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Abstract

Medical domain automated text generation is001

an active area of research and development;002

however, evaluating the clinical quality of gen-003

erated reports remains a challenge, especially004

in instances where domain-specific metrics are005

lacking, e.g. histopathology. We propose006

HARE (Histopathology Automated Report007

Evaluation), a novel entity-centric framework,008

composed of a benchmark dataset, a NER009

model and a novel metric, which prioritizes010

clinically relevant content by aligning criti-011

cal histopathology entities between reference012

and generated reports. To develop the HARE013

benchmark, we curated a golden dataset of014

1,196 de-identified diagnostic histopathology015

reports annotated with domain-specific entities016

and a silver dataset of 1,830 automatically017

annotated reports from The Cancer Genome018

Atlas (TCGA). We fine-tuned GatorTronS, a019

domain-adapted language model to develop020

HARE-NER which achieved the highest F1-021

score (0.812) among the tested NER models.022

The proposed HARE metric outperformed tra-023

ditional metrics including ROUGE and Meteor,024

as well as radiology metrics RaTEScore and025

RadGraph-XL, with the highest correlation to026

expert evaluations (higher than the second best027

method, RadGraph-XL, by Pearson r = 0.061,028

Spearman ρ = 0.048, Kendall τ = 0.066).029

We will release HARE, datasets, and the NER030

model to foster advancements in histopathol-031

ogy report generation, providing a robust frame-032

work for improving the quality of histopathol-033

ogy reports.034

1 Introduction035

Medical report generation has become an increas-036

ingly active area of research in clinical natural lan-037

guage processing (NLP) with the goal of automat-038

ing the creation of specialized clinical documents039

(Xu et al., 2024; Liu et al., 2025). Among various040

medical domains, radiology has witnessed the ear-041

liest and most notable advancements in automated042

report generation (Hyland et al., 2023; Nicolson 043

et al., 2023; Wu et al., 2024; Bannur et al., 2024). 044

This progress is partly attributed to the develop- 045

ment of domain-specific evaluation metrics that 046

prioritize clinical correctness (Smit et al., 2020; 047

Jain et al., 2021; Delbrouck et al., 2024; Zhao et al., 048

2024). Unlike general-purpose metrics such as 049

BLEU and ROUGE, these specialized metrics as- 050

sess the accuracy of radiologically significant enti- 051

ties and findings, thereby offering a more clinically 052

meaningful measure of report quality (Lin, 2004; 053

Papineni et al., 2002; Zhao et al., 2024) and fa- 054

cilitating the development of accurate generative 055

models. 056

In contrast, the field of histopathology, which in- 057

volves the microscopic examination of tissue sam- 058

ples to diagnose diseases such as cancer, still relies 059

only on general-purpose lexical metrics for evalu- 060

ating automatically generated reports (Chen et al., 061

2023; Guo et al., 2024; Tan et al., 2024; Chen et al., 062

2024). Histopathology reports are semi-structured, 063

terminology-intensive documents that provide de- 064

tailed microscopic evaluations of tissue samples, 065

playing a crucial role in disease diagnosis and guid- 066

ing treatment decisions. Histopathology reports en- 067

compass multiple sections, including descriptions 068

of anatomical sites, cellular morphology, tumor 069

classification, staging, further analyzes (e.g. im- 070

munohistochemistry (IHC) markers, special stains, 071

or in situ hybridization (ISH)), and the final diag- 072

nosis. 073

Figure 1 shows the difference between the word 074

embeddings of radiology reports (from MIMIC- 075

CXR (Johnson et al., 2019) and IU-Xray (Demner- 076

Fushman et al., 2016) and histopathology reports 077

(used in this study). Histopathology word embed- 078

ding has many areas that are uncovered by radiol- 079

ogy word embeddings, making the histopathology 080

reports unsuitable for radiology report evaluation 081

metrics. Conventional lexical evaluation metrics 082

such as METEOR and BERTScore as well as clin- 083
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Figure 1: Scatter and density plot of word embed-

dings for radiology and histopathology reports. The

radiology reports are 1,000 randomly sampled reports

from MIMIC-CXR dataset and IU-X-ray dataset (John-

son et al., 2019; Demner-Fushman et al., 2016). The

histopathology reports are 1,000 randomly sampled re-

ports from both golden and silver datasets used in this

study. Reports are embedded using a BERT-base model

and reduced to two dimensions using PCA. The density

regions highlight where words from each category are

concentrated, with "Radiology" shown in yellow and

"Histopathology" in blue. This visualization emphasizes

the distinct distribution of vocabulary between the two

domains.

