
Capturing Individual Human Preferences with
Reward Features

André Barreto
Google DeepMind

Vincent Dumoulin
Google DeepMind

Yiran Mao
Google DeepMind

Mark Rowland
Google DeepMind

Nicolas Perez-Nieves
Google DeepMind

Bobak Shahriari
Google DeepMind

Yann Dauphin
Google DeepMind

Doina Precup
Google DeepMind

Hugo Larochelle
Google DeepMind

Abstract

Reinforcement learning from human feedback usually models preferences using
a reward function that does not distinguish between people. We argue that this is
unlikely to be a good design choice in contexts with high potential for disagreement,
like in the training of large language models. We formalise and analyse the problem
of learning a reward model that can be specialised to a user. Using the principle
of empirical risk minimisation, we derive a probably approximately correct (PAC)
bound showing the dependency of the approximation error on the number of
training examples, as usual, and also on the number of human raters who provided
feedback on them. Based on our theoretical findings, we discuss how to best collect
pairwise preference data and argue that adaptive reward models should be beneficial
when there is considerable disagreement among users. We also propose a concrete
architecture for an adaptive reward model. Our approach leverages the observation
that individual preferences can be captured as a linear combination of a set of
general reward features. We show how to learn such features and subsequently
use them to quickly adapt the reward model to a specific individual, even if their
preferences are not reflected in the training data. We present experiments with large
language models illustrating our theoretical results and comparing the proposed
architecture with a non-adaptive baseline. Consistent with our analysis, the benefits
provided by our model increase with the number of raters and the heterogeneity of
their preferences. We also show that our model compares favourably to adaptive
counterparts, including those performing in-context personalisation.

1 Introduction

Reinforcement learning from human feedback (RLHF) can be useful when we do not have an explicit
reward function but can distinguish between good and bad behaviour [14]. This is often the case
in the training of large language models (LLMs), in which RLHF has been applied with great
success [43, 45, 38, 55].

The most common way to collect human feedback is to ask humans to rank examples of an agent’s
behaviour. Usually, all the feedback is integrated to derive a single reward function that reflects as
well as possible the preferences of the population of interest. Although this is a sensible strategy
when preferences are homogeneous across the population, it may be less effective when there is
considerable disagreement. This is likely the case in the training of LLMs.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

As an illustration, suppose that, given a pair of alternative responses to a subjective question, 51%
of the target audience prefer the first option while the remaining 49% prefer the second. If we do
not distinguish between users, we are left with two options: either we pick the preferred answer and
leave 49% of the users unhappy 100% of the time, or we sample the answers proportionally to how
often they are preferred and leave 100% of the users unhappy approximately half of the time. Both
solutions are clearly unsatisfactory.

We need reward models that can be specialised to users. Crucially, we want the model to be able to
adapt to people outside of the group who provided feedback for training. In this paper we formalise
and analyse the problem of learning a reward model with this ability. Using the principle of empirical
risk minimisation, we derive a probably approximately correct (PAC) bound that shows how the
approximation error depends not only on the number of training examples, but also on the number
of human raters who provided feedback on them. This is an interesting problem from a theoretical
standpoint because the data involved is not identically and independently distributed (i.i.d.). The
resulting analysis provides a formal framework to discuss strategies for pairwise preference data
collection and to assess the trade-offs associated with the use of an adaptive reward model.

We then turn our attention to the question of how to adapt a reward model to a new user in practice.
Generalising to unseen users is challenging because it requires one to capture the subjective criteria
that underlie human preferences—a non-trivial endeavour, as humans often cannot fully articulate the
reasons why they prefer one behaviour over the other. A possible approach is to leverage precisely the
type of pairwise preference data used in RLHF, since it allows the preference criteria to be indirectly
elicited rather than explicitly spelled out. Building on our theoretical findings, we propose a simple,
principled method to unveil the preference criteria underlying the RLHF data.

Our model leverages the fact that individual preferences can be captured as a linear combination of a
set of general reward features. These features are unknown (in some cases to the person themself), so
we need a systematic way to extract them from the data. We show how this can be accomplished
using a very simple architecture and training. During the regular RLHF process, we use data coming
from different individuals to learn common features that capture the preferences of the group. When
the reward model is being specialised to an unknown user, the features are frozen, and only the
coefficients of the linear combination must be learned. This results in a simple classification problem
that can be reliably solved with a few training examples provided by the user.

2 Background
Our goal is to use human preference data to learn a reward function that can be used in RL to learn
a policy or LLM [14, 53]. We will focus on and adopt the terminology from LLMs, although our
analysis and proposed approach are more general. Let T be a finite set of symbols called tokens, let
X := ∪lx

i=0T i be the context space, where lx is the maximum context length, and let Y := ∪ly
i=0T i

be the response space. An LLM is a mapping from X to a distribution over Y . Let H be the set of
human users we are interested in. Given a context x ∈ X and two responses (y, y′) ∈ Y2, we can
ask a user h ∈ H for their preferred option. We use y ≻ y′|x, h to indicate that h prefers y over y′
given x [44, 2]. We encode this outcome with the value z = 1, and encode the opposite preference as
z = 0. We want to model humans’ preferences as accurately as possible.

Define Z := {0, 1} and let D be a distribution over H×X ×Y2 ×Z . We will use subscripts to refer
to the marginal distributions of D and superscripts to indicate conditioning. For example, Dh

X is the
marginal distribution over X conditioned on H = h. We will use numeric superscripts to indicate the
joint distribution induced by independent draws from the same distribution; for instance, (Dh

X)n is
the distribution over Xn resulting from n independent draws from Dh

X .

We will formalise the problem through the lens of empirical risk minimisation [48]. Let C0 :=
{X × Y2 → [0, 1]} be a classifier set (or a hypothesis class) and let ℓ : [0, 1] × Z → R be an
appropriately defined loss function. Our goal is to minimise the generalisation loss defined as
LD(c) := EH,X,Y,Y ′,Z∼D[ℓ(c(X,Y, Y ′), Z)]. To do so, we will use data generated as follows. First,
a user is sampled, h ∼ DH. Second, n contexts are sampled, (xi)

n
i=1 ∼ (Dh

X)n. Third, for each
context xi, two responses are sampled, yi, y′i ∼ (Dh,xi

Y)2 . We then show each of the n resulting

tuples (xi, yi, y
′
i) to h, who ranks them by sampling z ∼ Dh,xi,yi,y

′
i

Z (we will refer to the users h

who ranked the examples as “raters”). Note that Dh,xi,yi,y
′
i

Z is a Bernoulli distribution whose mean is

2

P(yi ≻ y′i |xi, h), the probability that h will prefer yi over y′i given xi. This entire process is repeated
m times, resulting in the dataset S0 := {(xi, yi, y

′
i, zi)}mn

i=1. We then use S0 to define the training
loss: LS0(c) := 1/mn

∑mn
i=1 ℓ(c(xi, yi, y

′
i), zi), which we will minimise as a proxy for LD [48].

The Bradley-Terry model. The ultimate objective of the process above is to derive a re-
ward function r : X × Y → R to be used in RL. This is possible if we assume that hu-
mans’ preferences are generated based on r. A common assumption is the Bradley-Terry model:
P(y ≻ y′ |x) = σ(r(x, y)− r(x, y′)), where σ is the sigmoid function [10]. Let rθ : X × Y → R
be a reward function parameterised by θ ∈ Re. This induces a set of classifiers C0 whose ele-
ments are cθ(x, y, y

′) := σ(rθ(x, y) − rθ(x, y
′)). We can write the likelihood of θ with respect

to z as L(θ) = P(z |x, y, y′;θ) = σ(rθ(x, y) − rθ(x, y
′))zσ(rθ(x, y

′) − rθ(x, y))
1−z . Since the

samples in the dataset S0 are i.i.d., the likelihood function of θ given the data can be written as
L(θ |S0) =

∏
i P(zi |xi, yi, y

′
i;θ). Thus, if we define

ℓ(cθ(x, y, y
′), z) := −z log cθ(x, y, y

′) + (z − 1) log cθ(x, y
′, y), (1)

we naturally have LS0
(cθ) = − logL(θ|S0) and LD(cθ) = − logL(θ). The minimisation of

LS0
(cθ) yields a vector of parameters θ̃

∗
∈ Re. The corresponding rθ̃∗ can then play the role of the

reward function in RL, resulting in an LLM that reflects the preferences of the population H [14, 53].

3 Reward-model personalisation
One of the key assumptions underlying (1) is that

P(y ≻ y′ |x) = EH∼DH [P(y ≻ y′ |x,H)] . (2)
That is, we are modelling the probability of response y being preferred over response y′ given context
x as the average opinion among users H computed according to DH. Clearly, (2) will only be a good
assumption if the distribution DH is representative of the target users, which may or may not be the
case in practice. We call attention to another issue: when we use (1) to derive a reward function, the
accompanying assumption (2) implies that we are neglecting individual differences in the preferences
of the population H. Formally, we are ignoring the variance of the variable z̄(H) := p(y ≻ y′ |x,H).

Preference modelling as a game. Let us focus on the simple problem of choosing which of two
possible responses y and y′ should follow a context x. An intuitive way to understand the deleterious
effect of making this decision based on (2) is to think of it as a game. At each round, the player picks
either y or y′. Then, a user h ∼ DH is sampled and a reward is drawn from Dx,y,y′,h

Z if y was selected,
and from Dx,y′,y,h

Z otherwise. Clearly, the best one can do in this game is to always pick y if Ez̄(H) ≥
0.5, and always pick y′ otherwise. This results in a expected reward of max(Ez̄(H), 1 − Ez̄(H)).
We are proposing to change the game in a way that we only choose between y and y′ after the user h
has been revealed. In this case the optimal strategy is to pick y if z̄(h) ≥ 0.5, and y′ otherwise. This
increases the expected reward to Emax(z̄(H), 1− z̄(H)) ≥ max(Ez̄(H), 1− Ez̄(H)).

User-aware reward model learning. As the game example above suggests, our strategy will
be to model P(y ≻ y′ |x, h) instead of P(y ≻ y′ |x). We will use data similar to that used in
conventional RLHF, with a small extra requirement: tuples in the dataset have to be labelled with
(non-identifying) rater IDs. We have S := {{(hi, xij , yij , y

′
ij , zij)}nj=1}mi=1, where hi is effectively

an index indicating which rater determined zij based on xij , yij and y′ij , for j = 1, 2, ..., n. This is
not a strong requirement: we are just surfacing a piece of information used to generate S0.

Given S, we can define an augmented set of classifiers C := {H × X × Y2 → R} which are now
also a function of users h ∈ H. Let Ĥ ⊆ H be the set of human raters ĥ who provided feedback for
the generation of S. We distinguish between two types of generalisation. In intra-user generalisation
one is interested in minimising ED[ℓ(c(H,X, Y, Y ′), Z)|H ∈ Ĥ]. That is, although we are able
to predict preferences over contexts x and responses y beyond the training data, we are unable
to extrapolate to users not in the set of raters Ĥ. In inter-user generalisation one is interested in
minimising LD := ED[ℓ(c(H,X, Y, Y ′), Z)]. That is, we are able to predict the preferences of any
user in H over the entire set X × Y2. Our focus is on inter-user generalisation.

The current practice of not distinguishing between users accomplishes neither intra- nor inter-user
generalisation, for the expectation in LD runs over H but the loss ℓ itself is agnostic to users. This is
akin to postulating a single user whose preferences coincide with the average preference in H (cf. 2).

3

Theoretical analysis. As discussed, our goal is to minimise LD, but we only have access to LS .
We now analyse how well the latter tracks the former. Specifically, we will show how the difference
|LD(c)− LS(c)| behaves with respect to the defining characteristics of the learning problem.

This is a non-standard learning theory analysis because the data in S is not i.i.d. First, we need to
guarantee that the loss is bounded, so we replace the log(·) appearing in (1) with a counterpart defined
as ˆlog(·) := max(log(·), ℓmin)/ℓmin, where ℓmin is large enough in magnitude to render the capping
of the logarithm inconsequential; this approach is related to the truncation sometimes used in the
learning theory of classification [1]. With this change (1) is guaranteed to lie in [0, 1]. We then define
V(ℓc) := V(ℓ(c(H,X, Y, Y ′), Z)), with (H,X, Y, Y ′, Z) ∼ D, where V(·) stands for variance.
Proposition 1. For any c ∈ C, m > 0, n > 0, and δ ∈ (0, 1], we have with probability at least 1− δ,

|LD(c)− LS(c)| ≤
1

3m

[
g +

√
g2 + 18gm

(
1

n
E[V(ℓc|H)] + V(E[ℓc|H])

)]
, (3)

where g := ln(2/δ).

