

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PET: PREFERENCE EVOLUTION TRACKING WITH LLM-GENERATED EXPLAINABLE DISTRIBUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding how user preference evolves over time is a fundamental challenge central to modern digital ecosystems, for which Large Language Models (LLMs) are an increasingly popular approach due to their ability to comprehend the rich semantic context within behavioral data. A common practice is to use LLMs to predict a user’s next action by directly generating a ranked list of preferred items. Although effective for short-term prediction, the end-to-end generation paradigm inherently limits personalization. Its opaque decision-making process obscures holistic user profiling and exacerbates popularity bias. To address these limitations, we propose Preference Evolution Tracking (PET), a framework that reframes the task as inferring a dynamic probability distribution over a stable and interpretable lattice of preference clusters. By applying logit-probing and generative classification techniques, PET infers a user’s preference as a probability distribution, enabling transparent preference learning. On public benchmarks (Yelp, MovieLens), PET improves ranking quality by up to 40% in NDCG and fairness by 30% in entropy score over direct generation baselines. On a large-scale, real-world dataset from a short-video platform, it excels at ranking long-tail contents, significantly outperforming a SOTA production model by 7 times in the NDCG score. Ultimately, PET transforms the user profile model from direct preference list generation to a transparent distributional preference mapping, paving the way for more explainable, fair, and diverse personalization systems.

1 INTRODUCTION

Understanding user interests in a transparent and interpretable manner is a central challenge in building trusted and adaptive digital ecosystems. The advent of Large Language Models (LLMs) presents a transformative opportunity in this domain. With their profound ability to comprehend context and semantics within unstructured user behavioral histories – from product reviews to content consumption sequences – LLMs promise to move beyond simple pattern matching to a deeper, more holistic understanding of user intent. The ultimate goal is not merely to predict the next action of users, but to create transparent and dynamic models of user interest that can be trusted, analyzed, and fairly acted upon.

The prevailing approach for capturing user preferences involves leveraging LLMs to directly generate ranked outputs (Wang et al., 2025; 2024a; Ngo & Nguyen, 2024; Yu et al., 2024; Deng et al., 2025), a method proven effective for short-horizon, top- k recommendation tasks. While effective for short-horizon prediction and identifying popular preferences, this direct-to-ranking paradigm leaves important gaps. First, it lacks interpretability: although LLMs encode rich internal states, these models do not expose an explicit or structured representation of the user’s overall preferences – making them difficult to audit or reuse in downstream tasks. Second, the focus on a small k , combined with popularity bias, often leads to the over-representation of mainstream content – neglecting the long-tail interests that define a user’s niche tastes and are critical for achieving holistic, unbiased personalization.

These limitations have significant consequences for algorithmic decision-making in user-oriented applications. The lack of an explicit user model undermines system transparency, making it difficult to govern and audit for fairness and bias. Additionally, the over-reliance on popular items not only distorts model predictions but also reinforces popularity during training – suppressing the model’s

ability to learn users' nuanced, long-tail preferences. This feedback loop amplifies the Matthew Effect (i.e., the rich get richer), reinforcing echo chambers that reduce content diversity, entrench mainstream tastes, and marginalize underrepresented creators and user segments (Bakshy et al., 2015; Wu et al., 2024). This motivates a paradigm shift toward transparent, distributional user modeling, leading to our central research question:

How can we infer personalized evolving preference distribution via LLM – enhancing interpretability, fairness, and diversity?

To address this problem, we propose Preference Evolution Tracking (PET), a framework that customizes LLMs into probabilistic inference engines for modeling users' evolving preference distributions. By leveraging pre-softmax logits over a stable preference cluster lattice (e.g., categories or tags), PET captures structured relevance signals more effectively than volatile item-level spaces. This approach enhances interpretability and diversity, especially for long-tail preferences. Specifically, PET supports two scalable inference strategies: *Likelihood-based Probing*, which iteratively queries the model for each cluster to build a precise distribution, and the more efficient *Generative Classification*, which extracts all probabilities in a single forward pass. Furthermore, PET employs *Hierarchical Probing* to maintain tractable inference in extreme multi-label scenarios through semantic taxonomy traversal. Applied to domain-aligned LLMs, PET produces portable, interpretable user profiles for long-horizon ranking, fairness auditing, and long-tail preference modeling.

To validate PET's effectiveness, we conduct comprehensive experiments across three diverse datasets with varying cluster complexity: MovieLens, Yelp, and a large-scale dataset from a world-leading short video platform. Our results demonstrate that the distributional approach significantly outperforms direct generation (DG) baselines and state-of-the-art (SOTA) ranking models on public benchmarks. More critically, on the real-world data of the short video platform, our framework shows a unique ability to rank users' niche, long-tail interests, significantly outperforming a SOTA model in production. Notably, our goal is not to replace mature production models on highly popular (head) content. Rather, PET complements them by recovering user-specific long-tail preferences that are typically underserved by popularity-optimized systems. Across all experiments, our methods prove more adept at capturing stable, long-term preferences over transient, short-term interests. Our primary contributions are threefold:

1. **A New Paradigm for User Modeling:** We introduce a novel framework that shifts the focus from optimizing short-term item predictions to generating interpretable, dynamic probability distributions over a stable lattice of human-understandable preference clusters.
2. **A Portable and Dynamic Preference Representation:** PET encodes each user as an interpretable, cluster-level probability distribution over preferences, capturing long-tail interests and remaining portable across downstream tasks such as grouping users with similar preference distributions, tracking preference shifts over time, and conducting fairness audits.
3. **Extensive Empirical Validation:** We validate PET on three datasets (MovieLens, Yelp, short-video platform), achieving +40% ranking quality (NDCG) and +30% fairness score (entropy) over *direct generation*, and +20% NDCG and -23% in JS-divergence over a SOTA ranking model (Qwen3-Reranker-8B (Zhang et al., 2025)) on public benchmarks, and a 7× improvement in long-tail ranking against a SOTA production-level ranking baseline on a real-world dataset.

2 RELATED WORK

User Preference Modeling. To deliver effective personalization, user models aims to capture preferences that are both diverse and dynamic, through three key lines of work. *Multi-interest models* represent users via multiple embeddings linked to distinct interests (Shi et al., 2023; Cen et al., 2020; Zhou et al., 2018). *Sequential models*, such as FPMC (Rendle et al., 2010), GRU4Rec (Hidasi et al., 2015), SASRec (Kang & McAuley, 2018), and BERT4Rec (Sun et al., 2019), focus on temporal dynamics to predict the next item in a user's history. More recently, distributional modeling has become central in alignment and fairness, with methods like GDPO for group fairness (Yao et al., 2024) and RLHF-based techniques like DPL and AOT for reward uncertainty (Siththaranjan et al., 2023; Melnyk et al., 2024). While powerful, these alignment-based methods introduce significant practical considerations, as they often require costly preference-labeled datasets and complex, computationally intensive pipelines.

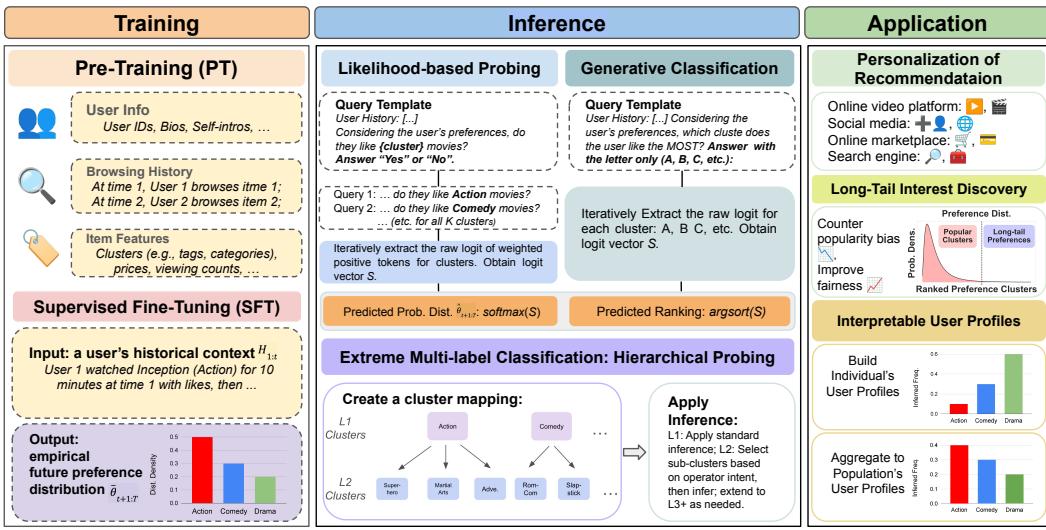


Figure 1: The PET framework pipeline. Left (Training): An LLM is trained on user history to learn preference distributions. Center (Inference): probing methods extracts the predicted preference distribution from the model’s internal logits. Right (Application): The transparent distribution is used for downstream tasks: personalized ranking, long-tail discovery, and interpretable user profiling.

LLMs in Preference Modeling. Recent work has increasingly applied Large Language Models (LLMs) to the complex task of user preference modeling. Early efforts leveraged LLMs as powerful components for embedding generation (U-BERT; Qiu et al. (2021)) or unified the field under a prompt-based, text-to-text paradigm (P5; Geng et al. (2022)). This led to end-to-end generative models like OneRec (Deng et al., 2025) and (Ngo & Nguyen, 2024) that directly produce ranked outputs or the most relevant items (Wang et al., 2025; 2024a), often incorporating sophisticated alignment modules. In a parallel effort toward explainability, RecGPT uses the LLM to generate descriptive, textual user profiles (Yi et al., 2025). Crucially, the direct generation of ranked lists via LLM – the approach that forms the basis of our primary baseline – has been shown to consistently outperform traditional sequential models (like SASRec (Kang & McAuley, 2018) and BERT4Rec (Sun et al., 2019)) in various settings (Geng et al., 2022; Wu et al., 2024; Zhao et al., 2024; Deng et al., 2025).

Recent approaches also tackle complex scenarios through structured prompting and multi-context modeling, such as LLM4MSR (Wang et al., 2024b), HUM (Bao et al., 2025), and user interest exploration via latent clusters (Wang et al., 2024a). While effective for short-horizon prediction, these methods typically encode a user’s state implicitly within the model’s parameters, without surfacing an interpretable or temporally grounded preference distribution. Our work is also related to *logit-probing* and *generative classification* techniques for extracting model beliefs from pre-softmax logits (Petroni et al., 2019; Schick & Schütze, 2020; Raffel et al., 2020; Zhou et al., 2024), adapting them to infer evolving user preference distributions from fine-tuned LLMs.

3 THEORETICAL AND METHODOLOGICAL FRAMEWORK

In this section, we formalize the problem of inferring dynamic, comprehensive user preferences and introduce the Preference Evolution Tracking (PET) framework. We start by outlining the fundamental components of the proposed framework (see Figure 1).

3.1 PROBLEM FORMULATION

We consider a setting in which the user’s interaction history up to time t is represented as a sequence $H_{1:t}$. The user’s preference at any discrete time t is defined as a probability distribution θ_t over a

162 fixed, finite set of K preference clusters $C := \{c_1, \dots, c_K\}$:
 163

$$164 \theta_t := (\theta_t(1), \dots, \theta_t(K)), \text{ with } \theta_t(i) \geq 0 \forall i \in [K] \text{ and } \sum_{i \in [K]} \theta_t(i) = 1. \quad (1)$$

166 We adopt a *latent utility model* (McFadden, 1972; Luce et al., 1959; Train, 2009), a standard formulation
 167 in choice modeling, to describe how this true distribution arises. We assume that there exists
 168 a vector of unobserved “attractiveness” scores $\mathbf{q} := (q_1, \dots, q_K)$, where q_i represents the true
 169 strength of the user’s preference for cluster c_i . The true preference distribution θ_t is then generated
 170 via a softmax function:
 171

$$172 \theta_t(i) = \frac{\exp(q_i)}{\sum_{j \in [K]} \exp(q_j)}, \forall i \in [K]. \quad (2)$$

174 Our primary goal is to learn a function, parameterized by an LLM \mathcal{M} , that maps this interaction
 175 history to a prediction of the user’s future preference distribution, $\hat{\theta}_{t+1:T}$, for a given prediction
 176 window $\{t+1 : T\}$. We choose to model preferences over this stable cluster space rather than
 177 the item space, as it is more robust to the high volatility and enormous scale of items in real-world
 178 digital ecosystems.