ical relevance based evaluation metrics designed084

for radiology reports are insufficient for assessing085

the quality of automatically generated histopathol-086

ogy reports, as they fail to capture the nuanced087

histopathological details essential for accurate diag-088

nosis and patient management (Banerjee and Lavie,089

2005; Zhang et al., 2019; Smit et al., 2020; Del-090

brouck et al., 2024; Zhao et al., 2024).091

This challenge is further compounded by the092

scarcity of publicly available datasets for specif-093

ically histopathology named entity recognition094

(NER), which limits the ability to train robust mod-095

els tailored to the complexities of histopathologi-096

cal language. There is only one NER model and097

the dataset for pathology reports, but the model098

and the dataset are not publicly available (Zeng099

et al., 2023). This gap underscores the need for an100

entity-centric evaluation metric that can capture the101

unique characteristics of histopathology reports.102

To address this gap, we introduce HARE103

(Histopathology Automated Report Evaluation):104

a novel, entity-focused metric designed to assess105

the clinical quality of generated histopathology re-106

ports. In Figure 2, the process of computing the107

score is demonstrated. HARE captures domain-108

specific entities (e.g., anatomical sites, microscopic109

findings, IHC markers, descriptor for final diag- 110

nosis) from both candidate and reference reports 111

and quantifies their alignment via a cosine simi- 112

larity measure (Rahutomo et al., 2012). Our ap- 113

proach is grounded in a comprehensive annotation 114

effort on 1,196 real-world diagnostic histopathol- 115

ogy reports, where domain experts labeled critical 116

histopathology entities. We then trained and com- 117

pared various BERT-based models on these gold 118

annotations, selecting the best-performing model to 119

automatically annotate an additional 1,830 publicly 120

available histopathology reports from The Cancer 121

Genome Atlas (TCGA) (Tomczak et al., 2015). 122

This silver annotation set both increases the diver- 123

sity of available training examples and enhances 124

the model’s ability to generalize across different 125

report styles. 126

By emphasizing the presence and correctness of 127

domain-specific entities, HARE provides a more 128

clinically oriented benchmark than existing lexical 129

metrics. We validated its effectiveness by demon- 130

strating the higher correlation between HARE 131

scores and expert-derived evaluations of generated 132

reports than multiple other available metrics. By 133

releasing both our silver-annotated TCGA dataset 134

and the final trained NER model (which we call 135

HARE-NER), we aim to encourage further re- 136

search in histopathology NLP and to improve the 137

clinical utility and reliability of automated report- 138

generation systems. 139

The primary contributions of this paper are as 140

follows: 141

1. Introduction of a New Metric (HARE): We 142

propose a domain-specific evaluation metric 143

for histopathology report generation that fo- 144

cuses on the detection and alignment of sig- 145

nificant histopathology entities. To our knowl- 146

edge, it is the first dedicated metric for this 147

purpose. 148

2. Histopathology Score Dataset: We collect 149

and provide expert histopathologist scores for 150

automatically-generated reports, demonstrat- 151

ing the real-world validity of our HARE met- 152

ric. 153

3. HARE-NER: We develop a NER model spe- 154

cialized in histopathology (HARE-NER), ca- 155

pable of recognizing critical domain-specific 156

entities such as IHC markers, anatomical sites 157

and descriptor (for final diagnosis), filling 158

a gap where there is no publicly available 159

histopathology-focused NER model. 160
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HARE-NER

GatorTronS-UMLS

UMLS Concepts

Entity Extraction HARE ScoreEntity Embedding and Alignment

HARE-Score
Right Breast: Grade 3 Invasive ductal carcinoma. 

ER – weak positive, GATA3 - positive, HER2 - negative.

Speciment Site: Right Breast. 
Histological Findings: Presence of atypical ductal structures. Areas 
of necrosis. 
Microscopic Description: High-grade ductal carcinoma in situ (DCIS) 
with comedo necrosis.   
Final Diagnosis: Invasive Ductal Carcinoma, Grade III. 

Expert-Score

Cosine similarity (Invasive ductal carcinoma, 
invasive ductal) = 0.9054

Pathological Diagnosis

Anatomical Site

Diagnosis Descriptor

IHC Modifier

Immunohistochemistry

Recall = 0.5985
Precision = 0.7093

0.6492

4/5: Correct diagnosis with 

at least one incorrect or 

incomplete description. 