The proofs of our theoretical results are in Appendix A. We will refer to the bound on the right-hand
side of (3) as ϵ. In line with similar results in the literature, ϵ is O(ln(1/δ)) as δ → 0+ [48]. Perhaps
more surprising is the fact that, as the number of examples per rater n tends to ∞, ϵ approaches a
constant. On closer inspection this makes intuitive sense: with a fixed number of raters m, there is an
irreducible error that cannot be fully eliminated even if we collect an infinite number of examples n
per rater. In contrast, ϵ → 0 as m → ∞, regardless of n, at a rate of O(1/

√
m). This is consistent

with the literature, and also makes sense, as we can sample the same rater h over and over (and thus
even with a single n = 1 example per rater we will eventually have a perfect estimation).

Another interesting observation for the discussion herein is the dependency of ϵ on the terms
E[V(ℓc|H)] and V(E[ℓc|H]). Intuitively, E[V(ℓc|H)] measures how much the loss varies per user,
on average, while V(E[ℓc|H]) measures how much the average loss varies across users. If we keep
all other variables fixed in (3), we have that ϵ ∝

√
E[V(ℓc|H)] + V(E[ℓc|H]). Clearly, we want to

make both terms as small as possible. This sheds light on the discussion above: while increasing the
number of examples per rater n weakens the effect of E[V(ℓc|H)] on the estimate LS(c), it does not
change the effect of V(E[ℓc|H]), which can only be mitigated with a larger number of raters m.

The discussion above invites the question of how to best allocate a budget of k = nm training
examples. The right-hand side of our bound (3) is minimised when n = 1 and m = k, which suggests
we should sample as many raters from H as training examples (with replacement). While it may
not always be feasible to have many raters providing only a few examples each, understanding the
trade-offs elicited by our theoretical results may guide the allocation of resources in practice.

The bound in (3) shows how the empirical loss LS deviates from the true generalisation loss LD
for a single classifier c ∈ C. Since we are usually interested in finding a classifier that minimises
LD, ideally we would be able to bound |LD(c)− LS(c)| over the entire set C. This is what we set
out to do next. Let c∗ := argminc∈CLD(c) and let c̃∗ := argminc∈CLS(c). That is, c∗ is the true
minimiser of LD in C and c̃∗ is the classifier we obtain by minimising the empirical loss LS . We will
bound the difference LD(c̃

∗)− LD(c
∗).

First define ℓC := ℓarg supc∈C V(ℓc). We will also need the concept of a covering number for C. Given
α ∈ [0, 1], let Cα ⊆ C be the smallest set of classifiers such that

∀c∈C∃c′∈Cα
∀h∈H,x∈X ,y∈Y,y′∈Y′,z∈Z |ℓ(c(h, x, y, y′), z)− ℓ(c′(h, x, y, y′), z)| ≤ α.

In words, Cα is the smallest set that covers C with respect to ℓ: for every c ∈ C, there is at least
one c′ ∈ Cα whose loss is within a distance of α from that of c. We use |Cα| as a measure of the
complexity or “capacity” of C. It follows from the definition that there exists α ∈ [0, 1] such that
|Cα| < ∞ (for example, |Cα=1| = 1).
Proposition 2. For any m,n > 0 and any δ ∈ (0, 1], we have with probability at least 1− δ that

LD(c̃
∗) ≤ LD(c

∗) + 2 inf
α

[
1

3m

(
gα +

√
g2α + 18mgα

(
1

n
E[V(ℓC |H)] + V(E[ℓC |H])

))
+ 2α

]
,

(4)
where gα := ln (2|Cα|/δ).

4

Expression (4) is similar to (3), the main difference being its dependency on |Cα|, our measure of
the complexity of C. Fortunately the bound grows with ln(|Cα|), which means that we can afford to
substantially increase the “size” of C without incurring too high a cost in terms of the number m of
raters and the number n of training examples per rater needed. The precise value of |Cα| will depend
on α and the set C. We can show that |Cα| ≤ (1/α)|H||X ||Y|2 (see Proposition 3 in Appendix A.2).
It is possible to derive bounds tighter than (4) if one is willing to make assumptions about C, use
measures of complexity other than |Cα|, or both. See Proposition 4 in Appendix A.2 for an example
in which combining logistic regression models and the notion of Rademacher complexity leads to
improved variance dependence.

The best possible generalisation error LD(c
∗) will depend on two factors: how well the classifiers

in C can model different users and how heterogenous the population H is in terms of preferences.
Consider a set C0 whose classifiers cannot distinguish between users. We will construct a more
general set C of classifiers that can differentiate between users by imposing that, for any c ∈ C,
c(h, ·) ∈ C0 (in words, this means that any classifier in C reduces to a classifier in C0 if we fix the user
h). We will also make sure that all classifiers in C0 also belong to C, so we have C0 ⊆ C. It follows
from the latter assumption that, by definition, |Cα| ≥ |(C0)α| and V(ℓC) ≥ V(ℓC0

).

Let us now analyse two scenarios. In the extreme scenario where all users in H have the same
preference, it is clear that the best classifier in C also belongs to C0, so considering the former instead
of the latter will not decrease LD(c

∗). Using the fact that in this scenario V(E[ℓC0
|H]) = 0, it is

easy to show that replacing C0 with C cannot decrease, and will in general increase, the right-hand
side of (4). That is, we may need more training examples to achieve the same generalisation error.
This formalises the intuition that, when users agree with each other, having a smaller classifier set C0
whose classifiers are agnostic to users is often advantageous.

Next we turn our attention to the more realistic scenario where users do disagree with each other. In
this case considering C instead of C0 can yield a lower optimal population loss LD(c

∗), as illustrated
by the game example following Equation (2). Interestingly, because in this scenario V(E[ℓC0

|H]) is
not necessarily zero, and in fact can be quite large, it may be the case that V(E[ℓC |H]) < V(E[ℓC0

|H])
(which implies that E[V(ℓC |H)] > E[V(ℓC0

|H)], as V(ℓC) ≥ V(ℓC0
)). This means that, for large

enough n, replacing C0 with C can in fact decrease the effect of the loss variance on the bound (4).
The overall bound will not necessarily get smaller, though, as |Cα| will show up instead of |(C0)α|.
Regardless of its effect on the bound (or, more generally, on the resulting sample complexity),
adopting a set C of classifiers that distinguish between users may be highly beneficial when users
disagree with each other, as the decrease in the optimal generalisation error LD(c

∗) can be substantial.

4 Reward-feature models
The theoretical results presented in the previous section apply to any classifier set C; we now discuss
specific ways of defining this set and argue for one architecture in particular.

As discussed in Section 2, the classifiers cθ function like a “wrapper” around the reward functions rθ ,
which are the objects we are really interested in. We advocate the use of reward models with two
disjoint sets of parameters: a common vector of parameters θ ∈ Re that is shared among all users
h ∈ H, including those h /∈ Ĥ, and parameters θh ∈ Rd that are specific to user h (this is closely
related to the concept of “adapters” [47, 28, 42]). We will call rθ,θh

adaptive reward models.

The partitioning of the parameters of adaptive reward models induces a division of their training
procedure itself. The data in S can be used to learn θ and θĥ for a rater ĥ ∈ Ĥ. However, to learn
the parameters θh associated with a user not in S, h ∈ H \ Ĥ, one needs additional data containing
feedback provided by h, Sh := {(xi, yi, y

′
i, zi)}n̂i=1, with zi ∼ Dxi,yi,y

′
i,h

Z . We will refer to the use
of S to learn θ and θĥ as training; learning θh using Sh will be referred to as adaptation.

We assume we have abundant data for training in S, but adaptation must take place with as few
additional training examples as possible in Sh (that is, n ≫ n̂). Because of this, and also because we
want the adaptation of the model to a specific user h ∈ H \ Ĥ to be quick, we generally want to have
e ≫ d—in words, we want the number of shared parameters to be much larger than the number of
parameters that are specific to a given individual. Another, slightly more practical reason to have a
large number of shared parameters is that this allows for a distributed learning architecture in which
the learning of θ can make use of a centralised, powerful computational infrastructure, while each θh

can be learned “locally” using less resources.

5

Reward features. We now discuss an architecture for rθ,θh
that has particularly nice properties.

We define reward features as a function ϕ(x, y) : X × Y → Rd. We then assume that the reward for
individual h is given by

rh(x, y) = ⟨ϕ(x, y),wh⟩, (5)
where wh ∈ Rd and ⟨·, ·⟩ denotes inner product. Following the steps taken in Section 2, we define a
parametric form for rh that reflects (5). We first define a parameterised function ϕθ : X × Y → Rd,
with θ ∈ Re. Note that θ is the set of shared parameters defined above; the parameters θh associated
with a specific h ∈ H are simply a vector wh ∈ Rd. Putting it all together, our parameterised model
is rθ,wh

(x, y) = ⟨ϕθ(x, y),wh⟩. We call this architecture a reward-feature model (RFM).

Training. We now derive an appropriate optimisation objective for RFM’s training. Let W ∈
R|Ĥ|×d be a matrix formed by stacking |Ĥ| vectors wĥ. Let cθ,W(ĥ, x, y, y′) := ⟨ϕθ(x, y) −
ϕθ(x, y

′),wĥ⟩, where wĥ is the row of W corresponding to ĥ. Plugging cθ,W into (1), we get

ℓ(cθ,W(ĥ, x, y, y′), z) := −z log⟨ϕθ(x, y)−ϕθ(x, y
′),wĥ⟩+(z−1) log⟨ϕθ(x, y

′)−ϕθ(x, y),wĥ⟩.
(6)

As before, if we minimise the empirical loss LS induced by (6), we will automatically be maximising
the likelihood L(θ,W|S), which is a proxy for L(θ,W).

RFM’s training yields a feature function ϕθ : X × Y → Rd and a matrix W ∈ R|Ĥ|×d. Each
dimension of ϕθ , (ϕθ)i, can be interpreted as a criterion used by humans to express their preferences.
The i-th element of wĥ, wĥi, represents how much rater ĥ values (or does not value) criterion (ϕθ)i.
Importantly, learning ϕθ does not depend on raters being able to articulate the criteria underlying
their preferences; the only thing that is required from them is to rank pairs of candidate responses.

The question arises as to how well the features ϕθ will be able to capture the preferences of the
entire population H. We need ϕθ to have enough representational capacity—a proxy for which
is the number of parameters e—and its dimension d to be sufficient to capture the preferences in
S. However, when e and d are too large, an RFM may effectively become |Ĥ| independent reward
models. We usually do not want that. Instead, we want ϕθ to capture features that are common to the
raters in Ĥ, since these should also reflect the preferences of the users in H more generally. This
means that e and d have to be appropriately set or controlled through regularisation.

Adaptation. We are interested in using features ϕθ learned during training to specialise rθ,wh
to

users beyond the raters ĥ ∈ Ĥ. The problem of adapting rθ,wh
to an unseen user can be formulated

as a small modification of training in which the loss (6) is minimised with respect to a new set of
coefficients w while the features ϕθ are held fixed. Formally, we define a classifier set parameterised
by w, cw(h, x, y, y′) := ⟨ϕθ(x, y)− ϕθ(x, y

′),w⟩, plug it into (6), and minimise LSh
with respect

to w. Adaptation is particularly simple with an RFM: since θ is frozen, optimising w comes down to
logistic regression, which is a well understood convex optimization problem whose sample complexity
has been characterised for different scenarios (see, for example, [34, 40, 29] and references therein).

Connection with the theory. We now discuss how to connect RFM’s two-stage learning process
with the theory developed in Section 3. First note that the upper bound in (4) directly applies to
RFM’s intra-user generalisation loss, for in this case adaptation is not necessary. To apply a version
of the bound (4) to training and adaptation, we must see RFM as a function of θ only. We can
accomplish this by folding adaptation into the functioning of the model. When faced with a new
tuple (h, x, y, y′), we create a dataset Sh on-the-fly by sampling n̂ examples from Dh, and then make
wh = argminwLSh

(cw). That is, wh is no longer a free parameter of the model. If we use the
model in this way during training, we can use (4) to bound its post-adaption generalisation error.

If we are concerned with adaptation only, (4) directly applies as a special case when |H| = 1, which
greatly simplifies the bound but obscures some of the underlying insights. Because RFM’s adaptation
is a convex optimisation problem, there are known generalisation bounds that scale nicely, avoiding
polynomial dependence on factors such as |X | and |Y| (see for example [1, Theorem 6.1]).

Why not other adaptive reward model architectures? As discussed, RFMs are but one instan-
tiation of a more general class of adaptive reward models rθ,θh

. We now lay out a few arguments
supporting our choice of the RFM architecture in particular.