179 Since this true distribution $\theta_{t+1:T}$ is not directly observable, we construct an empirical proxy for it
 180 from the user’s interactions in a time window, which we denote as $\bar{\theta}_{t+1:T}$. Formally, for each cluster
 181 $c_i \in C$, its probability is the normalized frequency of interactions:
 182

$$183 \bar{\theta}_{t+1:T}(i) := \frac{\#\{\text{interactions with cluster } c_i \text{ in window}[t+1, T]\}}{\sum_{j \in [K]} \#\{\text{interactions with cluster } c_j \text{ in window}[t+1, T]\}}. \quad (3)$$

185 To ensure reproducibility and simplicity, we use this transparent and normalized frequency of a single action
 186 instead of heuristic weighting of different interaction types, as our framework is designed
 187 to be agnostic to the specific construction of the ground-truth label. Formally, we aim to minimize
 188 the expected divergence between these two distributions:
 189

$$190 \min_{\hat{\theta}_{t+1:T}} \mathbb{E}_{H_{1:t}, \mathcal{M}} \left[\mathcal{D} \left(\bar{\theta}_{t+1:T} \parallel \hat{\theta}_{t+1:T} \right) \right], \quad (4)$$

192 where \mathcal{D} is a distributional loss, such as cross-entropy or KL divergence, as commonly used in LLM
 193 post-training. In practice, we do not observe $\theta_{t+1:T}$, so we approximate this population objective
 194 by using the empirical proxy $\bar{\theta}_{t+1:T}$ in place of $\theta_{t+1:T}$ in our training data. The ranked list of
 195 preferences used for evaluation with metrics like NDCG is then obtained by sorting the elements of
 196 $\hat{\theta}_{t+1:T}$ in descending order.
 197

198 3.2 METHODOLOGY

200 This section outlines the PET framework for learning user preferences, which consists of two core
 201 stages: *model alignment* and *preference inference*.

202 In the *alignment* stage, we adopt a two-phase training pipeline. First, a base LLM is pre-trained (PT)
 203 on large-scale domain-specific corpora (e.g., user and item info) to establish foundational knowledge
 204 and capture population-level patterns. Second, we align the model to user-level preference prediction
 205 via supervised fine-tuning (SFT) on curated interaction sequences. Concretely, from each user’s
 206 full history we construct SFT examples as pairs (context, label), where the context is an expanding
 207 window $H_{1:t}$ and the label is a textual encoding of the empirical future preference distribution
 208 $\bar{\theta}_{t+1:T}$.

209 In practice, we implement SFT as lightweight adapter tuning of the base LLM using LoRA: given
 210 a PET prompt and history $H_{1:t}$, the model is trained with standard next-token cross-entropy to
 211 generate the target description of $\bar{\theta}_{t+1:T}$. This procedure induces an internal *preference head* that
 212 maps histories to logits over clusters, $S(H_{1:t}) \in \mathbb{R}^K$, with $\hat{\theta}_{t+1:T} = \text{softmax}(S(H_{1:t}))$. For
 213 our theoretical analysis in Appendix D, we abstract away the textual interface and directly study
 214 this induced head as an idealized predictor trained to minimize cross-entropy between the latent
 215 distribution $\theta_{t+1:T}$ and $\hat{\theta}_{t+1:T}$. This aligned model forms the basis for all subsequent *preference
 inference* methods.

216 We now present two inference methods for preference distribution estimation, which differ primarily
217 in their querying strategy (more detailed design of the prompts and methods are presented in
218 Appendices A and B).

219 **Method 1: Likelihood-based Probing.** This approach decomposes a multi-class problem into a
220 series of independent binary classifications. The LLM is used as a “prober” or “scorer.” For each
221 cluster $c \in C$, we iteratively ask the LLM for inferences and extract the logit score of positive tokens
222 and then apply a softmax function on the score vector to recover the inferred probability distribution
223 (Petroni et al., 2019; Schick & Schütze, 2020).

224 **Method 2: Generative Classification.** This method uses a single forward pass. A prompt is con-
225 structed that frames the task as a multi-choice question, with each cluster mapped to a unique token
226 (e.g., ‘A’, ‘B’). We then read the model’s next-token logits for these specific cluster tokens and nor-
227 malize them via a softmax function to obtain the final probability distribution (Raffel et al., 2020;
228 Chung et al., 2024).

229 **Extreme multi-label preference inference.** To scale PET to real-world applications involving
230 thousands of fine-grained preference clusters – such as in large video platforms or e-commerce
231 systems – we introduce a two-stage *Hierarchical Probing* strategy. Existing methods face clear
232 limitations in such settings: *Likelihood-based Probing* exhibits linear computational complexity in
233 the number of clusters K , becoming prohibitively expensive, while *Generative Classification* often
234 yields unstable and semantically ungrounded logits when forced to assign probabilities to artificial
235 class tokens.

236 To overcome these issues, we organize clusters into a two-level semantic taxonomy: coarse-grained
237 L1 categories (e.g., Food & Drink, Technology) partition the full L2 label space into interpretable
238 subgroups. This tree-structured approach is also validated in recent extreme multi-label classifica-
239 tion work in other tasks (Chen et al., 2023; Wan et al., 2023; Zhou et al., 2024). Inference proceeds
240 in two stages: (1) *L1 Preference Scoping*: estimates marginal probabilities over top-level categories;
241 (2) *Strategic L2 Exploration*: selectively probes child clusters, guided by downstream goals. For
242 example, one may prioritize top-ranked L1 branches for relevance, or intentionally explore long-
243 tail branches for novelty. This decomposition improves both tractability and semantic alignment
244 by guiding the LLM from general categories to relevant fine-grained clusters, enabling scalable and
245 adaptive preference modeling. See the detailed computational complexity analysis in Appendix C.

247 3.3 THEORETICAL GROUNDING AND STRUCTURAL ANALYSIS

248 This section establishes the theoretical grounding for PET, examining its behavior under varying
249 assumptions of calibration and highlighting its structural advantages over direct generation (DG).

250 **Idealized regime: perfectly calibrated logits.** Under the latent-softmax model of Section 3, if
251 the PET head is trained in the population limit with cross-entropy, then the induced distribution
252 $\hat{\theta}_{t+1:T}$ recovers the true latent distribution $\theta_{t+1:T}$ almost everywhere (Gneiting & Raftery, 2007;
253 Goodfellow et al., 2016; Blasiok et al., 2023). In this ideal regime, the logits S and latent utilities
254 q differ only by an additive constant, so sorting logits is equivalent to sorting utilities. We show
255 in Appendix D that PET then coincides with the Bayes-optimal ranking, and no decoding-based
256 procedure applied to the same logits can improve any standard order-aware metric (e.g., NDCG,
257 Recall) (Tewari & Bartlett, 2007).

258 **Imperfect regime: approximated isotonicity.** Real models are not perfectly calibrated, and logits
259 can deviate from the ideal ranking. To model this, we work in an imperfect regime where the PET
260 logits are only ε -approximately isotonic: for any pair of clusters (i, j) with $q_i > q_j$, PET misorders
261 the pair (i.e., $S_i < S_j$) with probability at most ε over training and probing randomness. Let
262 $\mathcal{R}(\pi; q)$ denote the number of strictly preferred pairs that are reversed under a ranking π . We show
263 in Appendix D that the ranking induced by PET satisfies

$$264 \mathbb{E}[\mathcal{R}(\pi_{\text{PET}}; q)] \leq \binom{K}{2} \varepsilon,$$

265 so whenever the PET head is “mostly order-preserving” (small ε), its ranking is provably close to the
266 Bayes-optimal ordering. In Appendix D, we further connect ε to the training objective by showing

270 that the excess cross-entropy risk controls the L_1 distance between $\theta_{t+1:T}$ and $\hat{\theta}_{t+1:T}$, so improved
271 training directly tightens this regret bound.

272 **Robustness in the imperfect regime: Structural advantages over direct generation.** In the practical
273 “imperfect” regime, PET exhibits structural advantages over decoding-based DG. While both
274 methods rely on the same base logits S , DG is susceptible to three well-documented limitations:

275

- 276 • *Frequency Bias.* Autoregressive LLMs are known to exhibit calibration biases, often favoring
277 high-frequency patterns from pre-training (Zhao et al., 2021; Holtzman et al., 2020). In DG, this
278 popularity bias influences the ranking via next-token probabilities. PET instead normalizes logits
279 over the cluster set, mitigating the effect of raw token frequency when forming the preference
280 distribution.
- 281 • *Search Limitations.* DG relies on heuristic search (e.g., beam search) which can exhibit pathological
282 behaviors where higher probability sequences do not necessarily yield better quality (Stahlberg
283 & Byrne, 2019). Crucially, beam search acts as a hard truncation on the long tail: valid niche
284 clusters falling outside the beam are effectively pruned (Wiseman & Rush, 2016). PET computes a
285 global softmax, preserving the relative ordering of the tail without such pruning.
- 286 • *Exposure Bias.* DG is autoregressive; early deviations (e.g., selecting a popular but less relevant
287 item) change the context for subsequent predictions (Ranzato et al., 2015; Bengio et al., 2015).
288 PET reads out scores marginally from the history $H_{1:t}$, ensuring that ranking estimates are local
289 and do not compound errors.

290 Taken together, , these structural properties, along with our theoretical guarantees in Appendix D,
291 help explain our empirical findings: PET’s distributional, one-shot ranking remains robust on long-
292 tail tasks, while DG degrades as K and the target list length grow due to truncation and exposure-bias
293 effects layered on top of the same logits.

295 4 EXPERIMENT

297 4.1 EXPERIMENT DESIGN AND SETUP

299 Our experimental design is crafted to comprehensively evaluate the efficacy of PET’s ability in
300 discerning and predicting user preferences across varying granularities and long-term and short-
301 term dynamics. We focus on using two primary inference methodologies for preference prediction
302 and benchmark them against established and SOTA baselines.

303 **Datasets.** We evaluate PET on three real-world datasets of varying scale and complexity. *Movie-
304 Lens* (Harper & Konstan, 2015): a widely-used dataset for movie recommendations, representing a
305 relatively small and well-defined genre (cluster) space with 19 clusters (i.e., movie genres). In total,
306 we used 200k users with 33 million rating histories associated with 87k movies. *Yelp*: a large-scale
307 dataset with 2 million users and 8 million ratings across 1,311 business categories, providing a sig-
308 nificantly higher-dimensional preference space. *A Real-World Short-Video Dataset*: this proprietary
309 dataset is derived from the a real-world short video platform and captures large-scale real-world user
310 interaction behaviors in a highly dynamic environment, reflecting diverse and rich user preference
311 patterns. To ensure privacy, all identifiers are rigorously anonymized. The dataset comprises 50 mil-
312 lion implicit feedback records from 16k randomly sampled users, covering 15 million items. Each
313 record contains only anonymized user IDs, item IDs, and interaction types.

314 **Training and Evaluation Setup.** For the MovieLens and Yelp datasets, where user interactions are
315 relatively sparse, we adopt a temporal 80/20 split at the session level. The first 80% of each user’s
316 sessions are used as input for both pretraining (PT) and supervised fine-tuning (SFT), while the
317 remaining 20% is held out for evaluation. For the 20% of the evaluation split data, we measure two
318 targets based on context horizons: (1) encompass the entire lifetime of user behavior for long-term
319 preference prediction, and (2) only hold out the first session for short-term (next-item) prediction.
320 For the denser short-video dataset, we apply a fixed-range protocol across all stages: a 30-day
321 interaction window is used for PT and SFT input, and the subsequent 14-day period is used for
322 evaluation.