Reference

Candidate

Figure 2: Illustration of the process of computing the HARE score, a novel entity-centric metric for evaluating

histopathology report generation.

4. Open Source: We will release (1) the silver-161

annotated TCGA dataset, (2) the final trained162

NER model as well as the alignment model,163

and (3) HARE score computation code to164

facilitate further research and development165

in both NER and report generation in the166

histopathology domain.167

2 Related Work168

While several evaluation metrics have been pro-169

posed for radiology, the field of histopathology170

remains underexplored. Two most recent notable171

contributions in radiology emphasize the design of172

domain-specific metrics that capture clinical sig-173

nificance: RadGraph-XL and RaTEScore (Jain174

et al., 2021; Zhao et al., 2024).175

2.1 RadGraph-XL176

RadGraph-XL (Delbrouck et al., 2024) is a large-177

scale, expert-annotated dataset created for extract-178

ing clinical entities and relations from radiology179

reports. Building upon its predecessor, RadGraph-180

1.0 (Jain et al., 2021), RadGraph-XL expands anno-181

tations to cover multiple anatomy-modality pairs,182

including chest CT, abdomen/pelvis CT, and brain183

MRI, in addition to existing chest X-ray data. The184

dataset consists of over 2,300 reports annotated185

with 410,000 entities and relations, significantly186

enhancing its scale and diversity.187

RadGraph-XL underscores the importance of188

clinically relevant entities and relationships in189

domain-specific metrics. This principle directly190

informs our work, as we extend it to the histopathol-191

ogy domain by focusing on uniquely critical enti-192

ties such as features of the histopathological report 193

including pathological diagnosis and IHC marker 194

data. 195

2.2 RaTEScore 196

RaTEScore (Zhao et al., 2024) is a domain- 197

specific evaluation metric designed to assess the 198

quality of radiology report generation. Unlike 199

general-purpose metrics such as BLEU or ROUGE, 200

RaTEScore prioritizes clinical accuracy through 201

entity-level assessments. It employs a named entity 202

recognition (NER) module to extract key medical 203

entities (e.g., anatomy, abnormalities, diseases) and 204

a synonym disambiguation encoding module to ad- 205

dress challenges such as medical synonymy and 206

negation. The final metric is computed using the 207

cosine similarity of entity embeddings, with ad- 208

justments made to reflect the clinical relevance of 209

specific entity types. 210

To support its development, RaTEScore intro- 211

duced two foundational resources: 212

1. RaTE-NER: A large-scale dataset for med- 213

ical NER, covering nine imaging modalities 214

and 22 anatomical regions. 215

2. RaTE-Eval: A benchmark for evaluating met- 216

rics, including sentence- and paragraph-level 217

human ratings, as well as comparisons involv- 218

ing synthetic reports. 219

RaTEScore demonstrated superior alignment 220

with human preferences, achieving the highest cor- 221

relation scores in evaluations on public datasets 222

such as ReXVal and the RaTE-Eval benchmark. In- 223

spired by RaTEScore’s methodology, our proposed 224
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HARE metric adapts the principles of entity recog-225