6

First, as discussed, the fact that RFM’s architecture is linear in wh gives rise to a convex adaptation
problem. This should not be overlooked: having a model able to reliably adapt to new users in a
low-data regime may be crucial [48]. Second, and relatedly, RFM’s simple architecture also makes
it easier to improve the entire training pipeline, as one can resort to well established linear algebra
techniques [49]. Third, the fact that the model’s output is a linear combination of the features ϕθ
should make it easier to interpret their contributions (note that ϕθ itself can be an arbitrarily complex
non-linear functions of the inputs) [35]. Fourth, it should be easy to add new, possibly handcrafted,
features that represent agreed upon metrics like safety, helpfulness, and factuality [3, 54, 20].

But perhaps the main reason to adopt RFMs is the fact that they allow for an easy adaptation of the
downstream LLM (or, more generally, policy). Recall that ultimately we are interested in using rθ,wh

to steer the behaviour of a policy. There are several methods in the literature specifically designed to
synthesise a policy that performs well under a linear combination of features whose coefficients are
only provided at deployment time [4–7, 30, 46, 50, 13]. This fits well with the current setup: after
adapting to a user using a few examples, we can hand the resulting wh over to one of these methods
and immediately obtain a policy (or LLM) that is specialised to the corresponding reward function.

Limitations. There is an inherent tension between training and adaptation: in general, the simpler
the latter, the more demanding the former becomes. RFM sits on one extreme of this spectrum, with
an adaptation as simple as it can be at the expense of a potentially complex training. While this aligns
with current LLM practices—with ample data and compute for offline training and scarcer resources
for adaptation—, it might not be the ideal trade-off in other contexts, or even for LLMs if resource
availability shifts in the future.

5 Experiments
We now present experiments illustrating our findings. Due to space constraints we only describe the
crucial aspects of our experimental setup; for further details and additional results, see Appendix B.

We adopted UltraFeedback, a dataset carefully curated to ensure the quality and diversity of the
responses [17]. This is a relatively large dataset for this type of study: the version we adopted has
a training set with 60, 829 examples and a test set with 985 examples.1 On the solution side, we
used Google DeepMind’s [25] Gemma 1.1 2B model to implement both a baseline and RFM.2 The
baseline is a reward model that neither distinguishes between raters nor performs adaptation, as is
common practice. We implemented RFM using the same Gemma model, with the final layer replaced
by d counterparts corresponding to the features ϕθ . Both models were trained using gradient descent
to minimise their corresponding losses, starting from the pre-trained parameters of Gemma.

The goal of our experiments is twofold: to illustrate the theoretical results in Section 3 and to assess
RFM’s performance as compared to existing baselines. To study both rigorously, we must be able to
vary the number of raters as well as their heterogeneity in terms of preferences. We accomplished this
by defining a systematic way of generating synthetic raters with different characteristics. We created
13 features {ϕi(x, y)}13i=1 capturing different aspects of a context-response pair: from superficial,
easy-to-compute features, like length or the number of adverbs in y, to more semantic features such
as the number of words in y that are synonyms (or antonyms) of words in x (see Appendix B.1
for details). In contrast with features generated by LLMs, even our most nuanced features can be
unequivocally and efficiently computed. They are also devoid of inherent valence.

We defined a user as a vector ω ∈ {−1, 1}13, that is, a user either likes (+1) or dislikes (−1) each
one of the features ϕi. This gives rise to a space H with 213 users. Given an example (x, y, y′)
and a user ω, we determine the corresponding preference as z = 1{⟨ϕ(x, y),ω⟩ > ⟨ϕ(x, y′),ω⟩},
where 1{·} is the indicator function. We defined a distribution DH parameterised by a single scalar
p ∈ [0, 1] indicating the probability that each ϕi is liked independently of the others. That is, we
sample users h ∼ DH by drawing each ωhi from a Bernoulli with mean p. For each experiment, we
sampled m raters to rank the training set and 500 held-out users to assess the inter-user generalisation
of the models on the test set (this number is considerably larger than in previous studies [41, 12, 49]).

It is worth emphasising that throughout our experiments RFM did not have access to the real features
ϕ underlying the data. Instead, it learned features ϕθ parameterised by θ ∈ Re using (6). The
notation RFM(d) indicates that a d-dimensional ϕθ ∈ Rd was learned.

1huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
2huggingface.co/google/gemma-1.1-2b-it

7

https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
https://huggingface.co/google/gemma-1.1-2b-it

22 23 24 25 26

Number of raters (m)

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y

(a) p = 0.5, n̂ = 30

0.5 0.6 0.7 0.8 0.9
Preference homogeneity (p)

(b) m = 60, n̂ = 30

20 40 60 80
Number of examples for adaptation (n)

Baseline
RFM(8)

RFM(32)
RFM(128)

(c) p = 0.7, m = 60

Figure 1: Accuracy in predicting the preferences of 500 held-out users on the test set after adaptation
(estimate of inter-user generalisation). Error bars are 99% confidence intervals over 5 runs.

Empirical analysis. Figure 1 shows the performances of the baseline and RFM as we vary the
number m of training raters, the parameter p underlying DH, the number n̂ of adaptation examples,
and the number d of features learned by RFM. Note how RFM behaves as predicted by our theoretical
results, with performance improving with the number of raters m. Also as predicted by the theory, the
performance of both the baseline and RFM improve with the homogeneity p of the users’ preferences
(DH has maximum entropy when p = 0.5, so preferences get more homogeneous as p → 1).
However, RFM’s performance is much more robust to changes in p, with almost no degradation when
a sufficient number of features d ≥ 32 are learned. Also note how RFM can adapt well to a new user
using as few as n̂ = 30 examples, and for d ∈ {32, 128} performance keeps increasing with n̂ (albeit
only slightly). This means that, by ranking only 30 examples, a user can replace a generic reward
model reflecting the average opinion of the population H with a model specialised to them.

5 10 20 30 40
Number of responses n for best-of-n

0

20

40

60

80

100

W
in

 ra
te

Baseline RFM(32) Tie

Figure 2: Relative accuracy in pre-
dicting the preferences of 500 held-
out users using n̂ = 30 examples.

Modulating the LLM’s output. Next we assess how well
RFM’s good performance transfers to the scenario where it is
used to steer the behaviour of an LLM. We use best-of-n over
up to n = 40 responses to each context x in UltraFeedback’s
test set [52]. The responses were generated by Google Deep-
Mind’s [26] Gemma 2 9B and Gemma 2 27B (20 responses
each). For each context x in the test set, we scored all 40 re-
sponses using the baseline and RFM(32) adapted with n̂ = 30
examples. Next, we selected the best-of-n response to context
x according to the baseline and RFM, and declared either a
winning model or a draw based on the actual score of their
selected responses computed by user ω. Figure 2 shows results
when best-of-n is applied with increasing n. We highlight that
the 40 candidate responses used come from a distribution that
is different from the one used for training. Yet, RFM consis-
tently outperforms the baseline, and the fraction of times its
selected response is preferred grows with n.

Comparisons. We now compare RFM with three types of adaptive counterparts. The first one
is a linear model that adapts to a user h by fine-tuning the final layer of the (trained) baseline
through gradient descent on the corresponding dataset Sh. This is similar to RFM, except that the
baseline features being linearly combined were learned without raters h being distinguished (and
thus this is a clear way to assess whether doing so is indeed beneficial). The second comparison
involves the non-linear architecture proposed by Park et al. [39]. We partitioned the shared parameters
θ = [θ1,θ2] and learned θ2 together with the vectors wh. This was implemented by freezing the
backbone Gemma model (θ1) and representing ϕ as a multilayer perceptron (MLP) with 3 or 5
hidden layers containing 32 units each (θ2; details in Appendix B.2). The third comparison is with
models that perform “in-context” adaptation. We implemented these using two prominent LLMs,
Google DeepMind’s [27] Gemini 1.5 Pro and OpenAI’s [37] GPT-4o. To assess the LLMs’ prediction
accuracy for held-out user h, we provided n̂ = 10 training examples ranked by h together with the
test example to be ranked (the precise prompt can be found in Appendix B.2). For reference, we also
show the “zero-shot” performance of Gemini, obtained with n̂ = 0.

8

Model
0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y Baseline
Linear baseline
RFM(32)
Non-linear (3 layers)
Non-linear (5 layers)
GPT-4o
Gemini 1.5 Pro
Gemini 1.5 Pro (zero-shot)

Figure 3: Accuracy in predicting the prefer-
ences of 500 held-out users using n̂ = 10
examples for adaptation. Error bars are 99%
confidence intervals over 5 runs.

Figure 3 shows the results of the two LLMs side-by-side
with those obtained by the baseline, the linear baseline,
the non-linear baselines, and RFM(32)—the last three
also adapted using n̂ = 10 examples. The linear base-
line performs on par with its non-adaptive counterpart,
which suggests that features learned in a user-agnostic
way are not capable of capturing the variance of the
population H. The non-linear baselines perform poorly,
probably because they have too many parameters to be
trained with only n̂ = 10 examples. Surprisingly, the
LLMs also seem to be unable to capture the users’ pref-
erences, with their performance reducing to chance (see
further discussion in Appendix B.2). RFM correctly
predicts the users’ preferences around 70% of the time.

We also compared RFM with Poddar et al.’s [41] variatonal preference learning (VPL), described in
Section 6. Even though in principle VPL allows for inter-user generalisation, Poddar et al. have only
assessed VPL’s intra-user generalisation. They report an estimate of this type of generalisation on the
UltraFeedback dataset, using the features provided with it, of 61.49%. We tried to reproduce their
experimental protocol as closely as possible, as explained in Appendix B.2. The resulting estimate of
RFM(32)’s intra-user generalisation is 61.61%, which is on par with VPL’s.

Modelling groups of real users. In the previous experiments we had access to the features ϕ
underlying the raters’ preferences; although this is useful to investigate the models’ performance
under different conditions, in a more realistic scenario we would only have the training examples in
the dataset S. To simulate this situation, in this section we use reward models as the users h.

We performed experiments using two datasets: UltraFeedback, as before, and also Zollo et al.’s [62]
PersonalLLM. Each example in the PersonalLLM dataset has been scored by 10 reward models. To
mirror this setup with UltraFeedback, we used 8 publicly-available reward models to score and rank
all its test examples. We provide a detailed account of our experimental setup in Appendix B.3.

All the reward models considered were trained with human preference data, and hence they reflect
the opinion of groups of real people. As these models do not distinguish between raters—much like
the baseline—, they reflect an average over preferences, and thus tend to “agree” considerably with
each other. To avoid such overlapping, which may render the distinction of raters unnecessary, we
filtered out all the examples in the training and test sets of both datasets in which two or fewer raters
disagreed with the majority. We then carried out a “leave-one-out” cross-validation composed of k
rounds in which k − 1 of the models played the role of the raters Ĥ and the remaining model played
the role of the held-out user (k = 8 for UltraFeedback and k = 10 for PersonalLLM).

Results are shown in Figure 4. We compare RFM with the non-adaptive and linear baselines used
in the previous experiments. RFM’s performance either matches or significantly surpasses that of
the baselines in most cases, suggesting that it can be useful in real scenarios. As the reward models
in this experiment reflect the preferences of aggregated real users, some of the heterogeneity of
the population’s preferences has probably been smoothed out in the training of these models. We
conjecture that if the reward models were replaced by the real users underlying these models, RFM’s
advantage over the two baselines would be greater still.

1 2 3 4 5 6 7 8
Held-out model

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Baseline Linear baseline RFM(128)

(a) UltraFeedback dataset

1 2 3 4 5 6 7 8 9 10
Held-out model

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Baseline Linear baseline RFM(128)

(b) PersonalLLM dataset

Figure 4: Accuracy in predicting the preferences of a held-out reward model using n̂ = 50 examples
for adaptation. Error bars are 99% confidence intervals.

9

6 Related work

We distinguish between two categories of adaptive reward models. In the first we have methods
whose goal is to compute a single policy representing some form of compromise across users [21, 11,
51, 15, 18, 58]. These methods take individual idiosyncrasies into account primarily to build more
accurate models, and hence they do not necessarily provide a mechanism for adapting to new users.

In the second category we have methods designed to support the downstream specialisation of a
policy to a specific user, like RFMs [41, 60, 23, 33, 31, 12, 16, 24, 32, 39, 61, 49, 8]. Among
these, Shenfeld et al.’s [49] and Bose et al.’s [8] works are probably the closest to ours. They
both concurrently propose the same architecture as RFM, though with different names and slightly
different emphases. While we analyse the learning problem—how training and adaptation change as
the dataset S changes—, Shenfeld et al. focus on how to solve the resulting optimisation problem:
how to go about training and adaptation once we have committed to a specific dataset S. Shenfeld
et al. also show how to leverage RFM’s simple architecture to improve several aspects of the training
pipeline, most notably a stable initialisation scheme via singular value decomposition of the data
matrix and a more efficient way of selecting adaptation examples based on active learning. Bose et al.
provide a particularly clear exposition of the subject and a well-executed empirical evaluation that
includes comparisons and datasets not considered here. We see these two concurrent works as highly
complementary to our own, as they collectively provide mutually reinforcing theoretical arguments
and empirical evidence in favour of the proposed architecture.