323 **Models and Methods.** We use two families of open-source 8B-parameter language models: *Qwen3-
324 8B* (QwenTeam, 2025) and *DeepSeek-Distill-Llama-8B* (DeepSeek-AI, 2025), selected for their

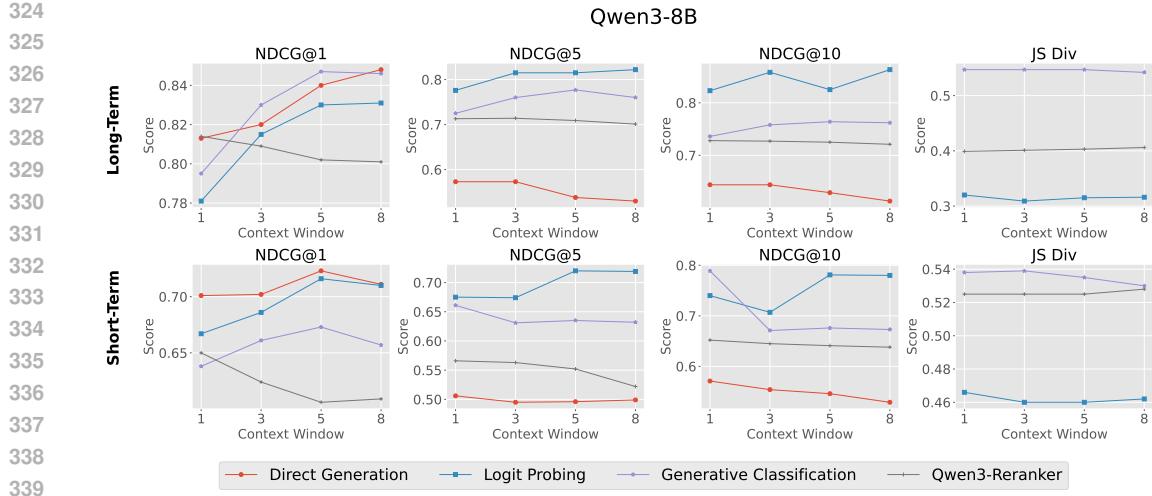


Figure 2: Comprehensive comparison of different methods on MovieLens dataset across a range of context windows (i.e., 1, 3, 5, and 8 sessions). Prediction windows: long-term and short-term. Metrics: NDCG@1, 5, 10 and JS-Divergence. We compare our *Logit Probing* and *Generative Classification* methods against (1) *Direct Generation* benchmark trained (PT+SFT) on a Qwen3-8B base model and (2) a SOTA Qwen3-Reranker-8B ranking model. Note that for the *Direct Generation* baseline, the JS-divergence will not be available. Sample size: 38,434.

strong balance of SOTA performance and computational efficiency. Each model is trained with our PT+SFT (LoRA fine-tune (Hu et al., 2022)) pipeline. This setup supports a comprehensive ablation of training strategies. Our experiments evaluate the primary inference methodologies detailed in Section 3.2: *Likelihood-based Probing* (Algorithm 1) and *Generative Classification* (Algorithm 2). For the Yelp dataset with large cluster space, we specifically evaluate our *Hierarchical Probing* approach (Algorithm 3). For all methods, the final inferred probability distribution is used to generate a ranked list of clusters for evaluation.

Baselines. We compare PET with two strong LLM-based baselines. To isolate the effect of our inference paradigm, the first baseline *Direct Generation* uses the same pre-trained and fine-tuned LLM as PET but is prompted to directly generate a top-k ranked list of preferences without producing a probability distribution (Geng et al., 2022; Deng et al., 2025; Wang et al., 2025; 2024a). As this method does not produce a probability distribution, it is evaluated only on ranking metrics. The second baseline is *Qwen3-Reranker-8B*, a SOTA pre-trained model specifically optimized for ranking tasks (Zhang et al., 2025). We use it out of the box without any additional fine-tuning. Given a user history and a candidate cluster space, it produces both a ranked list and a probability distribution. For the short-video dataset, we compare against the platform’s production Transformer-based ranker model.

Evaluation Metrics. Model performance is comprehensively evaluated using established metrics compared to long-term (LT) and short-term (ST) ground truths, with a focus on ranking quality and distributional similarity. **Ranking** metrics include NDCG@k, which assesses the quality of ranking order with an emphasis on top positions; Recall@k, measuring the proportion of relevant items captured within the top k results; and Precision@k, evaluating the exactness of top-k recommendations. Distribution similarity is quantified using Jensen-Shannon Divergence (JS-Div), where lower values indicate closer alignment between predicted and actual preference distributions. To quantify **diversity** and **fairness**, we report Global Exposure Entropy Adomavicius & Kwon (2011), defined as the Shannon entropy of the aggregate distribution of clusters recommended across all users at a specific list cutoff k. Higher entropy indicates a more equitable distribution of exposure across the preference lattice, mitigating popularity bias and mode collapse. All results are averaged across test samples and reported per context window size as specified in the dataset. (See Appendix E.1 for details.)

378 4.2 HOW EFFECTIVE AND ROBUST IS PET ACROSS DIFFERENT CONTEXT HORIZON?

380 We begin by evaluating PET on the MovieLens dataset with 19 clusters, aiming to systematically test
381 its effectiveness and robustness across following key dimensions: (1) different input history lengths
382 and (2) prediction horizons (short-term vs. long-term). We vary the input context window from 1 to
383 8 sessions, and assess performance on both short-term (next-session) and long-term (multi-session)
384 preference prediction.

385 As shown in Figure 2, the results demonstrate the robustness and effectiveness of PET across a wide
386 range of settings. The performance gains are especially pronounced in full-list metrics (NDCG@5,
387 NDCG@10), where PET’s distributional inference enables richer modeling of user preferences be-
388 yond top-1 accuracy. For example, with Qwen3-8B, context window = 8, and long-term prediction,
389 *Logit-Probing* achieves NDCG@10 = 0.863, with a +55% improvement over *Direct Generation*
390 and +20% gain over Qwen3-Reranker-8B. It also improves distributional alignment, reducing JS-
391 Div to 0.316, a 22% relative reduction compared to the Qwen3-Reranker-8B’s 0.406. While *Direct*
392 *Generation* is occasionally competitive at NDCG@1, its performance deteriorates as the number
393 of predicted clusters increases, as it might suffers from exposure bias, noted in Section 3.3. Our
394 *Generative Classification* method also shows consistent improvements over *Direct Generation* on
395 Qwen3-8B base model. Though slightly less accurate than *Logit-Probing*, it offers a compelling
396 latency-accuracy trade-off due to its single-pass nature, making it a strong candidate for real-time
397 or resource-constrained environments.

398 **Table 3** presents the *global exposure entropy* results. We observe that the DG baseline suffers from
399 severe mode collapse at low k (e.g., Entropy@1 drops as low as 0.005 on DeepSeek-8B), indicating
400 it defaults to recommending the same few popular genres to nearly all users as the primary choice,
401 i.e., the popularity bias. In contrast, PET (*Logit-Probing*) maintains high entropy even at $k = 1$ (up
402 to 2.307), demonstrating that it successfully surfaces diverse, user-specific interests at the very top
403 of the ranking. While entropy metrics naturally saturate at larger k due to the finite cluster space (19
404 genres), PET’s ability to maintain high diversity at the top – without sacrificing accuracy (as shown
405 by superior NDCG scores) – confirms it effectively mitigates popularity bias where it matters most.
(See more experimental results in other settings in Appendix F)

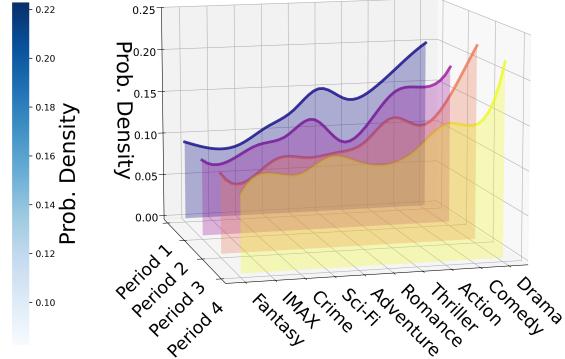
406 To demonstrate PET’s ability to build interpretable profiles, we sampled 125 users and divided their
407 histories into four equal time periods. Using PET’s *Likelihood-based Probing*, we inferred a distribu-
408 tion over 19 genres for each user in each period. Aggregating these across users yielded group-level
409 preference distributions that evolve over time – visualized in both a heatmap and 3D ribbon plot (Fig-
410 ure 3). These results show that user preference distributions are not static but migrate in nuanced
411 ways. Dominant genres like *Drama*, *Comedy*, and *Action* exhibit stability across periods, repre-
412 senting structural, long-term user interests. In contrast, genres such as *Adventure*, *Romance*, and
413 *Sci-Fi* demonstrate significant temporal fluctuations – highlighting PET’s ability to capture volatile,
414 context-dependent preferences. Notably, genres like *Sci-Fi*, *Fantasy*, and *IMAX* show gradual up-
415 ward shifts, possibly reflecting emerging or re-surfacing interests. Together, these dynamics validate
416 PET’s unique capability not only in preference prediction, but also in generating descriptive, evolv-
417 ing group-level user profiles – an essential feature for diagnosing user behavior shifts, designing
418 cold-start interventions, or understanding preference stability versus exploration.

419 4.3 CAN PET HANDLE THOUSANDS OF CLUSTERS?

420 To evaluate PET’s scalability in high-dimensional settings, we use the Yelp dataset with 1,311 fine-
421 grained categories. Since exhaustive *Logit-Probing* becomes intractable at this scale, we adopt a
422 two-stage *Hierarchical Probing* strategy (Algorithm 3). First, we construct a semantic hierarchy
423 that maps all categories into 26 high-level L1 clusters (e.g., “Food & Restaurants,” “Health & Med-
424 ical”). For demonstration, we focus on the high-traffic L1 cluster “Food & Restaurants,” further
425 decomposed into 19 L2 sub-clusters (e.g., “Mexican,” “Vegan”). During inference, PET first iden-
426 tifies a user’s coarse L1 interest, then performs fine-grained ranking within the selected L2 cluster.
427 While operators may target different L1 clusters depending on downstream needs, this experiment
428 provides one representative use case. (See detailed mapping construction in Appendix E.)

429 Table 1 shows that PET with Hierarchical Probing achieves strong performance across both coarse
430 (L1) and fine-grained (L2) levels. At L1, *Logit-Probing* is unequivocally dominant. It achieves high
431 and robust NDCG scores (e.g., NDCG@1,5,10 are 0.980, 0.879, and 0.915 for Qwen3-8B), demon-

	Drama	0.199	0.184	0.223	0.219
432	Comedy	0.173	0.162	0.164	0.150
433	Action	0.146	0.159	0.134	0.153
434	Thriller	0.135	0.122	0.145	0.128
435	Romance	0.149	0.102	0.118	0.111
436	Adventure	0.124	0.130	0.108	0.115
437	Sci-Fi	0.105	0.111	0.104	0.123
438	Crime	0.086	0.103	0.105	0.106
439	IMAX	0.083	0.086	0.083	0.108
440	Fantasy	0.092	0.088	0.091	0.088
441		Period 1	Period 2	Period 3	Period 4



(a) Group-level preference evolution as a probability heatmap (b) Group-level preference evolution as a bar chart

Figure 3: Evolution of group-level movie genre preferences as probability distribution across four time periods. Dataset: MovieLens, 125 users over 4 periods. Method: PET Likelihood-based Probing with PT+SFT on Qwen3-8B. Note: due to limited space, we only show top-10 clusters (genres) here.

strating an exceptional ability to identify a user’s general interests. In stark contrast, both the *Direct Generation* and *Generative Classification* methods fail at this stage, with performance often near zero. These results reinforce the necessity of iterative probing in high-dimensional settings where broad disambiguation is critical. At L2, where the ranking task becomes more localized, both *Logit-Probing* and *Generative Classification* significantly outperform the *Direct Generation* benchmark. Notably, while *Logit-Probing* remains the top performer for Qwen3-8B (0.666 NDCG@10), *Generative Classification* emerges as the clear winner for the DeepSeek-distill-Llama-8B model (0.574 NDCG@10), suggesting that decoding strategies for fine-grained inference can be model-dependent.

Together, these findings demonstrate that PET, equipped with hierarchical probing, scales effectively to large cluster spaces. The coarse-to-fine process not only preserves tractability but also allows flexible adaptation across model architectures — with *Logit-Probing* excelling in breadth and *Generative Classification* offering a strong, efficient alternative at finer levels of granularity.

Level	Method	Qwen3-8B			DeepSeek-distill-Llama-8B		
		NDCG@1	NDCG@5	NDCG@10	NDCG@1	NDCG@5	NDCG@10
L1 (26 clusters)	Direct Generation	.008	.139	.330	.016	.308	.343
	Logit Probing	.980	.879	.915	.925	.856	.880
	Generative Classification	.107	.118	.163	.001	.062	.119
L2 (19 sub-clusters)	Direct Generation	.298	.368	.509	.200	.153	.329
	Logit Probing	.513	.562	.666	.261	.268	.363
	Generative Classification	.466	.349	.454	.684	.553	.574

Table 1: *Hierarchical Probing*’s performance on the high-dimensional Yelp dataset for the long-term prediction task. Results are shown for a context window of 8 using the PT+SFT pipeline. Best NDCG scores for each level are in bold. L1 category contains 26 clusters; L2 category contains 19 clusters under one L1 category of “Food & Restaurants”. Alternative taxonomies can be easily integrated depending on platform objectives. Sample Size: 5000.