nition and embedding similarity to the histopathol-226

ogy domain, addressing unique challenges such227

as the interpretation of pathological diagnosis and228

IHC findings.229

2.3 Limitations in Existing Metrics230

Although RadGraph-XL and RaTEScore have sig-231

nificantly advanced the evaluation of radiology232

reports, their applicability is limited to specific233

modalities (e.g., chest X-rays) and radiological con-234

texts. They do not address the unique linguistic235

and clinical knowledge of histopathology, which236

involve detailed morphological assessments and237

IHC findings.238

HARE addresses these limitations by introduc-239

ing an entity-aware evaluation framework tailored240

specifically to the histopathology domain. By em-241

phasizing the detection and alignment of domain-242

specific entities, HARE provides a clinically rel-243

evant metric to assess the quality of generated244

histopathology reports.245

3 Methods246

In this section, we describe the development of247

HARE (Histopathology Automated Report Eval-248

uation), a domain-specific evaluation metric de-249

signed to assess the clinical quality of generated250

histopathology reports. Our methodology involves251

dataset preparation and annotation, named entity252

recognition (NER) model training, and the design253

of the HARE metric.254

3.1 Dataset Preparation and Annotation255

We curated two datasets to support the development256

of HARE: a manually annotated golden dataset and257

an automatically annotated silver dataset.258

3.1.1 Golden Dataset259

We collected 1,196 fully de-identified/anonymized260

histopathology reports from the pathology depart-261

ment of a large teaching hospital. The reports were262

from cases across a range of tissue types and di-263

agnoses. The reports were annotated by expert264

histopathologists using the Inception annotation265

tool (Klie et al., 2018). Disagreements were re-266

solved by a senior histopathologist. The annota-267

tions focused on histopathology-specific entities,268

including:269

• Anatomical Site: Entities describing specific270

tissue regions or locations, such as breast,271

lung, kidney, lymph nodes etc..272

• Immunohistochemistry Markers: The pres- 273

ence of immunohistochemical markers such 274

as CK20, CDX2, ER, PR, Ki-67. 275

• Pathological diagnosis: The pathological di- 276

agnosis, such as classical Hodgkin lymphoma. 277

• Diagnosis Descriptor: Provides descriptive 278

characteristics of the pathological diagnosis is 279

uncertain, e.g., ‘raises the possibility of’. 280

• IHC Modifier: Used to modify immunohisto- 281

chemical annotations, e.g., ’patchy’ or ’strong. 282

Entity Type Golden Silver

Immunohistochemistry 7,464 180

IHC Modifier 1,398 504

Pathological diagnosis 925 2,101

Anatomical Site 754 664

Diagnosis Descriptor 255 289

Table 1: Entity annotation statistics for the Golden and

Silver datasets.

3.1.2 Silver Dataset 283

To increase diversity, we automatically annotated 284

1,830 publicly available histopathology reports 285

from the previously published HistGen training 286

and evaluation dataset, which is originally sourced 287

from The Cancer Genome Atlas (TCGA) (Guo 288

et al., 2024; Tomczak et al., 2015). These reports 289

were then further annotated using the best perform- 290

ing model trained with the golden dataset. We then 291

extracted sentences with histopathological descrip- 292

tions, specifically microscopic findings and final 293

diagnosis characteristics. The breakdown of the 294

number of annotations for the Golden and Silver 295

datasets are summarized in table 1. 296

3.2 HARE-NER Training 297

The NER task is critical to HARE, as it identifies 298

domain-specific entities from histopathology re- 299

ports. We followed a systematic process to train 300

and evaluate multiple BERT-based NER models 301

optimized for the histopathology domain. 302

We experimented with several transformer- 303

based architectures, including PathologyBERT and 304

GatorTronS, which are pre-trained on clinical cor- 305

pora, and BiomedBERT which was trained with 306

PubMed articles as well as general domain mod- 307

els (BERT and DeBERTa models)2 (Devlin, 2018; 308

He et al., 2021; Santos et al., 2023; Yang et al., 309

2022). PathologyBERT is the only publicly avail- 310

able model that is trained with pathology reports 311
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General Domain Model Size

BERT(Devlin, 2018) 110M 340M

DeBERTa-v3(He et al., 2021) 70M 435M

Biomedical Domain Model Size

PathologyBERT(Santos et al.,

2023)

110M

BiomedBERT(Tinn et al., 2021) 110M 340M

SapBERT(Liu et al., 2020) 110M

GatorTronS(Yang et al., 2022) 345M

Table 2: Models tested for fine-tuning. The models are

sorted in the order of size.