Poddar et al.’s [41] variatonal preference learning (VPL) encodes examples previously ranked by
a user into a latent variable, and then conditions the reward model and the policy on that variable
(we compare VPL with RFM in Section 5). Zhao et al. [60] also encode pairs of ranked responses,
but instead of resorting to variational techniques they use an LLM to do in-context inference of the
rewards. Similar methods encode different types of information about users, like demographic data,
either in isolation or together with examples of ranked pairs [23, 33, 31]. Chen et al. [12] propose
to replace the Bradley-Terry model with Coombs’s [16] ideal point model. The resulting method is
similar to ours, albeit slightly more complex. Go et al.’s [24] approach is also similar to ours, but
they use features computed by LLMs with handcrafted prompts.

We redirect the reader to Appendix C for an in-depth discussion of some of the works cited above.

7 Conclusion

We have formalised and analysed the problem of learning a reward model that can adapt to users. To
the best of our knowledge, this is the first time this problem is rigorously studied under the assumptions
considered. We have derived a PAC bound that elicits the dependency of the approximation error on
the number of training examples and raters. Our analysis provides a formal framework for assessing
the trade-offs involved in the collection of preference data and the use of an adaptive reward model.

We have also introduced RFM, a reward-model architecture specifically designed for fast adaptation
to new users. RFM can be trained using pairwise response comparisons provided by humans. This
results in a set of reward features that can be linearly combined to represent a user, even if their
preferences are not reflected in the training data. Such an adaptation process can be formulated as a
simple logistic regression—a well-understood convex classification problem. We showed how RFM
can be personalised to an unknown user using a few dozen pairs of examples ranked by them. We
have presented experiments showing how RFM compares favourably with a non-adaptive baseline,
which is today’s prevailing practice, and also several adaptive counterparts.

RFM can be readily combined with zero-shot RL methods that construct a policy on-the-fly which
performs well under a linear combination of features. In the context of LLMs, this means that by
responding to a few questions a user can have an otherwise generic model specialised to their taste.
Although we have focused on the use of RFM in the context of LLMs, it is also applicable to other
modalities beyond language, like images, sound, and video. In fact, RFM can be used as a reward
function in any scenario that can be formalised as an RLHF problem, which includes not only more
general state and action spaces but also multi-step interactions of the policy with the environment.

10

Acknowledgements

We would like to thank Tom Schaul, Benjamin Van Roy, and Dan Andrei Calian for their insightful
comments and useful feedback. We are also thankful to Bernardo Ávila Pires for assistance with one
of the experiments and to Canfer Akbulut and Arianna Manzini for contributing to the discussion
regarding the potential broader impact of our work. Finally, we would like to thank the anonymous
reviewers for their comments and suggestions.

References
[1] A. Avital, K. Efremenko, A. Kontorovich, D. Toplin, and B. Waggoner. Non-parametric binary

regression in metric spaces with KL loss. arXiv, 2020.

[2] M. G. Azar, Z. D. Guo, B. Piot, R. Munos, M. Rowland, M. Valko, and D. Calandriello. A
general theoretical paradigm to understand learning from human preferences. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

[3] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. El-Showk, N. Elhage, Z. Hatfield-
Dodds, D. Hernandez, T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda, C. Olsson,
D. Amodei, T. Brown, J. Clark, S. McCandlish, C. Olah, B. Mann, and J. Kaplan. Training a
helpful and harmless assistant with reinforcement learning from human feedback. arXiv, 2022.

[4] A. Barreto, W. Dabney, R. Munos, J. Hunt, T. Schaul, H. van Hasselt, and D. Silver. Successor
features for transfer in reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[5] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz, A. Zidek, and
R. Munos. Transfer in deep reinforcement learning using successor features and generalised
policy improvement. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

[6] A. Barreto, S. Hou, D. Borsa, D. Silver, and D. Precup. Fast reinforcement learning with
generalized policy updates. Proceedings of the National Academy of Sciences, 2020.

[7] D. Borsa, A. Barreto, J. Quan, D. J. Mankowitz, H. van Hasselt, R. Munos, D. Silver, and
T. Schaul. Universal successor features approximators. In Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[8] A. Bose, Z. Xiong, Y. Chi, S. S. Du, L. Xiao, and M. Fazel. LoRe: Personalizing LLMs via
low-rank reward modeling. In Proceedings of the Conference on Language Modeling (COLM),
2025.

[9] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, 2013.

[10] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: The method of
paired comparisons. Biometrika, 1952.

[11] S. Chakraborty, J. Qiu, H. Yuan, A. Koppel, F. Huang, D. Manocha, A. S. Bedi, and M. Wang.
MaxMin-RLHF: Towards equitable alignment of large language models with diverse human
preferences. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

[12] D. Chen, Y. Chen, A. Rege, and R. K. Vinayak. Modeling the plurality of human preferences
via ideal points. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models,
2024.

[13] R. Chen, X. Zhang, M. Luo, W. Chai, and Z. Liu. PAD: Personalized alignment of LLMs at
decoding-time. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025.

11

[14] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[15] V. Conitzer, R. Freedman, J. Heitzig, W. H. Holliday, B. M. Jacobs, N. Lambert, M. Mossé,
E. Pacuit, S. Russell, H. Schoelkopf, et al. Social choice should guide AI alignment in dealing
with diverse human feedback. In Proceedings of the International Conference on Machine
Learning (ICML), 2024.

[16] C. H. Coombs. Psychological scaling without a unit of measurement. Psychological Review,
1950.

[17] G. Cui, L. Yuan, N. Ding, G. Yao, W. Zhu, Y. Ni, G. Xie, Z. Liu, and M. Sun. UltraFeedback:
Boosting language models with high-quality feedback. In Proceedings of the International
Conference on Machine Learning (ICML), 2024.

[18] J. Dai, X. Pan, R. Sun, J. Ji, X. Xu, M. Liu, Y. Wang, and Y. Yang. Safe RLHF: Safe
reinforcement learning from human feedback. In Proceedings of the International Conference
on Learning Representations (ICLR), 2024.

[19] H. Dong, W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang. RAFT:
Reward rAnked FineTuning for Generative Foundation Model Alignment. Transactions on
Machine Learning Research (TMLR), 2023.

[20] N. Dorka. Quantile regression for distributional reward models in RLHF. arXiv, 2024.

[21] V. Dumoulin, D. D. Johnson, P. S. Castro, H. Larochelle, and Y. Dauphin. A density estimation
perspective on learning from pairwise human preferences. Transactions on Machine Learning
Research (TMLR), 2024.

[22] Z. C. et al. InternLM2 technical report. arXiv, 2024.

[23] E. Fleisig, R. Abebe, and D. Klein. When the majority is wrong: Modeling annotator disagree-
ment for subjective tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

[24] D. Go, T. Korbak, G. Kruszewski, J. Rozen, and M. Dymetman. Compositional preference
models for aligning LMs. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2024.

[25] Google DeepMind. Gemma: Open models based on Gemini research and technology. arXiv,
2024.

[26] Google DeepMind. Gemma 2: Improving open language models at a practical size. arXiv,
2024.

[27] Google DeepMind, Gemini Team. Gemini: A family of highly capable multimodal models.
arXiv, 2023. [Online; accessed in May 2025].

[28] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for NLP. In Proceedings of the
International Conference on Machine Learning (ICML), 2019.

[29] D. Hsu and A. Mazumdar. On the sample complexity of parameter estimation in logistic
regression with normal design. In Proceedings of the Annual Conference on Learning Theory
(COLT), 2024.

[30] J. Jang, S. Kim, B. Y. Lin, Y. Wang, J. Hessel, L. Zettlemoyer, H. Hajishirzi, Y. Choi, and
P. Ammanabrolu. Personalized soups: Personalized large language model alignment via post-
hoc parameter merging. In NeurIPS Workshop on Adaptive Foundation Models, 2024.

[31] J. Kim and Y. Yang. Few-shot personalization of LLMs with mis-aligned responses. Proceedings
of the Conference of the Association for Computational Linguistics (ACL), 2025.

12

[32] Y. Lee, J. Williams, H. Marklund, A. Sharma, E. Mitchell, A. Singh, and C. Finn. Test-time
alignment via hypothesis reweighting. arXiv, 2024.

[33] X. Li, Z. C. Lipton, and L. Leqi. Personalized language modeling from personalized human
feedback. arXiv, 2024.

[34] P. M. Long. On the sample complexity of PAC learning half-spaces against the uniform
distribution. IEEE Transactions on Neural Networks, 1995.

[35] C. Molnar. Interpretable Machine Learning. 2025. URL https://christophm.github.io/
interpretable-ml-book.

[36] OpenAI. GPT-4 technical report. arXiv, 2024.

[37] OpenAI. GPT-4o system card. arXiv, 2024. [Online; accessed in May 2025].

[38] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[39] C. Park, M. Liu, D. Kong, K. Zhang, and A. Ozdaglar. RLHF from heterogeneous feedback
via personalization and preference aggregation. In ICML Workshop on Aligning Reinforcement
Learning Experimentalists and Theorists, 2024.

[40] Y. Plan, R. Vershynin, and E. Yudovina. High-dimensional estimation with geometric constraints.
Information and Inference: A Journal of the IMA, 2016.

[41] S. Poddar, Y. Wan, H. Ivison, A. Gupta, and N. Jaques. Personalizing reinforcement learning
from human feedback with variational preference learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

[42] C. Poth, H. Sterz, I. Paul, S. Purkayastha, L. Engländer, T. Imhof, I. Vulić, S. Ruder, I. Gurevych,
and J. Pfeiffer. Adapters: A unified library for parameter-efficient and modular transfer learning.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP): System Demonstrations, 2023.

[43] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. 2018.

[44] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2024.

[45] P. Ramachandran, P. J. Liu, and Q. V. Le. Unsupervised pretraining for sequence to sequence
learning. arXiv, 2016.

[46] A. Rame, G. Couairon, C. Dancette, J.-B. Gaya, M. Shukor, L. Soulier, and M. Cord. Rewarded
soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[47] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Efficient parametrization of multi-domain deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[48] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

[49] I. Shenfeld, F. Faltings, P. Agrawal, and A. Pacchiano. Language model personalization via
reward factorization. In Proceedings of the Conference on Language Modeling (COLM), 2025.

[50] R. Shi, Y. Chen, Y. Hu, A. Liu, H. Hajishirzi, N. A. Smith, and S. S. Du. Decoding-time language
model alignment with multiple objectives. In Advances in Neural Information Processing
Systems (NeurIPS), 2025.

13

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

[51] A. Siththaranjan, C. Laidlaw, and D. Hadfield-Menell. Distributional preference learning:
Understanding and accounting for hidden context in RLHF. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024.

[52] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano. Learning to summarize with human feedback. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[53] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[54] H. Wang, W. Xiong, T. Xie, H. Zhao, and T. Zhang. Interpretable preferences via multi-objective
reward modeling and mixture-of-experts. In Findings of the Association for Computational
Linguistics (EMNLP), 2024.

[55] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V.
Le. Finetuned language models are zero-shot learners. In Proceedings of the International
Conference on Learning Representations (ICLR), 2022.

[56] W. Xiong, H. Dong, C. Ye, Z. Wang, H. Zhong, H. Ji, N. Jiang, and T. Zhang. Iterative preference
learning from human feedback: Bridging theory and practice for RLHF under KL-constraint. In
Proceedings of the International Conference on Machine Learning (ICML), 2024.

[57] R. Yang, R. Ding, Y. Lin, H. Zhang, and T. Zhang. Regularizing hidden states enables learning
generalizable reward model for LLMs. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

[58] B. Yao, Z. Cai, Y.-S. Chuang, S. Yang, M. Jiang, D. Yang, and J. Hu. No preference left behind:
Group distributional preference optimization. In Proceedings of the International Conference
on Learning Representations (ICLR), 2024.

[59] L. Yuan, G. Cui, H. Wang, N. Ding, X. Wang, J. Deng, B. Shan, H. Chen, R. Xie, Y. Lin, Z. Liu,
B. Zhou, H. Peng, Z. Liu, and M. Sun. Advancing LLM reasoning generalists with preference
trees. In Proceedings of the International Conference on Learning Representations (ICLR),
2025.

