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ABSTRACT

Understanding how user preference evolves over time is a fundamental challenge
central to modern digital ecosystems, for which Large Language Models (LLMs)
are an increasingly popular approach due to their ability to comprehend the rich
semantic context within behavioral data. A common practice is to use LLMs
to predict a user’s next action by directly generating a ranked list of preferred
items. Although effective for short-term prediction, the end-to-end generation
paradigm inherently limits personalization. Its opaque decision-making process
obscures holistic user profiling and exacerbates popularity bias. To address these
limitations, we propose Preference Evolution Tracking (PET), a framework that
reframes the task as inferring a dynamic probability distribution over a stable and
interpretable lattice of preference clusters. By applying logit-probing and genera-
tive classification techniques, PET infers a user’s preference as a probability dis-
tribution, enabling transparent preference learning. On public benchmarks (Yelp,
MovieLens), PET improves ranking quality by up to 40% in NDCG and fairness
by 30% in entropy score over direct generation baselines. On a large-scale, real-
world dataset from a short-video platform, it excels at ranking long-tail contents,
significantly outperforming a SOTA production model by 7 times in the NDCG
score. Ultimately, PET transforms the user profile model from direct preference
list generation to a transparent distributional preference mapping, paving the way
for more explainable, fair, and diverse personalization systems.

1 INTRODUCTION

Understanding user interests in a transparent and interpretable manner is a central challenge in build-
ing trusted and adaptive digital ecosystems. The advent of Large Language Models (LLMs) presents
a transformative opportunity in this domain. With their profound ability to comprehend context and
semantics within unstructured user behavioral histories – from product reviews to content consump-
tion sequences – LLMs promise to move beyond simple pattern matching to a deeper, more holistic
understanding of user intent. The ultimate goal is not merely to predict the next action of users, but
to create transparent and dynamic models of user interest that can be trusted, analyzed, and fairly
acted upon.

The prevailing approach for capturing user preferences involves leveraging LLMs to directly gen-
erate ranked outputs (Wang et al., 2025; 2024a; Ngo & Nguyen, 2024; Yu et al., 2024; Deng et al.,
2025), a method proven effective for short-horizon, top-k recommendation tasks. While effective
for short-horizon prediction and identifying popular preferences, this direct-to-ranking paradigm
leaves important gaps. First, it lacks interpretability: although LLMs encode rich internal states,
these models do not expose an explicit or structured representation of the user’s overall preferences
– making them difficult to audit or reuse in downstream tasks. Second, the focus on a small k, com-
bined with popularity bias, often leads to the over-representation of mainstream content – neglecting
the long-tail interests that define a user’s niche tastes and are critical for achieving holistic, unbiased
personalization.

These limitations have significant consequences for algorithmic decision-making in user-oriented
applications. The lack of an explicit user model undermines system transparency, making it difficult
to govern and audit for fairness and bias. Additionally, the over-reliance on popular items not only
distorts model predictions but also reinforces popularity during training – suppressing the model’s
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ability to learn users’ nuanced, long-tail preferences. This feedback loop amplifies the Matthew
Effect (i.e., the rich get richer), reinforcing echo chambers that reduce content diversity, entrench
mainstream tastes, and marginalize underrepresented creators and user segments (Bakshy et al.,
2015; Wu et al., 2024). This motivates a paradigm shift toward transparent, distributional user
modeling, leading to our central research question:

How can we infer personalized evolving preference distribution via LLM – enhancing
interpretability, fairness, and diversity?

To address this problem, we propose Preference Evolution Tracking (PET), a framework that cus-
tomizes LLMs into probabilistic inference engines for modeling users’ evolving preference distri-
butions. By leveraging pre-softmax logits over a stable preference cluster lattice (e.g., categories
or tags), PET captures structured relevance signals more effectively than volatile item-level spaces.
This approach enhances interpretability and diversity, especially for long-tail preferences. Specifi-
cally, PET supports two scalable inference strategies: Likelihood-based Probing, which iteratively
queries the model for each cluster to build a precise distribution, and the more efficient Generative
Classification, which extracts all probabilities in a single forward pass. Furthermore, PET employs
Hierarchical Probing to maintain tractable inference in extreme multi-label scenarios through se-
mantic taxonomy traversal. Applied to domain-aligned LLMs, PET produces portable, interpretable
user profiles for long-horizon ranking, fairness auditing, and long-tail preference modeling.

To validate PET’s effectiveness, we conduct comprehensive experiments across three diverse
datasets with varying cluster complexity: MovieLens, Yelp, and a large-scale dataset from a world-
leading short video platform. Our results demonstrate that the distributional approach significantly
outperforms direct generation (DG) baselines and state-of-the-art (SOTA) ranking models on pub-
lic benchmarks. More critically, on the real-world data of the short video platform, our framework
shows a unique ability to rank users’ niche, long-tail interests, significantly outperforming a SOTA
model in production. Notably, our goal is not to replace mature production models on highly popu-
lar (head) content. Rather, PET complements them by recovering user-specific long-tail preferences
that are typically underserved by popularity-optimized systems. Across all experiments, our meth-
ods prove more adept at capturing stable, long-term preferences over transient, short-term interests.
Our primary contributions are threefold:

1. A New Paradigm for User Modeling: We introduce a novel framework that shifts the focus from
optimizing short-term item predictions to generating interpretable, dynamic probability distribu-
tions over a stable lattice of human-understandable preference clusters.

2. A Portable and Dynamic Preference Representation: PET encodes each user as an inter-
pretable, cluster-level probability distribution over preferences, capturing long-tail interests and
remaining portable across downstream tasks such as grouping users with similar preference dis-
tributions, tracking preference shifts over time, and conducting fairness audits.

3. Extensive Empirical Validation: We validate PET on three datasets (MovieLens, Yelp, short-
video platform), achieving +40% ranking quality (NDCG) and +30% fairness score (entropy)
over direct generation, and +20% NDCG and −23% in JS-divergence over a SOTA ranking
model (Qwen3-Reranker-8B (Zhang et al., 2025)) on public benchmarks, and a 7× improvement
in long-tail ranking against a SOTA production-level ranking baseline on a real-world dataset.

2 RELATED WORK

User Preference Modeling. To deliver effective personalization, user models aims to capture pref-
erences that are both diverse and dynamic, through three key lines of work. Multi-interest models
represent users via multiple embeddings linked to distinct interests (Shi et al., 2023; Cen et al., 2020;
Zhou et al., 2018). Sequential models, such as FPMC (Rendle et al., 2010), GRU4Rec (Hidasi et al.,
2015), SASRec (Kang & McAuley, 2018), and BERT4Rec (Sun et al., 2019), focus on temporal
dynamics to predict the next item in a user’s history. More recently, distributional modeling has
become central in alignment and fairness, with methods like GDPO for group fairness (Yao et al.,
2024) and RLHF-based techniques like DPL and AOT for reward uncertainty (Siththaranjan et al.,
2023; Melnyk et al., 2024). While powerful, these alignment-based methods introduce significant
practical considerations, as they often require costly preference-labeled datasets and complex, com-
putationally intensive pipelines.
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Output: 
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Likelihood-based Probing Generative Classification

Query Template
User History: [...]
Considering the user’s preferences, do 
they like {cluster} movies?
Answer “Yes” or “No”.

Query 1: … do they like Action movies? 
Query 2: … do they like Comedy movies?
              … (etc. for all K clusters)

Query Template
User History: [...] Considering the 
user’s preferences, which cluste does 
the user like the MOST? Answer  with 
the letter only (A, B, C, etc.):

Iteratively Extract the raw logit for 
each cluster: A, B C, etc. Obtain 
logit vector S.Iteratively extract the raw logit of weighted 

positive tokens for clusters. Obtain logit 
vector S.

 Predicted Prob. Dist.       : softmax(S)  Predicted Ranking: argsort(S)

Extreme Multi-label Classification: Hierarchical Probing
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Inference:
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Application
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Aggregate to 
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Figure 1: The PET framework pipeline. Left (Training): An LLM is trained on user history to learn
preference distributions. Center (Inference): probing methods extracts the predicted preference dis-
tribution from the model’s internal logits. Right (Application): The transparent distribution is used
for downstream tasks: personalized ranking, long-tail discovery, and interpretable user profiling.

LLMs in Preference Modeling. Recent work has increasingly applied Large Language Models
(LLMs) to the complex task of user preference modeling. Early efforts leveraged LLMs as powerful
components for embedding generation (U-BERT; Qiu et al. (2021)) or unified the field under a
prompt-based, text-to-text paradigm (P5; Geng et al. (2022)). This led to end-to-end generative
models like OneRec (Deng et al., 2025) and (Ngo & Nguyen, 2024) that directly produce ranked
outputs or the most relevant items (Wang et al., 2025; 2024a), often incorporating sophisticated
alignment modules. In a parallel effort toward explainability, RecGPT uses the LLM to generate
descriptive, textual user profiles (Yi et al., 2025). Crucially, the direct generation of ranked lists via
LLM – the approach that forms the basis of our primary baseline – has been shown to consistently
outperform traditional sequential models (like SASRec (Kang & McAuley, 2018) and BERT4Rec
(Sun et al., 2019)) in various settings (Geng et al., 2022; Wu et al., 2024; Zhao et al., 2024; Deng
et al., 2025).

Recent approaches also tackle complex scenarios through structured prompting and multi-context
modeling, such as LLM4MSR (Wang et al., 2024b), HUM (Bao et al., 2025), and user interest
exploration via latent clusters (Wang et al., 2024a). While effective for short-horizon prediction,
these methods typically encode a user’s state implicitly within the model’s parameters, without
surfacing an interpretable or temporally grounded preference distribution. Our work is also related to
logit-probing and generative classification techniques for extracting model beliefs from pre-softmax
logits (Petroni et al., 2019; Schick & Schütze, 2020; Raffel et al., 2020; Zhou et al., 2024), adapting
them to infer evolving user preference distributions from fine-tuned LLMs.