but for document classification specifically for312

breast cancer (Santos et al., 2023). SapBERT is313

also included as it was further trained with Biomed-314

BERT model for entity alignment to Unified Med-315

ical Language System (UMLS), a detailed and316

widely used ontology (Liu et al., 2020; Tinn et al.,317

2021; National Library of Medicine (US), 2024).318

These models were fine-tuned using the annotated319

golden dataset to recognize histopathology-specific320

entities. The annotated reports input tokens were321

split into sentences, and any sentences longer than322

512 tokens were split during preprocessing. All323

models were implemented using the HuggingFace324

Transformers library (Wolf, 2019). Training was325

conducted on NVIDIA A5000 GPU. The training326

used an AdamW optimizer with a learning rate of327

5e−5 and a batch size of 4 for 2 epochs. We evalu-328

ated the models using standard metrics: accuracy329

and F1-score. The evaluation was conducted on330

a held-out test set, 30%, from the golden dataset.331

The train and test split is shown in table 3. The332

best-performing model was selected to annotate333

the silver dataset. To improve generalization, the334

final NER model, HARE-NER, was trained on a335

combined dataset of golden and silver annotations.336

This final model serves as the backbone for extract-337

ing entities in the HARE metric.338

3.3 Design of the HARE Metric339

The HARE metric evaluates the quality of gener-340

ated histopathology reports by measuring the align-341

ment of clinically relevant entities between refer-342

ence and candidate reports.343

3.3.1 Entity Extraction344

Using the trained HARE-NER model, entities are345

extracted from both the reference and candidate346

reports. For each token, the model outputs a proba-347

bility distribution over entity classes, and only enti-348

Split Reports Sentences Words

Golden-Train 834 7,159 85,639

Golden-Test 362 1,790 36,000

Silver-Train 1,270 1,684 33,581

Silver-Test 560 706 15,696

Table 3: Statistics of the train and test datasets used. The

Golden Dataset includes manually annotated reports,

while the Silver Dataset (TCGA Reports) includes

automatically annotated reports. Reports represents the

number of reports, Sentences the total sentences, and

Words the total words

ties with confidence scores above a threshold of 0.7 349

are retained. This threshold ensures that uncertain 350

predictions are excluded from the evaluation. 351

3.3.2 Entity Embedding and Alignment 352

Extracted entities are embedded in a high- 353

dimensional space using contextual representations 354

from GatorTronS. The embeddings are further fine- 355

tuned using a UMLS-based SapBERT approach, 356

which ensures semantic alignment of similar enti- 357

ties (e.g., lymphovascular invasion and vascular 358

invasion). Cosine similarity is computed between 359

all pairs of entities from the reference and candidate 360

reports. For each entity, we calculate the maximum 361

cosine similarity with the entities in the other set. 362

3.3.3 Scoring 363

The HARE metric calculates precision, recall, and 364

F1-scores based on matched entities. The formulas 365

for precision and recall are as follows: 366

Recall =
1

|Eref|

∑

eref∈Eref

max
ecand∈Ecand

S(eref, ecand) 367

Precision =
1

|Ecand|

∑

ecand∈Ecand

max
eref∈Eref

S(ecand, eref) 368

Where: 369

• Eref: Set of embeddings for reference entities. 370

• Ecand: Set of embeddings for candidate enti- 371

ties. 372

• S(u,v): Cosine similarity between embed- 373

dings u and v. 374

The HARE score is then calculated as the har- 375

monic mean of precision and recall, also referred 376

to as the F1-score: 377
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HARE Score (F1) = 2 ·
Precision · Recall