4.4 HOW DOES PET PERFORM ON REAL-WORLD SHORT-VIDEO PLATFORM?

We conclude our empirical study with a large-scale, private short-video dataset from a major content platform, comprising 78 content clusters. This experiment is designed to test our method’s efficacy in a real-world environment against a heavily optimized, production-level Transformer-based ranking model. The primary challenge in such an ecosystem is overcoming the inherent feedback loop, where users primarily interact with content they are already shown. Therefore, our evaluation focuses on PET’s ability to complement an existing production model that is heavily optimized for popular, high-frequency head content. In contrast, PET is designed to surface niche, long-tail interests that are often suppressed by popularity bias. We aggregate interactions into daily sessions (a 24-hour window), ensuring a denser and more comprehensive view of a user’s preferences. All

486 results use the PT+SFT pipeline with Qwen3-8B. Following industry practice, we use play duration
 487 – the total time a user spends watching each content item – as a robust and continuous proxy for
 488 engagement. (See more details in Appendix E.3)

489 Results in Table 2 showcase PET’s effectiveness in promoting long-tail interest, diversity, and per-
 490 sonalized recommendation. We highlight the setting of 30-day history to 14-day prediction, as it
 491 represents the most challenging long-range forecasting task. The production model fails to iden-
 492 tify users’ long-tail preferences, with an NDCG@20 of just 0.0243 on the long-tail segment. PET
 493 with *Logit-Probing* achieves NDCG@20 of 0.1971 on the same tail – a +711% improvement. This
 494 demonstrates PET’s ability to surface underrepresented, user-specific content that is typically over-
 495 looked by popularity-driven production models. Notably, results are consistent for $k \in \{1, 5, 10, 20\}$
 496 with PET achieving more gains compared to the production model when k is small. We also compare
 497 across prediction horizons and observe that PET slightly outperforms the baseline more significantly
 498 when the forecasting window is longer (14 days vs. 7 days), consistent with our earlier findings at
 499 Section 4.2 regarding LLMs’ strength in modeling long-term user preferences. Finally, PET’s per-
 500 formance remains robust across different context lengths. It maintains stable ranking quality even
 501 with limited user history, underscoring its ability to effectively summarize user interests with sparse
 502 or noisy data.

503 Taken together, these findings validate PET as a practical and scalable complement to production
 504 systems. enhancing long-tail coverage and personal relevance without sacrificing overall perfor-
 505 mance. Its ability to enhance diversity and personalization – especially for the most engaged users
 506 – marks a valuable addition to real-world recommender systems.

508 Context	509 Prediction	510 Method	511 NDCG@1	512 NDCG@5	513 NDCG@10	514 NDCG@20
510 14 Days	7 Days	SOTA Production (Production)	.007	.009	.012	.034
		Logit-Probing	.113	.124	.147	.203
	14 Days	SOTA Transformer (Production)	.004	.006	.008	.024
		Logit-Probing	.110	.126	.150	.208
514 30 Days	7 Days	SOTA Transformer (Production)	.007	.009	.012	.034
		Logit-Probing	.103	.118	.138	.192
	14 Days	SOTA Transformer (Production)	.004	.006	.008	.024
		Logit-Probing	.108	.122	.143	.197

517 Table 2: Long-tail preference learning performance on the short-video dataset for high-activity users,
 518 comparing PET’s *Logit Probing* against a SOTA production model across various history (i.e., 14
 519 and 30 days) and prediction windows (i.e., 7 and 14 days). All results are from the PT+SFT pipeline
 520 with the Qwen3-8B model.

523 5 CONCLUSION

525 In this paper, we introduce Preference Evolution Tracking (PET), a framework that casts LLM-based
 526 personalization as distributional preference mapping: PET infers a user’s cluster-level probability
 527 vector via *Likelihood-based Probing* and *Generative Classification*, and scales to large label spaces
 528 through *Hierarchical Probing*. Under a mild isotonicity assumption, ranking by PET’s inferred
 529 probabilities is optimal for standard order-aware metrics. Empirically, PET is robust across datasets
 530 and horizons, outperforming strong generative and reranking baselines and substantially improving
 531 coverage of long-tail interests on an industrial-scale corpus. Beyond accuracy, PET yields inter-
 532 pretable, temporally evolving user profiles that enable group-level user analysis and preference-shift
 533 detection. Future work includes extending PET to model richer user representations by incorpo-
 534 rating auxiliary signals such as demographic attributes, behavioral embeddings, and multimodal con-
 535 tent. These enhancements aim to enable more personalized, adaptive, and interpretable preference
 536 modeling in real-world recommendation systems.

537 REFERENCES

538 Gediminas Adomavicius and YoungOk Kwon. Improving aggregate recommendation diversity us-
 539 ing ranking-based techniques. *IEEE Transactions on Knowledge and Data Engineering*, 24(5):

540 896–911, 2011.

541

542 Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideologically diverse news and
543 opinion on facebook. *Science*, 348(6239):1130–1132, 2015.

544 Honghui Bao, Wenjie Wang, Xinyu Lin, Fengbin Zhu, Teng Sun, Fuli Feng, and Tat-Seng Chua.
545 Heterogeneous user modeling for llm-based recommendation. *arXiv preprint arXiv:2507.04626*,
546 2025.

547

548 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
549 prediction with recurrent neural networks. In *NeurIPS*, 2015.

550 Jaroslaw Blasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. When does optimizing a
551 proper loss yield calibration? *Advances in Neural Information Processing Systems*, 36:72071–
552 72095, 2023.

553

554 Mark Braverman, Xinyi Chen, Sham Kakade, Karthik Narasimhan, Cyril Zhang, and Yi Zhang.
555 Calibration, entropy rates, and memory in language models. In *International Conference on
556 Machine Learning*, pp. 1089–1099. PMLR, 2020.

557 Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang. Controllable multi-
558 interest framework for recommendation. In *Proceedings of the 26th ACM SIGKDD international
559 conference on knowledge discovery & data mining*, pp. 2942–2951, 2020.

560

561 Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, and Bhiksha Raj. Token prediction as
562 implicit classification to identify llm-generated text. *arXiv preprint arXiv:2311.08723*, 2023.

563 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
564 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
565 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.

566

567 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
568 2025. URL <https://arxiv.org/abs/2501.12948>.

569

570 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
571 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
572 alignment. *arXiv preprint arXiv:2502.18965*, 2025.

573

574 Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
575 language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
576 *Proceedings of the 16th ACM conference on recommender systems*, pp. 299–315, 2022.

577

578 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
579 *Journal of the American statistical Association*, 102(477):359–378, 2007.

580

581 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
582 MIT press Cambridge, 2016.

583

584 F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm
585 transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.

586

587 Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
588 ommendations with recurrent neural networks. *arXiv preprint arXiv:1511.06939*, 2015.

589

590 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
591 degeneration. In *ICLR*, 2020.

592

593 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
594 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

595

596 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *2018 IEEE
597 international conference on data mining (ICDM)*, pp. 197–206. IEEE, 2018.

598

599 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.

594 Daniel McFadden. Conditional logit analysis of qualitative choice behavior. 1972.
595

596 Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail
597 Yurochkin, Kristjan Greenewald, Jiri Navratil, and Jarret Ross. Distributional preference align-
598 ment of llms via optimal transport. *Advances in Neural Information Processing Systems*, 37:
599 104412–104442, 2024.

600 Hoang Ngo and Dat Quoc Nguyen. Recgpt: Generative pre-training for text-based recommendation.
601 *arXiv preprint arXiv:2405.12715*, 2024.
602

603 Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
604 and Sebastian Riedel. Language models as knowledge bases? *arXiv preprint arXiv:1909.01066*,
605 2019.

606 Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. U-bert: Pre-training user representations for
607 improved recommendation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
608 volume 35, pp. 4320–4327, 2021.
609

610 QwenTeam. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

611 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
612 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
613 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
614

615 Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
616 ing with recurrent neural networks. *arXiv preprint arXiv:1511.06732*, 2015.

617 Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
618 markov chains for next-basket recommendation. In *Proceedings of the 19th international con-
619 ference on World wide web*, pp. 811–820, 2010.
620

621 Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
622 few-shot learners. *arXiv preprint arXiv:2009.07118*, 2020.

623 Hui Shi, Yupeng Gu, Yitong Zhou, Bo Zhao, Sicun Gao, and Jishen Zhao. Everyone’s preference
624 changes differently: A weighted multi-interest model for retrieval. In *International Conference
625 on Machine Learning*, pp. 31228–31242. PMLR, 2023.
626

627 Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learn-
628 ing: Understanding and accounting for hidden context in rlhf. *arXiv preprint arXiv:2312.08358*,
629 2023.

630 Felix Stahlberg and Bill Byrne. On nmt search errors and model errors: Cat got your tongue? In
631 *EMNLP*, 2019.
632

633 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequenti-
634 al recommendation with bidirectional encoder representations from transformer. In *Proceedings
635 of the 28th ACM international conference on information and knowledge management*, pp. 1441–
636 1450, 2019.

637 Ambuj Tewari and Peter L Bartlett. On the consistency of multiclass classification methods. *Journal
638 of Machine Learning Research*, 8(5), 2007.
639

640 Kenneth E Train. *Discrete choice methods with simulation*. Cambridge university press, 2009.

641 Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun Quan, Wei Bi, and Shuming Shi. Explore-instruct:
642 Enhancing domain-specific instruction coverage through active exploration. *arXiv preprint
643 arXiv:2310.09168*, 2023.
644

645 Jianling Wang, Haokai Lu, Yifan Liu, He Ma, Yueqi Wang, Yang Gu, Shuzhou Zhang, Ningren Han,
646 Shuchao Bi, Lexi Baugher, et al. Llms for user interest exploration in large-scale recommenda-
647 tion systems. In *Proceedings of the 18th ACM Conference on Recommender Systems*, pp. 872–877,
2024a.

648 Jianling Wang, Yifan Liu, Yinghao Sun, Xuejian Ma, Yueqi Wang, He Ma, Zhengyang Su, Minmin
649 Chen, Mingyan Gao, Onkar Dalal, et al. User feedback alignment for llm-powered exploration in
650 large-scale recommendation systems. *arXiv preprint arXiv:2504.05522*, 2025.

651

652 Yuhao Wang, Yichao Wang, Zichuan Fu, Xiangyang Li, Wanyu Wang, Yuyang Ye, Xiangyu Zhao,
653 Huifeng Guo, and Ruiming Tang. Llm4msr: An llm-enhanced paradigm for multi-scenario re-
654 commendation. In *Proceedings of the 33rd ACM International Conference on Information and*
655 *Knowledge Management*, pp. 2472–2481, 2024b.

656 Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search optimization.
657 *arXiv preprint arXiv:1606.02960*, 2016.

658

659 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
660 Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. *World*
661 *Wide Web*, 27(5):60, 2024.

662 Binwei Yao, Zefan Cai, Yun-Shiuan Chuang, Shanglin Yang, Ming Jiang, Diyi Yang, and Junjie
663 Hu. No preference left behind: Group distributional preference optimization. *arXiv preprint*
664 *arXiv:2412.20299*, 2024.

665 Chao Yi, Dian Chen, Gaoyang Guo, Jiakai Tang, Jian Wu, Jing Yu, Sunhao Dai, Wen Chen, Wenjun
666 Yang, Yuning Jiang, et al. Recgpt technical report. *arXiv preprint arXiv:2507.22879*, 2025.

667

668 Chao Yu, Qixin Tan, Hong Lu, Jiaxuan Gao, Xinting Yang, Yu Wang, Yi Wu, and Eugene Vinitsky.
669 Icpl: Few-shot in-context preference learning via llms. *arXiv preprint arXiv:2410.17233*, 2024.

670 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
671 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
672 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
673 2025.

674

675 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
676 few-shot performance of language models. In *International conference on machine learning*, pp.
677 12697–12706. PMLR, 2021.

678

679 Zhihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Zhen Wen, Fei Wang,
680 Xiangyu Zhao, Jiliang Tang, et al. Recommender systems in the era of large language models
(llms). *IEEE Transactions on Knowledge and Data Engineering*, 36(11):6889–6907, 2024.

681

682 Chuang Zhou, Junnan Dong, Xiao Huang, Zirui Liu, Kaixiong Zhou, and Zhaozhuo Xu. Quest: Effi-
683 cient extreme multi-label text classification with large language models on commodity hardware.
684 In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 3929–3940,
685 2024.

686

687 Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
688 Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In *Proceedings*
689 *of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
1059–1068, 2018.

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX

703

704 A ALGORITHMS

705

706 **Algorithm 1** Likelihood-based Probing.

707

708 **Input:**

709 \mathcal{M} : Large Language Model.
 710 $H_{1:t}$: A user's interaction history from up to time t .
 711 $C = \{c_1, \dots, c_K\}$: The set of K preference clusters.
 712 T_{probe} : A prompt template for probing.
 713 V_+ : The set of vocabulary token for an affirmative response (e.g., 'Yes', 'Y', 'y', etc.).
 714 V_- : The set of vocabulary token for an negative response (e.g., 'No', 'N', 'n', etc.).
 715 τ : temperature parameter.

716 **Output:** Predicted preferences $\hat{\theta}_{t+1:T}$ over a future period.