3 THEORETICAL AND METHODOLOGICAL FRAMEWORK

In this section, we formalize the problem of inferring dynamic, comprehensive user preferences and
introduce the Preference Evolution Tracking (PET) framework. We start by outlining the fundamen-
tal components of the proposed framework (see Figure 1).

3.1 PROBLEM FORMULATION

We consider a setting in which the user’s interaction history up to time t is represented as a sequence
H1:t. The user’s preference at any discrete time t is defined as a probability distribution θt over a
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fixed, finite set of K preference clusters C := {c1, · · · , cK}:

θt := (θt(1), · · · , θt(K)), with θt(i) ≥ 0 ∀i ∈ [K] and
∑
i∈[K]

θt(i) = 1. (1)

We adopt a latent utility model (McFadden, 1972; Luce et al., 1959; Train, 2009), a standard formu-
lation in choice modeling, to describe how this true distribution arises. We assume that there exists
a vector of unobserved “attractiveness” scores q := (q1, · · · , qK), where qi represents the true
strength of the user’s preference for cluster ci. The true preference distribution θt is then generated
via a softmax function:

θt(i) =
exp(qi)∑

j∈[K] exp(qj)
, ∀i ∈ [K]. (2)

Our primary goal is to learn a function, parameterized by an LLM M, that maps this interaction
history to a prediction of the user’s future preference distribution, θ̂t+1:T , for a given prediction
window {t + 1 : T}. We choose to model preferences over this stable cluster space rather than
the item space, as it is more robust to the high volatility and enormous scale of items in real-world
digital ecosystems.

Since this true distribution θt+1:T is not directly observable, we construct an empirical proxy for it
from the user’s interactions in a time window, which we denote as θ̄t+1:T . Formally, for each cluster
ci ∈ C, its probability is the normalized frequency of interactions:

θ̄t+1:T (i) :=
#{interactions with cluster ci in window[t+ 1, T ]}∑

j∈[K] #{interactions with cluster cj in window[t+ 1, T ]}
. (3)

To ensure reproducibility and simplicity, we use this transparent and normalized frequency of a sin-
gle action instead of heuristic weighting of different interaction types, as our framework is designed
to be agnostic to the specific construction of the ground-truth label. Formally, we aim to minimize
the expected divergence between these two distributions:

min
θ̂t+1:T

EH1:t,M

[
D
(
θ̄t+1:T ∥ θ̂t+1:T

)]
, (4)

whereD is a distributional loss, such as cross-entropy or KL divergence, as commonly used in LLM
post-training. In practice, we do not observe θt+1:T , so we approximate this population objective
by using the empirical proxy θ̄t+1:T in place of θt+1:T in our training data. The ranked list of
preferences used for evaluation with metrics like NDCG is then obtained by sorting the elements of
θ̂t+1:T in descending order.

3.2 METHODOLOGY

This section outlines the PET framework for learning user preferences, which consists of two core
stages: model alignment and preference inference.

In the alignment stage, we adopt a two-phase training pipeline. First, a base LLM is pre-trained (PT)
on large-scale domain-specific corpora (e.g., user and item info) to establish foundational knowledge
and capture population-level patterns. Second, we align the model to user-level preference predic-
tion via supervised fine-tuning (SFT) on curated interaction sequences. Concretely, from each user’s
full history we construct SFT examples as pairs (context, label), where the context is an expand-
ing window H1:t and the label is a textual encoding of the empirical future preference distribution
θ̄t+1:T .

In practice, we implement SFT as lightweight adapter tuning of the base LLM using LoRA: given
a PET prompt and history H1:t, the model is trained with standard next-token cross-entropy to
generate the target description of θ̄t+1:T . This procedure induces an internal preference head that
maps histories to logits over clusters, S(H1:t) ∈ RK , with θ̂t+1:T = softmax(S(H1:t)). For
our theoretical analysis in Appendix D, we abstract away the textual interface and directly study
this induced head as an idealized predictor trained to minimize cross-entropy between the latent
distribution θt+1:T and θ̂t+1:T . This aligned model forms the basis for all subsequent preference
inference methods.
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We now present two inference methods for preference distribution estimation, which differ primar-
ily in their querying strategy (more detailed design of the prompts and methods are presented in
Appendices A and B).

Method 1: Likelihood-based Probing. This approach decomposes a multi-class problem into a
series of independent binary classifications. The LLM is used as a “prober” or “scorer.” For each
cluster c ∈ C, we iteratively ask the LLM for inferences and extract the logit score of positive tokens
and then apply a softmax function on the score vector to recover the inferred probability distribution
(Petroni et al., 2019; Schick & Schütze, 2020).

Method 2: Generative Classification. This method uses a single forward pass. A prompt is con-
structed that frames the task as a multi-choice question, with each cluster mapped to a unique token
(e.g., ‘A’, ‘B’). We then read the model’s next-token logits for these specific cluster tokens and nor-
malize them via a softmax function to obtain the final probability distribution (Raffel et al., 2020;
Chung et al., 2024).

Extreme multi-label preference inference. To scale PET to real-world applications involving
thousands of fine-grained preference clusters – such as in large video platforms or e-commerce
systems – we introduce a two-stage Hierarchical Probing strategy. Existing methods face clear
limitations in such settings: Likelihood-based Probing exhibits linear computational complexity in
the number of clusters K, becoming prohibitively expensive, while Generative Classification often
yields unstable and semantically ungrounded logits when forced to assign probabilities to artificial
class tokens.

To overcome these issues, we organize clusters into a two-level semantic taxonomy: coarse-grained
L1 categories (e.g., Food & Drink, Technology) partition the full L2 label space into interpretable
subgroups. This tree-structured approach is also validated in recent extreme multi-label classifica-
tion work in other tasks (Chen et al., 2023; Wan et al., 2023; Zhou et al., 2024). Inference proceeds
in two stages: (1) L1 Preference Scoping: estimates marginal probabilities over top-level categories;
(2) Strategic L2 Exploration: selectively probes child clusters, guided by downstream goals. For
example, one may prioritize top-ranked L1 branches for relevance, or intentionally explore long-
tail branches for novelty. This decomposition improves both tractability and semantic alignment
by guiding the LLM from general categories to relevant fine-grained clusters, enabling scalable and
adaptive preference modeling. See the detailed computational complexity analysis in Appendix C.

3.3 THEORETICAL GROUNDING AND STRUCTURAL ANALYSIS

This section establishes the theoretical grounding for PET, examining its behavior under varying
assumptions of calibration and highlighting its structural advantages over direct generation (DG).

Idealized regime: perfectly calibrated logits. Under the latent-softmax model of Section 3, if
the PET head is trained in the population limit with cross-entropy, then the induced distribution
θ̂t+1:T recovers the true latent distribution θt+1:T almost everywhere (Gneiting & Raftery, 2007;
Goodfellow et al., 2016; Blasiok et al., 2023). In this ideal regime, the logits S and latent utilities
q differ only by an additive constant, so sorting logits is equivalent to sorting utilities. We show
in Appendix D that PET then coincides with the Bayes-optimal ranking, and no decoding-based
procedure applied to the same logits can improve any standard order-aware metric (e.g., NDCG,
Recall) (Tewari & Bartlett, 2007).

Imperfect regime: approximated isotonicity. Real models are not perfectly calibrated, and logits
can deviate from the ideal ranking. To model this, we work in an imperfect regime where the PET
logits are only ε-approximately isotonic: for any pair of clusters (i, j) with qi > qj , PET misorders
the pair (i.e., Si < Sj) with probability at most ε over training and probing randomness. Let
R(π; q) denote the number of strictly preferred pairs that are reversed under a ranking π. We show
(Appendix D) that the ranking induced by PET satisfies

E
[
R(πPET; q)

]
≤

(
K

2

)
ε,

so whenever the PET head is “mostly order-preserving” (small ε), its ranking is provably close to the
Bayes-optimal ordering. in Appendix D, we further connect ε to the training objective by showing
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that the excess cross-entropy risk controls the L1 distance between θt+1:T and θ̂t+1:T , so improved
training directly tightens this regret bound.

Robustness in the imperfect regime: Structural advantages over direct generation. In the prac-
tical “imperfect” regime, PET exhibits structural advantages over decoding-based DG. While both
methods rely on the same base logits S, DG is susceptible to three well-documented limitations:

• Frequency Bias. Autoregressive LLMs are known to exhibit calibration biases, often favoring
high-frequency patterns from pre-training (Zhao et al., 2021; Holtzman et al., 2020). In DG, this
popularity bias influences the ranking via next-token probabilities. PET instead normalizes logits
over the cluster set, mitigating the effect of raw token frequency when forming the preference
distribution.

• Search Limitations. DG relies on heuristic search (e.g., beam search) which can exhibit pathologi-
cal behaviors where higher probability sequences do not necessarily yield better quality (Stahlberg
& Byrne, 2019). Crucially, beam search acts as a hard truncation on the long tail: valid niche clus-
ters falling outside the beam are effectively pruned (Wiseman & Rush, 2016). PET computes a
global softmax, preserving the relative ordering of the tail without such pruning.

• Exposure Bias. DG is autoregressive; early deviations (e.g., selecting a popular but less relevant
item) change the context for subsequent predictions (Ranzato et al., 2015; Bengio et al., 2015).
PET reads out scores marginally from the history H1:t, ensuring that ranking estimates are local
and do not compound errors.

Taken together, , these structural properties, along with our theoretical guarantees in Appendix D,
help explain our empirical findings: PET’s distributional, one-shot ranking remains robust on long-
tail tasks, while DG degrades as K and the target list length grow due to truncation and exposure-bias
effects layered on top of the same logits.

4 EXPERIMENT

4.1 EXPERIMENT DESIGN AND SETUP

Our experimental design is crafted to comprehensively evaluate the efficacy of PET’s ability in
discerning and predicting user preferences across varying granularities and long-term and short-
term dynamics. We focus on using two primary inference methodologies for preference prediction
and benchmark them against established and SOTA baselines.

