2)

where Qw : X × A → R is a function approximator, for instance a neural network, and w ∈ RL

its parameters. Additionally, the expectation is taken with respect to a distribution over state, action,
next-state and reward transitions

(
X,A,X ′, R(X,A)

)
.

If we assume the off-policy target R(x, a) + γmaxa′∈AQw(x
′, a′) of equation 2 is fixed.2, we

obtain a stochastic semi-gradient descent scheme to minimize h. The resulting algorithm is called
Q-learning with function approximation and takes the form

wt+1 = wt + αt

(
rt + γmax

a′∈A
Qw(x

′
t, a

′)−Qw(xt, at)
)
∇wQw(xt, at)

where state-action samples (xt, at) ∼ µ, the data distribution µ ∈ ∆(X × A), next-states
x′t ∼ P (xt, at), rewards rt ∼ R(xt, at) and αt ∈ R+ is a learning rate.

1We use ∆(B) to denote the set of probability distributions over a set B.
2The technique is usually referred to as bootstrapping.
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3 LEARNING WITH NON-STATIONARY FEATURES

In our work, we consider parameterized functions as depicted in Figure 1. We observe that a state-
action pair (x, a) is the input, and is processed by non-linear features parameterized by u, ϕu.
Then, ϕu(x, a) is passed on to a linear layer parameterized by v. The output is Qv,u(x, a). In
our architecture, we use Qv,u : X × A → R such that Qv,u(x, a) = ϕu(x, a) · Projρ(v), where
Projρ : RK → Bρ maps v to a ball of radius ρ in RK that can be arbitrarily large. Projρ ensures
boundedness of the Q-values without requiring boundedness of the parameters. We refer to the
parameters of the final linear layer, v ∈ RK , as the final parameters, to the parameters of the non-
linear hidden layers, u ∈ RD, as the hidden parameters and to ϕu : X ×A → RK as the features.

In this section, we make the argument that learning the final parameters v at a faster time-scale than
the hidden parameters u allows us to decouple the convergence analysis of the two and consequently
establish that a regularized version of Q-learning with convergence guarantees for the stationary
features case, will also converge if the features are non-stationary but convergent. Specifically,
following Borkar (2008, Chapter 6), assuming the features change slower than the final layer allows
us to treat the former as being quasi-static from the point of the view of the latter, even though
both learning processes evolve simultaneously. We note that, in our analysis, we do not require,
necessarily, that the features learn through the same supervision signal as the final layer.

We define the Q-learning scheme of the final linear layer with the addition of ridge regularization of
the parameters, merging ideas from Lim et al. (2022) and Zhang et al. (2021).
Definition 1. In Q-learning with regularization, the final parameters are updated according to

vt+1 = vt + αt

(
rt + γmax

a′∈A
Qvt,ut

(x′t, a
′)− ξQvt,ut

(xt, at)
)
ϕut

(xt, at)− αtϵvt,

where ξ, ϵ > 0 are regularization hyper-parameters and the positive learning rates in {αt}t≥0 are
such that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞. We observe that if ξ = 1, ϵ → 0, and ρ → ∞, we

recover the original Q-learning with linear function approximation algorithm, which can diverge.

For our first result, let us assume the features are updated much slower than the final layer through a
stochastic approximation scheme with well-behaved noise. Formally, we assume the following.
Assumption 1. The hidden parameters u are updated according to

ut+1 = ut + βt
(
g(vt, ut) +Nt+1

)
,

where the vector field g : RK+D → RD is Lipschitz-continuous; the sequence of random
vectors {Nt}t≥0 has zero mean and finite variance; the learning rates in {βt}t≥0 are such that∑∞

t=0 βt = ∞,
∑∞

t=0 β
2
t <∞ and βt/αt → 0. We finally assume the sequence {ut}t≥0 converges,

i.e., that ut → u∗ for some u∗ ∈ RD.

In Sec.4, we propose three feature learning schemes that satisfy Assumption 1, i.e., specific choices
of g and N that are provably convergent. For now, we establish that Q-learning with regularization
converges with non-stationary convergent features.
Theorem 1. Suppose that Assumption 1 holds and moreover

(i) For all t ≥ 0, the distribution µ ∈ ∆(X ×A) and is such that (Xt, At) ∼ µ and are i.i.d.;

(ii) The architecture ϕ : RD ×X ×A → RK and is Lipschitz-continuous on the first argument;

(iii) For all u ∈ RD, the features ϕu are such that, for all (x, a) ∈ X ×A, ∥ϕu(x, a)∥ ≤ 1;

(iv) For all u ∈ RD, the features ϕu and the distribution µ are such that the K × K matrix
Σu := E

[
ϕu(X,A)ϕ

T
u (X,A)

]
is positive-definite and its minimum eigenvalue is σ.