717 1: $S \leftarrow \mathbf{0} \in \mathbb{R}^K$ ▷ Initializations
 718 2: **for** $j \leftarrow 1$ to K **do** ▷ Create prompt for cluster c_j
 719 3: Use T_{probe} , $H_{1:t}$, c_j to construct a prompt p_j .
 720 4: $\mathbf{z}_j \leftarrow \mathcal{M}(p_j)$ ▷ Get logit vector $\mathbf{z}_j \in \mathbb{R}^{|V|}$ for prompt p_j
 721 5: $s_+ \leftarrow \sum_{v \in V_+} (\mathbf{z}_j[v]) / |V_+|$ ▷ Calculate mean logit score for all affirmative tokens
 722 6: $s_- \leftarrow \sum_{v \in V_-} (\mathbf{z}_j[v]) / |V_-|$ ▷ Calculate mean logit score for all negative tokens
 723 7: $S[j] \leftarrow \frac{\exp(s_+)}{\exp(s_+) + \exp(s_-)}$ ▷ Compute 'yes' probability as the cluster's score
 724 8: **end for**
 725 9: $\hat{\theta}_{t+1:T} \leftarrow \text{softmax}(S/\tau)$ ▷ Normalize all scores to get final distribution

726

727 **Algorithm 2** Generative Classification.

728

729 **Input:**

730 \mathcal{M} : Large Language Model.
 731 $H_{1:t}$: A user's interaction history from up to time t .
 732 $C = \{c_1, \dots, c_K\}$: The set of K preference clusters.
 733 T_{gen} : A prompt template for generation.
 734 V_C : The set of vocabulary token for indexing each cluster.
 735 τ : temperature parameter.

736 **Output:** Predicted preferences $\hat{\theta}_{t+1:T}$ over a future period.

737 1: $S \leftarrow \mathbf{0} \in \mathbb{R}^K$ ▷ Initializations
 738 2: Use T_{gen} , $H_{1:t}$, C to construct a prompt p . ▷ Get logit vector $\mathbf{z} \in \mathbb{R}^{|V|}$ for prompt p
 739 3: $\mathbf{z} \leftarrow \mathcal{M}(p)$.
 740 4: **for** $j \leftarrow 1$ to K **do** ▷ Extract the raw logit for the token of cluster c_j
 741 5: $S[j] \leftarrow \mathbf{z}[v_j]$
 742 6: **end for**
 743 7: $\hat{\theta}_{t+1:T} \leftarrow \text{softmax}(S/\tau)$ ▷ Normalize all scores to get final distribution

744 B PROMPT OF INFERENCE

745

746 **Prompt for Likelihood-based Probing Algorithm 1**

747

748 *User History:*

749 Time 1: rated "Inception" 5/5 (Action, Sci-Fi);
 750 Time 2: rated "The Godfather" 5/5 (Crime, Drama);
 751 Time 3: rated "Toy Story" 4/5 (Animation, Comedy)

752

753 Considering the user's **long-term preferences** from their movie rating history, do they like
 754 {GENRE} movies? Answer in "Yes" or "No".

787 Prompt for Generative Classification Algorithm 2

User History:

Time 1: rated "Inception" 5/5 (Action, Sci-Fi);
Time 2: rated "The Godfather" 5/5 (Crime, Drama);
Time 3: rated "Toy Story" 4/5 (Animation, Comedy)

Considering the user's **long-term preferences** from their movie rating history, which genre do they like **MOST**? Answer with the letter only (A, B, C, etc.):

798 **Prompt for Direct Generation (top-1)**

User History:

Time 1: rated "Inception" 5/5 (Action, Sci-Fi);
Time 2: rated "The Godfather" 5/5 (Crime, Drama);
Time 3: rated "Toy Story" 4/5 (Animation, Comedy)

Question: Based on the user's **long-term preferences** from their entire history, tell me the cluster they like the MOST. Answer with the letter only (A, B, C, etc.):

Prompt for Direct Generation (top-3)

810

811

User History:

812

813

814

Time 1: rated “Inception” 5/5 (Action, Sci-Fi);
 Time 2: rated “The Godfather” 5/5 (Crime, Drama);
 Time 3: rated “Toy Story” 4/5 (Animation, Comedy)

815

816

Question: Based on the user’s **long-term preferences** from their entire history, rank the **top 3 genres** they like the most. Answer with the letter only (A, B, C, etc.):

817

818

819

820

C COMPUTATIONAL COMPLEXITY ANALYSIS

821

822

823

824

825

Notation. Let K be the number of preference clusters and T the prompt length (tokens). Let $C(\mathcal{M}, T)$ denote the cost of a single forward pass of the language model \mathcal{M} on a prompt of length T (the dominant compute). Each cluster c is associated with a fixed “verbalizer” (token or short phrase) used to read its score from next-token logits.

826

827

COMPLEXITY OF PET METHODS

828

829

830

Likelihood-based Probing Algorithm 1. Our implementation is **iterative**: we issue a focused prompt per cluster, effectively scoring clusters independently. The total cost scales linearly with the number of probes:

831

$$\text{Cost} \approx O(K \cdot C(\mathcal{M}, T)).$$

832

833

834

Generative Classification Algorithm 1. This method is **single-shot**: one prompt, one forward pass, then read the next-token logits for the K verbalizers and normalize. The cost is constant with respect to K :

835

$$\text{Cost} \approx O(C(\mathcal{M}, T)).$$

836

837

838

839

840

Hierarchical Probing Algorithm 3. This two-stage method targets large K . Let K_1 be the number of coarse L1 clusters, B the number of L1 branches explored, and $K_{2,\text{avg}}$ the average number of L2 sub-clusters per explored branch. Using iterative probing at both levels, the total cost is the sum of L1 scoping and L2 exploration:

841

$$\text{Cost} \approx O(K_1 \cdot C(\mathcal{M}, T_{L1})) + O(B \cdot K_{2,\text{avg}} \cdot C(\mathcal{M}, T_{L2})).$$

842

843

844

Since typically $K_1 \ll K$ and $B \cdot K_{2,\text{avg}} \ll K$, this is substantially cheaper than flat iterative probing $O(K \cdot C(\mathcal{M}, T))$.

845

846

COMPLEXITY OF BASELINES (FOR COMPARISON)

847

848

Direct Generation (top- k list). One prompt with autoregressive decoding of approximately $O(k)$ output tokens:

849

$$\text{Cost} \approx O(C(\mathcal{M}, T) + k).$$

850

851

If re-prompted separately for multiple cutoffs (e.g., $k = 1, 5, 10$), end-to-end latency increases linearly with the number of cutoffs.

852

853

Cross-encoder Reranker. Score each (history, cluster) pair independently:

854

$$\text{Cost} \approx O(K \cdot C(\mathcal{M}, T)).$$

855

856

PRACTICAL NOTES

857

858

859

860

861

862

863

- **KV cache reuse.** For iterative methods, reusing the encoded history reduces repeated compute; most marginal cost is in the final token(s) where logits are read.
- **Batching.** Batching improves throughput for iterative probing and reranking, but tail latency still scales with the number of batches/probes.
- **Multi- k evaluation.** PET’s distributional methods (Generative Classification; Hierarchical with small B) yield a full distribution in the same pass(es), so reporting multiple k does not require re-decoding.

864 **D EXTRA THEORIES AND PROOFS**
 865

866 For the theoretical analysis, we consider an idealized *preference mapping* $g_\phi : H_{1:t} \rightarrow \mathbb{R}^K$ that pro-
 867 duces logits $\mathbf{S}(H_{1:t}) = g_\phi(H_{1:t})$ and an induced distribution $\hat{\theta}_{t+1:T}(H_{1:t}) = \text{softmax}(\mathbf{S}(H_{1:t}))$.
 868 We assume that ϕ is chosen to minimize the *population* cross-entropy between the latent-softmax
 869 model and the predictor:

$$870 \quad \mathcal{L}_{\text{CE}}(\phi) = \mathbb{E}_{H_{1:t}} [\text{CE}(\theta_{t+1:T}, \hat{\theta}_{t+1:T})]. \quad (5)$$

872 Training on empirical labels $\bar{\theta}_{t+1:T}$ can be viewed as a finite-sample approximation to this popu-
 873 lation objective. For the theoretical analysis in this appendix, we work in an *idealized population*
 874 *setting*. We posit a latent preference distribution $\theta(H_{1:t}) = \text{softmax}(\mathbf{q}(H_{1:t}))$ and view $\bar{\theta}_{t+1:T}$ as a
 875 finite-sample Monte Carlo estimate of $\theta(H_{1:t})$ (i.e., $\bar{\theta}_{t+1:T} \approx \theta(H_{1:t})$ as the number of interactions
 876 grows). Consequently, the empirical objective with $\bar{\theta}$ approximates the population objective with θ .

877 **D.1 PRELIMINARIES: IDEALIZED BAYES-OPTIMALITY**
 878

879 We first establish the behavior of the model in an idealized population limit. Let $\mathbf{S} \in \mathbb{R}^K$ be the
 880 model’s logits, produced by PET’s probing methods (i.e., Algorithms 1 and 2). The model predicts
 881 $\hat{\theta} = \text{softmax}(\mathbf{S})$, and we train by minimizing cross-entropy between θ and $\hat{\theta}$. This follows the
 882 standard view of cross-entropy (log-loss) as a *strictly proper scoring rule*: at the population opti-
 883 mum, the predictor’s output distribution coincides with the true conditional distribution (Gneiting
 884 & Raftery, 2007; Goodfellow et al., 2016; Blasius et al., 2023). In multiclass settings, this implies
 885 Bayes-consistency of the induced classifier (Tewari & Bartlett, 2007).

886 **Proposition 1** (Isotonicity at convergence). *Since cross-entropy is a strictly proper scoring rule*
 887 *(Gneiting & Raftery, 2007; Blasius et al., 2023), the global minimum of the population risk is*
 888 *achieved if and only if* $\text{softmax}(\mathbf{S}) = \text{softmax}(\mathbf{q})$. *Equivalently, in the latent-softmax model*
 889 $\theta = \text{softmax}(\mathbf{q})$, *the Bayes-optimal predictor recovers the true conditional distribution* (Tewari
 890 & Bartlett, 2007; Goodfellow et al., 2016). *By injectivity of softmax up to an additive constant, this*
 891 *implies* $\mathbf{S} = \mathbf{q} + c\mathbf{1}$ *for some scalar c. Thus, in the idealized limit, the model’s logits are perfectly*
 892 *order-preserving (isotonic) with respect to latent preferences.*

893 *Proof.* Let the true latent preference distribution be $\theta = \text{softmax}(\mathbf{q})$ and the predicted distribution
 894 be $\hat{\theta} = \text{softmax}(\mathbf{S})$. The expected population cross-entropy risk is defined as:

$$895 \quad \mathcal{R} = \mathbb{E}_H \left[- \sum_{k=1}^K \theta_k \log \hat{\theta}_k \right]. \quad (6)$$

896 By adding and subtracting the entropy of the true distribution $H(\theta) = - \sum \theta_k \log \theta_k$, we can rewrite
 897 the risk as:

$$898 \quad \mathcal{R} = \mathbb{E}_H \left[H(\theta) + D_{\text{KL}}(\theta \parallel \hat{\theta}) \right], \quad (7)$$

903 where D_{KL} is the Kullback-Leibler divergence. A fundamental property of proper scoring rules
 904 (Gibbs’ inequality) states that $D_{\text{KL}}(\theta \parallel \hat{\theta}) \geq 0$, with equality holding if and only if $\hat{\theta} = \theta$ almost
 905 everywhere. Therefore, the global minimum is achieved uniquely when $\text{softmax}(\mathbf{S}) = \text{softmax}(\mathbf{q})$.

906 The softmax function is invariant to constant shifts, meaning $\text{softmax}(\mathbf{x}) = \text{softmax}(\mathbf{y})$ implies
 907 $\mathbf{x} = \mathbf{y} + c\mathbf{1}$ for some scalar $c \in \mathbb{R}$. Consequently, at the global minimum, $\mathbf{S} = \mathbf{q} + c\mathbf{1}$.

909 Finally, since translation by a scalar c does not alter the relative ordering of elements, for any pair
 910 of clusters i, j :

$$911 \quad S_i > S_j \iff (q_i + c) > (q_j + c) \iff q_i > q_j. \quad (8)$$

912 This confirms that in the idealized limit, the logits \mathbf{S} are perfectly isotonic with the latent utility
 913 \mathbf{q} . \square

915 In the language-modeling context, this corresponds to the standard interpretation of cross-entropy
 916 training as maximum-likelihood estimation of the next-token distribution and an upper bound on the
 917 true entropy rate (Braverman et al., 2020). Our analysis applies this Bayes-optimal perspective to
 the cluster-distribution predictor used by PET.

918 D.2 ROBUSTNESS: THE ε -APPROXIMATE REGIME
919

920 Proposition theorem 1 characterizes an ideal Bayes-optimal limit where S is exactly isotonic with q .
921 In practice, models are only approximately calibrated (Blasiok et al., 2023; Braverman et al., 2020).
922 We capture this via a probabilistic pairwise condition.