Datasets. We evaluate PET on three real-world datasets of varying scale and complexity. Movie-
Lens (Harper & Konstan, 2015): a widely-used dataset for movie recommendations, representing a
relatively small and well-defined genre (cluster) space with 19 clusters (i.e., movie genres). In total,
we used 200k users with 33 million rating histories associated with 87k movies. Yelp: a large-scale
dataset with 2 million users and 8 million ratings across 1,311 business categories, providing a sig-
nificantly higher-dimensional preference space. A Real-World Short-Video Dataset: this proprietary
dataset is derived from the a real-world short video platform and captures large-scale real-world user
interaction behaviors in a highly dynamic environment, reflecting diverse and rich user preference
patterns. To ensure privacy, all identifiers are rigorously anonymized. The dataset comprises 50 mil-
lion implicit feedback records from 16k randomly sampled users, covering 15 million items. Each
record contains only anonymized user IDs, item IDs, and interaction types.

Training and Evaluation Setup. For the MovieLens and Yelp datasets, where user interactions are
relatively sparse, we adopt a temporal 80/20 split at the session level. The first 80% of each user’s
sessions are used as input for both pretraining (PT) and supervised fine-tuning (SFT), while the
remaining 20% is held out for evaluation. For the 20% of the evaluation split data, we measure two
targets based on context horizons: (1) encompass the entire lifetime of user behavior for long-term
preference prediction, and (2) only hold out the first session for short-term (next-item) prediction.
For the denser short-video dataset, we apply a fixed-range protocol across all stages: a 30-day
interaction window is used for PT and SFT input, and the subsequent 14-day period is used for
evaluation.

Models and Methods. We use two families of open-source 8B-parameter language models: Qwen3-
8B (QwenTeam, 2025) and DeepSeek-Distill-Llama-8B (DeepSeek-AI, 2025), selected for their
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Figure 2: Comprehensive comparison of different methods on MovieLens dataset across a range
of context windows (i.e., 1,3,5, and 8 sessions). Prediction windows: long-term and short-term.
Metrics: NDCG@1, 5, 10 and JS-Divergence. We compare our Logit Probing and Generative Clas-
sification methods against (1) Direct Generation benchmark trained (PT+SFT) on a Qwen3-8B base
model and (2) a SOTA Qwen3-Reranker-8B ranking model. Note that for the Direct Generation
baseline, the JS-divergence will not be available. Sample size: 38,434.

strong balance of SOTA performance and computational efficiency. Each model is trained with
our PT+SFT (LoRA fine-tune (Hu et al., 2022)) pipeline. This setup supports a comprehensive abla-
tion of training strategies. Our experiments evaluate the primary inference methodologies detailed in
Section 3.2: Likelihood-based Probing (Algorithm 1) and Generative Classification (Algorithm 2).
For the Yelp dataset with large cluster space, we specifically evaluate our Hierarchical Probing ap-
proach (Algorithm 3). For all methods, the final inferred probability distribution is used to generate
a ranked list of clusters for evaluation.

Baselines. We compare PET with two strong LLM-based baselines. To isolate the effect of our in-
ference paradigm, the first baseline Direct Generation uses the same pre-trained and fine-tuned LLM
as PET but is prompted to directly generate a top-k ranked list of preferences without producing a
probability distribution (Geng et al., 2022; Deng et al., 2025; Wang et al., 2025; 2024a). As this
method does not produce a probability distribution, it is evaluated only on ranking metrics. The sec-
ond baseline is Qwen3-Reranker-8B, a SOTA pre-trained model specifically optimized for ranking
tasks (Zhang et al., 2025). We use it out of the box without any additional fine-tuning. Given a user
history and a candidate cluster space, it produces both a ranked list and a probability distribution.
For the short-video dataset, we compare against the platform’s production Transformer-based ranker
model.

Evaluation Metrics. Model performance is comprehensively evaluated using established metrics
compared to long-term (LT) and short-term (ST) ground truths, with a focus on ranking quality and
distributional similarity. Ranking metrics include NDCG@k, which assesses the quality of rank-
ing order with an emphasis on top positions; Recall@k, measuring the proportion of relevant items
captured within the top k results; and Precision@k, evaluating the exactness of top-k recommenda-
tions. Distribution similarity is quantified using Jensen-Shannon Divergence (JS-Div), where lower
values indicate closer alignment between predicted and actual preference distributions. To quantify
diversity and fairness, we report Global Exposure Entropy Adomavicius & Kwon (2011), defined
as the Shannon entropy of the aggregate distribution of clusters recommended across all users at a
specific list cutoff k. Higher entropy indicates a more equitable distribution of exposure across the
preference lattice, mitigating popularity bias and mode collapse. All results are averaged across test
samples and reported per context window size as specified in the dataset. (See Appendix E.1 for
details.)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.2 HOW EFFECTIVE AND ROBUST IS PET ACROSS DIFFERENT CONTEXT HORIZON?

We begin by evaluating PET on the MovieLens dataset with 19 clusters, aiming to systematically test
its effectiveness and robustness across following key dimensions: (1) different input history lengths
and (2) prediction horizons (short-term vs. long-term). We vary the input context window from 1 to
8 sessions, and assess performance on both short-term (next-session) and long-term (multi-session)
preference prediction.

As shown in Figure 2, the results demonstrate the robustness and effectiveness of PET across a wide
range of settings. The performance gains are especially pronounced in full-list metrics (NDCG@5,
NDCG@10), where PET’s distributional inference enables richer modeling of user preferences be-
yond top-1 accuracy. For example, with Qwen3-8B, context window = 8, and long-term prediction,
Logit-Probing achieves NDCG@10 = 0.863, with a +55% improvement over Direct Generation
and +20% gain over Qwen3-Reranker-8B. It also improves distributional alignment, reducing JS-
Div to 0.316, a 22% relative reduction compared to the Qwen3-Reranker-8B’s 0.406. While Direct
Generation is occasionally competitive at NDCG@1, its performance deteriorates as the number
of predicted clusters increases, as it might suffers from exposure bias, noted in Section 3.3. Our
Generative Classification method also shows consistent improvements over Direct Generation on
Qwen3-8B base model. Though slightly less accurate than Logit-Probing, it offers a compelling
latency–accuracy trade-off due to its single-pass nature, making it a strong candidate for real-time
or resource-constrained environments.

Table 3 presents the global exposure entropy results. We observe that the DG baseline suffers from
severe mode collapse at low k (e.g., Entropy@1 drops as low as 0.005 on DeepSeek-8B), indicating
it defaults to recommending the same few popular genres to nearly all users as the primary choice,
i.e., the popularity bias. In contrast, PET (Logit-Probing) maintains high entropy even at k = 1 (up
to 2.307), demonstrating that it successfully surfaces diverse, user-specific interests at the very top
of the ranking. While entropy metrics naturally saturate at larger k due to the finite cluster space (19
genres), PET’s ability to maintain high diversity at the top – without sacrificing accuracy (as shown
by superior NDCG scores) – confirms it effectively mitigates popularity bias where it matters most.
(See more experimental results in other settings in Appendix F)

To demonstrate PET’s ability to build interpretable profiles, we sampled 125 users and divided their
histories into four equal time periods. Using PET’s Likelihood-based Probing, we inferred a distribu-
tion over 19 genres for each user in each period. Aggregating these across users yielded group-level
preference distributions that evolve over time – visualized in both a heatmap and 3D ribbon plot (Fig-
ure 3). These results show that user preference distributions are not static but migrate in nuanced
ways. Dominant genres like Drama, Comedy, and Action exhibit stability across periods, repre-
senting structural, long-term user interests. In contrast, genres such as Adventure, Romance, and
Sci-Fi demonstrate significant temporal fluctuations – highlighting PET’s ability to capture volatile,
context-dependent preferences. Notably, genres like Sci-Fi, Fantasy, and IMAX show gradual up-
ward shifts, possibly reflecting emerging or re-surfacing interests. Together, these dynamics validate
PET’s unique capability not only in preference prediction, but also in generating descriptive, evolv-
ing group-level user profiles – an essential feature for diagnosing user behavior shifts, designing
cold-start interventions, or understanding preference stability versus exploration.

4.3 CAN PET HANDLE THOUSANDS OF CLUSTERS?

To evaluate PET’s scalability in high-dimensional settings, we use the Yelp dataset with 1,311 fine-
grained categories. Since exhaustive Logit-Probing becomes intractable at this scale, we adopt a
two-stage Hierarchical Probing strategy (Algorithm 3). First, we construct a semantic hierarchy
that maps all categories into 26 high-level L1 clusters (e.g., “Food & Restaurants,” “Health & Med-
ical”). For demonstration, we focus on the high-traffic L1 cluster “Food & Restaurants,” further
decomposed into 19 L2 sub-clusters (e.g., “Mexican,” “Vegan”). During inference, PET first iden-
tifies a user’s coarse L1 interest, then performs fine-grained ranking within the selected L2 cluster.
While operators may target different L1 clusters depending on downstream needs, this experiment
provides one representative use case. (See detailed mapping construction in Appendix E.)

Table 1 shows that PET with Hierarchical Probing achieves strong performance across both coarse
(L1) and fine-grained (L2) levels. At L1, Logit-Probing is unequivocally dominant. It achieves high
and robust NDCG scores (e.g., NDCG@1,5,10 are 0.980, 0.879, and 0.915 for Qwen3-8B), demon-
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(a) Group-level preference evolution as a probability
heatmap

(b) Group-level preference evolution as a bar chart

Figure 3: Evolution of group-level movie genre preferences as probability distribution across four
time periods. Dataset: Movielens, 125 users over 4 periods. Method: PET Likelihood-based Probing
with PT+SFT on Qwen3-8B. Note: due to limited space, we only show top-10 clusters (genres) here.

strating an exceptional ability to identify a user’s general interests. In stark contrast, both the Direct
Generation and Generative Classification methods fail at this stage, with performance often near
zero. These results reinforce the necessity of iterative probing in high-dimensional settings where
broad disambiguation is critical. At L2, where the ranking task becomes more localized, both Logit-
Probing and Generative Classification significantly outperform the Direct Generation benchmark.
Notably, while Logit-Probing remains the top performer for Qwen3-8B (0.666 NDCG@10), Gen-
erative Classification emerges as the clear winner for the DeepSeek-distill-Llama-8B model (0.574
NDCG@10), suggesting that decoding strategies for fine-grained inference can be model-dependent.