Precision + Recall
378

This ensures that both precision and recall are379

considered equally, providing a balanced measure380

of the alignment between ground truth and pre-381

dicted entities. A higher HARE score indicates382

better alignment, reflecting both accurate and com-383

prehensive entity matching.384

3.4 Validation of the HARE Metric385

To validate HARE, we conducted an expert evalua-386

tion of machine-generated histopathology reports.387

We generated reports using GPT4O and GPT4O-388

mini using whole slide images (WSI) downloaded389

from TCGA (Hurst et al., 2024). Due to the volume390

of the images, we processed to lower resolution and391

resized the image to 1024 by 1024 pixels. In to-392

tal, 75 randomly selected images were downloaded393

and used for generating reports. For each image,394

eight sets of reports were generated with different395

levels of specimen site information provided. In to-396

tal, 600 reports were compared to the ground truth397

reports. Experts compared generated reports to398

ground truth (original) reports and assigned scores399

based on diagnostic accuracy and histopathologi-400

cal detail to ensure an objective evaluation of the401

model’s performance in generating histopathology402

reports from WSI.403

The following is the scoring system and the ra-404

tionale for each score level:405

• Scores 5 (Perfect match with ground truth):406

This score is assigned to reports that are iden-407

tical to the reference report in terms of both408

diagnostic accuracy and histopathological de-409

scriptions.410

• Scores 4 (Perfect match diagnosis with at411

least one wrong description): This score is412

assigned to reports that correctly identify the413

diagnosis, but contain at least one minor er-414

ror in histopathological descriptions. These415

errors may involve inaccurate terminology,416

missing morphological features. Although417

these reports provide a reliable diagnosis, an418

incomplete or incorrect description reduces419

their overall quality.420

• Scores 3 (Correct diagnosis): This score is421

assigned to reports that accurately determine422

the correct diagnosis but do not provide any423

of the detailed histopathological descriptions424

in the ground truth.425

• Scores 2 (Broadly correct diagnosis): This 426

score is assigned when reports correctly iden- 427

tify the general disease category but do not 428

specify the exact diagnosis. For example, a 429

report may correctly classify a tumor as ma- 430

lignant but does not differentiate between spe- 431

cific subtypes. These reports provide a useful 432

but incomplete diagnosis, which limits their 433

clinical applicability. 434

• Scores 1 (Incorrect diagnosis with a few 435

histopathological descriptions match with 436

ground truth): This score is assigned when 437

the report fails to provide the correct diagno- 438

sis but includes practical histopathological de- 439

scriptions that align with the reference report. 440

While some microscopic features are correctly 441

described, the overall diagnostic conclusion 442

is incorrect, greatly reducing the clinical relia- 443

bility and utility of the report. 444

• Scores 0 (Incorrect diagnosis with no 445

histopathological description matches with 446

ground truth ): This score is assigned to re- 447

ports that provide neither a correct diagno- 448

sis nor any histopathological descriptions that 449

align with the ground truth. These reports fail 450

to recognize key pathological features and do 451

not contribute to an accurate clinical assess- 452

ment, making them completely unreliable. 453

3.4.1 Metric Comparison 454

HARE scores were compared to expert scores us- 455

ing Pearson’s correlation coefficient, Spearman’s 456

correlation coefficient, and Kendall’s τ . Addi- 457

tionally, we benchmarked the metric against tra- 458

ditional lexical metrics (BLEU, ROUGE, ME- 459

TEOR, BERTScore) and radiology-specific metrics 460

(RadGraph-XL, RaTEScore) (Papineni et al., 2002; 461

Lin, 2004; Banerjee and Lavie, 2005; Zhang et al., 462

2019; Delbrouck et al., 2024; Zhao et al., 2024). 463

4 Results and Discussion 464

4.1 GatorTronS Achieves Superior 465

Performance in Named Entity Recognition 466

Our experiments demonstrated that GatorTronS 467

outperforms other models, both general-purpose 468

and biomedical, in extracting entities from 469

histopathology reports. As shown in Table 4, 470

GatorTronS achieved the highest accuracy (0.967) 471

and F1-score (0.795), surpassing the next-best 472

model, DeBERTa-v3-large (F1 = 0.788). This re- 473

sult underscores the efficacy of GatorTronS in ad- 474
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Model Accuracy F1

DeBERTa-v3-xsmall 0.952 0.662

BERT-base 0.962 0.751

SapBERT 0.961 0.755

PathologyBERT 0.963 0.755

BiomedBERT-base 0.962 0.759

BERT-large 0.963 0.763

BiomedBERT-large 0.965 0.780

DeBERTa-v3-large 0.965 0.788

GatorTronS 0.967 0.795

Table 4: Model selection results based on evaluation

accuracy and F1-score on the golden test set. Models

are sorted by F1-score.

dressing the complexities inherent to histopathol-475

ogy text. Its extensive pre-training on large-scale476

synthetic clinical corpora provides it with a com-477

prehensive understanding of domain-specific lan-478

guage, abbreviations, and nuanced terminology.479

This ability is particularly critical in histopathol-480

ogy, where specialized expressions describing tis-481

sue morphology and disease subtypes are prevalent.482

GatorTronS model even outperformed DeBERTa-483

large model which was approximately 90M param-484

eters larger. A similar sized biomedical model,485

BiomedBERT-large, was also better than BERT-486

large model. Moreover, training GatorTronS on487

both highly curated “golden” annotations and auto-488

matically generated “silver” annotations broadened489

its exposure to diverse reporting styles, improv-490

ing its generalizability and resulting in an F1-score491

increase to 0.812 5.492

Model Accuracy F1

DeBERTa-v3-xsmall 0.957 0.716

BERT-large 0.960 0.733

SapBERT 0.965 0.774

PathologyBERT 0.966 0.779

BERT-base 0.965 0.780

BiomedBERT-base 0.966 0.784

DeBERTa-v3-large 0.967 0.792

BiomedBERT-large 0.968 0.801

GatorTronS 0.971 0.812

Table 5: Merged results based on evaluation accuracy

and F1-score on the merged dataset. Models are sorted

by F1-score.