[60] S. Zhao, J. Dang, and A. Grover. Group preference optimization: Few-shot alignment of large
language models. In Proceedings of the International Conference on Learning Representations
(ICLR), 2024.

[61] H. Zhong, Z. Deng, W. J. Su, Z. S. Wu, and L. Zhang. Provable multi-party reinforcement
learning with diverse human feedback. arXiv, 2024.

[62] T. Zollo, A. Siah, N. Ye, L. Li, and H. Namkoong. PersonalLLM: Tailoring LLMs to individual
preferences. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025.

14

A Proofs and additional theoretical results

In this section we prove the theoretical results in the main paper and present two complementary
results. To simplify the notation, we define K := X × Y2 and use k to refer to tuples (x, y, y′).

A.1 Proofs of the theoretical results in the main paper

We restate the results presented in the main paper and prove them.

Proposition 1. For any c ∈ C, m > 0, n > 0, and δ ∈ (0, 1], we have with probability at least 1− δ
that

|LD(c)− LS(c)| ≤
1

3m

[
g +

√
g2 + 18gm

(
1

n
E[V(ℓc|H)] + V(E[ℓc|H])

)]
,

where g := ln(2/δ).

Proof. Let kn ∈ Kn and zn ∈ Zn, and define

ℓn(c, h,k
n, zn) :=

1

n

n∑
i=1

ℓ(c, h, ki, zi). (7)

We can write

|LD(c)− LS(c)| =

∣∣∣∣∣∣LD(c)−
1

m

m∑
i=1

1

n

n∑
j=1

ℓ(c, hi, kij , zij)

∣∣∣∣∣∣ =
∣∣∣∣∣LD(c)−

1

m

m∑
i=1

ℓ(c, hi,k
n
i , z

n
i)

∣∣∣∣∣ .
Let Lc,n := ℓn(c,H,Kn, Zn) with H ∼ DH and Kn, Zn ∼ (DH

K,Z)
n. Since we know that

|Lc,n − ELc,n| ≤ 1 and E[1/m
∑

i L
c,n
i] = LD(c), we can write, using Bernstein’s inequality,

P (|LD(c)− LS(c)| > ϵ) ≤ 2 exp

− mϵ2

2V(Lc,n) +
2

3
ϵ

 . (8)

Based on (7), the law of total variance, and the law of large numbers, we can write

V(Lc,n) = E[V(Lc,n|H)] + V(E[Lc,n|H]), H ∼ DH

= E[V(ℓ(c,H,K,Z))|H)/n] + V(E[ℓ(c,H,K,Z)|H]), H,K,Z ∼ D

=
1

n
E[V(ℓ(c,H,K,Z))|H)]︸ ︷︷ ︸

E[V(ℓc|H)]

+V(E[ℓ(c,H,K,Z)|H])︸ ︷︷ ︸
V(E[ℓc|H])

, H,K,Z ∼ D. (9)

If we let E[V(ℓc|H)] := E[V(ℓ(c,H,K,Z))|H)] and V(E[ℓc|H]) := V(E[ℓ(c,H,K,Z)|H]), we can
rewrite (8) as

P (|LD(c)− LS(c)| > ϵ) ≤ 2 exp

− mϵ2

2

n
E[V(ℓc|H)] + 2V(E[ℓc|H]) +

2

3
ϵ


︸ ︷︷ ︸

δ

. (10)

To get the desired bound we only need to follow standard arguments in derivations of this type [9, for
example], which we detail here for completeness. Equating the right-hand side of (10) to δ, we have

δ = 2 exp

− mϵ2

2

n
E[V(ℓc|H)] + 2V(E[ℓc|H]) +

2

3
ϵ

 . (11)

15

Dividing both sides of (11) by 2 and taking the natural logarithm (as δ/2 > 0), we get

ln

(
δ

2

)
= − mϵ2

2

n
E[V(ℓc|H)] + 2V(E[ℓc|H]) +

2

3
ϵ

=⇒ ln

(
2

δ

)
=

mϵ2

2

n
E[V(ℓc|H)] + 2V(E[ℓc|H]) +

2

3
ϵ
. (12)

If we let a = ln

(
2

δ

)
and b =

2

n
E[V(ℓc|H)] + 2V(E[ℓc|H]), and rearrange the terms, we can rewrite

(12) as a quadratic equation in ϵ,

mϵ2 − 2

3
aϵ− ab = 0,

whose solutions are

ϵ =
a±

√
a2 + 9mab

3m
.

Since we are using ϵ to upper bound |LD(c)− LS(c)|, we want the largest of the two solutions. We
have a > 0 and b ≥ 0, so a2 + 9mab > 0. Thus, we take the solution with the positive sign.

Proposition 2. For any m,n > 0 and any δ ∈ (0, 1], we have with probability at least 1− δ that

LD(c̃
∗) ≤ LD(c

∗) + 2 inf
α

[
1

3m

(
gα +

√
g2α + 18mgα

(
1

n
E[V(ℓC |H)] + V(E[ℓC |H])

))
+ 2α

]
,

where gα := ln(2|Cα|/δ).

Proof. Define the semi-metric dℓ(c, c
′) := maxh∈H,k∈K,z∈Z |ℓ(c(h, k), z)− ℓ(c′(h, k), z)|. Let A

be the set of α-nets over C according to dℓ, that is,

A := {C′ | C′ ⊆ C,∀c∈C∃c′∈C′dℓ(c, c
′) ≤ α}.

Let Cα ∈ argminC′∈A|C′|. Clearly, this implies that

∀c∈C∃ĉ∈Cα
|LD(c)− LD(ĉ)| ≤ α and |LS(c)− LS(ĉ)| ≤ α.

Note that |Cα| is the covering number N(C, dℓ, α) [48]. Analogously to (8), we can write, for ĉ ∈ Cα:

P (|LD(ĉ)− LS(ĉ)| > ϵ) ≤ 2 exp

− mϵ2

2V(Lĉ,n) +
2

3
ϵ

 .

Define V(ℓC) := supc V(Lc,n). Recalling that Cα ⊆ C, it follows that

∀ĉ∈Cα
P (|LD(ĉ)− LS(ĉ)| > ϵ) ≤ 2 exp

− mϵ2

2V(ℓC) +
2

3
ϵ

 .

If we apply the same argument in (9) to V(ℓC), we can write

∀ĉ∈CαP (|LD(ĉ)− LS(ĉ)| > ϵ) ≤ 2 exp

− mϵ2

2

n
E[V(ℓC |H)] + 2V(E[ℓC |H]) +

2

3
ϵ

 .

Applying the union bound over Cα, we get

P (∃ĉ∈Cα : |LD(ĉ)− LS(ĉ)| > ϵ) ≤ 2|Cα| exp

− mϵ2

2

n
E[V(ℓC |H)] + 2V(E[ℓC |H]) +

2

3
ϵ


︸ ︷︷ ︸

δ

. (13)

16

If we equate the right-hand side of 13 to δ and isolate ϵ, as done in the proof of Proposition 1, we get

ϵα =
1

3m

ln(2|Cα|
δ

)
+

√
ln

(
2|Cα|
δ

)2

+ 18m ln

(
2|Cα|
δ

)(
E[V(ℓC |H)]

n
+ V(E[ℓC |H])

) ,

(14)
where we used the subscript in ϵ to note its dependency on α. We have already shown that with
probability at least 1 − δ, we have that ∀ĉ∈Cα

|LD(ĉ)− LS(ĉ)| ≤ ϵα. Given c ∈ C, we can pick
ĉ ∈ Cα such that dℓ(c, ĉ) ≤ α. Then,

|LD(c)− LS(c)| = |LD(c)− LS(ĉ) + LS(ĉ)− LS(c)|
≤ |LD(c)− LS(ĉ)|+ |LS(ĉ)− LS(c)|
≤ |LD(c)− LS(ĉ)|+ α

= |LD(c)− LD(ĉ) + LD(ĉ)− LS(ĉ)|+ α

≤ |LD(c)− LD(ĉ)|+ |LD(ĉ)− LS(ĉ)|+ α

≤ |LD(ĉ)− LS(ĉ)|+ 2α. (15)

Thus, we can say that, with probability at least 1 − δ, we have ∀c∈C |LD(c)− LS(c)| ≤ ϵα + 2α.
Since α was defined arbitrarily, we can write

∀c∈C |LD(c)− LS(c)| ≤ inf
α
(ϵα + 2α). (16)

Based on (16), we can write

LD(c̃
∗) ≤ LS(c̃

∗) + inf
α
(ϵα + 2α) ≤ LS(c

∗) + inf
α
(ϵα + 2α) ≤ LD(c

∗) + 2 inf
α
(ϵα + 2α).

A.2 Additional theoretical results

We now present additional theoretical results that complement those in the main paper. We start with
a result upper bounding |Cα|, the measure of complexity used in Proposition 2.

Proposition 3. Let α ∈ (0, 1). Then, the smallest set Cα ⊆ C such that

∀c∈C∃c′∈Cα
∀h∈H,k∈K,z∈Z |ℓ(c(h, k), z)− ℓ(c′(h, k), z)| ≤ α

has size at most (1/α)|H||K|.

Proof. First, there exists a finite subset M ⊆ [0, 1] of size α such that

∀u∈[0,1]∃v∈M|u− v| ≤ α ;

concretely, we may take q = ⌈ 1
2α⌉ <

1
α , and let M = { 2i−1

2q : i ∈ {1, . . . , q}}.

Now, fix a classifier c : H×K → R. We will specify a classifier ĉ ∈ MH×K with

|ℓ(c(h, k), z)− ℓ(ĉ(h, k), z)| < α (17)

for all (h, k, z) ∈ H × K × Z . To do so, consider a tuple (h, k) ∈ H × K. If c(h, k) < 0.5,
we set ĉ(h, k) such that ℓ(ĉ(h, k), 0) ∈ M is the closest value in M to ℓ(c(h, k), 0), in particular
within distance α. Then, since the derivative of log is positive and decreasing, we also have that
|ℓ(ĉ(h, k), 1)−ℓ(c(h, k), 0)| ≤ α. If instead ℓ(c(h, k), 0) ≥ 0.5, we set ĉ(h, k) so that ℓ(ĉ(h, k), 1) ∈
M is the closest value in M to ℓ(c(h, k), 1), and the conclusion follows similarly. Thus, we have
exhibited ĉ with the property described in (17), and ĉ is guaranteed to lie in a set of size at most
(1/α)|H||K|, as required.

The analysis in Proposition 2 is based on the concept of covering numbers of function spaces, and
Proposition 3 provides a simple upper bound for the covering number of Cα. It is also possible to
derive results based on other measures of complexity of function spaces. We provide one illustrative
example here, based on the notion of Rademacher complexity. This new result also assumes that the
classifiers in C are logistic regression models.

17

Proposition 4. Under the assumptions of Section 3, consider a hypothesis class C comprising logistic
regression models over concatenated embeddings of user, prompt, and responses, with weights
bounded in L2 norm by W , and embedding L2 norms bounded by 1. Let c∗ be the optimal model in
this class for the population distribution D, and let c̃∗ be the optimiser of the empirical loss. Then,
with probability at least 1− δ, we have

LD(c̃
∗) ≤ LD(c

∗) +
2W√
m

+ 3

√
g

2m
+

1

3m

[
g +

√
g2 + 18gm

(
1

n
E[V(ℓc∗ |H)] + V(E[ℓc∗ |H])]

)]
,

where g = log(6/δ).

Proof. First, note that the classification loss we are concerned with is a sum of non-i.i.d. terms:

LS(c) =
1

m

m∑
i=1

1

n

n∑
j=1

ℓ(c(hi, xij , yij , y
′
ij), zij) ,

so we cannot immediately apply the classical methods of Rademacher complexity analysis (see, for
example, Chapter 26 of [48]).

However, our data is i.i.d. at the level of the indices i, so we can begin by applying the framework
of Rademacher complexity bounds at this level. We broadly follow the proof structure of [48,
Theorem 26.5].

First, we have that

sup
c∈C

(LD(c)− LS(c)) ,

viewed as a function of S, satisfies the bounded-difference condition required for McDiarmid’s in-
equality, from which it follows that this quantity concentrates around its expectation; with probability
at least 1− δ, we have

sup
c∈C

(LD(c)− LS(c)) ≤ ES

[
sup
c∈C

(LD(c)− LS(c))

]
+

√
log(2/δ)

2m
.