Together, these findings demonstrate that PET, equipped with hierarchical probing, scales effec-
tively to large cluster spaces. The coarse-to-fine process not only preserves tractability but also
allows flexible adaptation across model architectures — with Logit-Probing excelling in breadth
and Generative Classification offering a strong, efficient alternative at finer levels of granularity.

Qwen3-8B DeepSeek-distill-Llama-8B
Level Method NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

L1 (26 clusters)
Direct Generation .008 .139 .330 .016 .308 .343
Logit Probing .980 .879 .915 .925 .856 .880
Generative Classification .107 .118 .163 .001 .062 .119

L2 (19 sub-clusters)
Direct Generation .298 .368 .509 .200 .153 .329
Logit Probing .513 .562 .666 .261 .268 .363
Generative Classification .466 .349 .454 .684 .553 .574

Table 1: Hierarchical Probing’s performance on the high-dimensional Yelp dataset for the long-
term prediction task. Results are shown for a context window of 8 using the PT+SFT pipeline. Best
NDCG scores for each level are in bold. L1 category contains 26 clusters; L2 category contains
19 clusters under one L1 category of “Food & Restaurants”. Alternative taxonomies can be easily
integrated depending on platform objectives. Sample Size: 5000.

4.4 HOW DOES PET PERFORM ON REAL-WORLD SHORT-VIDEO PLATFORM?

We conclude our empirical study with a large-scale, private short-video dataset from a major content
platform, comprising 78 content clusters. This experiment is designed to test our method’s efficacy
in a real-world environment against a heavily optimized, production-level Transformer-based rank-
ing model. The primary challenge in such an ecosystem is overcoming the inherent feedback loop,
where users primarily interact with content they are already shown. Therefore, our evaluation fo-
cuses on PET’s ability to complement an existing production model that is heavily optimized for
popular, high-frequency head content. In contrast, PET is designed to surface niche, long-tail in-
terests that are often suppressed by popularity bias. We aggregate interactions into daily sessions
(a 24-hour window), ensuring a denser and more comprehensive view of a user’s preferences. All
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results use the PT+SFT pipeline with Qwen3-8B. Following industry practice, we use play duration
– the total time a user spends watching each content item – as a robust and continuous proxy for
engagement. (See more details in Appendix E.3)

Results in Table 2 showcase PET’s effectiveness in promoting long-tail interest, diversity, and per-
sonalized recommendation. We highlight the setting of 30-day history to 14-day prediction, as it
represents the most challenging long-range forecasting task. The production model fails to iden-
tify users’ long-tail preferences, with an NDCG@20 of just 0.0243 on the long-tail segment. PET
with Logit-Probing achieves NDCG@20 of 0.1971 on the same tail – a +711% improvement. This
demonstrates PET’s ability to surface underrepresented, user-specific content that is typically over-
looked by popularity-driven production models. Notably, results are consistent for k ∈ {1, 5, 10, 20}
with PET achieving more gains compared to the production model when k is small. We also compare
across prediction horizons and observe that PET slightly outperforms the baseline more significantly
when the forecasting window is longer (14 days vs. 7 days), consistent with our earlier findings at
Section 4.2 regarding LLMs’ strength in modeling long-term user preferences. Finally, PET’s per-
formance remains robust across different context lengths. It maintains stable ranking quality even
with limited user history, underscoring its ability to effectively summarize user interests with sparse
or noisy data.

Taken together, these findings validate PET as a practical and scalable complement to production
systems. enhancing long-tail coverage and personal relevance without sacrificing overall perfor-
mance. Its ability to enhance diversity and personalization – especially for the most engaged users
– marks a valuable addition to real-world recommender systems.

Context Prediction Method NDCG@1 NDCG@5 NDCG@10 NDCG@20

14 Days
7 Days SOTA Production (Production) .007 .009 .012 .034

Logit-Probing .113 .124 .147 .203

14 Days SOTA Transformer (Production) .004 .006 .008 .024
Logit-Probing .110 .126 .150 .208

30 Days
7 Days SOTA Transformer (Production) .007 .009 .012 .034

Logit-Probing .103 .118 .138 .192

14 Days SOTA Transformer (Production) .004 .006 .008 .024
Logit-Probing .108 .122 .143 .197

Table 2: Long-tail preference learning performance on the short-video dataset for high-activity users,
comparing PET’s Logit Probing against a SOTA production model across various history (i.e., 14
and 30 days) and prediction windows (i.e., 7 and 14 days). All results are from the PT+SFT pipeline
with the Qwen3-8B model.

5 CONCLUSION

In this paper, we introduce Preference Evolution Tracking (PET), a framework that casts LLM-based
personalization as distributional preference mapping: PET infers a user’s cluster-level probability
vector via Likelihood-based Probing and Generative Classification, and scales to large label spaces
through Hierarchical Probing. Under a mild isotonicity assumption, ranking by PET’s inferred
probabilities is optimal for standard order-aware metrics. Empirically, PET is robust across datasets
and horizons, outperforming strong generative and reranking baselines and substantially improving
coverage of long-tail interests on an industrial-scale corpus. Beyond accuracy, PET yields inter-
pretable, temporally evolving user profiles that enable group-level user analysis and preference-shift
detection. Future work includes extending PET to model richer user representations by incorporat-
ing auxiliary signals such as demographic attributes, behavioral embeddings, and multimodal con-
tent. These enhancements aim to enable more personalized, adaptive, and interpretable preference
modeling in real-world recommendation systems.
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APPENDIX

A ALGORITHMS

Algorithm 1 Likelihood-based Probing.

Input:
M: Large Language Model.
H1:t: A user’s interaction history from up to time t.
C = {c1, . . . , cK}: The set of K preference clusters.
Tprobe: A prompt template for probing.
V+: The set of vocabulary token for an affirmative response (e.g., ’Yes’, ’Y’, ’y’, etc.).
V−: The set of vocabulary token for an negative response (e.g., ’No’, ’N’, ’n’, etc.).
τ : temperature parameter.

Output: Predicted preferences θ̂t+1:T over a future period.
1: S ← 0 ∈ RK ▷ Initializations
2: for j ← 1 to K do
3: Use Tprobe, H1:t, cj to construct a prompt pj . ▷ Create prompt for cluster cj
4: zj ←M(pj) ▷ Get logit vector zj ∈ R|V | for prompt pj
5: s+ ←

∑
v∈V+

(zj [v])/|V+| ▷ Calculate mean logit score for all affirmative tokens
6: s− ←

∑
v∈V−

(zj [v])/|V−| ▷ Calculate mean logit score for all negative tokens

7: S[j]← exp(s+)
exp(s+)+exp(s−) ▷ Compute ’yes’ probability as the cluster’s score

8: end for
9: θ̂t+1:T ← softmax(S/τ) ▷ Normalize all scores to get final distribution

Algorithm 2 Generative Classification.

Input:
M: Large Language Model.
H1:t: A user’s interaction history from up to time t.
C = {c1, . . . , cK}: The set of K preference clusters.
Tgen: A prompt template for generation.
VC : The set of vocabulary token for indexing each cluster.
τ : temperature parameter.

Output: Predicted preferences θ̂t+1:T over a future period.
1: S ← 0 ∈ RK ▷ Initializations
2: Use Tgen, H1:t, C to construct a prompt p.
3: z←M(p). ▷ Get logit vector z ∈ R|V | for prompt p
4: for j ← 1 to K do
5: S[j]← z[vj ] ▷ Extract the raw logit for the token of cluster cj
6: end for
7: θ̂t+1:T ← softmax(S/τ) ▷ Normalize all scores to get final distribution

B PROMPT OF INFERENCE

Prompt for Likelihood-based Probing Algorithm 1

User History:
Time 1: rated “Inception” 5/5 (Action, Sci-Fi);
Time 2: rated “The Godfather” 5/5 (Crime, Drama);
Time 3: rated “Toy Story” 4/5 (Animation, Comedy)

Considering the user’s long-term preferences from their movie rating history, do they like
{GENRE} movies? Answer in “Yes” or “No”.
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Algorithm 3 Hierarchical Probing with Strategic Exploration.

Input:
M: Large Language Model.
H1:t: A user’s interaction history.
CL1 = {c1,L1, . . . , cK1,L1}: The set of K1 L1 clusters.
CL2 = {c1,L2, . . . , cK2,L2}: The set of K2 L2 clusters.
map(cj,L1): Function mapping an L1 cluster to its subset of L2 children.

Output: Predicted preferences θ̂ over the L2 clusters CL2.

▷ Step 1: L1 Preference Scoping
1: Use H1:t and CL1 to get L1 scores SL1 via “Likelihood-based Probing” (Algorithm 1).
2: PL1 ← softmax(SL1) ▷ Normalize L1 scores to get probabilities.

▷ Step 2: Strategic L2 Exploration
3: CL1,selected ← SelectBranches(CL1, PL1, strategy) ▷ Select branches based on the goal.
4: SL2 ← 0 ∈ RK ▷ Initialize final scores for all K L2 clusters.
5: for each selected cluster cj,L1 in CL1,selected do
6: CL2,subset ← map(cj,L1) ▷ Get L2 children for this L1 parent.
7: Construct a conditional prompt for CL2,subset (e.g., “Given interest in cj,L1, ...”).
8: Use the conditional prompt to get scores SL2,subset via “Likelihood-based Probing”.
9: PL2|L1 ← softmax(SL2,subset) ▷ Get conditional probabilities P (CL2|cj,L1).