An additional factor contributing to493

GatorTronS’s superior performance is its494

model size. As the largest model among the495

biomedical models tested, GatorTronS benefits496

from greater representational capacity, enabling 497

it to capture complex relationships in text more 498

effectively. 499

While smaller biomedical models such as Pathol- 500

ogyBERT and BiomedBERT-base demonstrate do- 501

main adaptation benefits and outperform general- 502

purpose models of comparable size, such as 503

DeBERTa-xsmall and BERT-base, they fall short 504

when compared to larger general-purpose models 505

like BERT-large and DeBERTa-v3-large. This find- 506

ing emphasizes the importance of scaling model 507

size as well as domain adaptation to achieve state- 508

of-the-art performance in specialized domains like 509

histopathology. 510

4.2 Majority of Generated Reports Lack 511

Clinical Alignment 512

Despite advances in text generation methods, ex- 513

pert evaluations reveal a significant misalignment 514

between system-generated reports and clinical re- 515

quirements. As shown in Table 6, 369 out of 600 516

generated reports (61.5%) received a score of 0 517

and 71 reports received a score of 1 (11.8%), in- 518

dicating 73.3% of the reports had an incorrect di- 519

agnosis. Only eight reports attained a score of 4, 520

while none achieved the perfect score of 5. Scores 521

with partially correct diagnosis, broadly correct di- 522

agnosis, and correct diagnosis (Score 2, 3, and 4) 523

accounted for 160 reports (26.7%). When we com- 524

pared the HARE and other scores to expert scores, 525

we excluded reports with 0 scores to have more bal- 526

anced representation of the scores. These findings 527

highlight a significant limitation in the diagnostic 528

accuracy of the generative model utilized, with a 529

substantial proportion of reports failing to predict 530

reliable pathological interpretations. 531

The high percentage of incorrect diagnoses and 532

the lack of accurate microscopic descriptions can 533

be attributed to several factors. One major limi- 534

Score Count

0 369

1 71

2 90

3 62

4 8

5 0

Table 6: Distribution of expert evaluation scores for

generated histopathology reports. Scores represent the

degree of alignment with the reference reports, with

higher scores indicating better alignment.
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tation can be the use of a single, low-resolution535

WSI, which could restrict the model’s ability to536

discern detailed morphological features essential537

for histopathological evaluation. Histopatholo-538

gists analyze WSIs at multiple magnification lev-539

els (low-power magnification for architectural pat-540

terns, high-power for cellular details such as nu-541

clear atypia, and mitotic figures), which is crucial542

to distinguish benign from malignant. This limi-543

tation can hinder the model’s capacity to generate544

precise microscopic descriptions and accurately dif-545

ferentiate pathological entities. Furthermore, only546

one WSI was provided per case, whilst in most547

cases multiple WSI were utilized as part of the548

diagnostic process. Finally, critical contextual in-549

formation (e.g., clinical history or anatomical site550

information) was not provided all the time.551

4.3 HARE Outperforms Existing Metrics in552

Capturing Clinical Relevance553

Method r ρ τ

ROUGE-L 0.048 0.030 0.025

BLEU 0.078 0.106 0.099

METEOR 0.265 179 0.136

BERTScore 0.203 0.180 0.141

RaTEScore 0.372 0.350 0.276

RadGraph-XL 0.427 0.425 0.351

HARE (Ours) 0.488 0.473 0.417

Table 7: Comparison of evaluation methods based on

Pearson correlation (r) Spearman (ρ) and Kendall’s τ .