The key supporting result [48, Lemma 26.2] then allows us to relate the expected quantity on the
right-hand side to the Rademacher complexity of our hypothesis class. Concretely, we have

ES

[
sup
c∈C

(LD(c)− LS(c))

]
≤ 2ES′ [R(ℓ ◦ C ◦ S′)] ,

where

ℓ ◦ C ◦ S′ =

{(
1

n

n∑
j=1

ℓ(c(hi, kij), zij)

)m

i=1

: c ∈ C

}
, (18)

and R denotes Rademacher complexity of the input set.

Now, the bounded-differences inequality required to employ McDiarmid’s inequality applies to the
Rademacher complexity as a function of S′ too, R(ℓ ◦ C ◦S′), so that we may obtain with probability
1− δ:

ES′ [R(ℓ ◦ C ◦ S′)] ≤ R(ℓ ◦ C ◦ S) +
√

log(2/δ)

2m
.

Putting all these parts together, yields

sup
c∈C

(LD(c)− LS(c)) ≤ 2R(ℓ ◦ C ◦ S) + 3

√
log(4/δ)

2m
(19)

with probability at least 1− δ.

Finally, denoting c∗ the optimiser of the true loss, and c̃∗ the optimiser of the empirical loss, we have

LD(c̃
∗)− LD(c

∗) = (LD(c̃
∗)− LS(c̃

∗)) + (LS(c̃
∗)− LS(c

∗)) + (LS(c
∗)− LD(c

∗))

≤ (LD(c̃
∗)− LS(c̃

∗)) + (LS(c
∗)− LD(c

∗)).

18

The first term is bounded by the inequality in Equation (19). The second term may be bounded
by Bernstein’s inequality: note that this deviates slightly from the approach set forward in [48,
Chapter 26], but we can make use of Proposition 1 here. This ultimately results in a bound of the
form:

LD(c̃∗) ≤ LD(c∗) + 2R(ℓ ◦ C ◦ S) + 3

√
g

2m
+

1

3m

[
g +

√
g2 + 18gm

(
1

n
E[V(ℓc∗ |H)] + V(E[ℓc∗ |H])]

)]
where g = log(6/δ).

Lastly, we derive an explicit form for the Rademacher complexity of our predictor, making use
of the model class assumptions introduced in the statement of the result. To bound the empirical
Rademacher complexity R(ℓ ◦ C ◦ S), we can make a standard argument using several manipulations
based on the Rademacher calculus, as described in [48, Chapter 26]. First, by the sum property, we
focus on a single summand j per dimension. Next, by the contraction lemma, and the fact that the
logarithm-sigmoid composition is 1-Lipschitz, we may remove these elements from the set under
consideration, revealing the linear function class that we hypothesise. With the assumptions on weight
norms and embeddings made in the statement, we then obtain an overall Rademacher complexity of
W/

√
m. This results in an overall bound of:

LD(c̃
∗) ≤ LD(c

∗) +
2W√
m

+ 3

√
g

2m
+

1

3m

[
g +

√
g2 + 18gm

(
1

n
E[V(ℓc∗ |H)] + V(E[ℓc∗ |H])]

)]
,

as required.

B Details of the experiments and additional empirical results

We tried to keep our experimental setup as simple as possible to provide a realistic estimate of
out-of-the-box performance. In particular, we did not carry out an extensive search over network
architectures or hyper-parameters, keeping most of them at sensible defaults from the outset. We also
did not specialise the training procedure to RFM’s architecture, using standard gradient descent to
minimise the training and adaptation losses.

As mentioned in the main text, we used Google DeepMind’s [25] Gemma 1.1 2B to implement RFM
and the baselines. The maximum context and response lengths were set to lx = ly = 1, 525 tokens.
Training and adaptation were carried out using gradient descent with a learning rate of 10−5. We
performed a random 90%–10% split of the training set and used the error in the smaller subset (a
validation set) as a criterion to select the model to undergo adaptation.

B.1 Empirical analysis

Problem setup. The following 13 features were used:

• ϕ1(x, y): the length of y.
• ϕ2(x, y): the average sentence length in y.
• ϕ3(x, y): the average word length in y.
• ϕ4(x, y): the proportion of characters in y that are vowels.
• ϕ5(x, y): the proportion of characters in y that are punctuation symbols.
• ϕ6(x, y): the proportion of transitions between words in y that are alliterations.
• ϕ7(x, y): the proportion of words in y that are adjectives.
• ϕ8(x, y): the proportion of words in y that are adverbs.
• ϕ9(x, y): the proportion of words in y that are verbs.
• ϕ10(x, y): the proportion of words in y that are nouns.
• ϕ11(x, y): the proportion of words in y that are synonyms of one of the words in x.
• ϕ12(x, y): the proportion of words in y that are antonyms of one of the words in x.
• ϕ13(x, y): the proportion of words in y that also appear in x.

19

All the features were normalised to fall in the interval [0, 1] and then centered around their median
value so that positive values represent values above the median (and vice versa). Our features were
designed to capture potentially conflicting subjective criteria, yet they remain inherently neutral
(i.e., possessing no inherent valence). These features also vary in how they access inputs x and y,
which consequently influences their anticipated learning difficulty. We identify three categories of
features. “Structural” features (e.g., ϕ1, ϕ2, ϕ3) treat x and y as raw strings devoid of meaning and
are thus expected to be straightforward to learn. In contrast, “syntactic” features (e.g., ϕ7, ϕ8, ϕ9)
analyze the grammatical role of words in a sentence, and their dependence on inter-word relationships
makes them more challenging to learn. Finally, “semantic” features (e.g., ϕ11, ϕ12), which rely on
the meaning of words, are likely the most difficult to learn.

As discussed in Section 5, we defined a user as a vector ω ∈ {−1, 1}13. Given an example (x, y, y′)
and a user ω, the corresponding preference z was determined as

z = 1{⟨ϕ(x, y),ω⟩ > ⟨ϕ(x, y′),ω⟩}, (20)

where 1{·} is the indicator function and {ϕi(x, y)}13i=1 are the features described above.

We defined a distribution over H, DH, parameterised by a single parameter p determining P(ωi = 1)
for each i = 1, 2, ..., 13 independently. That is, in order to sample a user h from DH, for each
i = 1, 2, ..., 13 we sample Z ∼ Bernoulli(p) and set ωhi = 2Z − 1. The parameter p of the
distribution DH allows us to control how homogeneous in terms of preferences groups sampled from
it tend to be. The entropy of DH peaks at p = 0.5, resulting in the maximum degree of disagreement.
As p → 0 or p → 1, the preferences become more homogeneous. Figure 5 illustrates the effect of p
on the homogeneity of the users’ preferences.

0.5 0.6 0.7 0.8 0.9
Preference homogeneity (p)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pa
irw

ise
 d

isa
gr

ee
m

en
t f

ra
ct

io
n

Figure 5: Pairwise user disagreement as a function of p. For each value of p ∈
{0.5, 0.75, 0.875, 0.9375}, we sampled 100 users from DH and computed the fraction of the exam-
ples in the UltraFeedback training set on which they disagreed.

We used sets of raters Ĥ of different sizes: m ∈ {20, 40, 60, 80, 100}. Each run used a different set
Ĥ with raters sampled from DH as explained above. We also sampled a set of 500 held-out users
per experiment using the same procedure. The held-out users were used to assess the inter-user
generalisation of the models.

Unless otherwise noted, the default values for the parameters used in the experiments were: m = 60
raters, preference homogeneity level p = 0.7, and n̂ = 30 examples used for adaptation.

Training and adaptation. Training was carried out for 6, 000 parameter updates with a batch
size of 32. This means that the training procedure went over the entire UltraFeedback training set
approximately three times. Each time the example (xi, yi, y

′
i,) was encountered, a new rater ĥ was

sampled uniformly at random from Ĥ and the preference zi was determined through (20) with the
corresponding ωĥ. For the experiments shown in Figure 1a specifically—with a varying number
m of raters—we needed to make sure that each rater was trained with roughly the same number of
examples n. So, we extended training proportionally to m (Figure 6 shows the validation and test
errors along training in this experiment).

To perform the adaptation, we sampled n̂ ∈ {10, 30, 50, 70, 90} examples from UltraFeedback’s
training set uniformly at random. Analogously to training, each time the example (xi, yi, y

′
i,) was

encountered a user h was sampled uniformly at random from the set of 500 held-out users, with

20

the corresponding preference z determined through (20). We carried out a total of 6, 000 parameter
updates with a batch of 32 for all 500 held-out users combined (so, only around 384 updates per user,
in expectation).

For each experiment, we carried out training followed by adaptation 5 times. All the numbers reported
are averages over the corresponding 5 runs. The metric we report for adaptation in Figures 1 and 3 is
the inter-user test accuracy, an estimate of the fraction of examples in the test set correctly classified
by the models, per user. To compute it, we went over the test set 50 times, always assigning to each
example a user sampled uniformly at random from the set of 500 held-out users. This means that each
user is evaluated in approximately 100 examples, in expectation. The accuracy reported in Figures 1
and 3 is the average number of correctly classified examples over the 50 passes over the test set.

Additional results. Figures 6 and 7 show the baseline and RFM’s accuracy on the test and validation
sets during training. In Figure 6 we see the effect of varying the number of raters m, while in Figure 7
we see the effect of varying the preference homogeneity parameter p. The values reported are the
intra-user validation accuracy and the intra-user test accuracy. Their computation is analogous to
that of the inter-user test accuracy explained above, with held-out users replaced by raters and the
test set replaced by the validation set when applicable. Note that, in contrast with the adaptation error
shown in Figure 1, the training error tends to go up with the number of raters m. This makes sense,
since each rater corresponds to a classification problem being solved in parallel.

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Baseline RFM(8) RFM(32)

Test

RFM(128)

0 5000 10000 15000 20000
Parameter updates

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0 5000 10000 15000 20000
Parameter updates

0 5000 10000 15000 20000
Parameter updates

0 5000 10000 15000 20000
Parameter updates

Validation

Number of raters (m)
4
16
36
64
100

Figure 6: Validation and test accuracies as a function of update steps and number m of training raters
during the training phase (estimate of intra-user generalisation). The number of parameter updates is
proportional to m to ensure that all raters see roughly the same number n of training examples. Error
bars are 99% confidence intervals over 5 runs.

Figure 1c shows the performance of the baseline and RFM when using n̂ ∈ {10, 30, 50, 70, 90}
examples for adaptation. Although these are small numbers from a learning perspective, one may
ask what happens under even more stringent conditions. To answer this question, we extended the
RFM(32) results in Figure 1c to include test accuracies with n̂ ∈ {1, 3, 5}. The results are shown in
Table 1, together with RFM(32)’s results from Figure 1c.

As expected, RFM’s performance improves monotonically with the number of examples n̂ used for
adaptation. Note that even the results with a single example remain above random chance (though
significantly lower than the results with n̂ ≥ 10).

We point out that worse performance with very few adaptation examples is expected, for it reflects
the intrinsic difficulty of the learning problem. Given that each user’s preferences are derived from
a combination of 13 features, many different combinations of those 13 features may explain the
preference behind a few training examples, and multiple training examples may be necessary to
disambiguate. It is reassuring to see that RFM is still able to capture some of the problem structure
under these extreme conditions, and that its performance monotonically increases with n̂.

21

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Baseline RFM(8) RFM(32)

Test

RFM(128)

0 1000 2000 3000 4000 5000 6000
Parameter updates

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

0 1000 2000 3000 4000 5000 6000
Parameter updates

0 1000 2000 3000 4000 5000 6000
Parameter updates

0 1000 2000 3000 4000 5000 6000
Parameter updates

Validation

Preference homogeneity (p)
0.5
0.6
0.7
0.8
0.9

Figure 7: Validation and test accuracies as a function of update steps and preference heterogeneity
p during the training phase (estimate of intra-user generalisation). Error bars are 99% confidence
intervals over 5 runs.

Table 1: Accuracy in predicting the preferences of 500 held-out users on UltraFeedback’s test set
after adaptation (cf. Figure 1). The range of values shown are 99% confidence intervals over 5 runs.

n̂ Test accuracy
1 0.5481± 0.0217
3 0.5749± 0.0109
5 0.5891± 0.0056
10 0.7053± 0.0182
30 0.7657± 0.0790
50 0.7770± 0.0333
70 0.7835± 0.0217
90 0.7900± 0.0172

In Figure 1b we show the effect of varying the level of homogeneity p of the distribution DH from
which raters and held-out users are sampled. In some real scenarios, there may be a discrepancy
between the distribution used to sample raters and the real distribution underlying users. To simulate
this scenario, we ran an experiment in which held-out users were sampled from a fixed distribution
with p = 0.65 while raters were sampled from distributions with varying p. Results are shown in
Figure 8. The discrepancy between the rater and held-out user distributions has a negative impact
on both RFM’s and the baseline’s performance, as expected. However, the negative impact on the
baseline is much more severe, and, in contrast with RFM, it increases as p → 0.5.