10: for each cluster ck in CL2,subset do
11: SL2[k]← PL2|L1[ck]× PL1[j] ▷ Apply chain rule for joint probability.
12: end for
13: end for

▷ Final Normalization
14: θ̂ ← softmax(SL2/τ) ▷ Normalize all computed scores to get the final L2 distribution.

Prompt for Generative Classification Algorithm 2

User History:
Time 1: rated “Inception” 5/5 (Action, Sci-Fi);
Time 2: rated “The Godfather” 5/5 (Crime, Drama);
Time 3: rated “Toy Story” 4/5 (Animation, Comedy)

Considering the user’s long-term preferences from their movie rating history, which genre
do they like MOST? Answer with the letter only (A, B, C, etc.):

Prompt for Direct Generation (top-1)

User History:
Time 1: rated “Inception” 5/5 (Action, Sci-Fi);
Time 2: rated “The Godfather” 5/5 (Crime, Drama);
Time 3: rated “Toy Story” 4/5 (Animation, Comedy)

Question: Based on the user’s long-term preferences from their entire history, tell me the
cluster they like the MOST. Answer with the letter only (A, B, C, etc.):

Prompt for Direct Generation (top-3)
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User History:
Time 1: rated “Inception” 5/5 (Action, Sci-Fi);
Time 2: rated “The Godfather” 5/5 (Crime, Drama);
Time 3: rated “Toy Story” 4/5 (Animation, Comedy)

Question: Based on the user’s long-term preferences from their entire history, rank the top
3 genres they like the most. Answer with the letter only (A, B, C, etc.):

C COMPUTATIONAL COMPLEXITY ANALYSIS

Notation. Let K be the number of preference clusters and T the prompt length (tokens). Let
C(M, T ) denote the cost of a single forward pass of the language modelM on a prompt of length
T (the dominant compute). Each cluster c is associated with a fixed “verbalizer” (token or short
phrase) used to read its score from next-token logits.

COMPLEXITY OF PET METHODS

Likelihood-based Probing Algorithm 1. Our implementation is iterative: we issue a focused
prompt per cluster, effectively scoring clusters independently. The total cost scales linearly with the
number of probes:

Cost ≈ O
(
K · C(M, T )

)
.

Generative Classification Algorithm 1. This method is single-shot: one prompt, one forward
pass, then read the next-token logits for the K verbalizers and normalize. The cost is constant with
respect to K:

Cost ≈ O
(
C(M, T )

)
.

Hierarchical Probing Algorithm 3. This two-stage method targets large K. Let K1 be the num-
ber of coarse L1 clusters, B the number of L1 branches explored, and K2,avg the average number of
L2 sub-clusters per explored branch. Using iterative probing at both levels, the total cost is the sum
of L1 scoping and L2 exploration:

Cost ≈ O
(
K1 · C(M, TL1)

)
+ O

(
B ·K2,avg · C(M, TL2)

)
.

Since typically K1 ≪ K and B ·K2,avg ≪ K, this is substantially cheaper than flat iterative probing
O
(
K · C(M, T )

)
.

COMPLEXITY OF BASELINES (FOR COMPARISON)

Direct Generation (top-k list). One prompt with autoregressive decoding of approximately O(k)
output tokens:

Cost ≈ O
(
C(M, T ) + k

)
.

If re-prompted separately for multiple cutoffs (e.g., k = 1, 5, 10), end-to-end latency increases
linearly with the number of cutoffs.

Cross-encoder Reranker. Score each (history, cluster) pair independently:
Cost ≈ O

(
K · C(M, T )

)
.

PRACTICAL NOTES

• KV cache reuse. For iterative methods, reusing the encoded history reduces repeated
compute; most marginal cost is in the final token(s) where logits are read.

• Batching. Batching improves throughput for iterative probing and reranking, but tail la-
tency still scales with the number of batches/probes.

• Multi-k evaluation. PET’s distributional methods (Generative Classification; Hierarchical
with small B) yield a full distribution in the same pass(es), so reporting multiple k does not
require re-decoding.
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D EXTRA THEORIES AND PROOFS

For the theoretical analysis, we consider an idealized preference mapping gϕ : H1:t → RK that pro-
duces logits S(H1:t) = gϕ(H1:t) and an induced distribution θ̂t+1:T (H1:t) = softmax(S(H1:t)).
We assume that ϕ is chosen to minimize the population cross-entropy between the latent-softmax
model and the predictor:

LCE(ϕ) = EH1:t

[
CE

(
θt+1:T , θ̂t+1:T

)]
. (5)

Training on empirical labels θ̄t+1:T can be viewed as a finite-sample approximation to this popu-
lation objective. For the theoretical analysis in this appendix, we work in an idealized population
setting. We posit a latent preference distribution θ(H1:t) = softmax(q(H1:t)) and view θ̄t+1:T as a
finite-sample Monte Carlo estimate of θ(H1:t) (i.e., θ̄t+1:T ≈ θ(H1:t) as the number of interactions
grows). Consequently, the empirical objective with θ̄ approximates the population objective with θ.

D.1 PRELIMINARIES: IDEALIZED BAYES-OPTIMALITY

We first establish the behavior of the model in an idealized population limit. Let S ∈ RK be the
model’s logits, produced by PET’s probing methods (i.e., Algorithms 1 and 2). The model predicts
θ̂ = softmax(S), and we train by minimizing cross-entropy between θ and θ̂. This follows the
standard view of cross-entropy (log-loss) as a strictly proper scoring rule: at the population opti-
mum, the predictor’s output distribution coincides with the true conditional distribution (Gneiting
& Raftery, 2007; Goodfellow et al., 2016; Blasiok et al., 2023). In multiclass settings, this implies
Bayes-consistency of the induced classifier (Tewari & Bartlett, 2007).

Proposition 1 (Isotonicity at convergence). Since cross-entropy is a strictly proper scoring rule
(Gneiting & Raftery, 2007; Blasiok et al., 2023), the global minimum of the population risk is
achieved if and only if softmax(S) = softmax(q). Equivalently, in the latent-softmax model
θ = softmax(q), the Bayes-optimal predictor recovers the true conditional distribution (Tewari
& Bartlett, 2007; Goodfellow et al., 2016). By injectivity of softmax up to an additive constant, this
implies S = q + c1 for some scalar c. Thus, in the idealized limit, the model’s logits are perfectly
order-preserving (isotonic) with respect to latent preferences.

Proof. Let the true latent preference distribution be θ = softmax(q) and the predicted distribution
be θ̂ = softmax(S). The expected population cross-entropy risk is defined as:

R = EH

[
−

K∑
k=1

θk log θ̂k

]
. (6)

By adding and subtracting the entropy of the true distribution H(θ) = −
∑

θk log θk, we can rewrite
the risk as:

R = EH

[
H(θ) +DKL(θ∥θ̂)

]
, (7)

where DKL is the Kullback-Leibler divergence. A fundamental property of proper scoring rules
(Gibbs’ inequality) states that DKL(θ∥θ̂) ≥ 0, with equality holding if and only if θ̂ = θ almost
everywhere. Therefore, the global minimum is achieved uniquely when softmax(S) = softmax(q).

The softmax function is invariant to constant shifts, meaning softmax(x) = softmax(y) implies
x = y + c1 for some scalar c ∈ R. Consequently, at the global minimum, S = q + c1.

Finally, since translation by a scalar c does not alter the relative ordering of elements, for any pair
of clusters i, j:

Si > Sj ⇐⇒ (qi + c) > (qj + c) ⇐⇒ qi > qj . (8)

This confirms that in the idealized limit, the logits S are perfectly isotonic with the latent utility
q.

In the language-modeling context, this corresponds to the standard interpretation of cross-entropy
training as maximum-likelihood estimation of the next-token distribution and an upper bound on the
true entropy rate (Braverman et al., 2020). Our analysis applies this Bayes-optimal perspective to
the cluster-distribution predictor used by PET.
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D.2 ROBUSTNESS: THE ε-APPROXIMATE REGIME

Proposition theorem 1 characterizes an ideal Bayes-optimal limit where S is exactly isotonic with q.
In practice, models are only approximately calibrated (Blasiok et al., 2023; Braverman et al., 2020).
We capture this via a probabilistic pairwise condition.
Assumption 1 (ε-Approximate Pairwise Isotonicity). For a given user and time window, let q ∈ RK

be latent scores and S ∈ RK the logits produced by PET. We say S is ε-approximately pairwise
isotonic w.r.t. q if, for all i, j with qi > qj ,

P
(
Si < Sj

)
≤ ε, (9)

where the probability is over randomness in training, histories, and probing. That is, each strictly
preferred pair is misordered with probability at most ε.

We measure ranking quality by the number of misordered pairs relative to the Bayes-optimal rank-
ing.
Definition 1 (Pairwise ranking regret). Let π∗ be the permutation that sorts clusters by decreasing
qi, and let π be any permutation of {1, . . . ,K}. Define

R(π; q) =
∑

i,j∈[K]
qi>qj

I
(
π−1(i) > π−1(j)

)
, (10)

where π−1(i) denotes the position (rank) of cluster i under the permutation π (smaller is better).
Thus,R(π; q) counts the number of strictly preferred pairs (i, j) that are reversed under π.

Let πPET be the permutation that sorts S in descending order. The following bound is immediate.
Theorem 2 (Approximate optimality of PET). Under Assumption 1, the expected pairwise regret of
πPET satisfies

E
[
R(πPET; q)

]
≤

(
K

2

)
ε = O(K2ε), (11)

where the expectation is over the randomness in S.