923 **Assumption 1** (ε -Approximate Pairwise Isotonicity). *For a given user and time window, let $q \in \mathbb{R}^K$
924 be latent scores and $S \in \mathbb{R}^K$ the logits produced by PET. We say S is ε -approximately pairwise
925 isotonic w.r.t. q if, for all i, j with $q_i > q_j$,*

$$926 \quad 927 \quad \mathbb{P}(S_i < S_j) \leq \varepsilon, \quad (9)$$

928 where the probability is over randomness in training, histories, and probing. That is, each strictly
929 preferred pair is misordered with probability at most ε .
930

931 We measure ranking quality by the number of misordered pairs relative to the Bayes-optimal rank-
932 ing.

933 **Definition 1** (Pairwise ranking regret). Let π^* be the permutation that sorts clusters by decreasing
934 q_i , and let π be any permutation of $\{1, \dots, K\}$. Define

$$935 \quad 936 \quad \mathcal{R}(\pi; q) = \sum_{\substack{i, j \in [K] \\ q_i > q_j}} \mathbb{I}(\pi^{-1}(i) > \pi^{-1}(j)), \quad (10)$$

938 where $\pi^{-1}(i)$ denotes the position (rank) of cluster i under the permutation π (smaller is better).
939 Thus, $\mathcal{R}(\pi; q)$ counts the number of strictly preferred pairs (i, j) that are reversed under π .
940

941 Let π_{PET} be the permutation that sorts S in descending order. The following bound is immediate.

942 **Theorem 2** (Approximate optimality of PET). *Under Assumption 1, the expected pairwise regret of
943 π_{PET} satisfies*

$$944 \quad 945 \quad \mathbb{E}[\mathcal{R}(\pi_{\text{PET}}; q)] \leq \binom{K}{2} \varepsilon = O(K^2 \varepsilon), \quad (11)$$

946 where the expectation is over the randomness in S .
947

948 *Proof.* For $q_i > q_j$, define $E_{ij} = \{\pi_{\text{PET}}^{-1}(i) > \pi_{\text{PET}}^{-1}(j)\} = \{S_i < S_j\}$. By Assumption 1,
949 $\mathbb{P}(E_{ij}) \leq \varepsilon$. By Definition 1, $\mathcal{R}(\pi_{\text{PET}}; q) = \sum_{q_i > q_j} \mathbb{I}(E_{ij})$. Taking expectations and using linear-
950 ity,

$$951 \quad 952 \quad \mathbb{E}[\mathcal{R}(\pi_{\text{PET}}; q)] = \sum_{q_i > q_j} \mathbb{P}(E_{ij}) \leq \sum_{q_i > q_j} \varepsilon \leq \binom{K}{2} \varepsilon. \quad (12)$$

954 \square

955 Thus, if PET is “mostly isotonic” in the sense of Assumption 1 (small ε), its ranking is close to
956 Bayes-optimal: only $O(K^2 \varepsilon)$ pairs are misordered in expectation. In the limit $\varepsilon \rightarrow 0$, we recover
957 the exact isotonicity of Proposition 1.

959 D.3 FROM CROSS-ENTROPY TO THE ε REGIME
960

961 The previous result treats ε as a behavioral property of the PET head. We now connect ε to the
962 training objective $\mathcal{L}_{\text{CE}}(\phi)$.
963

964 Let $\mathcal{L}_{\text{CE}}^* = \mathcal{L}_{\text{CE}}(\theta_{t+1:T})$ denote the Bayes-optimal risk, achieved when $\hat{\theta}_{t+1:T} = \theta_{t+1:T}$, and define
965 the *excess cross-entropy risk*

$$966 \quad 967 \quad \Delta_{\text{CE}} = \mathcal{L}_{\text{CE}}(\phi) - \mathcal{L}_{\text{CE}}^* = \mathbb{E}_{H_{1:t}} [\text{KL}(\theta_{t+1:T}(H_{1:t}) \parallel \hat{\theta}_{t+1:T}(H_{1:t}))].$$

968 By Pinsker’s inequality and Jensen’s inequality, we obtain:

969 **Lemma 1** (L_1 error from excess cross-entropy). *The expected L_1 distance between the latent and
970 predicted preference distributions is bounded by*

$$971 \quad \mathbb{E}_{H_{1:t}} [\|\theta_{t+1:T}(H_{1:t}) - \hat{\theta}_{t+1:T}(H_{1:t})\|_1] \leq \sqrt{2 \Delta_{\text{CE}}}.$$

972 *Proof.* Recall that the excess cross-entropy risk is exactly the expected Kullback-Leibler divergence
 973 between the true distribution θ and the predicted distribution $\hat{\theta}$:
 974

$$975 \quad \Delta_{\text{CE}} = \mathbb{E}_{H_{1:t}} \left[D_{\text{KL}}(\theta \parallel \hat{\theta}) \right]. \quad (13)$$

977 For any specific history $H_{1:t}$, Pinsker's inequality bounds the L_1 distance by the KL divergence:
 978

$$979 \quad \|\theta - \hat{\theta}\|_1 \leq \sqrt{2 D_{\text{KL}}(\theta \parallel \hat{\theta})}. \quad (14)$$

980 Taking the expectation over histories $H_{1:t}$ on both sides:
 981

$$982 \quad \mathbb{E} \left[\|\theta - \hat{\theta}\|_1 \right] \leq \mathbb{E} \left[\sqrt{2 D_{\text{KL}}(\theta \parallel \hat{\theta})} \right]. \quad (15)$$

984 Since the square root function $f(x) = \sqrt{x}$ is concave, Jensen's inequality implies that $\mathbb{E}[\sqrt{X}] \leq$
 985 $\sqrt{\mathbb{E}[X]}$. Applying this to the right-hand side:
 986

$$987 \quad \mathbb{E} \left[\sqrt{2 D_{\text{KL}}(\theta \parallel \hat{\theta})} \right] \leq \sqrt{2 \mathbb{E} \left[D_{\text{KL}}(\theta \parallel \hat{\theta}) \right]} = \sqrt{2 \Delta_{\text{CE}}}. \quad (16)$$

989 Combining these steps yields the lemma. \square
 990

991 As $\Delta_{\text{CE}} \rightarrow 0$ (e.g., with more data, capacity, and optimization), the predicted distributions $\hat{\theta}_{t+1:T}$
 992 converge to $\theta_{t+1:T}$ in expected L_1 distance. Intuitively, if $\hat{\theta}_{t+1:T}$ is close to $\theta_{t+1:T}$, then it is unlikely
 993 to significantly distort the ordering between clusters with a clear preference gap. Formalizing ε as
 994 an explicit function of Δ_{CE} for *all* pairs would require additional global margin assumptions on
 995 $\theta_{t+1:T}$, which are often unrealistic in long-tail regimes. Instead, we interpret ε as capturing residual
 996 misorderings after training: Lemma 1 shows that cross-entropy minimization drives $\hat{\theta}_{t+1:T}$ toward
 997 $\theta_{t+1:T}$, thereby pushing the model into a small- ε regime for most histories and clearly preferred
 998 pairs.
 999

1000 D.3 PET VS. DECODING-BASED DIRECT GENERATION

1001 We now compare PET to *decoding-based direct generation* (DG), which uses the same logits \mathbf{S} but
 1002 produces a ranked list via an autoregressive decoding algorithm (e.g., greedy, beam, sampling).

1003 Let $\pi^* \in \Pi_K$ be the permutation that sorts clusters by decreasing \mathbf{q} , and let π_{PET} be the permutation
 1004 that sorts \mathbf{S} . We model any decoding-based ranking as follows.

1005 **Definition 2** (Decoding-based ranking). A decoding-based ranking procedure is a (possibly ran-
 1006 domized) algorithm that maps logits $\mathbf{S} \in \mathbb{R}^K$ to a permutation of clusters. We denote by

$$1007 \quad \pi_{\text{DG}}(\mathbf{S}) \in \Pi_K$$

1008 the (random) permutation produced by such a decoder when run on \mathbf{S} . The randomness here comes
 1009 from any sampling or tie-breaking used by the decoding algorithm (e.g., top- p sampling, tempera-
 1010 ture, stochastic beam search). We write $\mathbb{E}_{\text{DG}}[\cdot]$ for expectation with respect to this decoder random-
 1011 ness, conditioned on the logits \mathbf{S} .
 1012

1013 We measure quality using a generic order-aware loss.
 1014

1015 **Assumption 2** (Order-aware ranking loss). *Let $\mathcal{L} : \Pi_K \times \mathbb{R}^K \rightarrow \mathbb{R}$ be a loss such that, for any fixed
 1016 \mathbf{q} :*

- 1017 1. $\mathcal{L}(\pi^*; \mathbf{q}) \leq \mathcal{L}(\pi; \mathbf{q})$ for all $\pi \in \Pi_K$;
- 1018 2. *for almost all \mathbf{q} (w.r.t. any continuous distribution), the minimizer is unique: $\mathcal{L}(\pi^*; \mathbf{q}) <$
 1019 $\mathcal{L}(\pi; \mathbf{q})$ for all $\pi \neq \pi^*$.*

1020 *This is satisfied, e.g., if L is the negative of NDCG/Recall/Precision.*
 1021

1022 In the Bayes-optimal regime of Proposition 1, $\mathbf{S} = \mathbf{q} + c\mathbf{1}$, PET recovers π^* by simple sorting. We
 1023 show that no decoding procedure can do better on top of these logits.
 1024

1026 **Theorem 3** (Dominance of PET over decoding-based generation). Fix $\mathbf{q} \in \mathbb{R}^K$ and assume $\mathbf{S} = \mathbf{q} +$
 1027 $c\mathbf{1}$ for some c . Let $\pi_{\text{PET}} = \text{argsort} \mathbf{S}$ and let $\pi_{\text{DG}}(\mathbf{S}) \in \Pi_K$ be the (possibly random) permutation
 1028 produced by any decoding-based procedure when run on logits \mathbf{S} . Under Assumption 2,

$$\mathbb{E}_{\text{DG}} [\mathcal{L}(\pi_{\text{DG}}(\mathbf{S}); \mathbf{q})] \geq \mathcal{L}(\pi_{\text{PET}}; \mathbf{q}), \quad (17)$$

1031 where the expectation is over the decoder’s internal randomness. Moreover, if $\mathcal{L}(\cdot; \mathbf{q})$ has a unique
 1032 minimizer π^* and the decoder outputs any $\pi \neq \pi^*$ with nonzero probability, then the inequality is
 1033 strict.

1034 *Proof.* Since $\mathbf{S} = \mathbf{q} + c\mathbf{1}$, sorting \mathbf{S} is equivalent to sorting \mathbf{q} : $\pi_{\text{PET}} = \text{argsort} \mathbf{S} = \text{argsort} \mathbf{q} = \pi^*$.
 1035 By Assumption 2, $L(\pi^*; \mathbf{q}) \leq L(\pi; \mathbf{q})$ for all $\pi \in \Pi_K$.

1037 For any fixed realization of the decoder’s randomness, the decoder outputs some permutation
 1038 $\pi_{\text{DG}}(\mathbf{S}) \in \Pi_K$, and thus

$$\mathcal{L}(\pi_{\text{DG}}(\mathbf{S}); \mathbf{q}) \geq \mathcal{L}(\pi^*; \mathbf{q}) = \mathcal{L}(\pi_{\text{PET}}; \mathbf{q}). \quad (18)$$

1040 Taking expectation over the decoder’s randomness gives

$$\mathbb{E}_{\text{DG}} [\mathcal{L}(\pi_{\text{DG}}(\mathbf{S}); \mathbf{q})] \geq \mathcal{L}(\pi_{\text{PET}}; \mathbf{q}), \quad (19)$$

1043 since $\mathcal{L}(\pi_{\text{PET}}; \mathbf{q})$ is deterministic.

1044 If $\mathcal{L}(\cdot; \mathbf{q})$ has a unique minimizer π^* , then whenever $\mathcal{L}(\pi_{\text{DG}}(\mathbf{S}); \mathbf{q}) = \mathcal{L}(\pi^*; \mathbf{q})$ we must have
 1045 $\pi_{\text{DG}}(\mathbf{S}) = \pi^*$. Thus equality in expectation can hold only if the decoder returns π^* almost
 1046 surely. If instead the decoder outputs some $\pi \neq \pi^*$ with nonzero probability, then on that event
 1047 $\mathcal{L}(\pi_{\text{DG}}(\mathbf{S}); \mathbf{q}) > \mathcal{L}(\pi^*; \mathbf{q})$, which makes the inequality strict. \square

1049 Theorem 3 is an idealized statement: when logits are perfectly calibrated ($\mathbf{S} = \mathbf{q} + c\mathbf{1}$), PET’s simple
 1050 logit-sorting is Bayes-optimal, and any decoding-based mapping on top of the same logits can at best
 1051 match, but not improve, the induced ranking. In practice, PET operates in the ε -approximate regime
 1052 of Assumption 1, where its regret is controlled by Theorem 2, while decoding-based methods incur
 1053 additional errors from exposure bias, truncation, and search heuristics.