Additionally suppose that the regularization parameter ξ > 1 is large enough, specifically that
ξ > γ

σ ; that ϵ > 0 is small enough, specifically that ϵ < ξσ − γ; and that the radius of the ball Bρ,
ρ > 0, is also large enough, specifically that ρ > rmax

ξσ−γ−ϵ .

Then, it holds that vt → v∗(u∗) w.p.1, with v∗ : RD → RK such that

v∗(u) =
1

ξ
Σ−1

u E
[(
R(X,A) + γmax

a′∈A
Qv∗(u),u(X

′, a′)
)
ϕu(X,A)

]
− ϵ

ξ
Σ−1

u v∗(u).
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Before we present the proof, we discuss Assumptions (i) to (iv) of Theorem 1.

While not necessary, Assumption (i) facilitates the formal analysis of the stochastic processes, as
well as its exposition in the document. Assumption (ii) allows us to use theoretical results on the
convergence of stochastic approximation processes, such as the ones of Borkar (2008, Chapter 6;
Theorem 2) and Mertikopoulos et al. (2020, Theorem 2). Assumption (iii) is important to the for-
mal analysis of the limiting ordinary differential equations, as well as to be assured of technical
requirements, such as Lipschitz continuity of the update. Specifically, since the Q-learning update
considered features products between v and u dependent quantities, the assumption ensures the ex-
pected update is Lipschitz-continuous. Finally, Assumption (iv) is used to guarantee existence of
solution to the limiting o.d.e., as well as to characterize such solution.

Proof. We present an outline of the proof, referring to the supplementary material for proofs of
auxiliary lemmas.

The Q-learning algorithm presented is a two time-scale stochastic approximation algorithm where
the fast component takes the form

vt+1 = vt + αt

(
f(vt, ut) +Mt+1

)
, (3)

with f : RK+D → RK the expected update

f(v, u) = E
[(
R(X,A) + γmax

a′∈A
Qv,u(X

′, a′)− ξQv,u(X,A)
)
ϕu(X,A)

]
− ϵv

and Mt ∈ RK its noise.

Borkar (2008, Chapter 6; Theorem 2) provides conditions under which the stochastic process above
converges. The conditions include that f is Lipschitz andMt+1 is a martingale-difference sequence,
which we show through Lemmas 1 and 2, respectively. In addition, Lemma 3 establishes that, for
each u ∈ RD, the ordinary differential equation (o.d.e.)

v̇t = f(vt, u)

has a unique globally asymptotically stable equilibrium v∗(u), using a Lyapunov argument. Since
we show using Lemma 4 that, additionally, the iterates remain bounded, we conclude through
Lemma 5 that they converge to the equilibrium w.p.1.

We finish this section by providing a bound on the solution obtained by the Q-learning scheme
considered and the optimal solution.

Let us denote the optimal Q-function by Q∗, which exists and is unique and is generally outside the
linear space generated by the features ϕu∗ . Let us define the orthogonal projection of Q∗ into such
linear space as the operator Φu∗ such that (Φu∗Q)(x, a) = ϕTu∗(x, a)Σ−1

u E
[
ϕ(x, a)Q(x, a)

]
. We

can think of Φu∗Q∗ as the best linear approximator of Q∗. Unfortunately, such approximator is, in
general, not reachable through Q-learning.

Using w∗ to jointly denote the parameters v∗(u∗), u∗, we have the following result for the solution
Qw∗ otained by the regularized Q-learning scheme.

Theorem 2. Under Assumptions 1 and (i) to (iv) of Theorem 1, we have the following error bound
on Qw∗ :

∥Q∗ −Qw∗∥∞ ≤ ξσ

ξσ − γ
∥Q∗ − Φu∗Q∗∥∞ +

rmax(ξ − 1)

(1− γ)(ξσ − γ)
+ fϵ, (4)

where fϵ = ϵrmax
ξσ(σ−γ−1) ·

ξσ
ξσ−γ .