Proof. For qi > qj , define Eij = {π−1
PET(i) > π−1

PET(j)} = {Si < Sj}. By Assumption 1,
P(Eij) ≤ ε. By Definition 1, R(πPET; q) =

∑
qi>qj

I(Eij). Taking expectations and using linear-
ity,

E[R(πPET; q)] =
∑
qi>qj

P(Eij) ≤
∑
qi>qj

ε ≤
(
K

2

)
ε. (12)

Thus, if PET is “mostly isotonic” in the sense of Assumption 1 (small ε), its ranking is close to
Bayes-optimal: only O(K2ε) pairs are misordered in expectation. In the limit ε → 0, we recover
the exact isotonicity of Proposition 1.

D.3 FROM CROSS-ENTROPY TO THE ε REGIME

The previous result treats ε as a behavioral property of the PET head. We now connect ε to the
training objective LCE(ϕ).

LetL⋆
CE = LCE(θt+1:T ) denote the Bayes-optimal risk, achieved when θ̂t+1:T = θt+1:T , and define

the excess cross-entropy risk

∆CE = LCE(ϕ)− L⋆
CE = EH1:t

[
KL

(
θt+1:T (H1:t) ∥ θ̂t+1:T (H1:t)

)]
.

By Pinsker’s inequality and Jensen’s inequality, we obtain:
Lemma 1 (L1 error from excess cross-entropy). The expected L1 distance between the latent and
predicted preference distributions is bounded by

EH1:t

[
∥θt+1:T (H1:t)− θ̂t+1:T (H1:t)∥1

]
≤

√
2∆CE.
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Proof. Recall that the excess cross-entropy risk is exactly the expected Kullback-Leibler divergence
between the true distribution θ and the predicted distribution θ̂:

∆CE = EH1:t

[
DKL(θ∥θ̂)

]
. (13)

For any specific history H1:t, Pinsker’s inequality bounds the L1 distance by the KL divergence:

∥θ − θ̂∥1 ≤
√
2DKL(θ∥θ̂). (14)

Taking the expectation over histories H1:t on both sides:

E
[
∥θ − θ̂∥1

]
≤ E

[√
2DKL(θ∥θ̂)

]
. (15)

Since the square root function f(x) =
√
x is concave, Jensen’s inequality implies that E[

√
X] ≤√

E[X]. Applying this to the right-hand side:

E
[√

2DKL(θ∥θ̂)
]
≤

√
2E

[
DKL(θ∥θ̂)

]
=

√
2∆CE. (16)

Combining these steps yields the lemma.

As ∆CE → 0 (e.g., with more data, capacity, and optimization), the predicted distributions θ̂t+1:T

converge to θt+1:T in expected L1 distance. Intuitively, if θ̂t+1:T is close to θt+1:T , then it is unlikely
to significantly distort the ordering between clusters with a clear preference gap. Formalizing ε as
an explicit function of ∆CE for all pairs would require additional global margin assumptions on
θt+1:T , which are often unrealistic in long-tail regimes. Instead, we interpret ε as capturing residual
misorderings after training: Lemma 1 shows that cross-entropy minimization drives θ̂t+1:T toward
θt+1:T , thereby pushing the model into a small-ε regime for most histories and clearly preferred
pairs.

D.3 PET VS. DECODING-BASED DIRECT GENERATION

We now compare PET to decoding-based direct generation (DG), which uses the same logits S but
produces a ranked list via an autoregressive decoding algorithm (e.g., greedy, beam, sampling).

Let π∗ ∈ ΠK be the permutation that sorts clusters by decreasing q, and let πPET be the permutation
that sorts S. We model any decoding-based ranking as follows.
Definition 2 (Decoding-based ranking). A decoding-based ranking procedure is a (possibly ran-
domized) algorithm that maps logits S ∈ RK to a permutation of clusters. We denote by

πDG(S) ∈ ΠK

the (random) permutation produced by such a decoder when run on S. The randomness here comes
from any sampling or tie-breaking used by the decoding algorithm (e.g., top-p sampling, tempera-
ture, stochastic beam search). We write EDG[·] for expectation with respect to this decoder random-
ness, conditioned on the logits S.

We measure quality using a generic order-aware loss.
Assumption 2 (Order-aware ranking loss). Let L : ΠK×RK → R be a loss such that, for any fixed
q:

1. L(π∗; q) ≤ L(π; q) for all π ∈ ΠK;

2. for almost all q (w.r.t. any continuous distribution), the minimizer is unique: L(π∗; q) <
L(π; q) for all π ̸= π∗.

This is satisfied, e.g., if L is the negative of NDCG/Recall/Precision.

In the Bayes-optimal regime of Proposition 1, S = q + c1, PET recovers π∗ by simple sorting. We
show that no decoding procedure can do better on top of these logits.
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Theorem 3 (Dominance of PET over decoding-based generation). Fix q ∈ RK and assume S = q+
c1 for some c. Let πPET = argsortS and let πDG(S) ∈ ΠK be the (possibly random) permutation
produced by any decoding-based procedure when run on logits S. Under Assumption 2,

EDG

[
L(πDG(S); q)

]
≥ L(πPET; q), (17)

where the expectation is over the decoder’s internal randomness. Moreover, if L(·; q) has a unique
minimizer π∗ and the decoder outputs any π ̸= π∗ with nonzero probability, then the inequality is
strict.

Proof. Since S = q+c1, sorting S is equivalent to sorting q: πPET = argsortS = argsortq = π∗.
By Assumption 2, L(π∗; q) ≤ L(π; q) for all π ∈ ΠK .

For any fixed realization of the decoder’s randomness, the decoder outputs some permutation
πDG(S) ∈ ΠK , and thus

L(πDG(S); q) ≥ L(π∗; q) = L(πPET; q). (18)

Taking expectation over the decoder’s randomness gives

EDG

[
L(πDG(S); q)

]
≥ L(πPET; q), (19)

since L(πPET; q) is deterministic.

If L(·; q) has a unique minimizer π∗, then whenever L(πDG(S); q) = L(π∗; q) we must have
πDG(S) = π∗. Thus equality in expectation can hold only if the decoder returns π∗ almost
surely. If instead the decoder outputs some π ̸= π∗ with nonzero probability, then on that event
L(πDG(S); q) > L(π∗; q), which makes the inequality strict.

Theorem 3 is an idealized statement: when logits are perfectly calibrated (S = q+c1), PET’s simple
logit-sorting is Bayes-optimal, and any decoding-based mapping on top of the same logits can at best
match, but not improve, the induced ranking. In practice, PET operates in the ε-approximate regime
of Assumption 1, where its regret is controlled by Theorem 2, while decoding-based methods incur
additional errors from exposure bias, truncation, and search heuristics.
Remark 1 (Risk Decomposition: PET vs. Direct Generation). Theorem 3 characterizes an idealized
regime where logits are perfectly calibrated (S ≈ q). In the practical regime, Direct Generation
(DG) incurs additional error sources that PET avoids due to its distributional nature. We formally
conceptualize the ranking risk of DG as:

Risk(DG) ≈ Risk(PET) + ∆freq + ∆trunc + ∆exp. (20)

Here, Risk(PET) is controlled by the approximate isotonicity parameter ε (Theorem 2), while the
additive penalty terms represent the structural limitations identified in Section 3.3:

1. ∆freq (Frequency Bias): Represents the divergence caused by the autoregressive model’s
tendency to over-produce high-frequency tokens from pre-training (Zhao et al., 2021;
Holtzman et al., 2020), which PET mitigates via closed-set normalization.

2. ∆trunc (Search/Truncation Error): Represents the expected utility loss from heuristic search
(e.g., beam search), which imposes a hard truncation on valid long-tail clusters falling
outside the beam (Wiseman & Rush, 2016; Stahlberg & Byrne, 2019).

3. ∆exp (Exposure Bias): Represents the error accumulated due to context distribution shift
during autoregressive decoding (Ranzato et al., 2015).

This decomposition theoretically grounds our empirical observation that PET is significantly more
robust in long-tail ranking tasks.

E DETAILED EXPERIMENTAL DESIGN

E.1 SETUPS

Global Exposure Entropy. Let U be the set of evaluation users and C the cluster space (e.g., genres).
For a given method and cutoff k, let Ru,k ⊆ C denote the set of clusters appearing in the top-k list
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for user u ∈ U . We define the global exposure count for cluster c ∈ C as

nc(k) =
∑
u∈U

I
(
c ∈ Ru,k

)
, (21)

and the corresponding normalized exposure distribution

Pexp,k(c) =
nc(k)∑

c′∈C nc′(k)
. (22)

The Global Exposure Entropy at cutoff k is then

Entropy@k = Hk := −
∑
c∈C

Pexp,k(c) log2 Pexp,k(c). (23)

Higher values of Hk indicate that exposure is distributed more equitably across clusters, while lower
values indicate concentration on a small subset of clusters (mode collapse).

E.2 YELP DATASET

On the Yelp dataset, we evaluate PET in a high-dimensional setting with 1,311 fine-grained cate-
gories in the Yelp dataset, designed to test the scalability of our approach. In this regime, Logit
Probing becomes prohibitively expensive due to the large output space. To address this, we adopt
Hierarchical Probing (Algorithm 3) that decomposes the task into two levels: a coarse-grained clus-
ter identification followed by fine-grained ranking within the selected scope.

We construct a hierarchical mapping that maps 1,311 categories into 26 high-level L1 clusters (e.g.,
“Food & Restaurants”, “Health & Medical”). For a high-traffic category like “Food & Restaurants,”
we then define a corresponding L2 space with 19 sub-clusters (e.g., “Mexican,” “Vegan”) under
L1’s “Food & Restaurants”. In inference, PET first identifies the user’s broad L1 interests and then
“zooms in” to perform a nuanced L2 ranking within the top-predicted L1 category. While operators
may freely select which high-level categories to probe based on application needs, this experiment
offers one representative setup on the Yelp dataset.

Hierarchical Probing Mapping. We ask Gemini-2.5 Pro and GPT-5 to produce this mapping with
the prompt:

You are an expert in ontology construction, taxonomy design, and user preference modeling,
with extensive experience in building interpretable, semantically meaningful cluster hierar-
chies for preference learning.