1054 **Remark 1** (Risk Decomposition: PET vs. Direct Generation). Theorem 3 characterizes an idealized
 1055 regime where logits are perfectly calibrated ($\mathbf{S} \approx \mathbf{q}$). In the practical regime, Direct Generation
 1056 (DG) incurs additional error sources that PET avoids due to its distributional nature. We formally
 1057 conceptualize the ranking risk of DG as:

$$\text{Risk(DG)} \approx \text{Risk(PET)} + \Delta_{\text{freq}} + \Delta_{\text{trunc}} + \Delta_{\text{exp}}. \quad (20)$$

1059 Here, Risk(PET) is controlled by the approximate isotonicity parameter ε (Theorem 2), while the
 1060 additive penalty terms represent the structural limitations identified in Section 3.3:

1. Δ_{freq} (Frequency Bias): Represents the divergence caused by the autoregressive model’s
 1063 tendency to over-produce high-frequency tokens from pre-training (Zhao et al., 2021;
 1064 Holtzman et al., 2020), which PET mitigates via closed-set normalization.
2. Δ_{trunc} (Search/Truncation Error): Represents the expected utility loss from heuristic search
 1066 (e.g., beam search), which imposes a hard truncation on valid long-tail clusters falling
 1067 outside the beam (Wiseman & Rush, 2016; Stahlberg & Byrne, 2019).
3. Δ_{exp} (Exposure Bias): Represents the error accumulated due to context distribution shift
 1070 during autoregressive decoding (Ranzato et al., 2015).

1071 This decomposition theoretically grounds our empirical observation that PET is significantly more
 1072 robust in long-tail ranking tasks.

1075 E DETAILED EXPERIMENTAL DESIGN

1077 E.1 SETUPS

1078 **Global Exposure Entropy.** Let \mathcal{U} be the set of evaluation users and \mathcal{C} the cluster space (e.g., genres).
 1079 For a given method and cutoff k , let $R_{u,k} \subseteq \mathcal{C}$ denote the set of clusters appearing in the top- k list

1080 for user $u \in \mathcal{U}$. We define the global exposure count for cluster $c \in \mathcal{C}$ as
1081

$$1082 n_c(k) = \sum_{u \in \mathcal{U}} \mathbb{I}(c \in R_{u,k}), \quad (21)$$

1083

1084 and the corresponding normalized exposure distribution
1085

$$1086 P_{\text{exp},k}(c) = \frac{n_c(k)}{\sum_{c' \in \mathcal{C}} n_{c'}(k)}. \quad (22)$$

1087

1088 The *Global Exposure Entropy* at cutoff k is then
1089

$$1090 \text{Entropy}@k = H_k := - \sum_{c \in \mathcal{C}} P_{\text{exp},k}(c) \log_2 P_{\text{exp},k}(c). \quad (23)$$

1091

1092 Higher values of H_k indicate that exposure is distributed more equitably across clusters, while lower
1093 values indicate concentration on a small subset of clusters (mode collapse).
1094

E.2 YELP DATASET

1096 On the Yelp dataset, we evaluate PET in a high-dimensional setting with 1,311 fine-grained cate-
1097 gories in the Yelp dataset, designed to test the scalability of our approach. In this regime, *Logit*
1098 *Probing* becomes prohibitively expensive due to the large output space. To address this, we adopt
1099 Hierarchical Probing (Algorithm 3) that decomposes the task into two levels: a coarse-grained clus-
1100 ter identification followed by fine-grained ranking within the selected scope.
1101

1102 We construct a hierarchical mapping that maps 1,311 categories into 26 high-level L1 clusters (e.g.,
1103 “Food & Restaurants”, “Health & Medical”). For a high-traffic category like “Food & Restaurants,”
1104 we then define a corresponding L2 space with 19 sub-clusters (e.g., “Mexican,” “Vegan”) under
1105 L1’s “Food & Restaurants”. In inference, PET first identifies the user’s broad L1 interests and then
1106 “zooms in” to perform a nuanced L2 ranking within the top-predicted L1 category. While operators
1107 may freely select which high-level categories to probe based on application needs, this experiment
1108 offers one representative setup on the Yelp dataset.

1109 **Hierarchical Probing Mapping.** We ask Gemini-2.5 Pro and GPT-5 to produce this mapping with
1110 the prompt:
1111

1112 You are an expert in ontology construction, taxonomy design, and user preference modeling,
1113 with extensive experience in building interpretable, semantically meaningful cluster hierar-
1114 chies for preference learning.
1115

1116 I will provide you a list of raw user preference clusters, each with an associated weight or
1117 frequency representing its importance or user interaction volume (e.g., number of views).
1118

1119 Bicycles: number of reviews xxx, average ratings xxx;
1120 Massage: number of reviews xxx, average ratings xxx;
1121 ...
1122

1123 Your task is to:
1124

1. Group these raw clusters into high-level categories (Level-1) that are semantically
1125 meaningful and interpretable.
2. Assign each raw cluster to one and only one Level-1 category, forming a two-level
1126 hierarchy.
3. Return the result as a JSON object, where the keys are Level-1 category names and
1127 the values are lists of Level-2 clusters (i.e., raw cluster names).
1128

1129 You should aim for:
1130

1. 20 to 26 Level-1 categories total.
1131
2. Coherent semantics within each group.
1132

1134
1135
1136
1137
1138

3. Human-readable, concise names for each Level-1 category (e.g., “Food & Drink”, “Fitness”, “Beauty”).

1139
1140
1141

With the mapping, of which we verified that Level-1 categories are well-balanced, with no single group dominating the total frequency or collapsing into overly broad labels:

1142
1143
1144

L1 Categories:

1145
1146
1147
1148
1149
1150
1151

Active Life & Fitness, Active Life, Sports & Recreation, Arts, Entertainment & Events, Automotive, Beauty & Spas, Cannabis Services, Community & Government, Education, Event Planning & Services, Farms & Ranches, Food & Restaurants, Health & Medical, Home & Public Services, Home Maintenance, Hotels & Travel, Internet & Communications, Local & Public Services, Nightlife & Bars, Personal Services, Pets, Professional & Financial Services, Real Estate, Religious & Community, Shopping & Retail, Specialty Shops, Specialty Vehicles

1152
1153
1154
1155
1156
1157

L2 Categories:

Bicycles, Bike Shop, Active Life, Aerial Fitness, Airsoft, Amateur Sports Teams, Archery, Badminton, Barre Classes, Baseball Fields, Basketball Courts, Beach Bars, Beaches, Bicycle Paths, Bike Parking, Bike Sharing, Bike tours, Bikes, Bocce Ball, Boot Camps, Boxing, Brazilian Jiu-jitsu, ...

1158

E.3 REAL-WORLD SHORT-VIDEO DATASET

1160
1161
1162
1163
1164
1165
1166
1167

On the short-video dataset, we select the play duration as the proxy metric to represent the user interests. Compared to sparse binary signals like likes or saves, play duration offers a more reliable and verifiable measure of user interest. While some approaches construct weighted combinations of multiple engagement signals, we deliberately opt for a single, interpretable metric to avoid introducing volatility and platform-specific heuristics. The ground-truth distribution is defined as the aggregated play duration across future windows (3, 7, or 14 days). Although we cannot release raw correlation statistics due to data sensitivity and privacy constraints, internal audits confirm strong alignment between play duration and user feedback.

1168
1169
1170
1171

Our analysis targets high-activity users (≥ 21 active days in the past month), as they represent the platform’s core, most engaged cohort. Since we only have 30-days of user data, we pick high-activity users for their dense activities.

1172
1173

Durations are normalized per user to form a probability distribution over clusters, preventing heavy-usage magnitude from confounding preference shares.

1174
1175
1176

F ADDITIONAL EXPERIMENTAL RESULTS

1177
1178

F.1 EVALUATION OF PET ON MOVIELENS

1179
1180
1181
1182
1183
1184
1185
1186
1187

Inference procedure of *Direct Generation*. Unlike PET, which infers a full probability distribution over all 19 clusters, *Direct Generation* is prompted separately for each top-k values.

Prediction	Method	Qwen3-8B				DeepSeek-distill-Llama-8B			
		Entropy@1	Entropy@3	Entropy@5	Entropy@10	Entropy@1	Entropy@3	Entropy@5	Entropy@10
Long	A: Direct Generation	1.020	2.446	3.558	3.849	0.140	1.629	2.666	3.447
	B: Logit-Probing	1.747	3.130	3.565	3.979	2.307	3.054	3.352	3.813
	C: Gen. Class.	1.575	2.732	3.103	3.705	0.952	1.926	2.608	3.329
Short	A: Direct Generation	.810	2.163	3.581	3.767	0.050	1.635	2.713	3.476
	B: Logit-Probing	2.093	3.246	3.612	3.964	2.256	2.922	3.252	3.701
	C: Gen. Class.	1.605	2.696	3.211	3.681	0.073	1.972	2.350	3.433

Table 3: Fairness performance on MovieLens using the PT+SFT pipeline. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: entropy score; context window: 3. Best results for each setting are in **bold**.

Context	Prediction	Method	Qwen3-8B				DeepSeek-distill-Llama-8B			
			NDCG@1	NDCG@5	NDCG@10	JS Div	NDCG@1	NDCG@5	NDCG@10	JS Div
1	Long	A: Direct Generation	.813	.573	.644	—	.609	.440	.540	—
		B: Logit-Probing	.781	.776	.823	.320	.734	.786	.840	.373
		C: Gen. Class.	.795	.725	.736	.547	.562	.606	.632	.462
		Qwen3-Reranker-8B	.814	.713	.728	.399				
	Short	A: Direct Generation	.701	.506	.571	—	.499	.369	.450	—
		B: Logit-Probing	.667	.675	.740	.466	.542	.619	.714	.514
		C: Gen. Class.	.638	.661	.789	.538	.499	.490	.501	.551
		Qwen3-Reranker-8B	.650	.566	.652	.525				
3	Long	A: Direct Generation	.820	.573	.644	—	.601	.428	.533	—
		B: Logit-Probing	.815	.815	.858	.309	.758	.812	.812	.370
		C: Gen. Class.	.830	.760	.758	.547	.637	.624	.624	.462
		Qwen3-Reranker-8B	.809	.714	.727	.401				
	Short	A: Direct Generation	.702	.495	.554	—	.492	.361	.453	—
		B: Logit-Probing	.686	.674	.707	.460	.501	.612	.712	.507
		C: Gen. Class.	.661	.631	.671	.539	.492	.499	.507	.545
		Qwen3-Reranker-8B	.624	.563	.645	.525				
5	Long	A: Direct Generation	.840	.538	.629	—	.604	.428	.542	—
		B: Logit-Probing	.830	.815	.825	.315	.763	.817	.867	.367
		C: Gen. Class.	.847	.777	.764	.547	.423	.528	.551	.463
		Qwen3-Reranker-8B	.802	.709	.725	.403				
	Short	A: Direct Generation	.723	.496	.546	—	.493	.359	.454	—
		B: Logit-Probing	.716	.720	.781	.460	.496	.606	.708	.507
		C: Gen. Class.	.673	.635	.676	.535	.489	.498	.507	.546
		Qwen3-Reranker-8B	.606	.552	.641	.525				
8	Long	A: Direct Generation	.848	.530	.613	—	.605	.425	.546	—
		B: Logit-Probing	.831	.822	.863	.316	.774	.823	.872	.367
		C: Gen. Class.	.846	.760	.762	.542	.362	.518	.542	.465
		Qwen3-Reranker-8B	.801	.701	.721	.406				
	Short	A: Direct Generation	.711	.499	.529	—	.492	.359	.456	—
		B: Logit-Probing	.710	.719	.780	.462	.490	.609	.711	.507
		C: Gen. Class.	.657	.632	.673	.530	.486	.497	.509	.547
		Qwen3-Reranker-8B	.609	.522	.638	.528				

Table 4: Comprehensive performance on MovieLens using the PT+SFT pipeline across a range of context windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A) and Qwen3-Reranker-8B. Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: NDCG. Best results for each setting are in **bold**.