In equation 4, we observe the bound depends on the regularization, through the hyper-parameters ξ
and ϵ, and on the features, through σ and u∗. We can make ϵ → 0 and make fϵ arbitrarily small.
As for the second term, it disappears if ξ = 1 and the error then depends only on the best possible
solution for the given features, Φu∗Q∗. However, if ξ = 1, the Q-learning scheme may diverge.
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Proof. We have that

∥Q∗ −Qw∗∥∞ ≤ ∥Q∗ − Φu∗Q∗∥∞ + ∥Φu∗Q∗ −Qw∗∥∞.

Let us consider the second term on the right-hand side. We know thatQ∗ = HQ∗, usingH to denote
the Bellman operator, and that Qw∗ = 1

ξΦu∗HQw∗ + ϵ
ξΣ

−1
u∗ v∗(u∗) from the characterization of the

limit solution in Theorem 1. Then, we have that

∥ΦuQ
∗ −Qw∗∥∞ ≤ ∥Φu∗Q∗ − 1

ξ
Φu∗Q∗∥∞ +

1

ξ
∥Φu∗HQ∗ − Φu∗HQw∗∥∞ +

ϵ

ξσ
∥v∗(u∗)∥.

(5)

by means of the Cauchy-Schwarz and Jensen inequalities. For the first term on the right hand side
of equation 5, we can establish that

∥Φu∗Q∗ − 1

ξ
Φu∗Q∗∥∞ ≤ (1− 1

ξ
)∥Φu∗Q∗∥∞ ≤ rmax(ξ − 1)

ξσ(1− γ)
.

For the second term on the right hand side of equation 5, we have that

1

ξ
∥Φu∗HQ∗ − Φu∗HQw∗∥∞ ≤ γ

ξσ
∥Q∗ −Qw∗∥∞.

Finally, for the third term on the right hand side of equation 5, we start by noting that

∥v∗(u∗)∥ ≤ 1

σ

(
rmax + γ∥v∗(u∗)∥∞

)
− ϵ

ξσ
∥v∗(u∗)∥∞.

Equivalently, for the third term on the right hand side of equation 5 we have
ϵ

ξσ
∥v∗(u∗)∥ ≤ ϵrmax

ξσ(σ − γ)− ϵσ
.

Putting everything together, we conclude the result.

3.1 EXPERIMENTAL RESULTS

We illustrate our proposed learning architectures under three examples with converging features. In
all of them, the original Q-learning diverges while the proposed architecture does not.

LINEAR v → 2v EXAMPLE

In the v → 2v example of Tsitsiklis & Van Roy (1996) there are two states and a single action. The
first state always transitions to the second; the second state always transitions to itself. All rewards
are 0 and, consequently, so are the Q-values. We consider the features ϕu(x) = ψ(x) + u, where
ψ(x) is 1 for the first state and 2 for the second state and u ∈ R. We consider ut =

(−1)t

t → 0. We
divide the features by 2 in order to respect Assumption (iii). The desirable behavior of Q-learning
would be v → 0. Figure 2a shows the results. We can see that when ξ = 1 the parameter v diverges.
As ξ increases, learning is more stable. When ξ = 2, v converges to the desired solution v = 0.

STAR EXAMPLE

The star example of Baird (1995), slightly modified by Sutton & Barto (2018), has seven states and
two actions. One of the actions transitions to any of the first six states uniformly, the other action
transitions to the seventh state. All rewards are 0 and so are the Q-values. The behavioral policy
chooses the first action with probability 6

7 and the second action with probability 1
7 . Therefore, the

next state distribution is uniform. The target policy, however, always chooses the second action. For
the first six states, the state-features features are ϕu(x) = ψ(x) + u ∈ R8 where ψ(x) are 2 in the
x-th component, 1 in the eight component and 0 otherwise. For the seventh state, the features are
1 in the seventh component and 2 in the eight component. We consider again converging hidden
parameters ut = (−1)t( 1t ,

1
t ,

1
t ,

1
t ,

1
t ,

1
t ,

1
t ,

1
t ) → 0. We divide the features by

√
5 in order to

respect Assumption (iii). Figure2b shows the results obtained. When ξ = 1, the parameters v grow.
However, we see that as ξ increases, the final parameters v do not grow, as desired.
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(a) Linear v → 2v example.
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(b) Star example.