I will provide you a list of raw user preference clusters, each with an associated weight or
frequency representing its importance or user interaction volume (e.g., number of views).

Bicycles: number of reviews xxx, average ratings xxx;
Massage: number of reviews xxx, average ratings xxx;
...

Your task is to:

1. Group these raw clusters into high-level categories (Level-1) that are semantically
meaningful and interpretable.

2. Assign each raw cluster to one and only one Level-1 category, forming a two-level
hierarchy.

3. Return the result as a JSON object, where the keys are Level-1 category names and
the values are lists of Level-2 clusters (i.e., raw cluster names).

You should aim for:

1. 20 to 26 Level-1 categories total.
2. Coherent semantics within each group.
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3. Human-readable, concise names for each Level-1 category (e.g., “Food & Drink”,
“Fitness”, “Beauty”).

With the mapping, of which we verified that Level-1 categories are well-balanced, with no single
group dominating the total frequency or collapsing into overly broad labels:

L1 Categories:

Active Life & Fitness, Active Life, Sports & Recreation, Arts, Entertainment & Events,
Automotive, Beauty & Spas, Cannabis Services, Community & Government, Education,
Event Planning & Services, Farms & Ranches, Food & Restaurants, Health & Medical,
Home & Public Services, Home Maintenance, Hotels & Travel, Internet & Communications,
Local & Public Services, Nightlife & Bars, Personal Services, Pets, Professional & Financial
Services, Real Estate, Religious & Community, Shopping & Retail, Specialty Shops,
Specialty Vehicles

L2 Categories:
Bicycles, Bike Shop, Active Life, Aerial Fitness, Airsoft, Amateur Sports Teams, Archery,
Badminton, Barre Classes, Baseball Fields, Basketball Courts, Beach Bars, Beaches, Bicycle
Paths, Bike Parking, Bike Sharing, Bike tours, Bikes, Bocce Ball, Boot Camps, Boxing,
Brazilian Jiu-jitsu, ...

E.3 REAL-WORLD SHORT-VIDEO DATASET

On the short-video dataset, we select the play duration as the proxy metric to represent the user
interests. Compared to sparse binary signals like likes or saves, play duration offers a more reliable
and verifiable measure of user interest. While some approaches construct weighted combinations
of multiple engagement signals, we deliberately opt for a single, interpretable metric to avoid in-
troducing volatility and platform-specific heuristics. The ground-truth distribution is defined as the
aggregated play duration across future windows (3, 7, or 14 days). Although we cannot release raw
correlation statistics due to data sensitivity and privacy constraints, internal audits confirm strong
alignment between play duration and user feedback.

Our analysis targets high-activity users (≥21 active days in the past month), as they represent the
platform’s core, most engaged cohort. Since we only have 30-days of user data, we pick high-activity
users for their dense acitivities.

Durations are normalized per user to form a probability distribution over clusters, preventing heavy-
usage magnitude from confounding preference shares.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EVALUATION OF PET ON MOVIELENS

Inference procedure of Direct Generation. Unlike PET, which infers a full probability distribution
over all 19 clusters, Direct Generation is prompted separately for each top-k values.
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Qwen3-8B DeepSeek-distill-Llama-8B
Prediction Method Entropy@1 Entropy@3 Entropy@5 Entropy@10 Entropy@1 Entropy@3 Entropy@5 Entropy@10

Long
A: Direct Generation 1.020 2.446 3.558 3.849 0.140 1.629 2.666 3.447
B: Logit-Probing 1.747 3.130 3.565 3.979 2.307 3.054 3.352 3.813
C: Gen. Class. 1.575 2.732 3.103 3.705 0.952 1.926 2.608 3.329

Short
A: Direct Generation .810 2.163 3.581 3.767 0.050 1.635 2.713 3.476
B: Logit-Probing 2.093 3.246 3.612 3.964 2.256 2.922 3.252 3.701
C: Gen. Class. 1.605 2.696 3.211 3.681 0.073 1.972 2.350 3.433

Table 3: Fairness performance on Movielens using the PT+SFT pipeline. We compare our Logit-
Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark
(A). Each cell shows results for Long-Term (L) / Short-Term (S) preference. Metric: entropy
score; context window: 3. Best results for each setting are in bold.

Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method NDCG@1 NDCG@5 NDCG@10 JS Div NDCG@1 NDCG@5 NDCG@10 JS Div

1
Long

A: Direct Generation .813 .573 .644 — .609 .440 .540 —
B: Logit-Probing .781 .776 .823 .320 .734 .786 .840 .373
C: Gen. Class. .795 .725 .736 .547 .562 .606 .632 .462
Qwen3-Reranker-8B .814 .713 .728 .399

Short

A: Direct Generation .701 .506 .571 — .499 .369 .450 —
B: Logit-Probing .667 .675 .740 .466 .542 .619 .714 .514
C: Gen. Class. .638 .661 .789 .538 .499 .490 .501 .551
Qwen3-Reranker-8B .650 .566 .652 .525

3
Long

A: Direct Generation .820 .573 .644 — .601 .428 .533 —
B: Logit-Probing .815 .815 .858 .309 .758 .812 .812 .370
C: Gen. Class. .830 .760 .758 .547 .637 .624 .624 .462
Qwen3-Reranker-8B .809 .714 .727 .401

Short

A: Direct Generation .702 .495 .554 — .492 .361 .453 —
B: Logit-Probing .686 .674 .707 .460 .501 .612 .712 .507
C: Gen. Class. .661 .631 .671 .539 .492 .499 .507 .545
Qwen3-Reranker-8B .624 .563 .645 .525

5
Long

A: Direct Generation .840 .538 .629 — .604 .428 .542 —
B: Logit-Probing .830 .815 .825 .315 .763 .817 .867 .367
C: Gen. Class. .847 .777 .764 .547 .423 .528 .551 .463
Qwen3-Reranker-8B .802 .709 .725 .403

Short

A: Direct Generation .723 .496 .546 — .493 .359 .454 —
B: Logit-Probing .716 .720 .781 .460 .496 .606 .708 .507
C: Gen. Class. .673 .635 .676 .535 .489 .498 .507 .546
Qwen3-Reranker-8B .606 .552 .641 .525

8
Long

A: Direct Generation .848 .530 .613 — .605 .425 .546 —
B: Logit-Probing .831 .822 .863 .316 .774 .823 .872 .367
C: Gen. Class. .846 .760 .762 .542 .362 .518 .542 .465
Qwen3-Reranker-8B .801 .701 .721 .406

Short

A: Direct Generation ..711 .499 .529 — .492 .359 .456 —
B: Logit-Probing .710 .719 .780 .462 .490 .609 .711 .507
C: Gen. Class. .657 .632 .673 .530 .486 .497 .509 .547
Qwen3-Reranker-8B .609 .522 .638 .528

Table 4: Comprehensive performance on MovieLens using the PT+SFT pipeline across a range of
context windows. We compare our Logit-Probing method (B) Generative Classification variant (C)
against a Direct Generation benchmark (A) and Qwen3-Reranker-8B. Each cell shows results for
Long-Term (L) / Short-Term (S) preference. Metric: NDCG. Best results for each setting are in
bold.

F.2 EVALUATION OF PET ON YELP
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Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method Precision@1 Precision@5 Precision@10 Precision@1 Precision@5 Precision@10

1

Long
A: Direct Generation .996 .847 .779 .979 .857 .803
B: Logit-Probing .993 .951 .754 .993 .966 .919
C: Gen. Class. .992 .890 .736 .948 .821 .760

Short
A: Direct Generation .921 .549 .484 .772 .467 .417
B: Logit-Probing .887 .711 .589 .788 .688 .608
C: Gen. Class. .882 .627 .517 .772 .588 .434

3

Long
A: Direct Generation .999 .857 .773 .972 .845 .799
B: Logit-Probing .991 .960 .914 .996 .973 .926
C: Gen. Class. .997 .911 .792 .897 .854 .755

Short
A: Direct Generation .926 .555 .488 .775 .466 .429
B: Logit-Probing .909 .738 .617 .755 .693 .618
C: Gen. Class. .902 .654 .518 .775 .601 .446

5

Long
A: Direct Generation .998 .866 .767 .976 .842 .804
B: Logit-Probing .996 .961 .913 .993 .973 .931
C: Gen. Class. .998 .906 .789 .869 .857 .756

Short
A: Direct Generation .930 .559 .488 .768 .463 .429
B: Logit-Probing .926 .749 .622 .746 .687 .620
C: Gen. Class. .912 .662 .525 .762 .597 .443

8

Long
A: Direct Generation .999 .869 .776 .975 .837 .807
B: Logit-Probing .996 .963 .918 .998 .977 .934
C: Gen. Class. .999 .907 .794 .858 .861 .757

Short
A: Direct Generation .925 .555 .486 .774 .461 .431
B: Logit-Probing .922 .749 .621 .736 .694 .622
C: Gen. Class. .907 .658 .521 .762 .597 .447

Table 5: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context
windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against
a Direct Generation benchmark (A). Each cell shows results for Long-Term (L) / Short-Term (S)
preference. Metric: Precision. Best results for each setting are in bold.

Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

1

Long
A: Direct Generation .072 .299 .547 .071 .301 .563
B: Logit-Probing .072 .342 .637 .073 .350 .658
C: Gen. Class. .072 .317 .552 .068 .289 .533

Short
A: Direct Generation .124 .349 .603 .097 .285 .519
B: Logit-Probing .120 .461 .743 .106 .446 .772
C: Gen. Class. .118 .402 .654 .097 .367 .538

3

Long
A: Direct Generation .073 .304 .544 .070 .297 .562
B: Logit-Probing .072 .345 .651 .073 .354 .666
C: Gen. Class. .072 .325 .559 .064 .302 .531

Short
A: Direct Generation .124 .354 .608 .096 .278 .527
B: Logit-Probing .122 .477 .777 .101 .443 .773
C: Gen. Class. .121 .417 .653 .096 .369 .543

5

Long
A: Direct Generation .073 .310 .544 .070 .295 .563
B: Logit-Probing .073 .349 .656 .072 .351 .666
C: Gen. Class. .073 .326 .562 .061 .302 .529

Short
A: Direct Generation .125 .357 .609 .095 .278 .529
B: Logit-Probing .125 .486 .784 .099 .441 .780
C: Gen. Class. .123 .423 .662 .095 .368 .542

8

Long
A: Direct Generation .073 .309 .547 .070 .292 .564
B: Logit-Probing .073 .348 .655 .073 .353 .668
C: Gen. Class. .073 .324 .562 .060 .304 .529

Short
A: Direct Generation .125 .356 .607 .096 .277 .532
B: Logit-Probing .126 .488 .785 .099 .445 .781
C: Gen. Class. .123 .422 .659 .095 .370 .547

Table 6: Comprehensive performance on MovieLens using the PT+SFT pipeline across a range of
context windows. We compare our Logit-Probing method (B) Generative Classification variant (C)
against a Direct Generation benchmark (A). Each cell shows results for Long-Term (L) / Short-
Term (S) preference. Metric: Recall. Best results for each setting are in bold.
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Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method NDCG@1 NDCG@5 NDCG@10 JS Div NDCG@1 NDCG@5 NDCG@10 JS Div

1
Long

A: Direct Generation 0.0015 0.1069 0.2430 — 0.0127 0.3109 0.3425 —
B: Logit-Probing 0.8604 0.8436 0.8669 0.6145 0.9581 0.8501 0.8777 0.6499
C: Gen. Class. 0.0945 0.1147 0.1587 0.6969 0.0000 0.1021 0.1437 0.7245

Short

A: Direct Generation 0.0149 0.1133 0.2686 — 0.0127 0.2971 0.3333 —
B: Logit-Probing 0.7430 0.7467 0.7891 0.6768 0.7072 0.7352 0.7650 0.6969
C: Gen. Class. 0.0398 0.1122 0.1549 0.7301 0.0001 0.0928 0.1468 0.7296

3
Long

A: Direct Generation 0.0040 0.1164 0.3381 — 0.0170 0.3142 0.3450 —
B: Logit-Probing 0.9557 0.8724 0.9016 0.5976 0.9590 0.8683 0.8866 0.6527
C: Gen. Class. 0.1254 0.1230 0.1684 0.6935 0.0000 0.0647 0.1451 0.7179

Short

A: Direct Generation 0.0277 0.1403 0.3556 — 0.0219 0.3034 0.3379 —
B: Logit-Probing 0.8743 0.7970 0.8548 0.6611 0.3391 0.4507 0.5194 0.7020
C: Gen. Class. 0.0454 0.1120 0.1577 0.7235 0.0028 0.0552 0.1823 0.7334

5
Long

A: Direct Generation 0.0115 0.1279 0.3522 — 0.0176 0.3136 0.3481 —
B: Logit-Probing 0.9629 0.8713 0.9075 0.5848 0.7814 0.8057 0.8350 0.6579
C: Gen. Class. 0.1204 0.1243 0.1720 0.6839 0.0004 0.0567 0.1554 0.7143

Short

A: Direct Generation 0.1101 0.1472 0.3557 — 0.0203 0.3001 0.3394 —
B: Logit-Probing 0.8823 0.7923 0.8585 0.6511 0.6402 0.7237 0.7643 0.6944
C: Gen. Class. 0.0411 0.1137 0.1556 0.7194 0.0905 0.0802 0.1107 0.7317

8
Long

A: Direct Generation 0.0081 0.1390 0.3297 — 0.0156 0.3084 0.3429 —
B: Logit-Probing 0.9795 0.8787 0.9152 0.5734 0.9246 0.8563 0.8796 0.6546
C: Gen. Class. 0.1070 0.1183 0.1628 0.7012 0.0013 0.0615 0.1187 0.7168

Short

A: Direct Generation 0.0739 0.1347 0.3152 — 0.0176 0.2948 0.3367 —
B: Logit-Probing 0.8593 0.7874 0.8599 0.6470 0.6809 0.7250 0.7637 0.6984
C: Gen. Class. 0.0402 0.1227 0.1526 0.7341 0.1095 0.0863 0.1292 0.7328

Table 7: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context
windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against
a Direct Generation benchmark (A). Each cell shows results for Long-Term (L) / Short-Term (S)
preference. Metric: NDCG. Best results for each setting are in bold. Level: L1

Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method Precision@1 Precision@5 Precision@10 Precision@1 Precision@5 Precision@10

1

Long
A: Direct Generation 0.0054 0.4100 0.2583 0.1423 0.2503 0.2667
B: Logit-Probing 0.9538 0.6749 0.4897 0.9892 0.5025 0.3898
C: Gen. Class. 0.6152 0.3920 0.3456 0.0018 0.3508 0.2656

Short
A: Direct Generation 0.0408 0.2252 0.1707 0.0444 0.2130 0.1885
B: Logit-Probing 0.8613 0.3718 0.2754 0.7905 0.3910 0.2628
C: Gen. Class. 0.1453 0.2006 0.1947 0.0006 0.1976 0.1681

3

Long
A: Direct Generation 0.0186 0.3880 0.2929 0.1531 0.2516 0.2672
B: Logit-Probing 0.9886 0.6379 0.4957 0.9946 0.5557 0.4017
C: Gen. Class. 0.7713 0.3863 0.3482 0.0006 0.2281 0.2606

Short
A: Direct Generation 0.0828 0.2101 0.2060 0.0576 0.2172 0.1902
B: Logit-Probing 0.9526 0.3905 0.3186 0.4106 0.2403 0.2018
C: Gen. Class. 0.1477 0.1963 0.1983 0144 0.1005 0.1634

5

Long
A: Direct Generation 0.0690 0.3539 0.2918 0.1609 0.2549 0.2881
B: Logit-Probing 0.9898 0.6293 0.5030 0.9040 0.5651 0.4384
C: Gen. Class. 0.7863 0.4104 0.3592 0.0018 0.1878 0.1997

Short
A: Direct Generation 0.3854 0.1894 0.2015 0.0540 0.2172 0.1975
B: Logit-Probing 0.9616 0.3864 0.3268 0.7419 0.4715 0.3124
C: Gen. Class. 0.1339 0.2110 0.1962 0.3025 0.1028 0.0850

8

Long
A: Direct Generation 0.0755 0.3220 0.3002 0.1519 0.2533 0.2757
B: Logit-Probing 0.9970 0.6293 0.5070 0.9676 0.5442 0.4164
C: Gen. Class. 0.6783 0.3903 0.3338 0.0078 0.2077 0.2478

Short
A: Direct Generation 0.2636 0.1887 0.2048 0.0462 0.2108 0.1954
B: Logit-Probing 0.9652 0.3844 0.3413 0.8025 0.4415 0.2920
C: Gen. Class. 0.1429 0.2394 0.1838 0.3938 0.1122 0.1185

Table 8: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context
windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against
a Direct Generation benchmark (A). Each cell shows results for Long-Term (L) / Short-Term (S)
preference. Metric: Precision. Best results for each setting are in bold. Level: L1
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Qwen3-8B DeepSeek-distill-Llama-8B
Context Prediction Method Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

1

Long
A: Direct Generation 0.0007 0.2977 0.3807 0.0173 0.1994 0.4070
B: Logit-Probing 0.1614 0.5224 0.7448 0.1675 0.4038 0.6063
C: Gen. Class. 0.0881 0.2823 0.5051 0.0002 0.2653 0.3910

Short
A: Direct Generation 0.0089 0.2678 0.4435 0.0099 0.3070 0.4955
B: Logit-Probing 0.2604 0.5066 0.7148 0.2319 0.5153 0.6654
C: Gen. Class. 0.0304 0.2305 0.4533 0.0002 0.2313 0.3975

3

Long
A: Direct Generation 0.0025 0.2850 0.4488 0.0190 0.2032 0.4138
B: Logit-Probing 0.1699 0.4997 0.7660 0.1706 0.4500 0.6296
C: Gen. Class. 0.1149 0.2773 0.5120 0.0001 0.1672 0.3889

Short
A: Direct Generation 0.0180 0.2496 0.5500 0.0117 0.3146 0.5038
B: Logit-Probing 0.2899 0.5252 0.8171 0.1288 0.3325 0.5308
C: Gen. Class. 0.0304 0.2214 0.4585 0.0030 0.1171 0.4046

5

Long
A: Direct Generation 0.0096 0.2624 0.4490 0.0196 0.2012 0.4378
B: Logit-Probing 0.1666 0.4903 0.7741 0.1532 0.4516 0.6763
C: Gen. Class. 0.1181 0.2950 0.5330 0.0002 0.1340 0.2853

Short
A: Direct Generation 0.0926 0.2283 0.5344 0.0113 0.3070 0.5138
B: Logit-Probing 0.2859 0.5151 0.8345 0.2182 0.6206 0.7940
C: Gen. Class. 0.0272 0.2392 0.4568 0.0700 0.1174 0.1942

8

Long
A: Direct Generation 0.0105 0.2411 0.4689 0.0183 0.2012 0.4208
B: Logit-Probing 0.1729 0.4966 0.7887 0.1645 0.4377 0.6477
C: Gen. Class. 0.1016 0.2811 0.4921 0.0013 0.1484 0.3565

Short
A: Direct Generation 0.0605 0.2223 0.5327 0.0097 0.3088 0.5182
B: Logit-Probing 0.2870 0.5137 0.8638 0.2392 0.5892 0.7530
C: Gen. Class. 0.0301 0.2784 0.4256 0.0908 0.1279 0.2726

Table 9: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context
windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against
a Direct Generation benchmark (A). Each cell shows results for Long-Term (L) / Short-Term (S)
preference. Metric: Recall. Best results for each setting are in bold. Level: L1
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