B.2 Comparisons

Comparison with the linear baseline. The linear baseline was adapted on top of the trained
baseline using gradient descent with a learning rate of 10−5 (the same used for RFM). We froze all
the parameters of the baseline trained with m = 60 raters and preference homogeneity p = 0.7 (c.f.
Figure 1), except for the last layer. Then, we replaced the last layer with 500 linear layers, one for
each held-out users h, and trained them using the data in the corresponding Sh. Note that this comes
down to performing 500 logistic regressions in parallel on top of the frozen baseline’s user-agnostic
features (whose dimension is 1024). Adaptation followed the exact same protocol adopted for RFM,
with 6, 000 parameter updates using a batch size of 32 shared among all users.

As an aside, note that using the protocol above to train all 2 billion parameters of the baseline 500
times would be infeasible. This illustrates our point in Section 3 advocating a small number d of
adaptable parameters.

22

0.5 0.6 0.7 0.8 0.9
Preference homogeneity (p)

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y

Baseline
RFM(8)

RFM(32)
RFM(128)

Figure 8: Accuracy in predicting the preferences of 500 held-out users on the test set after adaptation
(estimate of inter-user generalisation). Training was carried out with m = 60 raters and n̂ = 30
examples were used for adaptation. The homogeneity parameter was fixed at p = 0.65 for the
500 held-out users, and varied for the training raters as shown on the x-axis. Error bars are 99%
confidence intervals over 5 runs.

.

Comparison with the non-linear baseline. Park et al. [39] and Zhong et al. [61] propose principled
(and similar) methods to adapt a reward model to individual users. Since the former is slightly more
general, we compared RFM against it.

Using our terminology, we can describe Park et al.’s [39] method as having a single learning phase that
is intermediate between training and adaptation. If we partition the shared parameters θ = [θ1,θ2],
the method consists in keeping θ1 fixed while θ2 is learned together with the vectors wh associated
with users. We note that, unlike RFM, this approach requires that the vectors wh are simultaneously
learned for all users h ∈ H we are interested in adapting the model to.

Following Park et al.’s [39] experiments, we froze the backbone Gemma model (θ1), represented ϕ
as a multilayer perceptron (MLP) with 3 or 5 hidden layers containing 32 units each (θ2), and learned
the MLP together with the vectors wh. To make sure θ1 was initialised with reasonable values, we
ran our training phase with θ1, θ2, and W being learned together, where the rows of W correspond
to the raters ĥ ∈ Ĥ (cf. Equation (6)).

As shown in Figure 3, the non-linear baselines did not perform well. We conjectured that this may
be due an excessive number of parameters to be learned with n̂ = 10 examples, so we re-ran the
experiment using n̂ = 100. Results are shown in Table 2 together with the other results from Figure 3.
Although the non-linear baselines perform slightly better with larger n̂, they are still outperformed by
the non-adaptive and linear baselines, and considerably outperformed by RFM.

Table 2: Detailed comparison of RFM against linear and non-linear baselines (cf. Figure 3). The
values shown are the accuracy in predicting the preferences of 500 held-out users using n̂ examples
for adaptation, together with 99% confidence intervals over 5 runs.

Model n̂ Test accuracy
Baseline 10 0.6258± 0.0246
Linear baseline 10 0.6285± 0.0176
Non-linear ϕ (3 layers) 10 0.5543± 0.0381

100 0.5706± 0.0207
Non-linear ϕ (5 layers) 10 0.5237± 0.0273

100 0.5620± 0.0452
RFM(32) 10 0.7053± 0.0182

An alternative to the non-linear architecture proposed by Park et al. [39] would be to have a separate
MLP per user (that is, we replace wh with θh). This architecture would probably required even more
examples to be adapted, since the MLPs’ parameters θh would be trained with the data in Sh only.

Comparison with in-context methods. We present the prompt used to evaluate the in-context
capabilities of Gemini 1.5 Pro and GPT-4o in Figure 9. It has three main parts: (i) the system
instructions, delimited by [System] and [End of system]; (ii) a sequence of 10 previous user

23

ratings (whose formatting is described in the system instructions); and (iii) the prompt, first response,
and second response to be assessed by the LLM. To avoid positional biases, we have the LLM assess
the first and second responses both in their original order and in reversed order and average over the
correctness of both LLM outputs.

For each example in UltraFeedback’s test set, we sample one user h uniformly at random from the
set of 500 held-out users. We then draw from the training set 10 examples of responses previously
ranked by h. The previously ranked responses are inserted in part (ii) of the prompt template, and
the test example itself is inserted in part (iii) of the prompt template. We then compare the predicted
comparison outcome against user h’s ranking for that test example.

We also evaluate Gemini’s zero-shot agreement with the held-out users (Gemini (zero-shot)) to
help assess whether adding previously ranked responses as context makes a difference in terms of
performance. In that setting, we omit the paragraph starting with “We will provide a few examples”
in part (i) of the prompt template and remove part (ii) altogether.

The fact that the LLMs’ performance essentially reduces to chance in Figure 3 is somewhat surprising.
We hypothesise the explanation is twofold: 1) despite the information being available in the prompt,
the LLMs do not take advantage of the previous ratings to inform their decisions and instead revert
to making a “judgement call” based on their existing alignment; and 2) this alignment is somewhat
orthogonal to the features {ϕi}13i=1 we used (described in Appendix B.1). Preliminary experiments
with the features provided with the UltraFeedback dataset corroborate this hypothesis. The UltraFeed-
back dataset comes with four features computed using OpenAI’s [36] GPT-4: helpfulness, honesty,
instruction-following, and truthfulness. Each example in the dataset has a score between 1 and 5
associated with each feature. We defined a user whose preferences were fully determined by the
helpfulness features and reran the experiment described above. Results are in Table 3 and demonstrate
that 1) just like with our main in-context comparison experiment shown in Figure 3, the effect of
10-shot in-context prompting is negligible in comparison to zero-shot prompting, and 2) the LLMs
perform considerably above chance when trying to predict preferences induced by a feature computed
itself by an LLM.

Table 3: Accuracy in predicting the preferences of a held-out user induced by the feature helpfulness
provided with the UltraFeedback dataset. The three models used n̂ = 10 examples for adaptation.

Model Test accuracy

Gemini 1.5 Pro (zero-shot) 0.6341
Gemini 1.5 Pro (in-context, 10-shot) 0.6199
GPT-4o (in-context, 10-shot) 0.6392

We considered using the UltraFeedback features in our experiments, but for a more rigorous study we
needed features that could be computed unequivocally and efficiently, and thus easily extrapolated
beyond the UltraFeedback dataset. This was essential for the experiments with best-of-n shown in
Figure 2, for example, in which we had to compute the features associated with examples (x, y, y′)
not in the UltraFeedback dataset.

Comparison with VPL. Poddar et al.’s [41] evaluation protocol for VPL allows to measure intra-
user generalization, but not inter-user generalization. This is because the preferences used for
evaluation are obtained from the same four raters that were used to train the model. Those raters’
preferences are derived from the four UltraFeedback features mentioned above: helpfulness, honesty,
instruction-following, and truthfulness, with each rater focusing exclusively on a single feature. In
terms of evaluating intra-user generalization, VPL relies on an episodic protocol: for every rater ĥi

and for every tuple (x, y, y′, z) in the rater’s test set, the authors simulate a new adaptation problem
by drawing between two to eight other tuples sampled at random from the rater’s test set to provide
as context for the inference network to make a prediction. This means that the rater’s identity ĥi is
never explicitly revealed to the model, but only contextually through the two to eight other tuples. In
contrast, our evaluation methodology is more akin to transfer learning evaluation: for each rater, we
adapt RFM on a held-out set of examples. The same held-out set is used for all test examples, that is,
we learn w once using the held-out data and then use it to process all the test tuples (x, y, y′, z).

24

[System]
Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below.

A rating starts with the tag [User question] followed by the context and the tag
[End of user question]. After that, we have the tag [The Start of Model A’s answer]
followed by the first response. The first response ends with the tag [The End of
Model A’s answer]. We then have the tag [The Start of Model B’s answer] followed by
the second response. The second response ends with the tag [The End of Model B’s
answer].

We will provide a few examples of previous ratings to help you understand the task.
The example ratings will have the structure above followed by the tag [Verdict],
the verdict ("[[A]]" if assistant A is better, and "[[B]]" if assistant B is
better), and the tag [End of verdict].

We are interested in your evaluation of the last two responses. Begin your
evaluation by comparing these two responses and provide a short explanation. Do not
favor certain names of the assistants. Be as objective as possible. After providing
your explanation, output your final verdict by strictly following this format:
"[[A]]" if assistant A is better, and "[[B]]" if assistant B is better.
[End of system]

[User question]
<...>
[End of user question]

[The Start of Model A’s answer]
<...>
[The End of Model A’s answer]

[The Start of Model B’s answer]
<...>
[The End of Model B’s answer]

[Verdict]
<...>
[End of verdict]

<...>

[User question]
<...>
[End of user question]

[The Start of Model A’s answer]
<...>
[The End of Model A’s answer]

[The Start of Model B’s answer]
<...>
[The End of Model B’s answer]

Figure 9: The prompt template used for in-context evaluation. When evaluating Gemini’s zero-shot
capabilities we omit the paragraph starting with “We will provide a few examples” in the prompt.

25

The VPL authors provide the exact data used for evaluation on UltraFeedback.3 For simplicity, we
adapt our evaluation protocol so as to get an unbiased estimate of the episodic metric used to evaluate
VPL. We hold out 250 examples from VPL’s training set to sample adaptation sets. After RFM
has been trained on the four UltraFeedback raters derived from UltraFeedback features, we loop
over raters, number n̂ ∈ {2, 3, 4, 5, 6, 7, 8} of examples used for adaptation, and 5 random seeds,
each time drawing n̂ examples from the held-out set for that rater, discarding the pre-trained set of
weights w for that rater, and learning a new w on the sampled adaptation set. We then aggregate the
accuracies measured on the test set across adaptation set sizes, raters, and random seeds (see Figure 10
for non-aggregated results). As a result, the examples used for adaptation for each individual test
example do not correspond exactly to the ones used by VPL (and are shared across test examples),
but they are equally disjoint from the training set and their distribution is i.i.d. with respect to the
distribution VPL samples from.

We obtain an averaged test accuracy of 61.61% against VPL’s 61.49%. Given the methodological
caveats outlined above, the conclusion we draw is that, despite its simplicity, RFM achieves an
intra-user generalization performance comparable with VPL’s. We again highlight that this notion of
generalisation is distinct from inter-user generalisation, which is the main one we are targeting in this
work, but for which VPL does not provide metrics to compare against.

2 3 4 5 6 7 8
Number of examples used

for adaptation

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

Rater h1

2 3 4 5 6 7 8
Number of examples used

for adaptation

Rater h2

2 3 4 5 6 7 8
Number of examples used

for adaptation

Rater h3

2 3 4 5 6 7 8
Number of examples used

for adaptation

Rater h4

Figure 10: Test accuracies for RFM(32) on the UltraFeedback-derived UF-P-4 task introduced by
Poddar et al. [41], broken down by rater and number of examples used for adaptation. The error bars
represent 99% confidence intervals over 5 randomly-sampled adaptation sets.

B.3 Modelling groups of real users

In the experiments described in Appendices B.1 and B.2 we had control over the definition of the
training raters and held-out users. In the experiments with reward models acting as users we removed
this assumption. As mentioned in Section 5, we performed our experiments with two datasets:
UltraFeedback and PersonalLLM. We now describe each in turn.

For the experiments with UltraFeedback, shown in Figure 4a, we used the following 8 publicly-
available reward models to emulate raters and users:

• OpenAssistant_reward-model-deberta-v3-large-v2,
• weqweasdas_RM-Mistral-7B [19, 56],
• OpenAssistant_oasst-rm-2.1-pythia-1.4b-epoch-2.5,
• Ray2333_GRM-Gemma-2B-sftreg [57],
• Ray2333_reward-model-Mistral-7B-instruct-Unified-Feedback [57],
• weqweasdas_RM-Gemma-7B [19],
• internlm_internlm2-7b-reward [22],
• openbmb_Eurus-RM-7b [59].

All the models above are available on the Hugging Face website.4 For each reward model rk and each
example (xi, yi, y

′
i) in the training and test sets, we defined zki = 1{rk(xi, yi) > rk(xi, y

′
i)}. 5 We

performed leave-one-old cross validation using the 8 resulting raters, as explained in Section 5. As
before, training was carried out for 6, 000 parameter updates with a batch size of 32. We performed

3github.com/WEIRDLabUW/vpl_llm?tab=readme-ov-file#data-and-pretrained-models
4huggingface.co.
5The resulting data is available at huggingface.co/datasets/google/rfm-rm-as-user-dataset.