Figure 2: Experimental results on the linear v → 2v and star problems under non-stationary con-
vergent features for different values of regularization parameters ξ and fixed ϵ = 10−8. As the
regularization parameter ξ increases, Q-learning updates stabilize and the parameters v converge.
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(a) Final parameter v.
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(b) Hidden parameter u.

Figure 3: Experimental results on the non-linear v → 2v problem for different values of regular-
ization parameters ξ and fixed ϵ = 10−8. As the regularization parameter ξ increases, Q-learning
updates stabilize and the final parameters v converge. The hidden parameter u converges regardless
of the regularization parameter ξ, though the limit solutions are different for different values of ξ.

NON-LINEAR v → 2v EXAMPLE

We modify the v → 2v to a non-linear learning architecture. The Markov chain remains the original
from Tsitsiklis & Van Roy (1996), and so does the data distribution. We learn the linear features
with sigmoid activation function ϕu(x) = σ(ψ(x)u) with the final linear layer parameterized by v
and again ψ(x) = x. Then, we have Qv,u(x) = σ(ϕ(x)u)v. v = 0 recovers the correct Q-values.
In Figure 3a, we see divergence of the final parameter when ξ = 1 and convergence to the correct
solution when ξ = 1.5 and ξ = 2. In both cases the features converge, as can be seen is Figure 3b.

4 LEARNING NON-LINEAR FEATURES

Theorem 1 states that the regularized Q-learning scheme is convergent with features that are chang-
ing over time, throughout the learning process, as long as those features converge. We now present
three learning settings for the hidden layers that we can show to satisfy the assumption, i.e., three
learning setting under which convergence of the features is guaranteed.

We consider a D-times differentiable objective function h : RD → R. We want to find z∗ such that

z∗ = min
z∈RD

h(z).

6



Under review as a conference paper at ICLR 2023

The stochastic gradient descent scheme for solving the equation above takes the form
zt+1 = z + βt

(
∇zh(zt) + Yt+1

)
,

where the random variables Yt have zero-mean and bounded variance. We have the following result
from Mertikopoulos et al. (2020).
Theorem 3. Suppose that the function h is Lipschitz-continuous, Lipschitz-smooth, coercive and
not asymptotically flat. Then, we have that the set of critical points Z∗ := {z : ∇zh(z) = 0} is
non-empty. Further suppose that the random variables Yt have zero-mean and finite variance. Then,

zt → Z∗
∞ w.p.1,

where Z∗
∞ ⊆ Z∗ is a bounded connected component over which h is constant.

Theorem 3 provides general conditions under which the parameters of a stochastic approximation
scheme that is, particularly, stochastic gradient descent of a loss function h, converge to a bounded
region with constant value. While Q-learning is not true stochastic gradient descent and divergence
of the parameters is known to happen, it is possible to learn the parameters of the features through
stochastic full-gradient descent and obtain convergence guarantees. In the sequel, we propose three
such feature learning schemes. One of the proposed schemes is based on an unupervised learning
update; another is based on a semi-supervised learning update; the final is based on a reinforcement
learning update. In light of Theorem 3, all the proposed feature learning schemes are in accordance
with Assumption 1 and are thus guaranteed to converge. We note, however, that in order to guarantee
boundedness of the features, we should post-process them with a sigmoid final layer, σ : R → [0, 1]
such that σ(x) = 1

1+e−x , thus respecting Assumption (iii) of Theorem 1.

We define the generalized Huber loss H : RL → R such that H(l) = minp∈{1,2}
1
p ∥l∥

p
p is a

robust loss function in the conditions demanded by the theorem. The Huber loss considered is thus
the 2-norm if its input is close to the origin and the 1-norm otherwise. Additionally, we remark
that the finite linear combination and the finite composition of Lipschitz-continuous and Lipschitz-
smooth functions is also Lipschitz-continuous and Lipschitz-smooth. Finally, we note that ∇H(l) =
sign(l) if argminp∈{1,2}

1
p ∥l∥

p
p = 1 and ∇H(l) = l if argminp∈{1,2}

1
p ∥l∥

p
p = 2.