F.2 EVALUATION OF PET ON YELP

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Context	Prediction	Method	Qwen3-8B			DeepSeek-distill-Llama-8B		
			Precision@1	Precision@5	Precision@10	Precision@1	Precision@5	Precision@10
1	Long	A: Direct Generation	.996	.847	.779	.979	.857	.803
		B: Logit-Probing	.993	.951	.754	.993	.966	.919
		C: Gen. Class.	.992	.890	.736	.948	.821	.760
	Short	A: Direct Generation	.921	.549	.484	.772	.467	.417
		B: Logit-Probing	.887	.711	.589	.788	.688	.608
		C: Gen. Class.	.882	.627	.517	.772	.588	.434
3	Long	A: Direct Generation	.999	.857	.773	.972	.845	.799
		B: Logit-Probing	.991	.960	.914	.996	.973	.926
		C: Gen. Class.	.997	.911	.792	.897	.854	.755
	Short	A: Direct Generation	.926	.555	.488	.775	.466	.429
		B: Logit-Probing	.909	.738	.617	.755	.693	.618
		C: Gen. Class.	.902	.654	.518	.775	.601	.446
5	Long	A: Direct Generation	.998	.866	.767	.976	.842	.804
		B: Logit-Probing	.996	.961	.913	.993	.973	.931
		C: Gen. Class.	.998	.906	.789	.869	.857	.756
	Short	A: Direct Generation	.930	.559	.488	.768	.463	.429
		B: Logit-Probing	.926	.749	.622	.746	.687	.620
		C: Gen. Class.	.912	.662	.525	.762	.597	.443
8	Long	A: Direct Generation	.999	.869	.776	.975	.837	.807
		B: Logit-Probing	.996	.963	.918	.998	.977	.934
		C: Gen. Class.	.999	.907	.794	.858	.861	.757
	Short	A: Direct Generation	.925	.555	.486	.774	.461	.431
		B: Logit-Probing	.922	.749	.621	.736	.694	.622
		C: Gen. Class.	.907	.658	.521	.762	.597	.447

Table 5: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: Precision. Best results for each setting are in **bold**.

Context	Prediction	Method	Qwen3-8B			DeepSeek-distill-Llama-8B		
			Recall@1	Recall@5	Recall@10	Recall@1	Recall@5	Recall@10
1	Long	A: Direct Generation	.072	.299	.547	.071	.301	.563
		B: Logit-Probing	.072	.342	.637	.073	.350	.658
		C: Gen. Class.	.072	.317	.552	.068	.289	.533
	Short	A: Direct Generation	.124	.349	.603	.097	.285	.519
		B: Logit-Probing	.120	.461	.743	.106	.446	.772
		C: Gen. Class.	.118	.402	.654	.097	.367	.538
3	Long	A: Direct Generation	.073	.304	.544	.070	.297	.562
		B: Logit-Probing	.072	.345	.651	.073	.354	.666
		C: Gen. Class.	.072	.325	.559	.064	.302	.531
	Short	A: Direct Generation	.124	.354	.608	.096	.278	.527
		B: Logit-Probing	.122	.477	.777	.101	.443	.773
		C: Gen. Class.	.121	.417	.653	.096	.369	.543
5	Long	A: Direct Generation	.073	.310	.544	.070	.295	.563
		B: Logit-Probing	.073	.349	.656	.072	.351	.666
		C: Gen. Class.	.073	.326	.562	.061	.302	.529
	Short	A: Direct Generation	.125	.357	.609	.095	.278	.529
		B: Logit-Probing	.125	.486	.784	.099	.441	.780
		C: Gen. Class.	.123	.423	.662	.095	.368	.542
8	Long	A: Direct Generation	.073	.309	.547	.070	.292	.564
		B: Logit-Probing	.073	.348	.655	.073	.353	.668
		C: Gen. Class.	.073	.324	.562	.060	.304	.529
	Short	A: Direct Generation	.125	.356	.607	.096	.277	.532
		B: Logit-Probing	.126	.488	.785	.099	.445	.781
		C: Gen. Class.	.123	.422	.659	.095	.370	.547

Table 6: Comprehensive performance on MovieLens using the PT+SFT pipeline across a range of context windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: Recall. Best results for each setting are in **bold**.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Context	Prediction	Method	Qwen3-8B				DeepSeek-distill-Llama-8B			
			NDCG@1	NDCG@5	NDCG@10	JS Div	NDCG@1	NDCG@5	NDCG@10	JS Div
1	Long	A: Direct Generation	0.0015	0.1069	0.2430	—	0.0127	0.3109	0.3425	—
		B: Logit-Probing	0.8604	0.8436	0.8669	0.6145	0.9581	0.8501	0.8777	0.6499
		C: Gen. Class.	0.0945	0.1147	0.1587	0.6969	0.0000	0.1021	0.1437	0.7245
	Short	A: Direct Generation	0.0149	0.1133	0.2686	—	0.0127	0.2971	0.3333	—
		B: Logit-Probing	0.7430	0.7467	0.7891	0.6768	0.7072	0.7352	0.7650	0.6969
		C: Gen. Class.	0.0398	0.1122	0.1549	0.7301	0.0001	0.0928	0.1468	0.7296
3	Long	A: Direct Generation	0.0040	0.1164	0.3381	—	0.0170	0.3142	0.3450	—
		B: Logit-Probing	0.9557	0.8724	0.9016	0.5976	0.9590	0.8683	0.8866	0.6527
		C: Gen. Class.	0.1254	0.1230	0.1684	0.6935	0.0000	0.0647	0.1451	0.7179
	Short	A: Direct Generation	0.0277	0.1403	0.3556	—	0.0219	0.3034	0.3379	—
		B: Logit-Probing	0.8743	0.7970	0.8548	0.6611	0.3391	0.4507	0.5194	0.7020
		C: Gen. Class.	0.0454	0.1120	0.1577	0.7235	0.0028	0.0552	0.1823	0.7334
5	Long	A: Direct Generation	0.0115	0.1279	0.3522	—	0.0176	0.3136	0.3481	—
		B: Logit-Probing	0.9629	0.8713	0.9075	0.5848	0.7814	0.8057	0.8350	0.6579
		C: Gen. Class.	0.1204	0.1243	0.1720	0.6839	0.0004	0.0567	0.1554	0.7143
	Short	A: Direct Generation	0.1101	0.1472	0.3557	—	0.0203	0.3001	0.3394	—
		B: Logit-Probing	0.8823	0.7923	0.8585	0.6511	0.6402	0.7237	0.7643	0.6944
		C: Gen. Class.	0.0411	0.1137	0.1556	0.7194	0.0095	0.0802	0.1107	0.7317
8	Long	A: Direct Generation	0.0081	0.1390	0.3297	—	0.0156	0.3084	0.3429	—
		B: Logit-Probing	0.9795	0.8787	0.9152	0.5734	0.9246	0.8563	0.8796	0.6546
		C: Gen. Class.	0.1070	0.1183	0.1628	0.7012	0.0013	0.0615	0.1187	0.7168
	Short	A: Direct Generation	0.0739	0.1347	0.3152	—	0.0176	0.2948	0.3367	—
		B: Logit-Probing	0.8593	0.7874	0.8599	0.6470	0.6809	0.7250	0.7637	0.6984
		C: Gen. Class.	0.0402	0.1227	0.1526	0.7341	0.1095	0.0863	0.1292	0.7328

Table 7: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: NDCG. Best results for each setting are in **bold**. Level: L1

Context	Prediction	Method	Qwen3-8B			DeepSeek-distill-Llama-8B		
			Precision@1	Precision@5	Precision@10	Precision@1	Precision@5	Precision@10
1	Long	A: Direct Generation	0.0054	0.4100	0.2583	0.1423	0.2503	0.2667
		B: Logit-Probing	0.9538	0.6749	0.4897	0.9892	0.5025	0.3898
		C: Gen. Class.	0.6152	0.3920	0.3456	0.0018	0.3508	0.2656
	Short	A: Direct Generation	0.0408	0.2252	0.1707	0.0444	0.2130	0.1885
		B: Logit-Probing	0.8613	0.3718	0.2754	0.7905	0.3910	0.2628
		C: Gen. Class.	0.1453	0.2006	0.1947	0.0006	0.1976	0.1681
3	Long	A: Direct Generation	0.0186	0.3880	0.2929	0.1531	0.2516	0.2672
		B: Logit-Probing	0.9886	0.6379	0.4957	0.9946	0.5557	0.4017
		C: Gen. Class.	0.7713	0.3863	0.3482	0.0006	0.2281	0.2606
	Short	A: Direct Generation	0.0828	0.2101	0.2060	0.0576	0.2172	0.1902
		B: Logit-Probing	0.9526	0.3905	0.3186	0.4106	0.2403	0.2018
		C: Gen. Class.	0.1477	0.1963	0.1983	0.0144	0.1005	0.1634
5	Long	A: Direct Generation	0.0690	0.3539	0.2918	0.1609	0.2549	0.2881
		B: Logit-Probing	0.9898	0.6293	0.5030	0.9040	0.5651	0.4384
		C: Gen. Class.	0.7863	0.4104	0.3592	0.0018	0.1878	0.1997
	Short	A: Direct Generation	0.3854	0.1894	0.2015	0.0540	0.2172	0.1975
		B: Logit-Probing	0.9616	0.3864	0.3268	0.7419	0.4715	0.3124
		C: Gen. Class.	0.1339	0.2110	0.1962	0.3025	0.1028	0.0850
8	Long	A: Direct Generation	0.0755	0.3220	0.3002	0.1519	0.2533	0.2757
		B: Logit-Probing	0.9970	0.6293	0.5070	0.9676	0.5442	0.4164
		C: Gen. Class.	0.6783	0.3903	0.3338	0.0078	0.2077	0.2478
	Short	A: Direct Generation	0.2636	0.1887	0.2048	0.0462	0.2108	0.1954
		B: Logit-Probing	0.9652	0.3844	0.3413	0.8025	0.4415	0.2920
		C: Gen. Class.	0.1429	0.2394	0.1838	0.3938	0.1122	0.1185

Table 8: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)** preference. Metric: Precision. Best results for each setting are in **bold**. Level: L1

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

Context	Prediction	Method	Qwen3-8B			DeepSeek-distill-Llama-8B		
			Recall@1	Recall@5	Recall@10	Recall@1	Recall@5	Recall@10
1	Long	A: Direct Generation	0.0007	0.2977	0.3807	0.0173	0.1994	0.4070
		B: Logit-Probing	0.1614	0.5224	0.7448	0.1675	0.4038	0.6063
		C: Gen. Class.	0.0881	0.2823	0.5051	0.0002	0.2653	0.3910
	Short	A: Direct Generation	0.0089	0.2678	0.4435	0.0099	0.3070	0.4955
		B: Logit-Probing	0.2604	0.5066	0.7148	0.2319	0.5153	0.6654
		C: Gen. Class.	0.0304	0.2305	0.4533	0.0002	0.2313	0.3975
3	Long	A: Direct Generation	0.0025	0.2850	0.4488	0.0190	0.2032	0.4138
		B: Logit-Probing	0.1699	0.4997	0.7660	0.1706	0.4500	0.6296
		C: Gen. Class.	0.1149	0.2773	0.5120	0.0001	0.1672	0.3889
	Short	A: Direct Generation	0.0180	0.2496	0.5500	0.0117	0.3146	0.5038
		B: Logit-Probing	0.2899	0.5252	0.8171	0.1288	0.3325	0.5308
		C: Gen. Class.	0.0304	0.2214	0.4585	0.0030	0.1171	0.4046
5	Long	A: Direct Generation	0.0096	0.2624	0.4490	0.0196	0.2012	0.4378
		B: Logit-Probing	0.1666	0.4903	0.7741	0.1532	0.4516	0.6763
		C: Gen. Class.	0.1181	0.2950	0.5330	0.0002	0.1340	0.2853
	Short	A: Direct Generation	0.0926	0.2283	0.5344	0.0113	0.3070	0.5138
		B: Logit-Probing	0.2859	0.5151	0.8345	0.2182	0.6206	0.7940
		C: Gen. Class.	0.0272	0.2392	0.4568	0.0700	0.1174	0.1942
8	Long	A: Direct Generation	0.0105	0.2411	0.4689	0.0183	0.2012	0.4208
		B: Logit-Probing	0.1729	0.4966	0.7887	0.1645	0.4377	0.6477
		C: Gen. Class.	0.1016	0.2811	0.4921	0.0013	0.1484	0.3565
	Short	A: Direct Generation	0.0605	0.2223	0.5327	0.0097	0.3088	0.5182
		B: Logit-Probing	0.2870	0.5137	0.8638	0.2392	0.5892	0.7530
		C: Gen. Class.	0.0301	0.2784	0.4256	0.0908	0.1279	0.2726

1386 Table 9: Comprehensive performance on Yelp using the PT+SFT pipeline across a range of context
1387 windows. We compare our Logit-Probing method (B) Generative Classification variant (C) against
1388 a Direct Generation benchmark (A). Each cell shows results for **Long-Term (L) / Short-Term (S)**
1389 preference. Metric: Recall. Best results for each setting are in **bold**. Level: L1

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403