Methods are sorted by Kendall’s τ

As shown in Table 7, HARE achieved the high-554

est Pearson correlation (r = 0.488), Spearman555

correlation (ρ = 0.473) and Kendall τ (τ = 0.417)556

with expert scores. These results surpass those557

of RadGraph-XL, the second-best metric, which558

achieved r = 0.427, ρ = 0.425 and τ = 0.640.559

Lexical metrics such as ROUGE-L (r = 0.048,560

ρ = 0.030, τ = 0.025) and BLEU (r = 0.078,561

ρ = 0.106, τ = 0.099) performed poorly, further562

underscoring their inability to evaluate clinically563

relevant content.564

HARE’s effectiveness originates from its focus565

on histopathology entity-level alignment, which566

ensures that key clinical features, such as patholog-567

ical diagnosis, are appropriately prioritized. Unlike568

traditional lexical metrics, HARE incorporates se-569

mantic similarity measures tailored to pathology-570

specific terminology by incorporating descriptor571

and modifier entities, making it robust to linguistic572

variations. By capturing both semantic and clini- 573

cal correctness, HARE offers a more accurate and 574

reliable evaluation of generated histopathology re- 575

ports. 576

The implications of HARE’s performance are 577

significant. Its strong correlation with expert evalu- 578

ations indicates that it is a reliable proxy for clinical 579

relevance and accuracy of the generated reports. As 580

such, HARE can guide iterative improvements in 581

report generation models, ensuring that future sys- 582

tems better align with clinical requirements. How- 583

ever, a Pearson correlation of 0.497 suggests that 584

there is still room for improvement in evaluation 585

metrics. Future work could explore larger anno- 586

tated datasets sourced from multiple hospitals to 587

incorporate more diverse writing styles, pathologi- 588

cal entities and features, with more annotation of 589

a greater variety of pathological entities and histo- 590

morphological features. 591

5 Conclusion 592

In this work, we proposed HARE, a novel entity- 593

centric evaluation metric specifically designed to 594

assess the clinical quality of machine-generated 595

histopathology reports. HARE addresses the crit- 596

ical gap in domain-specific evaluation by prior- 597

itizing clinical relevance over traditional lexical 598

overlaps. Through a combination of golden and 599

silver annotated datasets and leveraging the pow- 600

erful GatorTronS model for named entity recog- 601

nition, HARE effectively aligns with expert eval- 602

uations, outperforming existing metrics such as 603

BLEU, ROUGE, and RaTEScore. 604

Our findings reveal that even the proprietary mul- 605

timodal large language models, such as GPT4O, 606

struggle to produce clinically accurate histopathol- 607

ogy reports. Although we have not tested a compre- 608

hensive list of models trained for histopathology re- 609

ports such as HistGen and WsiCaption, HARE can 610

be a robust framework for evaluating these models 611

(Guo et al., 2024; Chen et al., 2024). HARE’s su- 612

perior performance underscores the importance of 613

domain-specific evaluation metrics in bridging the 614

gap between automated report generation and clini- 615

cal expectations. By making HARE publicly avail- 616

able, along with the silver-standard annotations and 617

NER model, we aim to facilitate advancements in 618

both report generation and evaluation methodolo- 619

gies in histopathology and related fields. 620
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Limitation621

While HARE demonstrates strong alignment with622

expert assessments, several limitations remain. The623

reliance on silver-standard annotations in training624

may introduce noise, potentially impacting the gen-625

eralization of the HARE-NER model in complex626

or unseen contexts. Future efforts could focus on627

improving the quality of silver annotations through628

semi-supervised or human-in-the-loop approaches.629

The scope of this study is also limited to eval-630

uating the generated text at an entity level. Fu-631

ture work could incorporate relation extraction632

and cross-entity consistency checks to better cap-633

ture higher-order clinical reasoning in generated634

histopathology reports. Finally, while HARE aligns635

well with expert scores, its correlation with clinical636

outcomes remains unexplored, which could be a637

key area of future investigation.638

Broader Impacts and Ethics Statement639

All histopathology reports used in this study were640

de-identified to protect patient privacy and ensure641

compliance with ethical and legal standards. No642

personally identifiable information (PII) was used643

in the development of the HARE framework. Our644

work does not raise any major ethical concerns.645

HARE is designed for evaluation and research pur-646

poses only and is not intended for direct use in647

clinical decision-making.648

While HARE provides a reliable metric for eval-649

uating the quality of generated histopathology re-650

ports, it does not address potential biases or hallu-651

cinations in the underlying text generation models.652

Therefore, any use of automated text generation653

systems in clinical workflows should include rig-654

orous human oversight to mitigate risks, such as655

incorrect diagnoses or misleading conclusions.656
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Appendix830

A Word cloud representations of831

radiology and histopathology reports832

Figure 3: Word clouds of radiology reports. The radiol-

ogy reports are 1,000 randomly sampled reports from

MIMIC-CXR dataset and IU-X-ray dataset (Johnson

et al., 2019; Demner-Fushman et al., 2016). The size

of each word represents its relative frequency in the

corresponding category.

Figure 4: Word clouds of histopathology reports. The

histopathology reports are 1,000 randomly sampled re-

ports from our golden and silver dataset. The size of

each word represents its relative frequency in the corre-

sponding category.

These visualizations provide insight into the833

linguistic differences between radiology and834

histopathology reports, highlighting the special-835

ized vocabulary and diagnostic focus within each836

domain. Larger words represent higher relative837

frequency. The word cloud visualization for radi-838

ology reports highlights key terms such as "pleu-839

ral effusion", "pneumothorax", "cardiopulmonary"840

and "atelectasis", indicating these are more com-841

mon findings and diagnostic terminology used in842

radiology (see Figure 3). Figure 4 illustrates a843

word cloud generated from 1,000 randomly sam-844

pled histopathology reports from our golden and845

silver dataset. Frequent occurring terms such as "tu-846

mor", "lymph node", "B cell", "negative", "biopsy",847

and "staining", reflect key features and diagnostic848

language used in histopathology reports. Com- 849

pared to radiology reports, histopathology reports 850

exhibit more granular terminology related to cellu- 851

lar morphology and pathology-specific descriptors. 852
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