4.1 UNSUPERVISED LEARNING

We can learn a linear map that reduces the input space, linearly, through principal component analy-
sis. In the non-linear case, we can instantiate such learning using auto-encoder (Liou et al., 2014) or
variational auto-encoder (Kingma & Welling, 2014) architectures. Finally, constrastive learning has
also been used in feature extraction (Laskin et al., 2020). All these methods have no task information
but can still be powerful if dimensionality is an issue or we want to transfer learning across tasks or
even domains (Higgins et al., 2017). We focus here on the definition of a loss function over which
the stochastic gradient descent scheme is guaranteed to converge: the auto-encoder. Formally, the
auto-encoder performs stochastic gradient descent over the loss function

h(u, s) = E

[
H

(
κs

(
ϕu

(
ψ(X,A)

))
− ψ(X,A)

)]
,

where ψ(x, a) is an euclidean representation of (x, a) in RP . In the auto-encoder, an encoder ϕu :
RP → RK , u ∈ RD learns to map the features into a latent space and a decoder κs : RK → RP

learns to reconstruct the original input. The features ϕu can then be normalized and inputted to the
final layer of our regularized Q-learning scheme. The auto-encoder has been applied successfully in
reinforcement learning tasks (Lange et al., 2012).

In practice the stochastic gradient updates are as follows.

ut+1 = ut − βt∇uϕut

(
ψ(x, a)

)
∇κst

(
ϕut

(
ψ(x, a)

))
∇H

(
κs

(
ϕu

(
ψ(x, a)

))
− ψ(x, a)

)
st+1 = st − βt∇sκst

(
ϕu

(
ψ(x, a)

))
∇ϕut

(
ψ(x, a)

)
∇H

(
κs

(
ϕu

(
ψ(X,A)

))
− ψ(X,A)

)
.

The process of learning the final linear layer parameterized by v evolves concurrently as described
in Section 3. As long as βt is o(αt), convergence of both sets of parameters happens with probability
1 according to Theorem 3.
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4.2 SEMI-SUPERVISED LEARNING

We can also approach the feature learning problem in a semi-supervised way grounded in MDP
theory (Ferns et al., 2004). Specifically, instead of only learning to put together inputs that are close
to each other in the original space, we can learn to put them together if they are close to each other
in the Markov decision process. Bissimulation metrics (Ferns et al., 2011) give us a way to perform
such learning, by considering that state-action pairs are similar if they produce similar rewards and
lead to similar states. We can thus define the loss function

h(u) = E

[
H
(
H
(
ϕu(X,A)− ϕu(X̃, Ã)

)
−H(R− R̃)− γH

(
ϕu(X

′, ·)− ϕu(X̃
′, ·)

))]
and perform again stochastic gradient descent. The technique has also provided positive results in
practice, specifically when compared to unsupervised learning (Zhang et al., 2020).

In this semi-supervised setting, the stochastic gradient updates take the form

ut+1 = ut − βt

(
∇u

(
ϕut

(xt, at)− ϕut
(x̃t, ãt)

)
∇H

(
ϕut

(xt, at)− ϕut
(x̃t, ãt)

)
−

− γ∇u

(
ϕut

(xt, at)− ϕut
(x̃t, ãt)

)
∇H

(
ϕut

(xt, ·)− ϕut
(x̃t, ·)

))
∇H

(
H
(
ϕut

(xt, at)− ϕut
(x̃t, ãt)

)
−H(r − r̃t)−H

(
ϕut

(xt, ·)− ϕut
(x̃t, ·)

))
,

where (x̃t, ãt, x̃
′
t, r̃t) are sampled independent and identically distributed. Again, the learning

scheme used to update the hidden parameters u can happen alongside learning of the final linear
layer parameterized by v and convergence is guaranteed by Theorem 3.

4.3 REINFORCEMENT LEARNING

Q-learning assumes bootstrapped targets and thus makes only stochastic semi-gradient descent over
the loss function. In practice, that choice may produce good results but is often unstable. We
propose that we could learn the features through full stochastic gradient descent and learn the final
layer through the usual regularized stochastic semi-gradient descent scheme. The loss function
considered is

h(u, v′) = E
[
H
(
R+ γmax

a′∈A
ϕu(X

′, a′) · v′ − ϕu(X,A) · v′
)]
.