26

https://github.com/WEIRDLabUW/vpl_llm?tab=readme-ov-file#data-and-pretrained-models
https://huggingface.co
https://huggingface.co/datasets/google/rfm-rm-as-user-dataset

2 training runs followed by 5 adaptation runs each, totalling 10 runs. Figure 11 shows the detailed
results obtained in our experiments with the UltraFeedback dataset (Figure 4 is a slice of this figure
with the number of adaptation examples fixed at n̂ = 50).

0.4

0.6

Te
st

 a
cc

ur
ac

y

Held-out reward model 1 Held-out reward model 2 Held-out reward model 3 Held-out reward model 4

10 30 50 70 90
Number of examples used

for adaptation

0.4

0.6

Te
st

 a
cc

ur
ac

y

Held-out reward model 5

10 30 50 70 90
Number of examples used

for adaptation

Held-out reward model 6

10 30 50 70 90
Number of examples used

for adaptation

Held-out reward model 7

10 30 50 70 90
Number of examples used

for adaptation

Held-out reward model 8

Baseline RFM(128)

Figure 11: Accuracy in predicting the preferences of held-out “reward-models users” on test set after
adaptation (estimate of inter-user generalisation). Error bars are 99% confidence intervals over 10
runs (5 adaptation runs on top of 2 training runs).

We now describe our experiments with the PersonalLLM dataset, whose results are shown in Figure 4b.
Each context x in this dataset has 8 responses, and each response has been scored by 10 reward
models. For our experiments, we picked the first two responses to each context x and used them as
our pair (y, y′). We then proceeded exactly as in the experiments with the UltraFeedback dataset,
except that we performed 5 runs each involving training followed by adaptation.

C Expanded discussion of related work

In this section we present a more detailed discussion on the works we consider to be more directly
relevant to ours.

Shenfeld et al. [49] concurrently propose the same architecture as RFM, but under a different name:
“PReF”, for personalisation via reward factorization. They also approach the subject from a different
angle: while we study the learning problem from a higher level of abstraction, and then specialise our
results to RFM, they focus on how to exploit RFM’s simple architecture to improve several aspects of
the training pipeline. Among these, two contributions stand out: a stable initialisation of the model
through singular value decomposition and an efficient way of selecting examples for adaptation via
active learning. Their theoretical results regard the latter. Shenfeld et al. [49] also present a thorough
empirical evaluation of their method, including an ablation study of their proposed improvements,
comparisons with Chen et al.’s [12] and Poddar et al.’s [41] approaches (discussed below), and a
small (but interesting) experiment involving human users.

Bose et al. [8] also concurrently propose an architecture very similar to RFM, this time under the
name LoRe (for “low-rank reward modelling”). The LoRe architecture closely resembles RFM’s, in
that both express individual reward functions as linear combinations of learned reward features (or
“reward basis” in LoRe’s terminology). A small, but potentially relevant difference is that their vector
of coefficients w is a distribution (that is,

∑d
i=1 wi = 1 and 0 ≤ wi ≤ 1 for all i = 1, 2, ..., d). This

slightly restricts the expressiveness of the model. Bose et al. [8] do not present theoretical results, but
their empirical evaluation of the proposed architecture is extensive. They make some of the same
comparisons as us—namely: baseline, linear baseline, and VPL—and also compare the proposed
architecture with that of Chen et al. [12], discussed below.

Zhong et al. [61] and Park et al. [39] also propose methods that are reminiscent of RFM. Both papers
put more emphasis on the theoretical analysis than on empirical results. Zhong et al. do not present
experiments, while Park et al. only present simple empirical evaluations. We briefly describe one
instantiation of Park et al.’s approach in Section 5 and Appendix B.2, and also compare it with RFM.

27

Go et al.’s [24] compositional preference model (CPM) expresses the learned reward function as a
linear combination of features computed from the context and response. However, unlike RFM—
which learns features using (1)—, the CPM approach uses handcrafted ordinal features computed by
LLMs using pre-specified prompts.

Chen et al. [12] propose to replace the Bradley-Terry model with Coombs’s [16] ideal point model.
This model posits that people make assessments of a given object based on the distance between the
representation of the object in a latent space and an “ideal reference point” in the same space. While
the inner product between RFM’s ϕθ(x, y) and wh does not strictly qualify as a distance function,
we can think of wh as being akin to an “ideal point” for user h against which ϕθ(x, y) is compared.
Chen et al. [12] propose two different instantiations of the ideal point model—Model A and Model
B—which differ from RFM in a few aspects. Like RFM’s ϕθ(x, y), Model A computes features
from the context and response jointly, but the ideal point is constructed as a convex combination
of “prototypical” ideal points and the comparison is made using the Euclidean distance. Model B
defines an ideal point that depends on the context only, also as a convex combination of prototypical
ideal points. Unlike RFM, Model B computes response features separately and compares them to the
context ideal point using the cosine similarity. Both Model A and Model B constrain the user-specific
parameters to lie on a simplex whose number of vertices becomes an extra hyper-parameter (in
addition to the dimension d of the ideal points). This presents an additional optimisation challenge
and, as the authors themselves point out, does not generalise to users whose ideal point would fall
outside of the convex hull.

Poddar et al.’s [41] variational preference learning (VPL) works by encoding tuples {xi, yi, y
′
i, zi}mi=1

associated with a user h into a latent variable, and then conditioning the reward model (and policy) on
the latent variable. Zhao et al. [60] cast the problem of personalised preference learning as a few-shot
learning problem and tackle it with in-context meta-learning. Their group preference optimization
(GPO) approach trains a transformer to predict target preferences for a given homogeneous group of
users from a context set of preferences from the same group. Like RFM, both works learn from a
context set of preferences from a new user (or group of users). Unlike RFM—which learns through
optimizing wh—both works amortize the process using a neural network (namely, VPL’s encoder
and GPO’s transformer).

Li et al. [33] propose a personalised RLHF (P-RLHF) framework in which a learnable user model
computes an embedding for each user as the concatenation of an implicit embedding (that depends on
the user’s unique identifier) and an optional explicit embedding (that depends on textual information
about the user). The user embedding is then used to condition a base LLM through soft prompting.
New users are accommodated by using a generic implicit embedding and computing an explicit
embedding based on the new user’s textual information (if available).

Dumoulin et al. [21] present results on “rater misspecification”, in which a model trained on the
preferences of a single rater which favors two characteristics (e .g ., short generations or long
generations, but not middling generations) behaves very differently from a model trained on the
preferences of two raters, each of which favor one characteristic (short generations for one rater,
long generations for the other). The authors frame the issue from the perspective of a misspecified
generative process for pairwise preferences and show that under correct assumptions (namely, the
preference dataset is a mixture of individual raters’ preferences) it is possible to accurately capture
multiple raters’ preferences. In practice, the solution the authors propose (explicitly introducing as
many models as there are raters) works in synthetic settings but was never shown to work at scale
on larger problems. It assumes that one knows the number of raters in the preference dataset, but it
does not assume that each individual preference tuple is annotated with the rater ID. The solution
also does not consider how one would accommodate new users.

Chakraborty et al. [11] propose to learn a user-specific reward function by using an expectation-
maximisation algorithm to define a mixture of preference distributions. To learn a single policy
that better represent diverse human preferences, the authors propose a MaxMin alignment objective
inspired by the Egalitarian principle in social choice theory.

D Broader impact

Beyond an improved user experience, adaptive reward models have great potential for positive impact.
For example, they may allow for the inclusion of minority opinions and the representation of diverse

28

viewpoints in model outputs. However, as with most technological advances, this does not come
without risks. If not implemented with ethical implications in mind, the specialisation of LLMs to
user preferences may result in models behaving in undesirable ways. It may also reinforce existing
points of view through sycophantic behaviour, contributing to the polarisation of opinions and the
creation of “echo chambers”.

There are ways to anticipate and mitigate these undesirable outcomes on the methodological, technical,
and societal fronts. Methodologically, it is important to define rubrics for data collection and curation
that clearly distinguish between genuine disagreement on subjective matters and denial of facts or
deviations from prevalent ethical norms and scientific consensus. From a technical standpoint, the
fact that a user-specialised reward model will be used to modulate the outputs of an LLM renders the
LLM itself a safeguard mechanism. For example, the best-of-n approach used in this paper re-ranks
the LLM’s outputs based on the adapted reward model. Consequently, if the LLM generates factually
correct and ethical text, the re-ranking primarily prioritises or de-prioritises aspects of a subjective
nature—like the style of the prose, for instance. Finally, on a societal level, the personalisation of
LLMs should be part of, and would directly benefit from, the wider ongoing discussion regarding the
deployment of this new technology.

On the positive side, adaptive reward models and the consequent personalisation of LLMs offer a
great opportunity for the inclusion of diverse points of view into model outputs. Current reward
models reflect the average preferences of the target population, which excludes under-represented
or “outlier” preferences. In using specialised reward models to adapt LLM outputs to individuals,
we create systems that can more accurately and reliably reflect the perspectives of users who hold
minority views, potentially empowering them, together with everyone else, to participate more fully
in social debate.

29

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the abstract are supported by experiments (Section 5 and Ap-
pendix B) or proofs (Appendix A).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a paragraph in Section 4 (titled Limitations) in which the limitations
of the proposed model are explicitly discussed. Paragraph Training of the same section
discusses RFM’s requirement to select a proper number of dimensions d for ϕθ.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30

Answer: [Yes]
Justification: Propositions 1, 2, 3, and 4 are proved in Appendix A. All the assumptions
underlying these results are clearly stated in the text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Complete experiment details are provided in Section 5 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

31

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While the Gemma 1.1 2B [25] model used in our work is open-sourced, the
specific training scripts used for our data preparation and model training are not included in
this release because they are deeply integrated with the proprietary infrastructure used to
carry out experiments, making them unsuitable for public release.
However, we have taken the following steps to ensure transparency and facilitate the
understanding and potential reproduction of our work:

• Data sources and preparation: we use two publicly available datasets, UltraFeed-
back [17] and PersonalLLM [62], and provide a detailed description of how we gener-
ated synthetic users’ preferences to function as labels (Section 5 and Appendix B).

• For the experiments using reward models as users, we used publicly available models
and provide the full references in Appendix B.3. We also made the resulting labelled
data publicly available on the Hugging Face website, as detailed in Appendix B.3.

• Experimental setup: We have provided comprehensive details of all experimental
setups, including model configurations, hyperparameters, and the training procedures
in Section 5 and Appendix B.

While the exact training scripts cannot be shared due to their infrastructural dependencies, the
provided information on the open-source model (Gemma 2B), detailed dataset descriptions,
and thorough explanation of the training configurations should allow the research community
to understand our methodology and replicate the core findings.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 lays out the datasets used for the experiment, the train/test split, and
how synthetic users are constructed and their preferences are sampled. Further details are
provided in Appendix B.

Guidelines:

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Unless otherwise noted, test accuracies are reported as the average over 5
independent runs (that is, with 5 different seeds) and are accompanied by a 99% confidence
interval.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the classifier
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We focus on the statistical (rather than computational) properties of the
proposed approach. That is, both in our theoretical results and in our experiments we are
mostly concerned with the methods’ sample complexity. All the techniques we use have
well-understood demands in terms of compute and memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

33

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a thorough discussion on the potential broader impact of this work in
Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

34

https://neurips.cc/public/EthicsGuidelines

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators of all the assets used: Gemma 1.1
2B [25], Gemma 2 9B [26] , Gemma 2 27B [26], the UltraFeedback dataset [17], the
PersonalLLM dataset [62], the 8 publicly available reward models (Appendix B.3), Gemini
1.5 Pro [27], and GPT-4o [37]. All assets were used in accordance with their respective
licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: As detailed in Appendix B.3, we released a dataset with the examples in the
UltraFeedback dataset scored by 8 publicly available reward models. The data has been
made available on the Hugging Face website with a detailed accompanying documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

35

paperswithcode.com/datasets

Justification: The paper does not present crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not perform experiments on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper introduces a reward model architecture that can be implemented
using an LLM. In our experiments we used Gemma 1.1 2B [25] to implement the proposed
model. The usage of Gemma is described in details in Section 5 and Appendix B. No LLMs
were used in the writing of the paper itself.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Reward-model personalisation
	Reward-feature models
	Experiments
	Related work
	Conclusion
	Proofs and additional theoretical results
	Proofs of the theoretical results in the main paper
	Additional theoretical results

	Details of the experiments and additional empirical results
	Empirical analysis
	Comparisons
	Modelling groups of real users

	Expanded discussion of related work
	Broader impact