Recent work from Avrachenkov et al. (2021) proves that, often, the stochastic full gradient descent
over the loss function is able to perform competitively with the stochastic semi-gradient scheme.
The updates take the form

ut+1 = ut + βt∇H
(
rt + γmax

a′∈A
ϕut(x

′
t, a

′) · v′t − ϕut
(xt, at) · v′t

)
(
∇uϕut

(xt, at)v
′
t − γ∇u max

a′∈A
ϕut

(x′t, a
′)v′t

)
v′t+1 = v′t + βt∇H

(
rt + γmax

a′∈A
ϕut

(x′t, a
′) · zt − ϕut

(xt, at) · v′t
)

(
ϕut(xt, at)− γ∇v max

a′∈A
ϕut(x

′
t, a

′)v′t
)
.

For the gradient of the max operator, we may consider a smooth approximation parameterized by
α, maxα, such that maxα(v1, . . . , vn) =

∑n
i=1 vie

αvi∑n
i=1 eαvi

. As α→ ∞, maxα → max .

The hidden parameters u that are being updated can, at the same time, be used to learn the final
parameters v using the regular semi-gradient Q-learning update. In the regularized version of Q-
learning presented in Section 3, convergence happens (Theorem 3).

In practice, our proposed approach is halfway between the full-gradient and semi-gradient schemes
for reinforcement learning and is able to capture the stability of full-gradient schemes and optimality
of semi-gradient schemes. The additional computational and training costs are minimal. More
specifically, one additional linear layer of parameters z ∈ RK is required.
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5 RELATED WORK

There were initial efforts to provide stable Q-learning methods in the presence of function approx-
imation (Singh et al., 1994; Ormoneit & Sen, 2002; Szepesvári & Smart, 2004; Melo et al., 2008;
Maei et al., 2010). While meritous and insightful, the referred works were not only restricted to
the linear function approximation case but also assumed the data was particularly well-aligned with
specific distributions (Melo et al., 2008).

More recently, Q-learning was attributed finite-time error bounds when certain fixed behavior poli-
cies are used Chen et al. (2019). Such policies are scarce or may not even exist as the number of
features grows. Finite-time error bounds for Adaptive Dynamic Programming methods Bertsekas
& Tsitsiklis (1995), including Fitted Q-iteration (FQI) Ernst et al. (2005), assume not only the real-
izability of the optimal Q-function but also closedness under Bellman update Szepesvári & Munos
(2005). Such conditions have been discussed in a recent work Chen & Jiang (2019).

The problem of divergence ofQ-learning with function approximation was revived after a significant
empirical success story of the use of Q-learning with deep neural networks (Mnih et al., 2015),
where the function approximation setting is non-linear and the features are non-stationary. One
of the components of the renowned deep Q-network (DQN) is a target network that mitigates the
negative impact of bootstrapping, i.e., of the stochastic semi-gradient update.

The works of Carvalho et al. (2020); Zhang et al. (2021); Chen et al. (2022) provided theoretical in-
sights and convergence guarantees for Q-learning with the target network. There is also work point-
ing out that regularization of the Q-values or the parameters themselves can stabilize Q-learning,
resulting in a convergent algorithm (Zhang et al., 2021; Carvalho et al., 2020; Lim et al., 2022).
All these works are applicable to the linear function approximation case, merely. In the case of lin-
ear function approximation, the features are assumed to be stationary and known prior to learning.
The practical applications of reinforcement learning, however, are moving in the opposite direc-
tion, where the features are also learned. Additionally, such learning setting is, typically, non-linear.
Consequently, the gap between theory and practice remains significant.

For the case of non-linear function approximation, a recent work suggests a loss function that is
decreasing over time, assuming the neural network converges to the targets from a target network
at each step (Wang & Ueda, 2021). Finally, Xu & Gu (2020) provide a finite-time result for Q-
learning with over-parameterized neural networks. While being an interesting result, as the size of
the network grows to infinity the learning architecture also grows closer to a tabular representation.

6 CONCLUSION

In this work, we provided the first convergence result for a Q-learning scheme with non-linear non-
stationary features without the use of a target network. In our scheme, the final layer of a network
is updated faster than the hidden layers. We show that if the features converge, the final layer also
converges. We complement our theoretical analysis with experiments showcasing our result. Finally,
we propose three schemes that result in guaranteed convergence of the features.

In the future, it would be relevant to compare experimentally the three learning schemes for the fea-
tures considered, specifically unsupervised, semi-supervised and full-gradient reinforcement learn-
ing. Additionally, it would be important to characterize the solutions obtained by each scheme.
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